N
N

N

HAL

open science

A Basis for Repeated Motifs in Pattern Discovery and
Text Mining

Nadia Pisanti, Maxime Crochemore, Roberto Grossi, Marie-France Sagot

» To cite this version:

Nadia Pisanti, Maxime Crochemore, Roberto Grossi, Marie-France Sagot. A Basis for Repeated Motifs
in Pattern Discovery and Text Mining. 2002. hal-00627828

HAL Id: hal-00627828
https://hal.science/hal-00627828

Submitted on 29 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00627828
https://hal.archives-ouvertes.fr

A Basis for Repeated Motifs
in Pattern Discovery and Text Mining*

N. Pisanti M. Crochemore ? R. Grossi M.-F. Sagot ¥

July 12, 2002

Abstract

We present a new notion of basis that is able to generate the repeated motifs
(possibly exponential in number) that appear at least twice with don’t care symbols
in a string of length n over an alphabet 3. Our basis has some interesting features
such as being (a) a subset of the previously defined bases, (b) truly linear as its motifs
are less than n in number and appear in the string for a total of 2n times at most; (c)
symmetric as the basis of the reversed string is the reverse of the basis; (d) computable
in polynomial time, namely, in O(n%lognlog|%|) time. In addition, several other
computational questions related to the use of our basis are discussed. Our notion
provides the best-known tradeoff between the size of the basis and the complexity of
its construction.

1 Introduction

Identifying repeats in a string is a common task in several areas, notably computational
biology, data mining, system security, etc. Just to name a few examples, biologists aiming
at understanding some properties of biological sequences may look for repetitions with some
degree of approximation [3]; designers of data mining systems have realized that repetitions
(called frequent itemsets) are at the heart of discovering the so-called “association rules”

*Supported by VINCI French-Italian University program.

tWork of this author is partially supported by ERCIM fellowship programme. Dipartimento di In-
formatica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy and INRIA Rhone Alpes, France;
pisanti@di.unipi.it

'Work by this author is partially supported by CNRS action AlBio, NATO Science Programme grant
PST.CLG.977017, and Wellcome Trust Foundation. Institut Gaspard-Monge, University of Marne-la-Vallée,
77454 Marne-la-Vallée CEDEX 2, France and King’s College London; http://www-igm.univ-mlv.fr/~mac

$Work by this author is partially supported by the United Nations Educational, Scientific and Cultural
Organization (UNESCO) under contract UVO-ROSTE 875.631.9 and by the Italian Ministry of Research
and Education. Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy; part of
the work of this authour is done while visiting the Institut Gaspard-Monge, University of Marne-la-Vallée,
France; grossi@di.unipi.it

TWork by this author is partially supported by CNRS-INRIA-INRA-INSERM action Biolnformatique and
Wellcome Trust Foundation. Inria Rhone-Alpes, Laboratoire de Biométrie et Biologie Evolutive, Université
Claude Bernard, 69622 Villeurbanne cedex, France; Marie-France.Sagot@inria.fr

which are considered the basic primitives in these systems [5] (interestingly, several of their
problems can be formulated as pattern discovery in strings with large alphabets). A plethora
of different formulations in the known literature face the problem of detecting repetitions
in several contexts and formulate the problem in different ways depending on the specific
applications, thus revealing its algorithmic relevance.

In this paper, we focus on repetitive patterns with don’t cares, where a don’t care is a
special symbol that matches anything. For example, pattern B-T matches both BIT and BUT,
where the symbol ‘-’ denotes the don’t care. Note that, contrarily to string matching with
don’t cares, we are not given a pattern to search for in the text. Here, given a string of
length n over an alphabet ¥, we want identify all possible patterns with don’t cares that
appears in s at least twice. Unfortunately, this is hard as their number can be exponential.
Several heuristics, based on relevant properties in biology or notions of quorum and confi-
dence in text mining, try to reduce the number of interesting patterns to make feasible any
further processing of them. In this context, for a fixed parameter ¢ > 1 called quorum, we
say that a pattern is a motif if it appears at least ¢ times in s. Among the many proposed
methods to select motifs, we single out those based on the notion of mazimality or specificity.
Informally, a motif is maximal if cannot be extended to the left or to the right by adding
further symbols or by replacing any of its don’t care symbols by an alphabet letter, without
losing any occurrences. For example, motif M- -T - E is maximal in COMMITTEE.

