
HAL Id: hal-00627823
https://hal.science/hal-00627823

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcing the Object-Oriented Aspect of Probabilistic
Relational Models

Lionel Torti, Pierre-Henri Wuillemin, Christophe Gonzales

To cite this version:
Lionel Torti, Pierre-Henri Wuillemin, Christophe Gonzales. Reinforcing the Object-Oriented Aspect
of Probabilistic Relational Models. PGM 2010 - The Fifth European Workshop on Probabilistic
Graphical Models, Sep 2010, Helsinki, Finland. pp.273-280. �hal-00627823�

https://hal.science/hal-00627823
https://hal.archives-ouvertes.fr

Reinforcing the Object-Oriented Aspect of Probabilistic Relational Models

Lionel Torti - Pierre-Henri Wuillemin - Christophe Gonzales

LIP6 - UPMC - France

firstname.lastname@lip6.fr

Abstract

Representing uncertainty in knowledge is a common issue in Artificial Intelligence. Bayesian

Networks have been one of the main models used in this field of research. The simplicity of their

specification is one of the reason for their success, both in industrial and in theoretical domains.

The widespread use of Bayesian Networks brings new challenges in the design and use of large-

scale systems, where this very simplicity causes a lack of expressiveness and scalability. To fill

this gap, an increasing number of languages emerged as extensions of Bayesian Networks with

many approaches: first-order logic, object-oriented, entity-relation, and so on. In this paper we

focus on Probabilistic Relational Models, an object-oriented extension. However, Probabilistic

Relational Models do not fully exploit the object-oriented paradigm, in particular they lack class

inheritance. Using Object-Oriented Bayesian Networks as a basis, we propose to lightly extend

PRMs framework resulting in stronger object-oriented aspects in probabilistic models.

Probabilistic graphical models (Koller and Fried-

man, 2009) are a general purpose framework for

dealing with uncertainty. Their applications to

many different domains has stimulated an uninter-

rupted process of creation of new frameworks based

on probability theory. Bayesian Networks (Pearl,

1988) are among the most popular framework for

uncertainty in AI.

In recent years, the Statistical Learning commu-

nity has actively proposed new probabilistic frame-

works, closing the gap between first-order logic

and probability theory (Getoor and Taskar, 2007).

New models such as Object-Oriented Bayesian

Networks (Koller and Pfeffer, 1997; Bangsø and

Wuillemin, 2000a), Multiply-Sectioned Bayesian

Networks (Yang, 2002), Probabilistic Relational

Models (Getoor et al., 2007) and Multi-Entity

Bayesian Networks (Laskey, 2008) have extended

Bayesian Networks and widen their range of appli-

cation.

In many situations, these new first-order logic-

based networks can be efficiently learned from

databases and used for answering probabilistic

queries. However, there are situations like nuclear

plant safety problems where the scarcity of data

available prevents such learning. For such prob-

lems, oriented graphical models such as Probabilis-

tic Relational Models (PRMs) are often more suit-

able than the aforementioned first-order models be-

cause they can often be modeled by interactions

with experts of the domain.

PRMs have an object-oriented basis, but they

lack fundamental mechanisms related to class in-

heritance. In software engineering, such object-

oriented designs has proved very useful for creating

complex software. In this paper, we illustrate why

these mechanisms are necessary for practical de-

sign of large-scale systems and we show how light

extensions can enforce strong object-oriented fea-

tures into the PRMs framework. In addition, we

propose a representation of PRMs with such mech-

anisms using parfactors, the state-of-the-art frame-

work for first-order probabilistic inference (Poole,

2003). All the concepts we present here are imple-

mented in our open source C++ framework called

aGrUM and can be represented in the SKOOL lan-

guage (http://agrum.lip6.fr).

Throughout this paper, we will use an analogy

with oriented-object programming in order to ease

the presentation of our framework. It is organized as

follows: after briefly introducing the classical PRM

framework, we define the notions of attribute typ-

ing and type inheritance. Then we extend the no-

tion of class inheritance with interfaces, to conclude

X1

Y1

U1 V1

W1

U2 V2

W2

U3 V3

W3

Y2

X2

(a) A Bayesian network. The gray areas do not
belong to the BN specification

E

X

Y

U V

W

ρ

F

(b) Two connected classes E
and F .

