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The at most k-deep factor tree

Julien Allali∗ Marie-France Sagot†

Résumé

Cet article présente un nouvelle structure d’indexation proche de l’arbre des suffixes.
Cette structure indexe tous les facteurs de longueur au plus k d’une châıne. La construc-
tion et la place mémoire sont linéaires en la longueur de la châıne (comme l’arbre des
suffixes). Cependant, pour des valeurs de k petites, l’arbre des facteurs présente un fort
gain mémoire vis-à-vis de l’arbre des suffixes.
Mots Clefs: arbre des suffixes, arbre des facteurs, structure d’indexation.

Abstract

We present a new data structure to index strings that is very similar to a suffix tree.
The new structure indexes the factors of a string whose length does not exceed k, and
only those. We call such structure the at most k-deep factor tree, or k-factor tree for
short. Time and space complexities for constructing the tree are linear in the length of
the string. The construction is on-line. Compared to a suffix tree, the k-factor tree offers
a substantial gain in terms of space complexity for small values of k, as well as a gain in
time when used for enumerating all occurrences of a pattern in a text indexed by such a
k-factor tree.

keywords: suffix tree, at most k-deep factor tree, string index, pattern match-
ing

1 Introduction

The suffix tree is one of the best known structures in text algorithms. It is used in many fields
such as string matching [5] [6], data compression [15][16], computational biology [3] [7] [17] [22]
etc. A suffix tree indexes all suffixes of a string and can be constructed in time linear in the
length of the string. Furthermore, the size and depth of the tree are also linear in the length
of the string. The constant however may be big. One of the original implementations of a
suffix tree [18] thus requires 28 bits per input char. Numerous efforts have been made over the
years to reduce this space. In particular, S. Kurtz proposed in [14] various implementations
which require 20 bits per input char in the worst case and 10 on average. The same author
with co-workers suggested in another paper [9] a variant of the suffix tree, called the lazy
suffix tree, which can be built on the fly as the need arises.

In many applications, the length of the patterns to be searched in the suffix tree can be
limited. Typically, this concerns applications to motif extraction in biological sequences where
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Figure 1: Suffix trie of s = aabb (left), implicit suffix tree of s (center) and suffix tree of aabb$
(right).

the motifs of interest are often short or are composed of short parts at constrained distances
from one another [25], applications to data compression using a sliding window [11], [20], etc.

There is therefore often no need to have the whole suffix tree. This is our motivation for
proposing a new structure, called the at most k-deep factor tree, or, for short, the k-factor
tree. The k-factor tree retains the linear properties of the suffix tree. Indeed, its construction
follows closely that of the suffix tree as proposed by Ukkonen [24]. For small values of k, there
is furthermore a gain in time and space that may be important. The gain in time concerns
both the construction itself and the use of the tree, for instance, to do pattern matching.

Since our construction of the k-factor tree is strongly based on Ukkonen’s suffix tree
construction, we start by recalling Ukkonen’s algorithm in Section 2. We then introduce our
own algorithm for the k-factor tree construction. The k-factor tree has been implemented
using the coding proposed by Kurtz in [14] and the results of the experiments are discussed
in Section 5.

2 Suffix trees

Before recalling Ukkonen’s suffix tree construction, we start by introducing some notations.

2.1 Notations

In what follows, s will denote a string over a finite alphabet Σ whose cardinality is |Σ|. The
length of s is |s|. A string s is therefore an element of the free monoid Σ∗. The ith letter of s is
denoted by si and si...j represents the factor sisi+1 . . . sj (also named substring or subword).
The suffix of s starting at position i is the factor si...|s|. If s ends with a letter which is not
in Σ, we say that s has an ending symbol, denoted by $. Given two strings u and v, we note
u.v the concatenation of u with v.

Given a tree T with root R whose edges are labelled by elements of Σ∗ and a node N of T ,
path(N) is the string corresponding to the concatenation of the labels encountered along the
path from R to N . The depth of N , denoted by depth(N), is the number of nodes between
R and N , N included (depth(R) = 0).

2.2 Definition of a suffix tree

The suffix trie of s is a tree with edges labelled by elements of Σ. For each factor of s, there
exists a node N such that path(N) is equal to that factor. If the factor is a suffix of s, some

2



SuffixTree(s)
1. Tree T
2. For i from 1 to |s|
3. For j from 1 to i
4. Add(T ,sj...i)

Figure 2: Naive algorithm

of these nodes may be leaves. If s has an ending symbol, all nodes N whose path from R
spells a suffix of s are leaves.

The implicit suffix tree of s is a tree with edges labelled by non-empty elements of Σ∗.
The tree is a compressed version of the suffix trie. Each internal node N of the suffix trie
that has only one son is deleted and its two adjacent edges are replaced by an edge that goes
from N ’s father to N ’s son. The label of the new edge is equal to the concatenation of the
label of the edge going from N ’s father to N and of the label of the edge from N to its son.
This tree is called implicit because not all suffixes of s lead to a leaf. The true suffix tree is
obtained when an ending symbol $ is added at the end of s.

2.3 Suffix tree construction

A first suffix tree construction algorithm of complexity linear in the length of the string
was presented by Weiner in 1973 [26]. McCreight introduced a similar but more performing
algorithm in 1976 [18]. In 1995, Ukkonen published an on-line construction of the suffix tree
using a very different approach [24]. Later, Giegerich and Kurtz [8] showed how all three
constructions are in fact similar.

We now briefly present Ukkonen’s algorithm which is the basis for the k-factor tree con-
struction. For more details, we refer the reader to the original paper [24]. We follow here the
description of the algorithm given in [13].

3 Ukkonen’s algorithm

The algorithm is divided into |s| phases. The ith (for 1 ≤ i ≤ |s|) phase consists in the
insertion of all suffixes of s1...i into the tree. Each phase i is then divided into j steps, one
step for each insertion of a suffix of s1...i (see Figure 2). This naive algorithm is clearly in
O(|s|3). We show now how Ukkonen obtains a linear complexity.