Unfortunately, the notion of maximality is not sufficient to bound the number of inter-
esting motifs [7]. A significant step in this field has been the introduction of the notion of
basis.

Informally speaking, a basis is a set of motifs that can generate all the maximal motifs
by simple mechanical rules. The paper by Parida et al. [7] proposes a mathematical way
of expressing this notion in a novel way. It relies on the idea that a basis of motifs can be
defined in the algebraic sense of the term. The maximal motifs in the basis defined in [7]
are irredundant. Representing each occurrence of a motif by its starting position in the
string s, a maximal motif is irredundant if its set of occurrences is not the union of the sets
of occurrences of other maximal motifs. Parida et al. prove that the number of motifs in the
basis is at most 3n and that the basis can be computed in O(n?logn) time notwithstanding
the possibly exponential number of maximal motifs that are candidates for the basis (an
algorithm in [8, Sect.4.1], which is apparently the same, is claimed to require O(n*logn)
time).

Motivated by an attempt to have insight into the mathematical background behind the
ideas introduced in [7], we investigate a new definition of basis. Among the initial motiva-
tions, we found several examples in which the size of the basis defined in [7] is not bound
by 3n. We actually could not find any reasonable constant ¢ giving an upper bound of cn
in our examples. Furthermore, we were unable to grasp all the details of the algorithms
presented in [7] so as to run them correctly on our examples. For instance, the algorithm
for building the basis includes some redundant motifs in the basis, and discard some irre-
dundant motifs [10]. A following paper [8] presented the same difficulties to us, therefore
leaving many open questions. For example, there is no dependency on the quorum ¢ in the
time complexity, while we could observe a non-constant growth of the basis for increasing
values of ¢ up to O(logn). Another point is that the basis of the string in reversed order s®
and the basis of s are apparently unrelated. In a certain sense, this is a bit surprising. If

we consider other properties of s, such as its entropy (related to repetitions), we expect that
the entropy of s and that of s® are related (actually, they are the same).

In this paper, we follow up the seminal idea of Parida et al. and propose an alternative
notion of basis with quorum ¢ = 2 that is able to generate all maximal motifs. Our basis
has some interesting features such as being (a) a subset of the basis defined in [7]; (b) truly
linear as its motifs are less than n in number and also appear in s for a total of 2n times
at most; (c) symmetric as the basis of the reversed string s® is made up by the reversed
motifs in the basis of s; (d) computable in polynomial time, namely, in O(n?lognlog|%|)
time. The motifs in our basis, called tiling motifs, are maximal motifs such that their sets
of occurrences are not the union of the sets of shifted occurrences of maximal motifs. This
notion is more stringent than irredundancy, as a tiling motif is irredundant but the vice versa
is not necessarily true.

Very recently, Pelfrene et al. [9] have introduced in a two-page poster another notion
of irredundancy, claiming by examples that the corresponding basis for quorum ¢ = 2 has
linear size and can be computed in O(n?) time. As far as we know, our basis is also a subset
of theirs (which is not symmetric), and the total number of occurrences of the motifs in their
basis can be ©(n?). They leave as an open problem the case for quorum ¢ > 2.

Example Consider sequence AAAAA---AAAA = A™. Both basis in [7] and [9] contain n — 1
motifs, namely A’ with list of occurrences {0,1,...,n — i} for all i’s between 1 and n — 1.
Therefore the sum of the size of all occurrence lists of motifs in their basis is in O(n?). Our
basis contains only the motif A"~ with occurrence list {0, 1}, and in this data we have all the
information we need to generate the other motifs. Another example showing the differences
with previous work is in Section 2.

In our paper, we also indicate a polynomial algorithm for calculating the basis in the case
where the motifs must appear at least ¢ times for ¢ > 2. Finally, we show that given any
pattern, we can determine in O(k X min(n, b)) time whether it appears repeated in s where
k is the number of blocks of don’t cares in the pattern and b the total length of motifs in
the basis.

The paper is organized as follows. Section 2 presents the new definition of basis of motifs
together with basic properties. Section 3 describes structural properties of bases and provides
important elements related to the complexity of subsequent algorithms. In Section 4, the
algorithm to compute a basis of motifs for a string is described and analyzed. Finally,
section 5 is concerned with the use of bases and related algorithms.