S

E e1, e2;
F f1, f2, f3;

f1.ρ = e1;
f2.ρ = e1;
f3.ρ = e2;

e1

f1 f2

e2

f3

(c) The system declaration and the in-
stance diagram corresponding to the BN
of figure 1(a).

Figure 1: Representation of a BN as a PRM: analysis of the BN (a) reveals the use of two recurrent patterns,

which are confined in two classes (b). Hence, a system equivalent to the BN may be built (c).

our contribution with the mechanisms for attribute

and reference overloading. Finally we describe how

PRMs with strong object-orientedness can be de-

scribed using parfactors.

1 Description of PRMs

Fig. 1(a) shows a Bayesian Network (BN) encod-

ing relations between two different kinds of patterns

(variables Xi, Yi on one hand and Uj , Vj ,Wj on the

other hand). We assume that the conditional prob-

ability tables (CPT) associated with variables with

the same capital names are identical. When using

PRMs, the main idea is to abstract each pattern as a

generic entity, called a class, which encapsulates all

the relations between the variables of the pattern.

So, in Fig.1(b), E encapsulates precisely variables

Xi and Yi as well as their probabilistic relations (arc

(Xi, Yi)) and conditional probability distributions.

The pattern of variables Uj , Vj ,Wj cannot be di-

rectly encapsulated in a class since the CPTs of vari-

ables Uj are conditional to some variables Yk (e.g.,

the CPT of U3 is P (U3|Y2) according to Fig.1(a)).

Hence classes must have a mechanism allowing to

refer to variables outside the class. In PRMs, this

mechanism is called a reference slot. Basically, the

idea is to create some function ρ connecting two

classes and allowing both classes to access the vari-

ables of the other class. Now, as shown in Fig.1(c),

the original BN can be built up from the PRM: it

is sufficient to create two instances, say e1 and e2,

of class E as well as three instances f1, f2, f3 of F

and connect them using one edge per reference slot.

Note that there is no limit to the number of times an

instance can be referenced (see e1 in Fig.1(c)).

1.1 PRM-related definitions

In this section, we present the minimal set of defi-

nitions needed for the rest of the paper. The reader

may refer to (Pfeffer, 2000) and (Getoor et al., 2007)

for a more detailed presentation.

Definition 1 (Class). A class C is defined by a

Directed Acyclic Graph (DAG) over a set of at-

tributes, i.e. random variables, A(C), a set of ref-

erences (slots) R(C), and a probability distribution

over A(C). To refer to a given random variable X
(resp. reference ρ) of class C, we use the standard

Object Oriented notation C.X (resp. C.ρ).

Definition 2 (Instance). An instance c is the use (the

instantiation) of a given class C in a BN. There are

usually numerous instances of a given class C in a

BN. Notation c.X (resp. c.ρ) refers to the instantia-

tion of C.X ∈ A(C) (resp. C.ρ ∈ R(C)) in c. By

abuse of notation, we denote the sets of such instan-

tiations as A(c) and R(c) respectively.

Fig. 1(b) shows two classes, E and F , with at-

tributes A(E) = {X, Y } and A(F) = {U, V, W}.

There is also one reference in class F denoted by ρ
which is used to define the dependencies between

E .Y and F .U . Such dependency is defined using a

path, called a reference chain, from one attribute to

another. In Fig. 1(b), the path representing the de-

pendency between E .Y and F .U is F .ρ.Y . More

Attribute Simple reference

canPrint
works

hasInk hasPaper

works

works

power

PowerSupply

printers

exists

roomroom

Computer

Room

Printer

Figure 2: The printer example.

simply, ρ.Y is said to be a parent of U in class F .

Definition 3 (System, grounded net). A system S
is the representation of a BN as a set of class in-

stances in which each reference has been linked to

another instance. Conversely, the grounded network

of a system S is the BN represented by S .

