
HAL Id: hal-00627797
https://hal.science/hal-00627797v2

Submitted on 18 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sofic Tree-Shifts
Nathalie Aubrun, Marie-Pierre Béal

To cite this version:
Nathalie Aubrun, Marie-Pierre Béal. Sofic Tree-Shifts. Theory of Computing Systems, 2013, 53 (4),
pp.621-644. �10.1007/s00224-013-9456-1�. �hal-00627797v2�

https://hal.science/hal-00627797v2
https://hal.archives-ouvertes.fr

myjournal manuscript No.
(will be inserted by the editor)

Sofic tree-shifts

Nathalie Aubrun and Marie-Pierre Béal

Abstract We introduce the notion of sofic tree-shifts which corresponds to
symbolic dynamical systems of infinite ranked trees accepted by finite tree
automata. We show that, contrary to shifts of infinite sequences, there is no
unique reduced deterministic irreducible tree automaton accepting an irre-
ducible sofic tree-shift, but that there is a unique synchronized one, called the
Fischer automaton of the tree-shift. We define the notion of almost of finite
type tree-shift which are sofic tree-shifts accepted by a tree automaton which
is both deterministic and co-deterministic with a finite delay. It is a meaning-
ful intermediate dynamical class in between irreducible finite type tree-shifts
and irreducible sofic tree-shifts. We characterize the Fischer automaton of an
almost of finite type tree-shift and we design an algorithm to check whether a
sofic tree-shift is almost of finite type. We prove that the Fischer automaton is
a topological conjugacy invariant of the underlying irreducible sofic tree-shift.

1 Introduction

In [1] we introduced the notion of tree-shifts of finite type defined as sets of in-
finite ranked trees avoiding a finite number of forbidden patterns. Infinite trees
have a natural structure of one-sided symbolic dynamical systems equipped
with several shift transformations. The ith shift transformation applied to a

This work is supported by the French National Agency (ANR) through ”Programme
d’Investissements d’Avenir” (Project ACRONYME n◦ANR-10-LABX-58) and through the
ANR SubTile

Nathalie Aubrun
LIP, UMR 5668, ENS de Lyon, CNRS
E-mail: nathalie.aubrun@ens-lyon.fr

Marie-Pierre Béal
Université Paris-Est
Laboratoire d’informatique Gaspard-Monge, UMR 8049 CNRS
E-mail: beal@univ-mlv.fr

2 Nathalie Aubrun and Marie-Pierre Béal

tree gives the subtree rooted at the child number i of the tree. Sets of finite
patterns of tree-shifts of finite type are strictly locally testable tree languages
[29] (also called k-testable tree languages, or k-grams in the case of sequences).
For these languages, the effect of events that occured beyond a certain depth
window are ignored when processing a tree. Probabilistic k-testable models
are used for pattern classification and stochastic learning [29].

Tree-shifts are also highly interesting to study as they constitute an in-
termediate class in between one-sided shifts of infinite sequences and multidi-
mensional shifts. The conjugacy of multidimensional shifts of finite type, also
called textile systems or tiling systems (see for instance [19],[22],[15],[11]), is
undecidable. The decidability of the conjugacy of finite type shifts of bi-infinite
sequences is unknown. However, the conjugacy of finite shifts of one-sided in-
finite sequences was shown to be decidable by Williams ([30], see also [20]).
In [3], we extended Williams’s result to trees, showing that the conjugacy of
irreducible tree-shifts of finite type is decidable.

In this paper, we focus on sofic tree-shifts, which are shifts of infinite trees
accepted by finite (bottom-up) tree automata, and thus whose set of patterns
is a recognizable set of finite trees. The goal is to extend to trees some re-
sults of sofic shifts of infinite sequences, to define a hierarchy a sofic tree-shifts
and characterize each level of this hierarchy. Sofic tree-shifts have been stud-
ied in [9] and [12] using top-down tree automata accepting the tree-shifts. In
[12], topological properties of cellular automata (or block maps) on trees are
investigated.

We introduce the notion of irreducible sofic tree-shifts. We show, that,
unlike for sofic shifts of sequences, an irreducible sofic tree-shift may be ac-
cepted by several reduced deterministic irreducible tree automata. This is due
to the lack of a synchronizing block, even in reduced deterministic irreducible
automata. We introduce the notion of synchronized tree automaton and the
notion of Fischer automaton of an irreducible sofic tree-shift. We prove that
the Fischer automaton is the unique reduced synchronized deterministic tree
automaton accepting an irreducible sofic tree-shift. We also define the Krieger
automaton of a sofic tree-shift and compare it to the Fischer automaton in the
case the tree-shift is irreducible.

The existence of the Fischer automaton allows us to introduce the class of
almost of finite type tree-shifts, which extends the known notion of almost of
finite type shifts of sequences. Almost of finite type tree-shifts are sofic shifts
accepted by a tree automaton which is both deterministic and co-deterministic
with a finite delay. The almost of finite type concept was introduced by Marcus
in [21] for coding purposes. The class of almost of finite type shifts is a mean-
ingful class of shifts between irreducible shifts of finite type and irreducible
sofic shifts (see [8], [31], [16], [6], [4]). The class is stable by conjugacy and
it is also invariant by flow equivalence [13]. Almost of finite type shifts enjoy
various properties which are no shared by all sofic shifts. It is the one big,
natural class of nice sofic shifts.

We characterize the Fischer automaton of an almost of finite type tree-
shift and design an algorithm to check whether a sofic tree-shift is almost of

Sofic tree-shifts 3

finite type. We prove that the Fischer automaton is a topological conjugacy
invariant of the underlying irreducible sofic tree-shift. This extends a similar
result from Krieger in [18] (see also [8]) in the framework of sequences.

The paper is organized as follows. In Section 2.1 and Section 2.2, we give
basic definitions about tree-shifts and conjugacies between tree-shifts. In Sec-
tion 3, we define the notion of a tree automaton accepting a tree-shift. We
refer to [10], [27], and [24] for more general trees and automata on finite and
infinite trees. We define irreducible tree-shifts and irreducible tree automata
in Section 3.3, synchronized tree automata in Section 3.4. The notions of Fis-
cher and Krieger automata are introduced in Section 3.5. Almost of finite type
tree-shifts are defined and characterized in Section 4. In the algorithmic issue,
Section 6, we give a construction of the Fischer automaton of an irreducible
sofic tree-shift. We design a polynomial-time algorithm to check whether an
irreducible sofic tree-shift given by its Fischer automaton is almost of finite
type. A short version of this paper was presented in [2].

2 Definitions

2.1 Tree-shifts

We first recall some basic definitions of symbolic dynamics on infinite trees.
We consider infinite trees whose nodes have a fixed number of children and
are labelled in a finite alphabet. We restrict us to binary trees, but all results
extend to the case of trees with d children for a fixed positive integer d, thus
including the case of one-sided sequences.