2 Basis of Motifs

We consider strings that are finite sequences of letters drawn from an alphabet . Elements
of ¥ are also named solid characters. An additional letter not in ¥ is considered, denoted
by -, and called the don’t care symbol (it matches any other letter). The length of a string ¢
(in X* or (X U {-})*) is denoted by |t| and the letter at position i in ¢ by ¢[i]. We therefore
have ¢t = t[0]¢[1] - - - ¢[|¢] — 1]

Definition 1 (pattern) A pattern is a string in XU X(X U {-})*X, that is, a string on the

3

alphabet X U {-} that starts and ends with a solid character.

Definition 2 (specifity) The specifity relation denoted by < is defined on ¥ U {-} as fol-
lows: fO’f' 01,02 € YU {}, 01 j 09 iﬁal = 09 0Or 01 = -.

We view strings as if they were padded to the left and to the right with an infinite number
of don’t cares. In other words, for a string s, we consider that ¢[j] = - for any integer j such
that j < 0 or j > |t|. The relation < extends then to strings: for u,v € (XU {-})*, u 2 v iff
ulj] < v[j] for any integer j. We say that u is less specific than v when u < v.

Definition 3 (occurrence) For u,v € (XU {-})*, we say that u occurs at position ¢ in v
if ulj] L o[l +j], for 0 <j < ul — 1.

Let s € ¥* be the fixed string where repeated motifs are searched for, and let |s| = n.

Definition 4 (motif) For a pattern x, the location list L, contains the positions of all the
occurrences of x in s. Given a special parameter q > 2, called quorum, we say that pattern
x s a motif (according to s and q) if |L.| > q.

Given a string s and a quorum ¢, we are interested in finding all motifs of s, that
is all patterns that appear at least ¢ times in s. The problem of finding such motifs is
computationally difficult. The difficulty is basically due to the possible exponential size of
the output. In fact, an exponential number of motifs can be found. We therefore define
two concepts that allow to reduce this quantity. Since motifs appearing only once are not
interesting, from now on we assume ¢ = 2.

Given a set L of integers and an integer i, the i-shift of L, denoted by L + 4, is the set
{zr+i]xe L}

Definition 5 (maximality) A pattern x is maximal if, for any pattern y and integer d
such that L, = L, + d, we have d > 0 and y occurs in x at position d.

Intuitively, a motif x is maximal if no other motif y is more specific than it (i.e. y has
a solid character at a position where x has a don’t care, or z is a segment of y), and simul-
taneously has exactly the same occurrences as x in the input string (positions are possibly
shifted by some integer).

Example For example, let s = FABCXFADCYZEADCEADC. The occurrence list of motif
ry = A-Cis £, = {1,6,12,16}, and that of motif 2, = FA-C is £,, = {0,5}. They are
maximal because if they are extended or their don’t cares are replaced by a solid charac-
ter, they lose at least one of their occurrences. On the contrary, motif x3 = DC has list
L., = {7,13,17} and is not maximal since it occurs in x, = ADC that has the same number
of occurrences (L., = {6,12,16}) at positions shifted by 1. Indeed, x4 is maximal.

Definition 5 is an equivalent formulation of the one given in [7] and [9]. It is known from
[7] that there can still be an exponential number of maximal motifs in a string. Therefore, a
further requirement should be made in order to restrict to a polynomial number of interesting
motifs.

Definition 6 (tiling motif) A mazimal motif z is a tiling motif if, for any mazimal motifs
Y1, Y2, - - -, Yk and integers dy, da, ..., di such that L, = U (L, + d;), motif x is one of
the y;’s. When, instead, all y;’s are different from x, pattern x is said to be a tiled motif.
We also say that motifs y;, ys, - .., Y tile x.

According to the definition, if x is tiled by the motifs yi, yo, ..., yx (given integers dj,
ds, ..., dy), then £ > 1. Indeed, the equality £, = £, + d; with = # y; would contradict
the maximality of both x and ;.

Among the maximal motifs of s = FABCXFADCYZEADCEADC, motif x; = A-C is tiled since
its occurrence list, £,, = {1,6,12,16}, can be recovered from the lists of 4 = ADC and
x9 = FA-C, which are respectively £,, = {6,12,16} and £,, = {0,5}. The latter list should
be shifted by one position.

The notion of tiling motifs with respect to maximality relies on the fact that motifs are
considered as invariant by shift. Note that the y;’s in Definition 6 are not necessarily distinct.
We suggest the set of tiling motifs as a notion of basis for the complete set of all (maximal)
motifs. In fact, we show (Section 5) that such a set of motifs is enough to recover all motifs.
The size of the basis is not greater than the length of the input string (Section 3). Moreover,
the set of tiling motifs can be computed in polynomial time with respect to the length of
the input string (Section 4).