Cases met when inserting a word w in the tree

Let us call v the longest prefix of w which is already in the tree. We have w = vu. During
the insertion of w, three cases may occur:

1. u is the empty word so that w is already in the tree: there is nothing to do.

2. spelling v from the root leads to a leaf: all we need to do is append u to the label of
the edge leading to this leaf.

3



3. the last case may be divided into two subcases:

(a) spelling v leads to an internal node N : we attach a new leaf to this node; the edge
from N to the leaf is labelled u.

(b) spelling v leads to the middle of an edge: we have to cut this edge at the position
reached and insert a new node N ; to the node N thus created, we then attach a
new leaf; the edge from N to the leaf is labelled u.

Suffix links

Suffix links are fundamental elements in all linear time suffix tree construction algorithms.
We shall see later that they enable to reduce the cost of string insertion during the algorithm.

A suffix link is an oriented link between two internal nodes in the suffix tree. Given a node
N , its suffix link points to the node, denoted by Sl(N), such that path(Sl(N)) is equal to
path(N)2...|path(N)| (that is, to path(N) without the first letter). In other words, path(Sl(N))
is the longest proper suffix of path(N). All internal nodes have a suffix link.

Suffix links are added to the tree during construction as follows: let us suppose that,
during the insertion of string sj...i, a node N is created to which a new leaf is attached (case
3b). We know that sj...i−1 is in the tree because we inserted it during the previous phase.
We therefore have that path(N) is equal to sj...i−1. By construction, when a string is in the
tree at the end of a phase, all suffixes of this string are also in the tree. The factor sj+1...i−1

is thus already in the tree. Two cases may then happen: the path labelled sj+1...i−1 ends in
a node, let us denote it by N ′, or it ends inside an edge. In the second case, the insertion of
factor sj+1...i leads to the creation of a node, that we also denote by N ′. In both cases, the
suffix link of N points to N ′.

Fast insertion

Let N be the last node reached during the insertion of sj...i that has a suffix link. We have
that sj...i is equal to path(N).w.σ, where w can be empty and σ ∈ Σ. If Sl(N) is the root,
then the insertion of sj+1...i is done naively. If Sl(N) is not the root, in order to insert sj+1...i,
we just have to follow w from Sl(N) and add σ if necessary.

During the insertion described above, we found w in the tree by successively comparing
each letter of w. In fact, we can avoid such comparisons in the following way. At each
node met during the insertion, we just need to know which edge to take. Once this edge is
identified, we can go directly to the node it points to and, as a consequence, move in w by
possibly more than one letter.

The time spent during an insertion is essentially composed of the time needed to calculate
the length of an edge plus the number of nodes traversed during the insertion. The next section
shows how the length of an edge can be computed in constant time and how, simultaneously,
the space required by the tree may be reduced. In the proof of the time linearity of the
algorithm, we show that the overall number of nodes traversed is then O(|s|).

Edge coding

The labels of the edges can be coded by a pair of integers which denote, respectively, the
start and end positions in s of the string labelling the edge. This allows to obtain a linear
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space occupancy for the tree as is detailed below. It also leads to an improvement in the time
complexity of the suffix tree construction as leaves can then be automatically extended.

Automatic leaf extension and condition for ending a phase

Let us call end position of an edge the second value in the label of an edge, which corresponds
to the end position of the string labelling that edge. Suppose a leaf is created during the
insertion of sj...i. The end position of the edge pointing to this leaf is i. In the next phase, the
insertion of sj...i+1 will lead to case 2, and the end position of the edge will now become i+1,
and so on for all the following phases. When a leaf L with edge E leading to it is created, we
can then set the end position of E to a global variable whose value is the number of the phase.
This will exempt us from having to make the insertions corresponding to the extension of all
edges leading to a leaf. Furthermore, if the insertion of sj...i requires the creation of a leaf,
then all strings s!...i for " from 1 to j lead to a leaf in the tree. During the next phase, if the
insertion of sj+1...i has not created a leaf, we can therefore start the insertion of the suffixes of
s1...i+1 from the insertion of sj+1...i+1 (that is, from step j + 1) because all the longer suffixes
are implicitly inserted. Each phase then starts from the last leaf created.

In the same way, if, during the insertion of sj...i, we end up in case 1, we do not have to
insert s!...i for " from j + 1 to i because if sj...i is already in the tree, then all suffixes of sj...i

are also in the tree.
In what follows, all non implicit insertions such as those described above are called explicit.

3.1 Algorithm

Figure 3 gives the complete algorithm for Ukkonen’s construction. We see that index j does
not appear anymore. As just showed, the beginning of each phase is deduced from the end of
the previous phase, and the end of a phase is deduced from the result of a current insertion.

Moreover, we may observe that the algorithm of Figure 3 constructs the implicit suffix
tree of s. To obtain the suffix tree of s, an ending symbol $ must be appended to s.

3.2 Complexity

We now analyse the time and space complexities of the suffix tree construction. These will
be the same for the k-factor tree.

Time complexity

Ukkonen’s assertion [24] that his suffix tree construction algorithm is linear in the length of
the string rests upon the following lemma [13]:

Lemma 1 Let N be a node. We have that depth(N) ≤ depth(Sl(N)) + 1.

The implicit leaf extensions inside a phase take constant time, so the implicit insertions made
over the complete algorithm take O(|s|) time. The time taken by the explicit insertion of a
string in the tree is directly related to the number of nodes traversed after the jump along the
suffix link since the ascent from a node to its father and the jump along the suffix link can be
done in constant time. Instead of counting the number of nodes traversed after the jump along
the suffix link for each separate insertion, we can upper bound the number of nodes traversed
during the whole construction. Let j be the index of the extension currently considered.
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AddString(node,s,start,end)
1. endJump ← false
2. while(not endJump) and ((end − start) not equal to 0) do
3. set child to the child of node that start with the letter sstart

4. if (end − start) is greater or equal to length(node, child)
5. start ← start + length(node, child)
6. node ← child
7. else
8. endJump ← true
9. done
10. if (end − start) is equal to 0 and node has not a child for letter send

11. add a child to node with edge label start equal to end
12. e ←the label of the edge between node and child
13. if eend−start+1 not equal to send

14. split e at position end − start
15. add a leaf with start position equal to end to the new node
16. done.