Let Σ = {0, 1} and Σ∗ be the set of words over Σ. An infinite tree t over
a finite alphabet A is a total function from Σ∗ to A. A node of an infinite tree
is a word of Σ∗. The empty word, that corresponds to the root of the tree, is
denoted by ǫ. If x is a node, its children are xi with i ∈ Σ. Let t be a tree and
let x be a node, we shall denote t(x) by tx. A sequence of words (xk)k≥0 of
Σ∗ is called a path if for all k, xk+1 = xkik with ik ∈ Σ.

A pattern is a function u : L→ A, where L is a finite prefix-closed subset1

of Σ∗. The set L is called the support of the pattern. A finite tree is a pattern
with a finite domain such that for each node x, x0, x1 are either both not in the
domain or both in the domain. This implies that the domain is prefix-closed.
A node of a finite tree is a word of L. A node without children is called a leaf.
A subtree of a (finite or infinite) tree t rooted at a node x of t is the tree s
defined by sy = txy for all y ∈ Σ∗ such that xy is a node of t.

If n is nonnegative integer, we denote by Σ≤n the set of words of length
at most n on Σ. A block of height n, where n is a positive integer, is a pattern
whose support is Σ≤n−1. The height of a block u is denoted by height(u).

We say that a pattern (resp. block) u of support L is a pattern of a tree t
(resp. a block of a tree t) if there is a word x ∈ Σ∗ such that txy = uy for all

1 each prefix of L belongs to L.

4 Nathalie Aubrun and Marie-Pierre Béal

node y of u. We say that u is a pattern (resp. block) of t rooted at the node
x. If u is not a pattern (resp. block) of t, one says that t avoids u.

Unless otherwise stated, a tree is an infinite tree. When Σ are A are fixed,
we denote by T the set of all infinite trees on A, hence the set AΣ∗

.
We define the shift transformations σi for i ∈ Σ from T to itself as follows.

If t is a tree, σi(t) is the tree rooted at the i-th child of t, i.e. σi(t)x = tix for
all x ∈ Σ∗. The set T equipped with the shift transformations σi is called the
full tree-shift of infinite trees over A.

If t, t′ are two trees, we define the distance d(t, t′) = 2−n, where n is the
length of the shortest word x in Σ∗ such that tx 6= t′x if such a word exists,
and d(t, t) = 0 otherwise. The definition satisfies the conditions of a distance
is similar as the one the for infinite sequences (see for instance [20, Example
6.1.10]). This distance induces a topology on T where two trees are close when
large blocks of coordinates rooted at their root agree.

We define a tree-shift X of T as the set XF of all trees avoiding any element
of a set of blocks F . The set F is called a set of forbidden blocks of X. If the set
of trees on A is equipped with topology induced by the distance d, a tree-shift
X is a closed subset of T such that σi(X) ⊆ X for all shift transformation σi.
A tree-shift of finite type (SFT) X of T is a set XF of all trees avoiding any
block of a finite set of blocks F .

We denote by L(X) the set of patterns of all trees of the tree-shift X, by
B(X) the set of all blocks of X and by Bn(X) the set of all blocks of height
n of X. The set L(X) is called the set of allowed patterns of X. If u is a
block of height n with n ≥ 2 and i ∈ Σ, we denote by σi(u) the block of
height n − 1 such that σi(u)x = bix for x ∈ Σ≤n−2. The block u is written
u = (uε, σ0(u), σ1(u)).

A set of patterns L is factorial if u ∈ L and v is a subtree of u rooted at a
node x of u (i.e. v is a sub-pattern of u) implies v ∈ L. The set L is extensible
if for any pattern u in L with support S(u), there is a pattern v ∈ L with
support S(v), such that S(u) ⊂ S(v), v coincides with u on S(u), and for any
x in S(u), x0 and x1 belong to S(v).

The language of allowed patterns of a tree-shift is factorial and extensible.
Conversely, such a language of finite trees is the set of allowed patterns of a
tree-shift as is shown in the following result which is similar as the one known
for shifts of bi-infinite words (see for instance [7]).

Proposition 1 Let L be a factorial and extensible set of finite trees. The set
X (L) of infinite trees whose patterns belong to L is a tree-shift and L(X (L)) =
L. Conversely, if X is a tree-shift, then X = X (L(X)).

Proof Let X = X (L). It is clear that X is a tree-shift and L(X) ⊆ L. We show
that L ⊆ L(X). Let u be a finite tree of L. Since L is extensible and factorial,
we can construct an infinite tree t such that u is a subtree of t rooted at the
empty node, and such that all block of t belongs to L. Then u ∈ L(X).

For the second assertion, let L = L(X). It is clear that X ⊆ X (L(X)).
Conversely, let t ∈ X (L(X)). Since all patterns of t belong to L, the block un
of height n of t rooted at ε belongs to L = L(X). Thus there is an infinite

Sofic tree-shifts 5

tree t(n) in X whose block of height n of t rooted at ε is un. The sequence
(t(n))n≥1 converges to the tree t. Since X is closed, t belongs to X.

Example 1 In Figure 1 is pictured an infinite tree of a tree-shift XFodd
on the

alphabet {a, b}, whose trees contain an even number of a between two b on any
path in the tree. Moreover, any two paths starting at a same node and ending
at nodes labelled by b have the same number of a modulus 2. Hence the tree
a(a(b, b), b) is not allowed. This tree-shift is not of finite type. The forbidden
blocks are those containing an odd number of a between two b on some path in
the tree or containing two paths starting at a same node and ending at nodes
labelled by b and where the number of a modulus 2 are distinct.

b

b

a

a a

b

b b

a

a

b b

a

b a

Fig. 1 A part of an infinite tree of the tree-shift XFodd
, where Fodd is the set of patterns

containing an odd number of a between two b on some path in the tree.

2.2 Block maps and conjugacies

Let A,A′ be two finite alphabets, T (resp. T ′) the set of trees on A (resp. A′).
Let X be a tree-shift of T and m be a positive integer. A map Φ : X → T ′

is called an m-local map (or an m-block map) if there exists a function φ :
Bm(X) → A′ such that, for all x ∈ Σ∗, Φ(t)x = φ(u), where u is the block of t
of height m rooted at x. The smallest integer m− 1 such that Φ is an m-block
map, is called the memory of the block map. A block map is a map which is
an m-block map for some positive integer m.

It is known from the Curtis-Lyndon-Hedlund theorem (see [14]) that block
maps are exactly the maps Φ : X → Y which are continuous and commute
with all tree-shifts transformations, i.e. such that σi(Φ(t)) = Φ(σi(t)) for all
t ∈ X and all i ∈ Σ. Actually, the proof in [14] applies to shifts of sequences
but it extends directly to shifts of trees.

The image of X by a block map is also a tree-shift, and is called a factor
of X. A one-to-one and onto block map from a tree-shift X onto a tree-shift Y
has an inverse which is also a block map, as for shifts of sequences. It is called
a conjugacy from X onto Y . The tree-shifts X and Y are then conjugate. We
call sofic a tree-shift which is a factor of a tree-shift of finite type.