As a consequence, in a system, each random vari-

able c.X is a copy of a random variable C.X ∈
A(C) and is assigned a copy of the CPT assigned

to C.X in C. The difference between a system

and a grounded net is that all structural informa-

tion (classes, instances, references, . . .) are lost

when reasoning with a grounded net. Finally,

PRMs are considered as an object-oriented formal-

ism due to the encapsulation of attributes inside

their classes. This feature is inherited from Object-

Oriented Bayes Nets. Exploiting this encapsulation

is the core of structured inference (Pfeffer, 2000).

1.2 Real Object-Oriented PRMs

The following discussion provides insight about

how PRMs lack fundamental concepts of the object-

oriented paradigm and how such concepts can

greatly improve the representative power of PRMs.

We will illustrate our point with a simple exam-

ple of a printer breakdown diagnosis illustrated in

Fig. 2. We consider a network with a power supply,

black & white printers, color printers and comput-

ers. Printer’s types, brands and ages vary from one

printer to another. Printers and computers are placed

in rooms and each computer is connected to every

printer in the same room. All printers and comput-

ers are connected to the same power supply. Our

main objective is to answer the following query: us-

ing a given computer, can I print? We can also think

of other queries, not asked by a user but rather by

an intervening technician: is a paper jam respon-

sible for the printer’s breakdown? Is the magenta

cartridge of a color printer empty? Etc.

From the computer point of view, our system

needs to take into account: (i) the fact that a printer

prints in color is irrelevant for black & white print-

ings; (ii) breakdowns can have different causes, but

we only need to know whether printing is possible

or not. From the technician perspective, we shall

consider that: (i) different printers have different

types of breakdowns, which can sometimes be par-

tial, e.g. a color printer with no more cyan ink can

still print in black & white; (ii) different types or

brands imply different probabilities of breakdowns;

(iii) the printer’s features shall be taken into account

since specific queries can be asked for each printer,

e.g., can I print in color? Is the A3-tray empty? Etc.

These points of views force our system to be

both generic (the computer’s perspective) and spe-

cific (the technician’s perspective). This is precisely

why a strong object-oriented framework is needed.

Let us do an analogy with computer programming.

A class defines general concepts common to a fam-

ily of objects. It is possible to define new concepts

using inheritance: if class B inherits from class A,

it inherits A’s properties but can also specialize the

concepts represented by A. Either by overloading

A’s attributes and methods (behavior specialization)

or by adding new attributes and methods (function-

ality specialization). The next section proposes an

extension of PRMs which will serve as a basis to

strengthen class inheritance and we will show that

this can be done with small and intuitive changes.

2 Attribute typing and type inheritance

Attribute typing arises naturally when using PRMs

as a modeling framework: similarly to classes that

represent repeated patterns in a system, an attribute

type describes a family of random variables sharing

the same domain. For instance, types Boolean and

state would be the types of all the random variables

=DBoolean { false, true }

=Dstate { OK, NOK }

=Dmalfunction { OK, broken, malfunctioning }

Figure 3: An illustration of type inheritance with

attribute types Boolean, state and malfunction.

with domains {false, true} and {OK,NOK}, re-

spectively.

Definition 4 (Attribute typing). An attribute type τ
describes a family of distinct discrete random vari-

ables sharing the same domain Dτ = {l1, . . . , ln},

where n is the domain size of τ .

Types such as Boolean and state are frequently

encountered when dealing with experts. For in-

stance, they can be used to describe the states of

equipments subject to breakdowns. In this case,

type state enables a finer description of the possi-

ble failures than just the OK/NOK state. This can

prove critical for some industrial applications: con-

sider an air conditioner in a computer server room

working improperly; then, assigning it state mal-

function may help diagnose the servers malfunc-

tions. Type state can be viewed as a specializa-

tion of type Boolean. Specializing general concepts

into more specific ones is the goal of inheritance.

Type inheritance is the process of decomposing la-

bels into a partition of more specific and precise de-

scriptions of a domain. To properly define this con-

cept, we will need an additional notion, that of Do-

main Generalization Function (DGF):

Definition 5 (Domain Generalization Function). A

Domain Generalization Function (DGF) is a surjec-

tive function Φ : Dτ → Dλ where τ and λ are two

distinct attribute types.