Suffix Tree(s)
1. Add to R a leaf L with edge label s1

2. lastLeaf ← L
3. For i from 2 to |s|
4. endPhase ← false
5. do
6. forward ← length(Father(lastLeaf), lastLeaf)− 1
7. if Sl(Father(lastLeaf)) is undefined and Father(lastLeaf)! = R
8. forward ← forward + length(Father(Father(lastLeaf)), Father(lastLeaf))
9. if Father(Father(lastLeaf)) is R
10. AddString(R,s,i − forward + 1,i)
11. else
12. AddString(Sl(Father(Father(lastLeaf))),s,i − forward,i)
13. else
14. if Father(lastLeaf) is R
15. AddString(R,s,i − forward + 1,i)
16. else
17. AddString(Sl(Father(lastLeaf)),s,i − forward,i)
18. if a node was created during the previous step
19. set suffix link of this node to the last node reached during the insertion
20. if a leaf was created in the call to AddString
21. set lastLeaf to this leaf
22. if a node was not created in the call to AddString
23. endPhase ← true
24. while(not endPhase)
25. end for
26. return R

Figure 3: Ukkonen’s algorithm: construction of the suffix tree for s; R is the root of the
tree. The function length returns the size of the edge label between two nodes. The function
AddString achieves the fast insertion.
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Index j remains unchanged between two successives phases, and it never decreases. We may
observe that we do at most 2|s| explicit insertions because we have |s| phases and j is at most
|s|. During an explicit insertion, the depth of the node currently considered is first decreased
by at most two, one to reach the father of a leaf and one when jumping along the suffix link,
and then increased at each skip down the tree. Since the maximal depth of the tree is |s| and
we do at most 2|s| insertions, the total number of nodes considered is O(|s|). If we suppose
that the access to a child of a node is done in O(1) time, then the total time complexity of
the suffix tree construction is in O(|s|).

Space complexity

Let T be the suffix tree of s. The root of T has exactly |Σ| + 1 children. One of them
corresponds to a leaf (the string label of the edge leading to it is $). The worst case for the
space complexity will be obtained if each internal node has exactly two children and each
edge is labelled with a single letter (i.e. its length is one).

In that case, the total number of nodes whose depth is k in the tree is:

2k−1(|Σ| + 1) − 2k + 2 that is 2k−1(|Σ|− 1) + 2.

The number of leaves in T is |s| + 1 and we can then deduce the depth d of T in the worst
case which is:

2d−1(|Σ|− 1) + 2 + d − 1 = |s| + 1 that is 2d−1(|Σ|− 1) + d = |s|

An upper bound for d is:

dmax = log2
2|s|

|Σ|− 1
.

We can now compute the total number of nodes in T which is:

1 +
k=dmax∑

k=1

[2k−1(|Σ|− 1) + 2]

that is:
2|s| + 2dmax − |Σ| + 2.

4 Factor trees

We now present the k-factor tree construction. A naive approach consists in building the
suffix tree and then pruning the tree in such a way that for each node N of the remaining
tree, |path(N)| ≤ k. Clearly, this approach does not improve the space complexity because it
requires first constructing the suffix tree.

Recall that one of the main ideas behind Ukkonen’s suffix tree construction is the auto-
matic leaf extension allowed by the use of a global variable. We must be able to preserve this
idea in the k-factor tree construction if we wish to keep the linear time complexity. Let us
call length of a leaf L, the length of the string labelling the path from R to L. Preserving
Ukkonen’s idea requires finding a way of stopping the extensions when a leaf reaches the
length k.
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Figure 4: k-Factor tree construction algorithm. The horizontal lines indicate the substrings
of s which are inserted into the tree during phase i. On the left, the substrings inserted for
i = k − 1 are shown and, on the right, the substrings of length at most k inserted for i = "
(for " ≥ k).

4.1 Construction

The k-factor tree contruction is based on Ukkonen’s algorithm. It is divided into two parts:

• building the implicit suffix tree for s1...k−1;

• adding to the tree all the suffixes of si−k+1...i for i from k to |s|.

We now detail these two parts. Henceforward, we call end position of a leaf what corresponds
to the end position of the edge leading to that leaf.

First part: construction of the implicit tree of the suffixes of s1...k−1

The first part is done following Ukkonen’s algorithm in a straightforward way. The only
difference is that, when a leaf is created, it is now added to a queue called queueleaf .

Second part: construction of the implicit tree of the suffixes of si−k+1...i for i
from k to |s|
For each string corresponding to a suffix of si−k+1...i for i from k to |s| that needs to be
inserted in the tree, we proceed essentially as in Ukkonen, that is, we go up to the last node
which has a suffix link, jump along the suffix link and then go down in the tree. As for
the first part, we add each newly created leaf to queueleaf . We now also have to remove an
element from the head of the queue at the end of each phase. Furthermore, there may be
another subtle but important difference in relation to Ukkonen’s algorithm depending on the
state of queueleaf at the beginning of a phase.

Indeed, in Ukkonen’s suffix tree construction, a phase starts from the last leaf created. At
the start of a phase i in our algorithm, two cases may happen:

• there is a leaf L at the end of queueleaf ;

• queueleaf is empty.

In the first case, we proceed with phase i straightforwardly from leaf L, which corresponds
to the last leaf created.