Let X be a tree-shift and m a positive integer. We denote by X(m) the
higher block presentation of X. It is a tree-shift on the alphabet Bm(X). For
each tree t in X(m), there is tree t′ in X such that, for each node x, tx is the

6 Nathalie Aubrun and Marie-Pierre Béal

block of height m of t′ rooted at x. The tree-shifts X and X(m) are conjugate
(see [3]).

3 Sofic tree-shifts

3.1 Tree automata

In this section we consider bottom-up tree automata accepting finite or infinite
trees. Such a tree automaton starts its computation from the leaves, or from
the infinite branches, and moves upward. A tree automaton is here a structure
A = (V,A,∆) where V is a finite set of states, A is a finite set of input symbols,

and ∆ ⊂ V × V × A × V is a set of transitions of the form (p, q)
a
−→ r, with

p, q, r ∈ V , a ∈ A. A transition (p, q)
a
−→ r is called a transition labelled by a,

going out of the pair of states (p, q) and coming in the state q. A transition

(p, q)
a
−→ r will be pictured by

a : r

p q

Note that no initial nor final state is specified. This means that all states are
both initial and final.

Such a tree automaton is deterministic if for each pair of states (p, q) and

for each a ∈ A, there is at most one transition (p, q)
a
−→ q. Then the set of

transitions defines a partial function δ from V 2 ×A to V .
A (bottom-up) computation of A on the infinite tree t is an infinite tree c

labelled in V such that, for each node x of t, there is a transition (cx0, cx1) →
txcx ∈ ∆. A tree t is accepted by A if there exists a computation of A on t.

Given a tree automaton A, it is always possible to transform it into a
deterministic tree automaton which accepts the same set of trees (this process
is called a determinization, see for instance [10] for details). In the sequel, we
assume that all states of a tree automaton are accessible, i.e. each state is the
root of some computation of the tree automaton.

In this paper, a finite tree is complete binary (i.e. all node has zero or
two children). A (bottom-up) finite computation of A on a finite tree t is a
finite complete binary tree c on V such that, for each node x of t, there is a

transition (cx0, cx1)
tx−→ cx ∈ ∆.

The set of infinite trees accepted by A is a tree-shift. Indeed, since all states
of A are accessible, the language L of patterns accepted by A is the factorial
and extensible. Then X is the tree-shift X (L).

A tree automaton is called a transition tree automaton if all transitions
have distinct labels. A transition tree-shift is a tree-shift (of finite type) which
is accepted by a transition tree automaton.

Let A = (V,A,∆) be a tree automaton. The set of trees t labelled on the

alphabet ∆ such that tx = (cx0, cx1)
t′
x−→ cx for some computation c of A on

Sofic tree-shifts 7

a tree t′ is called the transition tree-shift XA of A. Let SA be the tree-shift
accepted by A. There is a one-block map ΦA : XA → SA assigning to each
transition e = (cx0, cx1)

a
−→ cx its label a. The transition tree-shift XA is a

tree-shift of finite type. It is accepted by the tree automaton B = (V,∆,∆′)

whose transitions are (p, q)
(p,q,a,r)
−−−−−→ r for (p, q)

a
−→ r ∈ ∆. It is defined by

the finite set of forbidden blocks (e, f, g) of height 2, where e = (p, q, a, r),
f = (p1, q1, a1, r1), g = (p2, q2, a2, r2), and either r1 6= p or r2 6= q.

Example 2 We define a tree automaton A with two states q0, q1 which accepts
the tree-shift X = XFodd

of Example 1. The two states q0 and q1 control the
parity of the number of a encountered from any last b below. The transitions
of the tree automaton A are

a : q0

q1 q1

a : q1

q0 q0

b : q0

q0 q0

The proof of the following proposition is similar to the one for shifts of
infinite or bi-infinite sequences (see [20], [17]).

Proposition 2 A tree-shift is sofic if and only if it is accepted by a tree au-
tomaton.

Proof Let S be a sofic tree-shift. By definition, it is the image of a tree-shift
of finite type X by an m-block map Φ. Without loss of generality, by changing
X into its conjugate X(m), we can assume that Φ is a one-block map (i.e.
m = 1). Then the function φ associated to Φ extends to patterns. Since X
is of finite type, there is a positive integer n such that X = XF where F is
a subset of the set of blocks of height n. The tree-shift X is accepted by the
tree automaton A = (V, V,∆) where V is the set of blocks of height n− 1 and

(p, q)
r
−→ r ∈ ∆ if and only if (rε, p, q) /∈ F . The tree-shift S is thus accepted

by the tree automaton B = (V,A,∆′) where (p, q)
φ(r)
−−−→ r ∈ ∆′ if and only if

(p, q)
r
−→ r ∈ ∆.

Conversely, if S is a set of infinite trees accepted by a tree automaton B,
then there is a one block map ΦB from the transition tree-shift XB to S. Since
the transition tree-shift is of finite type, S is a sofic tree-shift.

3.2 Symbolic conjugacy

We define the notion of symbolic conjugacy for tree automata which extends
the notion of symbolic conjugacy of automata on sequences (see [5]). Let A
and B be two tree automata accepting the sofic tree-shifts SA and SB and
whose transition tree-shifts are XA and XB. Let ΦA : XA → SA (resp. ΦB :
XB → SB) be the one-block map assigning to each transition its label. We say

8 Nathalie Aubrun and Marie-Pierre Béal

that A and B are symbolic conjugate if there exists conjugacies Φ : XA → XB

and Ψ : SA → SB such that the following diagram commutes.

XA
Φ

−−−−→ XB

ΦA

y

y

ΦB

SA
Ψ

−−−−→ SB

This notion will be used in Section 5 to provide a conjugacy invariant of tree-
shifts.

3.3 Irreducible tree-shifts

In this section, we define a notion of irreducibility which is suitable for tree-
shifts. As it will appear below, this definition is very strong. We neverthe-
less think that it is the good one since it allows one to entend the theory of
irreducible sofic shifts of sequences naturally to irreducible sofic tree-shifts.
Moreover the class of irreducible sofic tree-shifts is very large.

A finite complete prefix code of Σ∗ is a prefix set 2 P of finite words in Σ∗

such that any word of Σ∗ which is longer than the words of P has a prefix in
P .

A tree-shiftX is irreducible if for each pair of blocks u, v with u, v ∈ Bn(X),
there is a tree t in X and a finite complete prefix code P ⊂ Σ≥n, such that u
is a subtree of t rooted at ε, and v is a subtree of t rooted at x for all x ∈ P .

q

q

q q

p

Fig. 2 (left) An irreducible tree-shift. Let t denote the tree pictured. If u denotes the black
block and v the white one, u is a subtree of t rooted at ε, and v is a subtree of t rooted at
each x ∈ P , where P is the complete prefix code {00, 01, 10, 110, 111}. (right) An hyperpath
from q to p in a tree automaton.