In the following lemma, we state a characterization of the maximal motifs which con-
tribute to make another maximal motif a tiled motif.

Lemma 1 Let x be a mazimal motif tiled by mazimal motifs yi, Yo, . . . , Y with corresponding
integers dy, do, ..., dy (k> 1). Then for each integer i, 1 < i <k, x occurs at position d;

Proof: By definition, we have that £, = U¥ (L, + d;) and =z is different from all other
y;’s. We therefore have (£,, + d;) C L, for all i’s. We now show that for all integers j,
0 < j < |z| — 1 such that z[j] is a solid character o € X, we have y;[j + d;] = o for all y;’s
for integers ¢ between 1 and k.

Let us assume by absurd that this is not the case; that is, there exist integers ¢ and j
such that y;[j + d;] = - or y;[j + d;] = v with v # 0.

Since £, = Uk (L,, + d;), then for all p € £, N L,,, both z[j] and y;[j + d;] align with
s[p + j]. Since z[j] = o, then, for all p € £, and, in particular, for all p € £, N L,,,
slp + 7] = o. If y;[j + d;] were a -, this would contradict the maximality of y;. If y;[j + d]
were equal to y with v # o, y;[j + d;] would not align with s[p+ j] and this would contradict
the fact that p € £,,. D>

Observe that our definition of tiling motifs is symmetric: each element of the basis of
the reverse of s is the reverse of an element of the basis of s (this follows directly from the
definition of tiling motifs and from the fact that maximality is also symmetric). This is
indeed a sine qua non condition to have a correct notion of basis, but the property is not
true for the definitions in [7] and [9].

Example Given the string s = GACAXGACAYYTACAZZZTACACBUUUAGA, motif ACA is in both

the basis of [7] and [9] (and not in ours). In the reverse string s = AGAUUUBCACATZZZACATYYACAGXACAG,
motif ACA (which is the reverse of itself as it is a palindrome) does not belong to the two

bases above anymore because it is eliminated by ACAT and ACAG.

3 Linearity of the Basis

Definition 7 We define an operator & between elements of X in the following way: given
o,y € X with o # v, c ®o =0, and 0 &y = -. This operator is extended to two strings
z,y € X* with |x| = |y| in the obvious way: uw = x &y is such that uli] = z[i] & y[i] for all
integers i between 0 and |x| — 1.

Definition 8 Let si[i] = s[i] ® s[i + k]| for 0 < i < |s| —k —1. We denote by Merge,, the
string obtained from sy by removing all don’t cares to the left of the leftmost solid character
and to the right of the rightmost solid character.

In other words, given a string s € ¥* (recall that strings are padded to the left and right
with an infinite number of don’t cares), Merge, is the result of the application of the &
operation to the string s with s itself shifted k positions to the right.

Let us consider again the string s = FABCXFADCYZEADCEADC. The non empty Merges are
Merge, = EADC, Merge, = FA-C, Merge;, = Merge,, = ADC and Merge,; = Merge,; = A-C.

Lemma 2 Any Merge,, of length at least one is a mazimal motif.

Proof: Let x = Merge;,, be non empty. It is a motif since it has at least two occurrences,
namely i,i+ k € L, for the first integer i between 0 and |s| — k such that s[i] & s[i + k] # -.
Motif x may have other occurrences. Suppose it were not maximal. This would mean that
x could be extended in length or one of its don’t cares replaced with a letter without losing
any occurrence. Let us suppose that one of the don’t cares in x can be replaced with a letter
or that x can be extended to the right (the reasoning for an extension to the left would be
the same). Let j be one of the positions (0 < j < |s| — k —) such that z[j] = o for 0 € &
while sg[i + j] = s[i + j] @ s[i + k + j] = -. Then either i or i + k (or both) would not be an
occurrence of x any longer, which is a contradiction. D

Lemma 3 FEach tiling motif of a string s is equal to Merge, for some integer k between 1
andn — 1.

Proof: Let x be a tiling motif for a string s. If |£,| = ¢ = 2 with £, = {i,j} and j > i,
then obviously x = Merge;_;.