Obviously, given two distinct attribute types τ
and λ, there exists a DGF Φ : Dτ → Dλ if and

only if |Dτ | ≥ |Dλ|. DGFs will be used to define

type inheritance in PRMs:

Definition 6 (Type inheritance). An attribute type τ
inherits from another attribute type λ if it is defined

using a DGF Φ : Dτ → Dλ.

Fig.3 illustrates type inheritance: in this figure,

arcs represent the specialization of concepts. For

works

room

hasPaper

hasInk

Printer

(a) Dependencies of the Printer class.

works

room hasPaper hasInk

black

magenta

cyan

yellow

ColorPrinter

(b) Dependencies of the ColorPrinter class, which is a sub-
class of Printer.

Figure 4: Example of class inheritance. Dashed

arcs represent dependencies with attributes in an-

other class.

instance, attribute type malfunction has two labels,

broken and malfunction, which are specializations

of label NOK of attribute type state. As is, attribute

inheritance is only a semantic relation: state’s label

OK is a sort of true, broken is a sort of false, etc.

We will show how to exploit such concepts proba-

bilistically in the following sections.

3 Classes and interfaces

As in oriented-object programing, class inheritance

in PRMs starts by a copy of the super class into

its subclass. This implies that all attributes, refer-

ences, dependencies, i.e. arcs, and CPTs are copied

into the subclass. However, the content of the su-

per class is only a basis for the subclass, as new at-

tributes, references and dependencies can be added

to the inherited structure. The first definitions of

class inheritance for probabilistic models can be

found in (Koller and Pfeffer, 1997) and (Bangsø and

Wuillemin, 2000b). Note that these definitions dif-

fer greatly. In this paper, we propose some exten-

sions of the work by Bangsø and Wuillemin.

3.1 Class inheritance

Fig. 4 illustrates class inheritance on the printer ex-

ample of Fig. 2. Here, we introduced a new class,

namely ColorPrinter, which is a subclass of Printer.

Fig. 4(b) is a representation of the ColorPrinter

class dependencies. This example suggests several

remarks: (i) all the attributes and references belong-

ing to class Printer also belong to ColorPrinter; (ii)

new attributes have been added; (iii) attribute Col-

orPrinter.hasInk has additional parents (and thus a

new CPT).

The first remark is similar with oriented-object

programming languages: a subclass inherits the at-

tributes and references of its super class. This im-

plies that when an element is not overloaded, it is

not necessary to redeclare it. The second remark

is the functionality specialization of class inheri-

tance: by adding new attributes, a subclass becomes

more specific and offers new possibilities for enter-

ing evidence and submitting queries. In Fig. 4(b),

attributes black, magenta, cyan and yellow represent

the different kinds of inks used in a color printer, a

feature that is not necessarily present in all print-

ers. The third and fourth remarks are examples of

attribute overloading, which consist of: (i) enabling

changes in the values of the attribute’s CPTs; (ii)

adding or removing parents; (iii) overloading an at-

tribute’s type (this point is explained below).

3.2 Interface implementation

In modern programming languages, interfaces are

used to handle multiple inheritance and to manip-

ulate objects at a high abstract level. They define

a set of methods which are guaranteed to exist in

any class implementing them. Note that interfaces

do not provide the bodies (the execution codes) of

these methods but only their signatures. An inter-

face in a PRM follows the same principle: it is a set

of attributes and references; it defines neither proba-

bilistic dependencies nor CPTs. As in programming

languages, a PRM interface cannot be instantiated.

A PRM interface can be used to define dependen-

cies between classes using abstraction: given two

classes X and Y , if Y has an attribute depending on

an attribute of X , then the only information needed

is the type of X’s attribute. As a consequence, the

minimal set of information required to define proba-

Printer
<<interface>>

room: Room

hasInk: Boolean
hasPaper: Boolean
works: state

BWPrinter

room: Room

hasInk: inkState
hasPaper: paperState
works: malfunction

ColorPrinter

room: Room

black: inkState
magenta: inkState
cyan: inkState
yellow: inkState
hasInk: Boolean
hasPaper: paperState
works: malfunction

Figure 5: Two implementations of an interface.

bilistic dependencies is composed of references and

attribute’s types.