A tree automaton is irreducible if for each pair of states p, q, there is a
finite complete prefix code P ⊂ Σ∗ and a finite computation c of the tree
automaton on a pattern u such that cε = p and cx = q for each x ∈ P . We
say in this case that there is an hyperpath from q to p labelled by u. For two
states p, q of a tree automaton, we say that p is accessible from q if there is a
hyperpath from q to p.

2 i.e. no word is prefix of another one.

Sofic tree-shifts 9

Proposition 3 An irreducible tree automaton accepts an irreducible sofic tree-
shift. Conversely, for any irreducible sofic tree-shift, there is an irreducible tree
automaton accepting it.

Proof The forward implication is easy. The converse will be proved later by
using the notion of Fischer automaton.

Proposition 4 Let S and T be two conjugate tree-shifts. Then S is irreducible
if and only if T is irreducible.

Proof The proof is straightforward.

3.4 Synchronizing blocks

We define below the notion of synchronizing pattern 3 or block of a determin-
istic tree automaton.

Let A = (V,A,∆) be a deterministic tree automaton accepting a sofic tree-
shift X, and u be a pattern (resp. block). We say that u is a synchronizing
pattern (resp. block) of A if the set of computations of A on u is nonempty
and all computations of A on u end in the same state q ∈ Q. We say that
the pattern u focuses to the state q. A tree t such that all computations of
A on t are rooted with the same state q ∈ Q is a synchronizing tree of A.
A deterministic tree automaton which has a synchronizing pattern is called
synchronized.

Note that if u is a synchronizing pattern, then any pattern v such that u
is a subtree of v rooted at ε is also synchronizing.

3.5 Minimal deterministic tree automata

Let X be a tree-shift. A context ℓ is a pattern where one leaf is replaced by
a hole. If u is a pattern, ℓu is the pattern obtained by substituting u in place
of the hole of ℓ. If ℓu ∈ L(X), we say that ℓ is a context of u in X. Given a
block u, we denote by contX(u) the set of all the contexts of u in X.

Given a tree automaton A = (V,A,∆) accepting a sofic tree-shift X, the
context of a state q ∈ V in A is the set of contexts ℓ, with a hole at the node
x, on which there exists a finite computation c of A with cx = q. We denote
this set by contA(q). Note that the context of a pattern u of X is the union of
the contexts of the states p such that there is a computation of A on u rooted
by p. As a consequence, a sofic tree-shift has only a finite number of of sets
contX(u).

Let A = (V,A,∆) be a tree automaton. The tree automaton A is said to
be reduced if p 6= q implies contA(p) 6= contA(q) for all states p, q in V .

3 also called a homing pattern or a magic pattern.

10 Nathalie Aubrun and Marie-Pierre Béal

Let A = (V,A,∆) and B = (V ′, A,∆′) be two deterministic automata. A
reduction from A onto B is a map h from V onto V ′ such that, for any letter
a ∈ A, one has (p, q)

a
−→ r ∈ ∆ if and only if (h(p), h(q))

a
−→ r ∈ ∆′.

In the framework of shifts of bi-infinite words, irreducible sofic shifts have
a unique reduced deterministic tree automaton (i.e. all reduced deterministic
automata accepting the shift are equal up to a renaming of the states), see
[20]. The situation is quite different for trees since, as shown below in Exam-
ple 3, irreducible sofic tree-shifts may have several reduced deterministic tree
automata. Indeed, contrary to the situation that we have for shifts of infinite
or bi-infinite sequences, an irreducible reduced deterministic tree automaton
may not have a synchronizing block.

Proposition 5 There are reduced irreducible deterministic tree automata which
are not synchronized.

Example 3 Let X be the full tree-shift on the alphabet A = {a, b}. It is ac-
cepted by a trivial one-state tree automaton with two transitions labelled by
a and b. As is shown below, it is also accepted by the deterministic tree au-
tomaton A = (V,A, δ) described by the following transitions and which is
reduced.

a : p1

p0 p0

a : q

q q

b : p1

p0 p0

b : p1

p1 p1

b : q

p1 q

a : q

p1 p1

a : p1

p1 q

a : q

q p1

a : p0

q q

This tree automaton is irreducible. Indeed there is an hyperpath

p0 p1 q p0

where p q denotes a hyperpath from p to q. It is reduced since any two
states have distinct contexts. Indeed, the state q has not the same context as
p0, p1 since the pattern whose root is b with a left hole is a context of p0, p1
only. Furthermore the following pattern whose hole is represented with a black
dot

b

b

is a context of p0 only. Hence all states have distinct contexts.
Nevertheless, this tree automaton is not synchronized. Indeed, let us denote

by P(V) the set of subsets of V . Let D(A) be the accessible part from V
of the deterministic tree automaton (P(V), A,∆′), where, if P,Q ∈ P(V),

(P,Q)
a
−→ R is in ∆′ if the set R of states r such that (p, q)

a
−→ r ∈ ∆ for

some p ∈ P and q ∈ Q, is nonempty. The tree automaton D(A) contains two

Sofic tree-shifts 11

states V = {p0, p1, q} and {p1, q} and hence no singleton state. For any pair
of states (P,Q) of D(A), there is a transition labelled by a going out of (P,Q)
and there is a transition labelled by b going out of (P,Q). This proves that X
is the full tree shift.

One can overcome this difficulty with the notion of Fischer automaton for
irreducible tree-shifts.

Let X be a sofic tree-shift. The context tree automaton of X is the de-
terministic tree automaton C = (V,A,∆), where V is the set of nonempty
contexts of blocks of X. Since X is sofic, V is finite. The transitions of C are
(contX(u), contX(v))

a
−→ contX(a, u, v), where u, v ∈ B(X) and contX(a, u, v)

is nonempty (i.e. (a, u, v) ∈ B(X)).
Note that the definition of the transitions is consistent. For any block u

of X, there is a finite computation of C on u rooted by a state of contX(u).
Indeed, let c be the finite tree which has the same support as u and is defined
by cx = contX(sub(u, x)), where sub(u, x) is the subblock of u rooted at x.
The tree c is a finite computation of C on u since

(contX(sub(u, x0)), contX(sub(u, x1)))
ux−−→ contX(sub(u, x))

is a transition of C. Furthermore, note that if S set of states ending computa-
tions of C on u, then contX(u) = ∪contX(v)∈S contX(v).

The context tree automaton is the minimal (uncomplete) deterministic tree
automaton of the finite tree language of patterns of X. It can be computed by
applying the Myhill-Nerode minimization algorithm to any deterministic tree
automaton accepting the language (see [10, Section 1.5]).

As is shown below, this tree automaton also accepts all infinite trees of
X although it may contain states which are not reachable by any infinite
computation.

Lemma 1 Let X be a tree-shift and A be a tree automaton accepting all blocks
of X. Then A accepts X.