In the case where queueleaf is empty, we do not proceed as in Ukkonen from the last leaf
that was created in the algorithm, but from the last position reached in the tree during the
previous phase. This position may be in the middle of an edge. The reason for this is the
following. Let i be the phase for which queueleaf is empty when the phase begins and let
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L be the last leaf created before phase i. The leaf L corresponds therefore to si−k...i−1. At
phase i, we would start from leaf L, jump up to L’s father, along L’s father suffix link and
then try to insert si−k+1...i. If si−k+1...i were already in the tree, phase i would be terminated
and phase i + 1 would start again from the leaf L. The first string needing to be inserted
would be si−k+2...i+1 and we would have to follow two suffix links from L’s father in order to
reach si−k+2...i−1 and check for the existence of sisi+1 at the end of si−k+2...i−1. If si−k+2...i+1

were already in the tree, phase i+1 would also be stopped, and phase i+2 would again start
from the leaf L and require now three suffix link jumps before trying for the insertion of the
first suffix of the phase. If we proceeded in this way, we could no longer guarantee a linear
complexity for the algorithm. This will not be the case if, instead, we start each phase for
which queueleaf is empty at the last position reached in the tree during the previous phase.
Inserting si−k+1...i implies then just checking, from such a position, for the existence of si,
which can be done in constant time. If a leaf needs to be created, we create it, add it to
queueleaf (it will become the head of the queue) and go to the next step of the phase. If a
leaf L is reached (path(L) is thus already equal to si−k+1...i), we proceed with the next step
of the phase. Any leaf that needs to be created during the phase is added to the queue.

At the end of phase i, the leaf L at the head of queueleaf is removed. The end position of
L is set to i.

Lemma 2 Stopping the automatic extension:
For each phase i, k ≤ i ≤ |s|, if queueleaf is not empty let us call L the leaf at the head of
queueleaf . The length of path(L) is equal to k at the end of phase i.

Proof. When a leaf is created in the suffix tree, its length is always equal to the length of the
last created leaf minus one. This can be observed in Ukkonen’s algorithm. Indeed, if in the
phase i, we start with step j and we create a leaf L, it will be because during a previous phase
", the insertion of sj−1...! ended in the creation of a leaf L′, while during phases "+ 1 . . . i− 1
there was no leaf created. At the end of phase i−1, leaf L′ will have a length of i− (j−1)+1
because of the automatic extensions. We then insert sj...i which creates leaf L whose length
is equal to i − j + 1.

During the first phase, which is phase i = k, of the second part of the algorithm (when
the suffixes of si−k+1...i for i from k to |s| are inserted), the leaf L at the head of queueleaf

is the one that was created during the insertion of s1. It was extended to k − 1 during the
first part of the algorithm. At the end of phase i = k, L is removed from the queue, its end
position is set to i and thus its length is clearly k. If, at this point, any leaf remains in the
queue, the length of the one at the head is k − 1, and will become k at the end of the next
phase (i + 1) when it is removed from the queue, and so on.

Suppose now that at the beginning of a phase i, queueleaf is empty. We start the phase
by trying to insert si−k+1...i. If this creates a leaf, it will be put in the queue and will be at
the head of it. When the phase ends, the leaf will be removed and have length k. If no leaf
is created in phase i, we proceed with phase i + 1 and apply the same reasoning. !

4.2 Algorithm

The pseudo code for the first part of the k-factor tree construction algorithm is the same as
for Ukkonen (Figure 3), we just have to add to queueleaf the leaf created in line 21. The
pseudo code for the second part of the k-factor tree construction is given in Figure 5.
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Factor Tree(R, s , k , queueleaf)
1. For i from k to |s|
2. endPhase = false
3. if queueleaf is not empty
4. set lastLeaf to the leaf at the end of queueleaf

5. else
6. add si from last position reached during the last insertion
7. if a leaf is created
8. add this leaf at the end of queueleaf

9. set lastLeaf to this leaf
10. else
11. set lastLeaf to the leaf reached
12. do
13. forward ← length(Father(lastLeaf), lastLeaf)− 1
14. if Sl(Father(lastLeaf)) is undefined and Father(lastLeaf)! = R
15. forward ← forward + length(Father(Father(lastLeaf)), Father(lastLeaf))
16. if Father(Father(lastLeaf)) is R
17. AddString(R,s,i − forward + 1,i)
18. else
19. AddString(Sl(Father(Father(lastLeaf))),s,i − forward,i)
20. else
21. if Father(lastLeaf) is R
22. AddString(R,s,i − forward + 1,i)
23. else
24. AddString(Sl(Father(lastLeaf)),s,i − forward,i)
25. if a node was created during the previous step
26. set the suffix link of this node to the last node reached during the insertion
27. if a leaf was created in the call to AddString
28. set lastLeaf to this leaf
29. add this leaf at the end of queueleaf

30. if a node was not created in the call to AddString
31. endPhase ← true
32. while(not endPhase)
33. remove the leaf at the head of queueleaf and set its end value to i
34. end for
35. return R

Figure 5: Second part of the algorithm for the construction of the at most k-deep factor tree
of a string s.
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4.3 Complexity

We now analyse the time and space complexities of the k-factor tree.

Time complexity

The time taken by the construction of the k-factor tree is linear in the length of s. The proof
is very similar to the one for Ukkonen’s suffix tree construction presented in section 3.2. The
first part of the algorithm requires O(k) time. Lemma 1 remains true for the k-factor tree.
During the second part of the algorithm, we have |s|−k+1 phases. We can start by observing
that all operations related to queueleaf are done in constant time and therefore take O(|s|−k)
time for the whole algorithm. As in Ukkonen, between two phases, the start index j in s of
the first substring of s that must be inserted can never decrease. The complexity thus still
depends only on the total number of nodes encountered during all insertions. This number
is at most 2|s| (we have |s| − k + 1 phases and j is at most |s|). As the depth currently
reached in the tree remains unchanged between two phases and we can go up by at most two
nodes at each insertion, we can go up in the tree by at most 4|s| nodes only during the whole
algorithm. Since the depth of the tree is at most k, the total number of nodes encountered is
O(|s|).

If we make the assumption that the cost to reach the child of a node is constant (|Σ| is
fixed), the whole algorithm therefore runs in linear time.

Space complexity

We now compute the number of nodes in the k-factor tree in the worst case. Clearly, the
worst scenario corresponds to the case where each node has |Σ| children. The number of
nodes is then

∑!=k
!=0 |Σ|!, that is:

|Σ|k+1 − 1
|Σ|− 1

.