Fig. 5 shows an example of an interface imple-

mentation, where the two classes BWPrinter and

ColorPrinter implement interface Printer (which is

no longer a class for this example). The Printer in-

terface defines the minimal set of attributes and ref-

erences any printer must declare: a reference to its

room, whether it has ink, paper and whether it is

working.

Fig. 5 is an alternative representation of classes

using a UML syntax. Such syntax is necessary to

point out attribute’s and reference’s types. It is more

concise than the traditional representation of PRMs,

i.e., the class dependency graph, see (Getoor et al.,

2007). As already said, when creating a class, there

is no need to know the dependency structure of the

other classes to which it is related: only attribute

and reference types are necessary for this task.

3.3 Multiple inheritance

Multiple inheritance is one of the major issues when

defining an object-oriented formalism. The problem

arises when diamond-shaped inheritance appears, as

illustrated in Fig. 6. An ambiguity results from how

the properties of class A are inherited by class D
since two distinct paths exist from A to D (through

B or C). Furthermore, if some properties of A are

overloaded in B and C, which one should be inher-

ited by D? Such issue can be dealt by using inter-

A

BC

D

Figure 6: A diamond-shaped inheritance graph.

<state>works OK Broken malfunction

OK 1 0 0

NOK 0 1 1

Table 1: The CPT of BWPrinter.works cast descen-

dant which is of type state.

faces: since an interface only declares the existence

of properties, each class implementing a given inter-

face must declare and define itself those properties.

The major drawback of this approach is that there is

no reuse of properties definitions, i.e. there is code

duplication. Another solution consists of explicitly

declaring from which superclass a given property is

inherited. But this proves to be cumbersome and

bug prone. For this reason, we chose to use the

interface-based solution. In addition, the notion of

an interface is well suited for the PRM framework.

Note that a class can implement as many interfaces

as it designer wants to.

4 Attribute and reference overloading

In object-oriented programming languages, over-

loading is used to modify inherited properties. This

is exactly what PRM attribute overloading and ref-

erence overloading do. In section 3.1, we showed

how attribute overloading could be performed using

inheritance. Now, by adding attribute typing, it be-

comes possible to also overload attribute’s types.

4.1 Type overloading

People familiar with PRMs will remark that,

in Fig. 5, if a class has a dependency over

Printer.works it expects an attribute of type state

and defines its conditional probability tables accord-

ingly. However, connecting such a class to an in-

stance of BWPrinter results in an incoherent prob-

ability distribution since the attribute referenced is

of type malfunction. To fix this kind of problem we

need the concept of cast descendants.

Cast Descendants are automatically generated at-

tributes which are used to cast beliefs of an attribute

into one of its super type. By exploiting Domain

Generalization Functions (DGFs), it is possible to

use deterministic tables to obtain beliefs with the

correct domain size. Tab. 1 shows the conditional

probability table of BWPrinter.works cast descen-

dant, which casts type malfunction into type state.

Algorithm 1 illustrates more formally how cast de-

scendants are generated. The goal variable is the

overloaded type and a the attribute whose type is a

subtype of goal. The algorithm simply adds chil-

dren to a until the goal type is reached. Procedure

generateCastCPT() uses DGFs to generate deter-

ministic tables as shown in Table 1.

Data: Type goal, Attribute a
Type t = a.type;
Attribute current = a;
while t 6= goalType do

Attribute child = new Attribute();
child.type = t.super;
child.cpt = generateCastCPT(t.super, t);
current.addChild(child);
current = child;
t = t.super;

end

Algorithm 1: Cast descendant generation.

4.2 Reference overloading and instantiation

As seen previously, it is possible to define refer-

ences in classes as well as in interfaces. We have

shown how interfaces can be used to define proba-

bilistic dependencies and since we introduced class

inheritance and interface implementation, we can

obviously use reference overloading. Given two

classes X and Y , if Y is a subclass of X and if there

exists a reference ρ in X referencing a class Z (or

an interface I), then Y can overload ρ with a refer-

ence referencing any subclass of Z (or referencing

any implementation of I).

Instantiating a reference amounts to linking it to

an instance of the correct class in a given system.