Proof Let t be a tree of X. We denote by un the subblock of t of height n
rooted at ε. Since un is accepted by A, there is a finite computation cn of A
of X on un. Since the number of states of A is finite, by taking an infinite
subsequence of (cn)n≥1, we may assume that all computations share the same
root. For any k ≥ 1, by taking again a subsequence, we may assume that the
root of all computations is a subblock vk of height k. We define an infinite
computation c such that the subblock of c of height k at the root is vk. Then
c is a computation of A on t. Hence t is accepted by A.

Proposition 6 The context tree automaton of a tree-shift X accepts X.

Proof Since any block in B(X) is accepted by the context tree automaton of
X, any infinite tree is also accepted by Lemma 1. Conversely, if there is a
computation of the context tree automaton of X on a tree t, any block of t
belongs to B(X). Thus t is in X.

12 Nathalie Aubrun and Marie-Pierre Béal

Proposition 7 The context tree automaton of a sofic tree-shift is synchro-
nized.

Proof Let C be the context tree automaton of a sofic tree-shift X. There is a
finite computation c1 in C on some block u1 whose root belongs to contX(u1).
Let us assume that u1 is not a synchronizing block of C. Hence there is an-
other computation c2 of C on u1 whose root belongs to contX(u2) for some
block u2 such that contX(u2) 6= contX(u1). We get contX(u2) (contX(u1)
since contX(u2) 6= contX(u1). If u2 is not a synchronizing block of C, there is
another computation c2 of C on u2 whose root belongs to contX(u3). We get
contX(u3) (contX(u2). By iterating this process, we either get a synchroniz-
ing block for C or an infinite strictly decreasing sequence of contexts. Hence,
since the number of contexts is finite, there is a synchronizing block.

We say that a tree automaton A′ = (V,A′, ∆′) is a subautomaton of a tree
automaton A = (V,A,∆) if V ′ ⊆ V and ∆′ = ∆ ∩ (V ′ × V ′ × A × V ′). A
subautomaton A′ is minimal if any transition of A going out of states of A′

ends in A′. A minimal irreducible component of a tree automaton is a minimal
subautomaton which is irreducible.

Proposition 8 Let X be an irreducible sofic tree-shift and C its context au-
tomaton. Let z be a synchronizing block of C and F be the tree automaton
obtained from F by keeping only the states accessible from contC(z). The tree
automaton F is the unique minimal irreducible component of C.

Proof We assume that the synchronizing block z is of height n. Let q =
contC(z). Let us show that F is a minimal irreducible subautomaton. We
first prove that there is a hyperpath from any state of C to q. Let p = contC(u)
be a state of C. Since X is irreducible, there is a pattern w of X and a finite
complete prefix code P ⊂ Σ≥n, such that z is a subtree of w rooted at ε, and
u is a subtree of w rooted at x for all x ∈ P . Let c be a computation of C on
w. We have cε = q, and for all x ∈ P , cx = p. Hence there is an hyperpath
from p to q. This implies that F is a minimal irreducible subautomaton of C.

Let G be another minimal irreducible subautomaton of C. Since there is an
hyperpath from any state of G to any state of F and F ,G are both minimal,
then G = F .

We define the Fischer automaton4 of an irreducible sofic tree-shift X as
the unique minimal irreducible component of its context tree automaton.

Note that each state in this tree automaton is the context of some synchro-
nizing block of the context tree automaton. Furthermore, any computation of
C on a synchronizing block of C ends in the Fischer automaton.

The Fischer automaton is irreducible and synchronized. It is also reduced
since each of its state is some contX(u) for some pattern of X.

4 also called the Shannon automaton of the tree-shift. It corresponds to the right Fischer
automaton of a sofic shift of sequences.

Sofic tree-shifts 13

Proposition 9 The Fischer automaton of an irreducible tree-shift X accepts
X.

Proof Since the Fischer automaton F of X is a subautomaton of the context
tree automaton, any tree accepted by F is in X. Conversely, let t be a tree
of X. We show that any block u of t of height n is accepted by F . Let z be
a synchronizing block of C. Since X is irreducible, there is a pattern w of X
and a finite complete prefix code P ⊂ Σ≥n, such that u is a subtree of w
rooted at ε, and z is a subtree of w rooted at x for all x ∈ P . It follows that
there is computation of C on w. Since any computation of C on a synchronizing
block ends in F , and since F is a minimal subautomaton of C, we obtain a
computation of F on u. Thus u is accepted by F . By Lemma 1, all trees of X
are accepted by F .

We now prove that the Fischer automaton is the unique reduced deter-
ministic irreducible and synchronized tree automaton accepting an irreducible
sofic tree-shift.

Proposition 10 Two reduced deterministic irreducible and synchronized tree
automata accepting the same irreducible sofic tree-shift are equal up to a re-
naming of the states.

Proof Let F = (V,A,∆) and F ′ = (V ′, A,∆′) be two reduced deterministic
irreducible synchronized automata accepting a same sofic tree-shift X. Let
u ∈ Bm(X) (resp. v ∈ Bm(X)) be a synchronizing block of F (resp. F ′). We
assume that u focuses to the state p in F . Since X is irreducible, there is a
pattern z of X and a finite complete prefix code P ⊂ Σ≥m, such that u is a
subtree of z rooted at ε, and that v is a subtree of z rooted at x for all x ∈ P .
Since F and F ′ are deterministic, the pattern z is a synchronizing block for
both F and F ′. Each computation of F on z focuses to the state p while each
computation of F ′ on z focuses to some state p′ in V ′.

We define a bijection ϕ : V → V ′ as follows. Let q be a state of F . Since F
is irreducible, there is an hyperpath from p to q labelled by w. For all positions
x of the support of w such that xi with i ∈ {0, 1} is not in this support, we
add the pattern z to w at the position xi. We denote by w′ the new pattern
obtained. Since F is deterministic and z synchronizing for F , the root of any
finite computation of F on w′ belongs to q. Hence the context of q in F is the
context of w′ in X. Moreover, the root of any finite computation of F ′ on w′

is a same state q′ and the context of q′ in F ′ is the context of w′ in X.
Since F (resp. F ′) is reduced, two states having the same context in F

(resp. F ′) are equal. Hence if q = contX(w′), r = contX(v), and (q, r)
a
−→ s

is a transition of ∆, we have s = contX(a,w, v). We define ϕ(q) = q′. One
can check that ϕ defines an isomorphism between F and F ′ in the sense that
(q, r)

a
−→ s is a transition of ∆ if and only if (ϕ(q), ϕ(r))

a
−→ ϕ(s) is a transition

of ∆′.

Hence two reduced deterministic irreducible and synchronized tree au-
tomata accepting a same tree-shift are equal to the Fischer automaton of
this tree-shift.