The total number of nodes in the worst case is therefore:

min(
|Σ|k+1 − 1
|Σ|− 1

, 2|s| + 2 log2(
2(|s| − 1)
|Σ|− 1

) − |Σ| + 2).

We can thus guarantee a gain in memory when k is less than log|Σ|(2(|Σ| − 1)|s|) − 1. This
result has been confirmed in practice. Experiments are presented in the next section.

5 Coding and experiments

The construction algorithm we have just presented may be used with any currently existing
coding of the suffix tree. We chose to use it with the coding adopted by S. Kurtz in [14] for
building suffix trees. This employs an “Improved Linked List Implementation” and is called
the illi coding. The choice is motivated by the fact that, to the best of our knowledge, this is
the best implementation in practice which is currently available. We start by explaining the
coding techniques adopted by S. Kurtz then describe the modifications or extensions we had
to do to it in order to adapt the coding to the construction of k-deep factor tree. Basically,
the coding must be changed so that it can efficiently handle the fact that a leaf in the factor
tree may now store more than one position. We end by presenting some experimental results.
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Figure 6: The suffix tree of s = ABAAB$, the right tree shows the suffix tree as it is coded
by illi.

5.1 Kurtz’s coding

We briefly explain the illi coding. For further details, the reader is referred to [14].
The internal nodes and the leaves of the suffix tree are coded using two different tables. In

both tables, the index of a node corresponds to the order in which the nodes are created during
construction and thus put in the right table. In particular, the index of a leaf corresponds
to the position in s of the suffix that is spelled by the path from the root to the leaf. In all
cases, the children of a node are stored in a linked list (first-son, right-sibling). The coding
for a node contains the following information:

• The node is an internal node N :

– start position of the first occurrence of path(N) in s that required the creation of
a node (this corresponds to the first occurrence of path(N) in s that is followed by
a letter different from the one following all previous occurrences; possibly there is
only one). Such position will be denoted by head(N);

– |path(N)|;
– the first child of N ;
– the right sibling of N ;
– the suffix link of N .

• The node is a leaf F :

– the right sibling of F .

Observe that this information is enough since the values of head(F ) and |path(F )| for a
leaf F may be deduced directly from the index of the leaf in the table. Indeed, head(F )
is that index (of creation of the leaf F ) and |path(F )| = |s|− head(F ).

Figure 6 presents a suffix tree coded according to illi. One of the main characteristics of the
coding comes from the distinction between two types of nodes: the so-called Small and Large
nodes. The idea is that nodes are created in batches, one batch (of possibly more than one
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node) inside each phase of the construction algorithm. During phase i (lines 12-32 in Figure 5),
if z nodes are created, say N1, . . . , Nz, then for each node Ni, 1 ≤ i < z, we have that Ni+1 is
the node to which points the suffix link of Ni (line 26), |path(Ni)| = |path(Nz)|+ (z − i) and
head(Ni) = head(Nz) − (z − i). The nodes Ni for 1 ≤ i < z are the so-called Small Nodes
and the node Nz is the so-called Large Nodes. The coding of a Small Node will also include
a field indicating the distance (i.e., the number of nodes) until the Large Node with which it
is associated. This distance is equal to z − i.

The coding is detailed now. As indicated in [14], the index of a leaf may be stored on 27
bits, that of an internal node on 28 bits. To code the index of any node, we thus need 29 bits,
the first one indicating if the next 28 correspond to the index of a leaf or of an internal node.

A leaf F occupies 32 bits coded according to the model B shown below. The third bit (↓)
indicates whether the sibling of F is nil. If this is the case, it is flagged and the next 29 bits
code for the suffix link of the father (as explained below), otherwise the next 29 bits code for
the sibling of F . We shall come back to the use of the first 2 bits later.

A

5 dist. bits︷ ︸︸ ︷ 27 first-child bits︷ ︸︸ ︷

B

2︷︸︸︷ ↓
29 suffix-link/sibling-edge bits︷ ︸︸ ︷

C1 1

21 suffix-link bits︷ ︸︸ ︷ 10 |path(N)| bits︷ ︸︸ ︷

C2 0
︸ ︷︷ ︸

27 |path(N)| bits

D

5 s. link bits︷ ︸︸ ︷ 27 head-position bits︷ ︸︸ ︷

The coding of a Small Node is done using 2 ∗ 32 bits (models A and B above) and the
coding of a Large Node on 4*32 bits (models A,B,C and D above). We denote by N the
coded node, and by i its index in the table of nodes. The first 5 bits of A are zero if N is a
Large Node and, if N is a Small Node, are equal to the distance until the Large Node with
which N is associated. In the case where distance ≥ 32, a “dummy” Large Node is inserted
at the index i + 32. The first child of N is stored on the last 27 bits of A and the first 2 bits
of B. The remaining 30 bits code for the right sibling. If N is a Small Node, its coding is
finished. Indeed, the suffix link, head(N) and |path(N)| may all be calculated from the Large
Node whose value is IN + distance(N) as described above. If N is a Large Node, it has 2*32
more bits. If |path(N)| can be coded on 10 bits (i.e. its value is strictly less than 1024), then
the next 4 bytes are coded according to scheme C1: the first bit is flagged, the next 21, the
first 5 bits of D and the 2 free bits of the leaf whose value is head(N) are used to code the
suffix link of N . If |path(N)| ≥ 1024, then the next 4 bytes are coded according to scheme
C2. The 27 last bits code for |path(N)|. The suffix link of N is then coded in the rightmost
child (coding of B) whose field “right sibling” is zero. Finally, the last 27 bits of D code for
head(N).
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data that are really coded.

5.2 Coding for the factor tree construction algorithm

Let us examine now how we must change the illi coding in order to use it in the implementation
of our factor tree construction algorithm. As observed previously, the values head(F ) and
|path(F )| of a leaf F can be deduced directly from the index of the leaf: the leaf F whose
index is i is such that head(F ) = i and |path(F )| = |s| − i. This is not true anymore in the
case of a k-deep factor tree. Indeed, since some leaves are cut, a shift is introduced in the
order in which a leaf is created and then inserted in the table for the leaves. We can clearly
identify the moment when a leaf is cut and a shift is thus introduced. This happens at line
11 of the algorithm given in Figure 5. An easy way out would be at each such point to create
and insert in the table a dummy leaf as we could then again deduce the values of head(F )
and |path(F )| from the index of F . This solution is however not satisfying because memory
space is unecessarily lost and, furthermore, we cannot produce the list of all the occurrences
associated with a leaf.