Given an instance x of class X and a reference x.ρ
referencing a class Z (or an interface I) x.ρ can

be instantiated in any instance of a subclass of Z
(or any instance of a class implementing I). Class

inheritance, interface implementation and cast de-

scendants guarantee the existence of attributes de-

fined in a class (or interface) in any of its subclass

(or implementation), which is sufficient to ensure a

coherent probabilistic distribution.

5 Parfactor representation of PRMs

A large part of the statistical relational learn-

ing community has chosen first-order probabilis-

tic models as their main framework. Actually, the

only exact inference algorithm for first-order proba-

bilistic models is lifted probabilistic inference (de

Salvo Braz et al., 2005) and (Brian et al., 2008).

Parfactors are the common formalization used in

these approaches. It is important to note that, like

most first-order probabilistic models, parfactors are

more generic than PRMs: they can be used to repre-

sent complex systems impossible to represent using

PRMs. However, they are less suited for modeling

large-scale systems. Hence it is useful to be able to

express PRMs in such a formalism. We will give a

short definition of parfactors, or parametric factors,

as they are given in (Poole, 2003).

Definition 7 (Parfactor). A parfactor is a triple

〈C, V, t〉 where C is a set of constraints on param-

eters, V is a set of parametrized random variables

and t is a table representing a factor from random

variables of V to ℜ+.

Algorithm 2 details formally how an attribute can

be converted into a set of parfactors. We will detail

Input: Class c, Attribute attr
Output: Parfactor fctr
Parfactor fctr;
Add a isA() constraint over c’s type;
Add a parametrized variable named by attr and prefixed
by attr’s type;
foreach parent prt of attr do

if prt not in A(c) then
Add a isA() constraint over prt’s class type;
foreach reference ρ in the slot chain from attr to
prt do

Add a relational constraints in fctr
matching ρ;
Add a isA() constraint over ρ range type;

end

end
Add a parametrized variable named by prt and
prefixed by prt’s type;

end
Copy in fctr’s table attr’s CPT;
return fctr

Algorithm 2: Parfactor generation of an at-

tribute.

this algorithm using attribute ColorPrinter.works of

Fig. 4(b). Since we represent PRMs, a parfactor’s

table will always be the conditional probability ta-

ble of an attribute. Classes and instances are rep-

resented as parameters of parametric random vari-

ables, which are the equivalent of attributes in the

PRM formalism. To ensure the exact representation

of the structure encoded by the classes of a PRM, it

is necessary to use two different types of constraints.

To represent classes, class inheritance and in-

terface implementation we will use isA()-like con-

straints (e.g. isAPrinter(X)). Relations can be ex-

pressed as binary constraints in which each param-

eter has a isA() constraint (e.g. room(X,R) ∧
isAPrinter(X) ∧ isARoom(R)). The Color-

Printer.works attribute in Fig. 4 can be represented

by the following parfactor:

〈 {isAColorPrinter(X) ∧ isARoom(Y)∧
isAPowerSupply(Z) ∧ room(X,Y) ∧ power(Y, Z)},
{malfunction works(X), paperType hasPaper(X),
Boolean hasInk(X), state works(Z)}, t 〉

The first part of this parfactor is composed of type

constraints (isAColorPrinter(), isARoom() and is-

APowerSupply()) and relational constraints (room()

and power()). The second part contains the depen-

dencies of the parfactor, which are the parametrized

random variables malfunction works(X), pa-

perType hasPaper(X), Boolean hasInk(X) and

state works(Z). The Cartesian product of their

values is mapped to the values in t, which represent

the CPT of ColorPrinter.works.

The isA() constraints encode the inheritance

scheme of a PRM if, for each instance i of a sys-

tem, a grounded variable is declared for each type

of i, i.e. for all of its super classes and imple-

mented interfaces. For example, an instance colo-

ria of the ColorPrinter class will be represented

with the following grounded variables: isAColor-

Printer(coloria) and isAPrinter(coloria).