14 Nathalie Aubrun and Marie-Pierre Béal

If t ∈ T and ℓ a context. Let ℓt denotes the pattern obtained where the
hole is replaced by the infinite tree t. If ℓt is an (infinite) pattern of an infinite
tree of X, we say that ℓ is a context of t in X. Given a tree t in T , we denote by
contX(t) the set of all the contexts of t in X. The Krieger automaton of a tree-
shift X is the tree automaton whose states are the nonempty sets of the form
contX(t), and whose transitions are (contX(t), contX(t′))

a
−→ contX(a, t, t′)),

where t, t′ ∈ T and contX(a, t, t′) is nonempty. Note the consitency of the
definition of the transitions. Hence the states of the Krieger automaton are
contexts of infinite trees while the states of the context automaton are contexts
of finite trees.

Proposition 11 The Krieger automaton of a sofic tree-shift X accepts X.

Proof It is clear that a tree of X is accepted by the Krieger automaton of X.
Conversely, if there is a computation the Krieger automaton of X on a tree t,
any block of t belongs to B(X). Thus t is in X.

Proposition 12 The Krieger automaton of a sofic tree-shift X is, up to an
isomorphism, a subautomaton of the context tree automaton of X. It is reduced
and synchronized. If X is irreducible, the Krieger automaton of X has a unique
minimal irreducible subautomaton which is the Fischer automaton of X.

Proof Let K = (V,A,∆) be the Krieger automaton of a sofic tree-shift X and
C = (V ′, A,∆′) its context tree automaton. Let t be an infinite tree and un its
subblock of height n rooted at ε. We have contX(ui+1) ⊆ contX(ui) for any
i ≥ 0. Since the number of sets contX(v), where v is a pattern of X is finite,
there exists a nonnegative integer n such that contX(un+i) = contX(un) for
all nonnegative integers i. Let us define s(t) = contX(un).

We show that the map contX(t) 7→ s(t) is well defined and one to one.
We have s(t) = contX(t). Indeed, clearly contX(t) ⊆ s(t). Conversely, let
ℓ ∈ s(t) with a marked leaf x. There is a nonnegative integer n such that
ℓui ∈ L(X) for all i ≥ n. Let si be an infinite tree such that ℓui is a subtree
of si rooted at ε, for all i ≥ n. By compacity of X, there is a subsequence of
(si)i≥n which converges to an infinite tree s of X. Then the infinite pattern
ℓt is a pattern of s, and thus ℓ ∈ contX(t). As a consequence, if t, t′ are two
infinite trees, then contX(t) = contX(t′) if and only if s(t) = s(t′). Let now

δ = ((s(t), s(t′)
a
−→ contX(a, s(t), s(t′)) be a transition of C starting from states

of K. We have contX(a, s(t), s(t′)) = s(a, t, t′) and thus δ is a transition of K.
Thus K is a minimal subautomaton of C.

We next show that K is reduced. If p is a state equal to contX(t) for some
tree t ∈ T , then contK(p) = contX(t). As a consequence, K is reduced.

We now show that K is synchronized. By Proposition 7, the context tree
automaton is synchronized. Hence, by definition, there is a block u of X which
is synchronizing for C. Let t be an infinite tree such that u is a subtree of t
rooted at ε. Since u is a synchronizing block of C, we have contX(u) = contX(t).
Thus K is synchronized.

Let us now assume thatX is irreducible. The Krieger automaton contains a
state contX(t) = contX(u), where u is a synchronizing block of C, belonging to

Sofic tree-shifts 15

the Fischer automaton F of X. Since K and F are are minimal subautomaton
of C and F is irreducible, F is a minimal subautomaton of K. Since F is
the unique minimal irreducible component of C, it is also the unique minimal
irreducible component of K.

We have considered two automata associated with a sofic tree-shift, the
context-tree automaton and the Krieger automaton. If the tree-shift is irre-
ducible, we also defined the Fischer automaton which is a subautomaton of
the Krierger. Note that the Krieger automaton is not simply the subautoma-
ton of the context automaton in which all states that cannot appear in an
infinite run are deleted. Indeed, this situation may appear already for shifts
of infinite sequences which are tree-shifts with arity 1 (see [5]). The context
tree automaton provides a natural way for computing the Fischer automaton
of an irreducible sofic tree-shift.

3.6 Tree-shifts of finite type

Tree-shifts of finite type are accepted by tree automata having very strong
synchronization properties.

Letm be a nonnegative integer. A deterministic m-local tree automaton (or
an m-definite tree automaton) is a deterministic tree automaton A = (V,A, δ)
such that whenever there are two finite computations c, c′ of A on a same
block of height m, then cε = c′ε (the computations share the same root). A
tree automaton is local (or definite) if it ism-local for some nonnegative integer
m (and m stands for memory). For instance a transition tree-shift is accepted
by a 1-local automaton.

The following proposition was shown in [3].

Proposition 13 A deterministic local tree automaton accepts a tree-shift of
finite type. Conversely, a tree-shift of finite type is accepted by a deterministic
tree local automaton.

4 Almost of finite type tree-shifts

The following notion of almost of finite type tree-shift extends to trees the
notion of almost of finite type shift of bi-infinite sequences. Almost of finite
tree-shifts are irreducible and accepted by tree automata which are determin-
istic and codeterministic with a finite delay. The class is between the class of of
irreducible tree-shifts of finite type and the classe of irreducible sofic tree-shifts
and both inclusions are strict. As shown below, almost of finite type tree-shifts
are also factors of irreducible tre-shifts of finite type by a biclosing map.

Let X,Y be two tree-shifts. A block map Φ : X → Y is left closing if
there are non negative integers m, a (m for memory and a for anticipation)
such that, whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi with
0 ≤ i ≤ (a+m), and sx = tx for all x ∈ Σi with 0 ≤ i ≤ m− 1, then sx = tx

16 Nathalie Aubrun and Marie-Pierre Béal

for all x ∈ Σm. Note that the trees have to be pictured horizontally with their
root on the right side to see the left closing property.

1

a

ma

1

mφ φ

Fig. 3 (left) The notion of left closing map. (right) The notion of right closing map.

A tree automaton A = (V,A,∆) is left closing if any two computations of
A on a same tree and with the same root, are equal. Equivalently, there is a
nonnegative integer a such any two finite computations c, c′ of A on a same
block u ∈ Ba(X) such that cε = c′ε satisfy cx = c′x for all x ∈ {0, 1}.

A block map Φ : X → Y is right closing if there are non negative integers
m, a such that, whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi with
0 ≤ i ≤ (a +m), and sx = tx for all x ∈ Σi with a + 2 ≤ i ≤ (a +m), then
sx = tx for all x ∈ Σa+1. The map Φ is right resolving if it is a one-block map
and if one can choose m = 1 and a = 0.

We now introduce the notion of resolving block (see [21]). Let Φ be a 1-
block map from X to Y . A resolving block of Φ is a block z of Y of height h
such that if φ(u) = φ(v) = z where u and v are two blocks of X of height h
and φ is the block function of Φ extended to the blocks, then uε = vε.

A sofic tree-shift is almost of finite type (AFT) if it is the image of an
irreducible tree-shift of finite type via a one-block map which is right resolving,
left closing, and has a resolving block.