If |£.] > 2, let u; = s[i]s[i + 1]...s[i + |z| — 1] be the occurrence of x at position i of s
fori € L,. Given i,j € L,, let u;; = u; ® u;. For all 4,5 € L,, we have that x < u;; and
Ly;; € Ly Furthermore, L, = U; jer, Lu;;-

We now show that for at least a pair (¢, j) with ¢ # j, we have = u;;. The proof is by
absurd. Suppose that for each 7, j € £, we have xz # u;;, that is v < w;;.

Since x is maximal and has more than two occurrences, L, is a proper subset of L,.
Moreover, for all ¢ # 7, u;; is a motif satisfying the quorum, but it is not necessarily maximal.
Let v;; be the maximal motif having u;; as occurrence (v;; is obtained from u;; by possibly
extending it or replacing some of its don’t cares with a letter without losing any occurrences).
Clearly L,,;+0; = Ly, for some integer d;; > 0. Moreover, U; ez, (Lo, +0i5) = Ui jer, Luy; =
L, while x # v;; for all 7, j because z < u;; < v;;. Motif x would then not be a tiling motif,
which is a contradiction.

We just demonstrated that there exist 7,7 € L, such that u;; = 2. Hence u;; is a
substring of Merge; ;. We now have to show that for at least one pair 7, j € List,, we have
that u;; = Merge;_;. We proceed again by absurd. If all u;; which are equal to x were proper
substrings of Merge;_;, then we would have U, jc., EMergej_i = L, and = would thus not be a
tiling motif for string s, a contradiction. For at least one pair ¢,j € List,, we must therefore
have Merge;_; = u;; = . >

We can now state the following result whose proof is a direct consequence of Lemma 2
and Lemma 3.

Theorem 1 Given a string s, the tiling motifs in the basis for s are a subset of M =
{Merge, | 1 <k <n-—1}.

Corollary 1 (Linearity of the basis) The number of elements in the basis of a string s
of length n is no more than n — 1.

The tiling motifs of the string s = FABCXFADCYZEADCEADC are FA-C, EADC, and ADC. All
correspond to at least one Merge. The only Merge which is not a tiling motif is A-C.

The notion of basis presented in [7] and the different notion of basis given in [9] both lead
to larger sets. For instance, the first notion produces a basis containing 289 elements for the
string AAXAAAXAAAAXAAAAAXAAAAAAXAAAAAAA of length 32. Our basis has only 19 elements.

For any quorum ¢, since no pattern occurring less that ¢ times is a motif, the following
is trivially true.

Proposition 1 For all quorum q, all maximal motifs that occur exactly q times are tiling
motifs.

4 Computation of the Basis

In this section, we describe how to compute a basis for the input string s. A trivial algorithm
that generates first all (maximal) motifs of s and then selects the tiling motifs takes exponen-
tial time. Theorem 1 plays a crucial role in that it implies the existence of a polynomial-time
algorithm. Indeed, we know that the basis B for quorum ¢ = 2 is contained in the set M of
distinct motifs Merge,, where 1 < k < n — 1. Corollary 1 states that the size of M is less
than n. Consequently, we are left with the problem of selecting B as a subset of the motifs
in M, which are less than n in number, rather than selecting B from the set of all possible
maximal motifs, which are exponential in number.

7

We now give an algorithm to find a basis in O(n?lognlog|X|) time with quorum at least
g = 2. We first run a brute-force algorithm on s to compute the multiset M’ of non empty
Merge,,, where 1 < k < n — 1, in O(n?) time. With each motif x = Merge, € M’', we
associate the set occ, = {i,i + k} of two occurrences of = whose overlap generates Merge,,
(they can be easily computed from it). Note that, knowing the string s, the motif length |z|
and the set occ,, we can recover x in O(|z|) time. In other words, given s, we can represent
each motif in M’ in constant space by using the triplet (i,i + k&, |z|). Since there can be
two or more motifs in M’ that are the same motif € M, we unite all identical motifs. We
can compute M from M’ in O(n?) time with radix sorting, and produce also the temporary
location lists T, = U,/ wenr 0ccy for each distinet z € M.

Unfortunately, it may be 7T, C L, and so we are missing some occurrences of x. We
therefore need to compute the whole list of occurrences £, for all merges x € M. Given one
such merge z, we employ the algorithm by Fischer and Paterson based on convolution [4]
for string matching with don’t cares. Its cost is O((|z| + n)lognlog|X|) time. Since |z| <n
and there are at most n such z’s, we obtain a total of O(n?lognlog|X|) time to construct
all lists £, where z € M.