Finally, cast descendants can be represented by

including types names in the parametric variables

declarations. For example malfunction works(X)

stands for the attribute ColorPrinter.works of type

malfunction. Then, by generating parfactors for

each cast descendant, the constraints names will en-

sure the correct structure. For example, the cast de-

scendant ColorPrinter.works will be declared as:

〈 {isAColorPrinter(X)}
{state works(X), malfunction works(X)}, t 〉

At first sight, such a representation seems cum-

bersome but it illustrates the expressive power of

parfactors and of first-order probabilistic models.

First-order logic can be used to express very com-

plex relations: only two types of constraints are nec-

essary to represent all the notions presented in this

paper. However such expressive power has a ma-

jor flaw as semantics and relations are hidden in

the mass of constraints declarations. When deal-

ing with large-scale systems, creating and maintain-

ing such knowledge base can be extremely diffi-

cult. PRMs with the strengthened object-oriented

aspect we proposed here are a proposition to man-

age such knowledge with a formalism less expres-

sive but much more scalable.

6 Conclusion

We proposed a strong object-oriented representation

of PRMs by introducing interfaces, attribute typing,

type inheritance, attribute and reference overload-

ing. Such notions strengthen the expressive power

of PRMs when dealing with structured and known

systems. In addition, we have shown how PRMs

with these features can easily be represented as par-

factors, closing a gap between PRMs and more re-

cent first-order probabilistic models. Strengthening

the object-oriented features of PRMs enables a bet-

ter representation of complex systems as well as

the creation of new models in fields such as trou-

bleshooting, reliability and risk management, where

such models were often difficult to represent until

now. Parfactors are used in the state-of-the-art lifted

probabilistic inferences. Enabling the expression of

PRM models into such formalisms will help com-

paring different first-order probabilistic implemen-

tations. However there is still room for improve-

ments, especially for the graphical representation of

PRMs and the implementation of user-friendly tools

for model design and maintenance. Finally, the per-

spective of exploiting hierarchical knowledge can

lead to new inference algorithms in PRMs.

Acknowledgments: this work has been supported

by the DGA and has benefited comments, sugges-

tions and ideas from the SKOOB consortium mem-

bers (http://skoob.lip6.fr).

References

O. Bangsø and P.-H. Wuillemin. 2000a. Top-down
construction and repetitive structures representation in
Bayesian networks. In Proc. of FLAIRS 2000, pages
282–286.

Olav Bangsø and Pierre-Henri Wuillemin. 2000b. Ob-
ject Oriented Bayesian Networks: A framework for
topdown specification of large Bayesian networks and
repetitive structures. Technical report, Department
of Computer Science, Aalborg University., Aalborg,
Denmark.

Milch Brian, Luke S. Zettlemoyer, Kristian Kersting,
Michael Haimes, and Leslie Pack Kaelbling. 2008.
Lifted probabilistic inference with counting formulas.
In Proceedings of the 23rd AAAI Conference on Arti-
ficial Intelligence, pages 1062–1068.

R. de Salvo Braz, E. Amir, and D Roth. 2005. Lifted
first- order probabilistic inference. In Proceedings of
the 19th International Joint Conference on Artificial
Intelligence, pages 1319–1325.

L. Getoor and B. Taskar. 2007. Introduction to Statisti-
cal Relational Learning. The MIT Press.

Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer,
and Benjamin Taskar. 2007. Probabilistic relational
models. In L. Getoor and B. Taskar, editors, An Intro-
duction to Statistical Relational Learning. MIT Press.

Daphne Koller and Nir Friedman. 2009. Probabilistic
Graphical Models. The MIT Press.

D. Koller and A. Pfeffer. 1997. Object-oriented
Bayesian networks. In Proceedings of the 13th An-
nual Conference on Uncertainty in AI, pages 302–313.

K.B. Laskey. 2008. MEBN: A language for first-order
Bayesian knowledge bases. Artificial Intelligence,
172:140–178.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufman.

A.J. Pfeffer. 2000. Probabilistic Reasoning for Complex
Systems. Ph.D. thesis, Stanford University.

David Poole. 2003. First-order probabilistic inference.
In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pages 985–991.

Xiang Yang. 2002. Probabilistic Reasoning in Multi-
Agent Systems: A Graphical Models Approach. Cam-
bridge University Press.