Another way of solving the problem consists in introducing a coding of the occurrences of
a leaf in the form of a linked list. At line 11 in the algorithm, if a leaf F is reached at step
p, a new cell is created in the table for all the leaves whose index in the table is p − k. We
then store in the cell the index of F . In the tree, the link to F (field first child of the father
or sibling of the left brother) is replaced by a link to the leaf whose index is p − k.

This new procedure presents two problems:

• when one traverses a list of occurrences, an additional bit is required to indicate that
we have reached the end of the list, but, as we have seen above, all the bits of the field
have already been used;

• to obtain the information “right sibling/suffix link of the father”, we need to examine
all the occurrences of the leaf, which implies that the complexity of the construction
algorithm is no longer in O(|s|).

In order to address these problems, the coding of a node has to be modified. In particular,
we need to “free” bits in the coding scheme of a leaf. We thus modify the coding of the nodes
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in the following way. The suffix link of a node is still either to a node which exists already, or
to the next node which will be created just after. In the case where the suffix link is to the
next node, we have a Small Node and the index of the suffix link is not coded but is deduced
from the node. In the other case, we have a Large Node. Let us denote by i the index of N
in the table of the nodes. If i ≤ 226, we know that the suffix link can be coded using 26 bits
and therefore, we employ the same coding as above without using the 2 bits of the leaf whose
index is head(N). If i > 226, we use the coding scheme C1′ below. If |path(N)| can be coded
on 8 bits (i.e., its index is less than 256), then the 23 bits of C1′ plus the 5 bits of D are used
to code the suffix link. If |path(N)| ≥ 256, we follow the coding scheme C2 and the suffix
link is found in the rightmost child.

C1′
↓

23 suffixlink bits︷ ︸︸ ︷
8 —path(N)— bits

︷ ︸︸ ︷

We thus have 32 bits per leaf and not 30 anymore. We recall that the index of a leaf
requires 27 bits. We also need 1 bit to indicate whether we have reached the end of a linked
list. In the case where we are at the end of a list, we remain with 31 bits, 29 to code the
value right sibling/suffix link and 1 to indicate whether the index of the right sibling is nil. If
we have not reached the end of a list, then of the 31 remaining bits, 27 are used to code the
position of the next occurrence. To guarantee that we can obtain the value right sibling/suffix
link in constant time, we use the last 4 bits to code part of the index of the last cell. In this
way, in the worst case, we need to traverse the first 7 cells of the list before being able to
jump directly to the last cell. To improve access time to the last cell, we optimise the code
in the following way: if we are in cell c of the list, then we have already read c ∗ 4 bits of the
index of the last cell. If i is smaller than 2c∗4, then the value read is the index of the last
cell (because this index is less than c). Another possible optimisation that has not yet been
implemented consists in using in cell c, with c coded on j bits, 32− 1− j bits to code part of
the index of the last cell. Indeed, the cell after i has a smaller index and thus can be coded
on j bits. In what is shown below, B1 represents the model used for the last cell, otherwise
it is the model B2 that is employed.

B1 1
↓

29 suffixlink/branchbrother bits
︷ ︸︸ ︷

B2 0

4︷ ︸︸ ︷ 27 next leaf bits︷ ︸︸ ︷

The algorithm used to insert a cell in the linked list is the following. Denoting by j the
position of the next occurrence (last considered cell in the table for the leaves), by i the index
of the leaf to which an occurrence is added and by e the index of the leaf at the end of the
list whose first cell is i, we do the following:

• while looking for e, we:

– check whether the value e has already been coded in the first cells of the list;

– determine the index l of the last cell reached before e.
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Figure 8: Insertion in a list of occurrences. (a) The list contains only one cell, 19. (b) Insertion
of occurrence 25, i = e = 19. (c) Insertion of occurrence 34 i = 25, e = 19 and l = 25.(d)
Insertion of occurrence 40 i = 34, e = 19, l = 25, 19 is already coded in the cells 34 and 25,
40 is added after 25.

• if e has already been coded, we insert cell j after cell l and i stays at the head of the
list;

• otherwise, we place j at the head of the list. Its coding follows model B2. We then
need to update the pointers to i in the tree so that they point to j.

An example of the procedure for inserting a cell is given in Figure 8.

5.3 Experimental results

5.3.1 Suffix and factor tree construction time and space occupancy

Our first test uses 43 files from the Canterbury Corpus [1] and the Calgary Corpus [4]. All
tests have been done on a PC with a single 1GHz processor with 4Go of RAM memory under
linux Debian/Gnu. Whenever possible, we added a termination symbol at the end of the file.
The table presented below contains the following information (in order):

• the name of the file with, in parenthesis, its type: t for a text file, b for a binary file, d
for DNA and f for a file in formal language;

• the length of the text;

• the size of the alphabet used in the file;

• the results obtained with a suffix tree using the illi coding:

– execution time in seconds;

– space occupied in bytes;
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• the results obtained with a k-deep factor tree using our coding and for k = 20 then
k = 10:

– execution time in seconds;

– the memory gain (in %) in relation to a suffix tree with the illi coding;

• the results obtained with the k-deep factor tree with our coding for a memory gain of
at least 15%:

– execution time in seconds;

– value of k.

The last line indicates the total size of the data, followed by the average value (time,
space or gain) by column. In the case where there are 2 values in a cell, the second value
corresponds to the average of the values in the column except for the files aaa and alphabet.