The tree-shift of Example 1 is an almost of finite type tree-shift. The tree-
shift of trees such that any path of the tree is a path of the automaton of
Figure 4.

1 2

b

c

a

a

b

Fig. 4 A finite automaton defining the constraint of a tree-shift which is not almost of finite
type.

Proposition 14 Let S and T be two conjugate irreducible sofic tree-shifts.
Then S is AFT if and only if T is AFT.

Proof We assume that S is AFT. Let Θ be a one-block map from an irreducible
tree-shift of finite type X onto a sofic tree-shift S, which is right resolving, left

Sofic tree-shifts 17

closing, and has a resolving block. Since X is irreducible, a tree of X can be
extended up and one may assume that Θ is left closing with memory m = 1
and anticipation a. Let Φ be a conjugacy from S to T . We can assume that
Φ is an m block map with an n-block inverse. Let X(n+m) (resp. S(n+m)) be
the higher block presentation of X (resp. S) of order n+m, and τ (resp. τ ′)
be the natural conjugacy from X to X(n+m) (resp. from S to S(n+m)). The
tree-shift X(n+m) is an irreducible tree-shift of finite type. The one-block map
Θ extends in a natural way to a one-block map Θ′ from X(n+m) to S(n+m). Let
Θ′ = Θ ◦ τ ′(−1) and Ψ = Θ′ ◦Φ′. One can check that the map Ψ ′ is a one-block
map which is right resolving. One can check that it is left closing with memory
1 and anticipation a+m+ 2n, and that it has a resolving block. Indeed, if u
is a resolving block of Θ of height h which is the top of a tree t of S, then one
can choose, as a resolving block of Ψ , a block of height max(h, n+m) + a+ n
at the top of the tree t′ = Φ(t). Thus the tree-shift T is AFT.

X X(n+m)

S S(n+m) T

τ

τ ′ Θ′

Ψ
Φ Φ′ Ψ

We say that a tree automaton is an almost of finite type tree automaton
(AFT tree automaton) if it is irreducible, deterministic, left closing and syn-
chronized.

Proposition 15 A tree-shift is AFT if and only if it is accepted by an AFT
tree automaton.

Proof Let S be an AFT tree-shift on the alphabet A. Let Φ : X → S be a
one-block map from an irreducible tree-shift of finite type X onto S which is
right resolving, left closing and has a resolving block.

Since X is irreducible, a tree of X can be extended up (i.e. is a child of
another one) in X. Thus, without loss of generality, we may assume that Φ is
left closing with parameters m = 1 and a.

Let X = XF where F is a set of forbidden blocks of height n for X. Let
A = (V = Bn−1(X), E,∆) where ∆ contains the transitions (u, v, e, (e, u′, v′),
with u, v ∈ Bn−1(X), (e, u, v) ∈ Bn(X), and (e, u′, v′) is the block of height
n−1 at the top of (e, u, v). The tree automaton A is deterministic and accepts
X. Let B = (V,A,∆′) where (u, v, φ(e), w) ∈ ∆′ if and only if (u, v, e, w) ∈ ∆.
The tree automaton B accepts S. Since A is irreducible, B also.

Since Φ is a one-block right resolving map, B is a deterministic tree au-
tomaton. Indeed, if u, v, φ(e) are known, there is at most one symbol e such
that φ(e, uε, vε) = (φ(e), φ(uε), φ(vε)) and thus at most one block (e, u′, v′)
whose image by φ is (φ(e), φ(u′), φ(v′)).

Let us now show that B is left closing. If B were not left closing, there
would be two distinct computations c, c′ of B on a same tree t having the

18 Nathalie Aubrun and Marie-Pierre Béal

same root u. These computations define two distinct trees s, s′ of X such that
sε = s′ε = uε and such that Φ(s) = Φ(s′) = t. Since Φ is left closing with
parameters m = 1, we get s = s′ and thus c = c′.

If Φ has a resolving block z of height h and is left closing with parameters
m = 1 and a, we define a block z′ of S of height h+ a extending z. If φ(w) =
φ(w′) = z′, where w,w′ are blocks of X of height h + a, then wx = w′

x for
x ∈ Σ≤(h−1). Thus z′ is a synchronizing block of B.

Conversely, if S is accepted by an AFT tree automaton A = (V,A,∆), let
XA be the irreducible transition tree-shift of A accepted by T = (V,∆,∆′),

whose transitions are (p, q)
(p,q,a,r)
−−−−−→ r for (p, q, a, r) ∈ ∆. Let ΦA be the one-

block map from XA onto S defined by φ(p, q, a, r) = a. This map is right
resolving since A is deterministic. It is left closing since A is left closing. It
has a resolving block since A is synchronized. As a consequence, S is an AFT.

Corollary 1 An irreducible sofic tree-shift is AFT if and only if its Fischer
automaton is AFT.

Proof Let S be an irreducible sofic tree-shift. By Proposition 9, any irreducible
sofic tree-shift is accepted by an irreducible deterministic synchronized tree
automaton F equal to the Fischer automaton of S.

Let us assume that S is accepted by an AFT tree automaton A. Since
A and F are irreducible and synchronized, there is a same block z which
is synchronizing for both. Morover, the context of each state in each tree
automaton is the context of some block tree in S.

Since A and F are irreducible and deterministic, it follows that for each
state p of A, there is a state f(p) in F which has the same context. Moreover

if (p, q)
a
−→ r is a transition of A then (f(p), f(q))

a
−→ f(r) is a transition of F .

If (p′, q′)
a
−→ r′ is a transition of F , there is a transition (p, q)

a
−→ r of A such

that p′ = f(p), q′ = f(q) and r′ = f(r).
Let us show that F is left closing. Let c, c′ be two computations of F on t

with a same root p. Since F is irreducible, there is an hyperpath from p to q
labelled by some pattern w such that z is a subtree of w rooted at ε. Let P be
the complete prefix code defining this hyperpath. Thus there are two distinct
computations d, d′ of F on a tree s such that, for any node x in P , the tree
rooted at x in s is t, dx = p, and z is a block rooted at the root of s. Let e, e′

be two computations of A on s such that f(ex) = dx and f(e′x) = d′x for any
x ∈ Σ∗. These computations have the same root since z is synchronizing for
A. Since A is left closing, these computations are equal. As a consequence,
for any x ∈ Σ∗, f(ex) = f(e′x), implying dx = d′x and thus cy = c′y for any
y ∈ Σ∗. This proves that the Fischer automaton of an AFT is left closing.

Conversely, if F is AFT, then X is AFT by Proposition 15.

Corollary 2 Let S be an irreducible sofic tree-shift accepted by a deterministic
tree automaton. It is decidable whether S is AFT.

Proof One can compute the Fischer automaton of the sofic tree-shift and check
whether it is AFT as explained in Section 6.

Sofic tree-shifts 19

5 Conjugacy invariants

In the case of one-dimensional shifts, Krieger proved that the Fischer automa-
ton is a topological conjugacy invariant of the underlying irreducible sofic
shift [18] (see also [8]). In this section, we extend Krieger’s theorem to sofic
tree-shifts.