We then proceed by processing the lists £, to filter M, that is, we remove the motifs
x € M that are tiled. Yet, this may turn into an Q(n?) algorithm, as the total size of the lists
can be Q(n?) and a list can contain (n) entries. One such example is for the string s = A"
having n — 1 distinct Merges of the form A’, where 1 <i < n — 1. Here, |Ly| =n—i+1,
and so Y1, |Lxi| = ©(n?).

In order to select B efficiently, we need to exploit some properties of the motifs in B and
in M — B.

Lemma 4 For each motif v € B, we have T, = L,.

Proof: Obviously, we have that T, C L,. Let us assume by contradiction that £, \ T}
is not empty and let i € £, \ T,. Since z is equal to at least one Merge (Theorem 1), it
must be |T,| > 2. Let then be T, = {ji,...,jn} with A > 2 and for all j, € T, consider
my, = Merge,;, _;. These are nonempty and definitely all different from x because no merge
m = x is such that i € occ,, (otherwise ¢ would belong to T,). These m; are maximal by
Lemma 2. Moreover, x occurs in all my’s, and thus £,,, C £, for all j, € T,. This holds
for all j € T, and for all the i € L, \ T}, thus involving all the occurrences of x. Therefore,
possibly collecting all these my’s for all j, € T, and for all the i € L, \ T,;, we have that the
Merge,;, _;’s would tile x, which is a contradiction. D

Note that Lemma 4 does not hold for the motifs in M — B. For example, given the
string s = FADABCXFADCYZEADCEADCFADC, we have x = ADC with £, = {8, 14, 18,22} while
T, = {8,18}. However, we can use Lemma 4 in a positive way. Let M be the set of motifs
x € M, such that T, = L,. Clearly, B C M but there are examples in which B C M.
Nevertheless, set M has the following interesting property:

Lemma 5

> L] < 2n

€M

Proof: Follows from the definition of M and from the observation that > peii 1 Tel < Xgenr loce| <
2n, since |occ),| = 2 and there are less than n of them. D]

After having computed M and the lists £, for z € M, our algorithm computes M in
O(n?) time by simply discarding the motifs x such that T, # L,, as they cannot be in the
basis B. After this further selection, we may still have left some tiled motifs in M, but these
are now such that their total size is O(n) by Lemma 5.

We can now start our check for tiling in O(n?) time. Given two distinct motifs z,y €]\7,
we want to test for any integer d whether £, +d C £, and, in that case, we want to mark the
entries in £, that are also in £;4d. At the end of this task, the lists having all entries marked
are tiled (see Definition 6). By removing their corresponding motifs from M , we eventually
obtain basis B. Since the meaningful values of d are equal to the individual entries of £, we
have only |L,| possible values to check. For a given value of d, we can merge £, and £, in
O(|L;| + |L£,]) time to perform the test. The cost of processing £, and £, for any d would
be O(|L;| - |L,| + |£,]?), which can contribute to a total of Q(n*) time.

We therefore exploit the fact that each list has values ranging from 1 to n, and use a
couple of bit-vectors of size n to perform the above check in O(|L,| - |L£,|) time. This gives
a total cost of O(T, 3, [La| - [Ly]) = O(Z, |1Ly] - X0 [£2]) = O(n?) by Lemma 5. We now
describe how to perform the above check with £, and £, in O(|L,| - |£,|) time.

We use two bit-vectors Vi and V5 initially set to all zeros. Given y €]\7, we set Vi[i] =1
if and only if i € £,. For each z € M — {y} and for each d € L,, we then perform the
following test. If all j € L, + d satisfy Vi[j] = 1, we set V5[j] = 1 for all such j. Otherwise,
we take the next value of d, or the next motif if there no more values of d and repeat the
test. After examining all x € M — {y}, we check whether Vi[i] = V5[i] for all i € L. If so, y
is tiled as its list is covered by possibly shifted location lists of other motifs. Then we reset
the ones in both vectors in O(|L,|) time.

Summing up, we have proven the following result.

Theorem 2 Given an input string s of length n over the alphabet 32, the basis for it can be
computed in O(n*lognlog|X|) time. The total number of motifs in the basis is less than n,
and the total number of their occurrences in s is less than 2n.