Let us start by commenting the space memory used by both data structures. We may
observe first that the type of results obtained depends on the size of the file. Indeed, cutting
the tree at a depth of 20 when the text is short (for instance, paper5 which makes 11Kb)
produces a weaker space gain than cutting it also at a depth of 20 when the text is long (for
instance, world192 which makes 2,5Mb). However, independently from the type and size of
the file, the factor tree offers an often significant gain for k = 10 as well as for k = 20, except
for the files random and kennedy. The text in these two files present the same characteristic:
they are not structured and do not contain long repeats.

The files containing a text written in a formal language are the most structured ones
and are among the ones yielding the best results. For example, a file such as cp which is
in html format contains long repeats that are specific of the language (e.g. the sentence
<a href="http://www. with 20 characters). The structure itself of formal texts favours the
existence of deep nodes in the tree and therefore a reasonable cut (10 ≤ k ≤ 20) leads to
very good memory gains such as 25.98% for k = 10. The files aaa and alphabet are equally
favourable to both a suffix tree with the illi coding and a k-factor tree with our coding in the
sense that they too contain long repeats. In fact, files such as these two represent the best
cases for both approaches. They lead to the best gains for the factor tree relatively to a suffix
tree.

Text files produce also good memory gains. However, natural languages do not in general
contain very long repeats and the gain is thus in general less strong, although there may be
exceptions to this. For instance, the bible file where sentences like “ And God ...” favour
the presence of nodes at a depth of more than 10. The average gain of 18.28% for a height
k = 10 indicates that the factor tree is well adapted to this type of file.

The results on binary files are less easy to predict. Indeed, the file pic, which codes for an
image, contains long repeats due to the repetitition of identical lines and the gain obtained
on it is good.

For the other files, the results are disappointing. There are two reasons for this: the
alphabet of these files is often big and since the text in the files are not structured, long
repeats are rare. These files present therefore some of the less good results with, nevertheless,
an average gain of 14.25% for k = 10.
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file length |Σ| suffix tree k=20 k=10 15%
time space time gain time gain time k

alice29 (t) 152090 75 0.50 9.84 0.51 1.95 0.43 16.12 0.47 10
asyoulik (t) 125180 69 0.38 9.77 0.48 1.30 0.38 9.37 0.38 8
bib (t) 111262 82 0.31 9.46 0.31 9.55 0.28 25.65 0.32 15
bible (t) 4047393 64 13.56 9.64 14.17 9.94 12.50 40.60 14.29 17
book1 (t) 768772 83 3.05 9.83 3.33 0.24 2.97 14.36 3.03 9
book2 (t) 610857 97 2.05 9.67 2.09 3.81 2.04 23.36 2.15 12
lcet10 (t) 426755 85 1.35 9.66 1.60 4.33 1.35 22.39 1.54 11
paper1 (t) 53162 96 0.14 9.82 0.17 4.96 0.14 16.12 0.14 10
paper2 (t) 82200 92 0.22 9.82 0.26 1.72 0.25 13.54 0.23 9
paper3 (t) 46527 85 0.15 9.80 0.14 0.79 0.12 9.21 0.15 8
paper4 (t) 13287 81 0.04 9.91 0.04 1.11 0.04 8.12 0.03 7
paper5 (t) 11955 92 0.03 9.80 0.04 1.24 0.03 8.44 0.04 7
paper6 (t) 38106 94 0.11 9.89 0.10 5.11 0.10 16.17 0.11 10
plrabn12 (t) 481862 82 1.75 9.74 2.00 0.34 1.96 11.59 1.88 9
world192 (t) 2473401 95 7.70 9.22 7.96 20.85 7.93 37.03 8.14 27
SUBTOTAL: 9290719 2.20 9.72 2.33 4.66 2.15 18.28 2.31 11.36
aaa (f) 100001 2 0.14 12.26 0.06 67.35 0.04 67.36 0.16 77734
alphabet (f) 100001 27 0.27 12.26 0.08 67.35 0.08 67.35 0.27 77713
cp (f) 24604 87 0.07 9.34 0.07 13.81 0.07 24.43 0.07 18
fields (f) 11151 91 0.01 9.79 0.04 10.69 0.01 25.97 0.03 15
grammar (f) 3722 77 0.02 10.14 0.02 7.83 0.01 21.93 0.01 13
news (f) 377110 99 1.49 9.54 1.43 10.00 1.44 20.16 1.56 12
progc (f) 39612 93 0.11 9.59 0.14 5.44 0.10 17.37 0.09 10
progl (f) 71647 88 0.17 10.23 0.18 19.87 0.16 34.11 0.16 27
progp (f) 49380 90 0.12 10.31 0.12 22.85 0.12 36.13 0.11 41
trans (f) 93696 100 0.23 10.50 0.20 30.73 0.19 42.96 0.25 59
xargs (f) 4228 75 0.01 9.63 0.01 1.68 0.01 10.79 0.01 8
SUBTOTAL: 875152 0.24 10.32 0.21 23.41 0.20 33.50 0.25 14150

9.90 13.65 25.98 22.55
geo (b) 102401 256 0.85 7.49 0.87 0.17 0.89 0.40 0.60 4
kennedy (b) 1029745 256 10.06 4.64 9.21 0.00 5.99 8.20 1.57 2
obj1 (b) 21505 256 0.10 7.69 0.07 6.65 0.11 10.86 0.10 6
obj2 (b) 246815 256 1.01 9.30 1.08 14.03 1.00 26.03 1.08 18
pi (b) 1000001 11 4.13 10.13 4.43 0.00 4.39 0.00 3.20 6
pic (b) 513217 160 1.20 8.95 0.85 44.01 0.74 47.30 1.16 204
random (b) 100001 65 0.50 7.05 0.49 0.00 0.49 0.00 0.32 3
sum (b) 38241 255 0.14 8.92 0.15 14.55 0.12 21.20 0.13 18
SUBTOTAL: 3051926 2.25 8.02 2.14 9.93 1.72 14.25 1.02 32.62
TOTAL: 13369887 1.53 9.52 1.55 11.89 1.36 22.19 1.29 4490.58

8.42 19.37 19.78
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file length |Σ| suffix tree k=20 k=10 15%
time space time gain time gain time k