5 Further Considerations on the Basis

The main property underlying the notion of basis is that it is a generator for all motifs. That
is, it is possible to generate all motifs occurring in string s knowing only its basis. It is fairly
easy to design a straightforward algorithm to generate all motifs from the basis. However,
since the number of motifs, and even maximal motifs, can be exponential, this is not really
meaningful unless the time complexity of the algorithm is proportional to the total size of
the output. An attempt in this way is done in [8].

The dual problem concerns testing only one pattern. We show how, given a pattern x, we
can test if = is a motif for string s, i.e., if pattern x occurs at least ¢ times in string s. There
are two possible ways of performing such a test depending on whether we test directly on
the string or on the basis. The answer to the second question relies on iterative applications
of Lemma 1.

The next two statements deal with the alternative. In both of them, we assume that
integer k comes from the decomposition of pattern z in the form w,-0ui-“ ... up_q - 1uy
where the u;’s contain no don’t cares (u; € ¥*, 0 < i < k, and /; are non negative integers,
0<j<k-1).

Lemma 6 The positions of occurrences of a pattern x in a string of length n can be computed
in time O(k x n).

Proof: This is a mere application of matching a pattern with don’t cares inside a text without
don’t cares. Using for instance the Fischer and Paterson’s algorithm [4] is not necessary.
Instead, positions of u;’s are computed by a multiple string-matching algorithm, such as the
Aho-Corasick algorithm [1]. For each position p, a counter associated with position p — ¢ on
s is incremented, where £ is the position of u; in = (¢ is the offset of u; in). Counters whose
value is k + 1 correspond then to occurrences of x in s. It remains to check if x occurs at
least ¢ times in s. The running time is governed by the string-matching algorithm, which is
O(k x n) (equivalent to running & times a linear-time string matching algorithm). D]

Lemma 7 Given the basis B of string s, testing if pattern x is a motif or a mazimal motif
can be done in O(k x b) time, where b= 3,5 |y|.

Proof: From Lemma 1, testing if x is a maximal motif requires only finding if x occurs in an
element y of the basis. To do this, we can apply the procedure of the previous proof because
don’t cares in y should be viewed as extra characters that do not match any letter of 3. The
time complexity of the procedure is thus O(k x b).

Since a non maximal motif occurs in a maximal motif, the same procedure applies to test
if x is a general motif. >

As a consequence of the preceding lemmas, we get an upper bound on the time complexity
for testing motifs.
Corollary 2 Testing if pattern u,-ous- .. up_1-% 1wy, is a motif in a string of length n
having a basis of total size b can be done in time O(k X min{b,n}).

Remark Inside the procedure sketched in the proofs of the lemmas, it is also possible to
use bit-vector pattern matching methods [2, 11, 6] to compute the occurrences of x. This
leads to practically efficient solutions running in time proportional to the length of the string
n or the total size of the basis b in the bit-vector model of a machine. This is certainly a
method of choice for short patterns.

References

[1] A. Aho and M. Corasick. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333-340, 1975.

2] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Communications of
the ACM, 35:74-82, 1992.

10

3]

[4]

[10]

[11]

A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the automatic
discovery of patterns in biosequences. Journal of Computational Biology, 5(2):279-305,
1998.

M. Fischer and M. Paterson. String matching and other products. In R. Karp, editor,
SIAM AMS Complexity of Computation, pages 113-125, 1974.

T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Com-
munications of the ACM, 39:58-64, 1999.

G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM, 46(3):395-415, 1999.

L. Parida, 1. Rigoutsos, A. Floratos, D. Platt, and Y. Gao. Pattern Discovery on
Character Sets and Real-valued Data: Linear Bound on Irredundant Motifs and Efficient
Polynomial Time Algorithm. In SIAM Symposium on Discrete Algorithms (SODA),
2000.

L. Parida, I. Rigoutsos, and D. Platt. An output-sensitive flexible pattern discovery
algorithm. In A. Amir and G. Landau, editors, Combinatorial Pattern Matching, Lecture
Notes in Computer Science 2089, pages 131-142, 2001.

J. Pelfréne, S. Abdeddaim, and J. Alexandre. Un algorithme d’indexation de motifs
approchés. In Journée Quuvertes Biologie Informatique Mathématiques (JOBIM), pages
263-264, 2002.

N. Pisanti. Segment-based distances and similarities in genomic sequences. PhD thesis,
University of Pisa, Italy, 2002.

S. Wu and U. Manber. Path-matching problems. Algorithmica, 8(2):89-101, 1992.

11