C14 87164908 5 319.98 12.43 342.30 7.35 243.73 67.34 328.53 15
C22 34553832 5 116.28 12.29 124.82 9.83 92.30 66.20 120.99 15
J03071 66495 4 0.14 12.36 0.13 21.15 0.11 33.05 0.14 30
K02402 38059 4 0.10 12.59 0.09 0.14 0.11 3.69 0.07 8
M64239 94647 4 0.23 12.62 0.25 0.51 0.26 7.44 0.23 9
AE000111 4639221 4 14.84 12.56 16.33 1.04 9.80 59.44 14.11 12
V00636 48502 4 0.11 12.57 0.13 0.00 0.14 3.02 0.10 8
X14112 152261 4 0.44 12.55 0.48 0.88 0.38 18.79 0.39 10
TOTAL: 126757925 56.51 12.49 60.56 5.11 43.35 32.37 58.07 13.37

Let us now examine the results obtained on biological data, in this case, DNA sequences.
The sequences considered were chromosomes 14 and 22 of Homo sapiens (retrieved from the
database of the NCBI [21] and denoted by C14 and C22), and seven sequences retrieved from
the EMBL database (the first column indicates their primary access number). The results
on chromosomes 14 and 22 of man are encouraging given the size of the tree in memory
(more than 1Go), the 15% gain of the factor tree over the suffix tree represents a real gain.
Otherwise, although the gain remains important for k = 10, results become disappointing for
k = 20.

Figure 9 shows the results for different values of k on the sequence with EMBL primary
access number AE000111 which corresponds to the sequence covering the first 400 entries of
the complete genome of Escherichia coli in the EMBL database. We see that, as expected [2]
[23], log4 |s| is a good indicator of the value of k starting from which the gain diminishes as
this value is increased. The curve, that presents the same behaviour with random sequences
(results not shown), thus confirms that the tree is almost complete up to a depth of log|Σ| |s|.
More details may be found in [2] and [23], where the authors study the internal repeats of a
text and average height of a suffix tree. Observe that for DNA, the value of log4 |s| goes from
10 for a sequence of 1Mo to 13 for a sequence of 100Mo. However, one must remember that
the nature of these sequences may change these results.

Finally, let us consider the construction time required by both structures. In the case of
the factor tree, we can see that the tests added by our algorithm during construction lead to
a slight increase in the execution time. However, as soon as values of k between 10 and 20
are reached, the factor tree is at least as performing as the suffix tree.

5.3.2 Execution time for pattern matching using a suffix or factor tree

We now present the results concerning the time required to do pattern matching with a suffix
tree or a factor tree. More precisely, since the time for simply searching for a pattern (that
is, just telling whether a motif is in a text) is the same for both trees, we rather examine
the time taken in each case to enumerate all the positions of a pattern in the text. This is
expected to be different because factor trees are cut at a depth k and a leaf points now to a
list of occurrences instead of a single one as in the case of a suffix tree. We implemented for
this a procedure that searches for a pattern and then realises a depth-first traversal of the
tree (suffix or factor) until all the positions of the pattern are reached. This traversal is done
in an iterative fashion using in both cases a static stack. At each position of pattern x in s,
a function is called that does nothing.
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Figure 9: Results obtained with the factor tree on the sequence with EMBL primary access
number AE000111. The Y -axis indicates the space occupied by the factor tree in bytes per
input char and the execution time in seconds, the X-axis plots the values at which the tree
is cut. The log curve represents log4 |s|.

Since a single search plus enumeration takes a time that is too small to be measured, for
each pattern sought, we repeated the same procedure until we obtained an overall time of the
order of a tenth of a second. We did this operation for 1000 patterns randomly taken among
the factors of s (the same for the suffix and the factor trees).

The table below shows the results obtained. The columns indicate the following (execution
times are in microseconds):

• name of the file;

• size of the file;

• length of the pattern sought;

• results obtained with the suffix tree using the illi coding:

– minimum execution time of the operation;

– average execution time of the operation;

– maximum execution time of the operation;

• results obtained with the factor tree using our coding:

– value of k;

– minimum execution time of the operation;

– average execution time of the operation;

– maximum execution time of the operation;
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file length pattern suffix tree factor tree
length min mean max k min mean max

bible(t) 4047393 10 2.30 14.90 368.34 17 3.01 12.28 183.40
bible(t) 4047393 10 2.30 14.90 368.34 10 2.03 7.80 13.75
bible(t) 4047393 15 2.53 8.29 134.81 17 3.50 8.79 17.54
bible(t) 4047393 15 2.53 8.29 134.81 15 1.99 8.66 15.95
world192(t) 2473401 15 1.81 10.72 77.03 20 1.28 8.71 39.07
world192(t) 2473401 25 1.97 8.90 70.02 25 0.0 8.59 18.69
cp(f) 24604 10 0.84 5.50 19.27 18 0.85 5.79 17.08
cp(f) 24604 10 0.84 5.50 19.27 12 0.99 5.08 13.43
trans(f) 93696 20 0.92 5.28 45.79 59 0.46 6.12 26.92
trans(f) 93696 40 1.05 5.28 39.33 40 1.36 6.01 11.82
pic(b) 513217 60 0.0 8423.35 23333.33 204 0.0 4782.99 12999.99
U00096 4639221 10 2.06 3.44 17.55 12 1.84 3.21 4.80
U00096 4639221 12 2.16 3.22 12.68 12 1.97 3.13 4.93

We see that the factor tree has search plus enumeration times that are equivalent and
often better than those obtained using the suffix tree with the illi coding. It is interesting to
observe that, in all cases, the maximal search time observed is greatly improved for a factor
tree as against a suffix tree.

6 Conclusion

We introduced in this paper a useful structure for indexing the at most k-long factors of a
string, and only those factors. The structure preserves the properties of a suffix tree, including
the on-line characteristic of its construction, and can therefore replace it advantageously in
some cases. We also showed that the modifications one must do to Ukkonen’s construction
in order to obtain a k-factor tree for a string s are easy.

Our experimental results show that this structure leads to often important gains in terms
of the time for constructing the tree, memory space and time for some usages of the tree.
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