Lemma 2 Let A = (V,A,∆) be the Fischer automaton of the irreducible sofic
tree-shift SA with transition tree-shift XA. Let ΦA : XA → SA the one-block
map assigning to each transition its label. Let us assume that there is a block
map Θ such that the following diagram commutes.

XA
Θ

−−−−→ XA

ΦA

y

y

ΦA

SA
id

−−−−→ SA

Then Θ is the identity map.

Proof Let u be a synchronizing block of height n of SA. Let z be a block of
height n of XA such that ΦA(z) = u. Let Z be the subset of XA containing
the trees t of XA such that

– z is a subtree of t rooted at ε;
– for any node x ∈ Σ∗, there is a finite complete prefix code P ⊂ Σ≥n

depending on x such that, for anyany y ∈ P , z is a subtree of t rooted at
the position xy.

Note that Z is not a tree-subshift of XA. It is clear that ΦA is one-to-one on Z.
Indeed, the condition on the occurrences of synchronized blocks implies that
there is only one run on the trees in Z. Hence Θ is one-to-one on Z. Let us
assume that Θ is an m-block map which is not the identity map on XA. Then
there is a block v of height m such that θ(v) 6= vε. Since XA is irreducible, the
block v is a subblock of some tree in Z, which is a contradiction.

Proposition 16 Let A = (V,A,∆) (resp. B = (V ′, B,∆′)) be the Fischer
automaton of the irreducible sofic tree-shift SA (resp. SB). Let XA (resp. XB)
be the transition tree-shift of A (resp. B). If SA and SB are conjugate, then A
and B are symbolic conjugate. As a consequence XA and XB are conjugate.

Proof There is one-block and onto map ΦA : XA → SA (resp. ΦB : XB → SB).
Let Φ be a conjugacy from SA to SB. We may assume that Φ is an m-block
map and Φ−1 is an n-block map with m+n ≥ 2. Since A is deterministic, the

map ΦA is a one-block right resolving map. Let X
(m+n−1)
A (resp. S

(m+n−1)
A)

be the higher block presentation of XA (resp. SA) of order (m+n−1), and τA
(resp. µA) be the (m + n − 1)-block conjugacy from XA to X

(m+n−1)
A (resp.

from SA to S
(m+n−1)
A) assigning to each tree t the tree t′ whose nodes are

20 Nathalie Aubrun and Marie-Pierre Béal

blocks of height m + n − 1 of t. Let Φ′
A be the natural one-block map such

that Φ′
A ◦ τA = µA ◦ ΦA.

Let Φ′ = µ
(−1)
A ◦ Φ. Since Φ is an m-block map, the map Ψ = Φ′ ◦ Φ′

A is

a one-block map from X
(m+n−1)
A to SB. Since Φ

(−1) is an n-block map, Ψ is
right resolving.

Let C = (B(X
(m+n−2)
A), B,Θ) be the tree automaton on the alphabet B

whose transitions are (u, v), b → w, where (wε, u, v) ∈ B(X
(m+n−1)
A), w is the

subblock of size m+n− 2 rooted at ε of (wε, u, v), and ψ(wε, u, v)) = b. Since
Ψ is right resolving, C is a deterministic tree automaton accepting SB.

One can check that the tree automaton C is also irreducible and synchro-
nized. Thus, we consider the partitioning of the states of C into classes of
states having the same context in SB. We denote by [u] the class of the

state u. We define a one-block and onto map Γ from X
(m+n−1)
A to XB by

γ((wε, u, v) = ([u], [v])
b
−→ [w], where b = ψ(wε, u, v)). We have ΦB ◦ Γ = Ψ .

Hence the block map θ1 = Γ ◦τA is onto from XA to XB. We get the following
commutative diagram.

XA X
(m+n−1)
A XB

SA S
(m+n−1)
A SB

τA Γ

µA Φ′

ΨΦA Φ′
A ΦB

By exchanging the roles played by A and B, we also get a block map θ2 :
XB → XA such that following diagram commutes.

XA XB XA

SA SB SA

θ1 θ2

Φ′ ◦ µA = Φ Φ′−1
◦ µB = Φ−1

ΦA ΦB ΦA

By Lemma 2, θ2 ◦ θ1 is the identity map. As a consequence the maps θ1 and
θ2 are conjugacies.

Proposition 16 provides a conjugacy invariant for irreducible sofic tree-
shifts. Indeed, if two irreducible sofic tree-shifts are conjugate, the underlying
tree-shifts of finite type defined by their Fischer automata are also conjugate.
Note that it is unknonw whether two irreducible sofic tree-shifts are conjugate
since the problem is already open for one-sided sofic shifts of sequences.

6 The algorithmic issue

In this section, we design algorithms to check whether a tree automaton is
synchronized, and whether it is left closing. We also describe an algorithm to

Sofic tree-shifts 21

compute the Fischer automaton of an irreducible sofic tree-shift given by a
tree automaton that accepts it.

6.1 Computation of the Fischer automaton

Let A = (V,A,∆) be a tree automaton. We define the deterministic tree
automaton D(A), called the (uncomplete) determinized tree automaton of A,
as the accessible part from the state V of the tree automaton (P(V), A,∆′)

where, for P,Q ∈ P(V), (P,Q)
a
−→ R if the set R of states r such that (p, q)

a
−→

r ∈ ∆ for some p ∈ P , q ∈ Q is nonempty.

Proposition 17 It can be checked in polynomial time whether a tree automa-
ton is irreducible.

Proof Let A = (V,A,∆) be a tree automaton. For any state p in V , and any
positive integer n, we define the sets

P0 = {p},

Pn = Pn−1 ∪ {q ∈ V | ∃a ∈ A, r, s ∈ Pn−1 such that (r, s)
a
−→ q ∈ ∆}.

The sequence of subsets (Pn)n≥0 is increasing for the inclusion. Thus there is
an integer n0 such that Pn = Pn0

for any n ≥ n0. By construction, there is an
hyperpath from p to q if and only if q ∈ Pn0

. Thus A is irreducible if and only
if Pn0

= V for any state p. The set Pn0
is computed with at most |V | steps, the

time complexity of each step being at most the number of transitions. Hence
the global time complexity is O(|V | × |∆|).

Proposition 18 It is decidable whether a tree automaton is synchronized.

Proof The tree automaton A is synchronized if and only if D(A) contains a
singleton state. The time and space complexity for computing D(A) is expo-
nential in the number of states of A.

Proposition 19 Let A = (V,A,∆) be a tree automaton accepting an irre-
ducible sofic tree-shift S. The Fischer automaton of S is computable from A.

Proof We first compute the determinized tree automaton D(A) of A. Let R
be a state of D(A) which is minimal for the inclusion. Let u the label of a
hyperpath from V to R. Then u is a synchronizing pattern of D(A). Indeed,
any finite computation of D(A) on u has its root in R by minimality of R. We
now keep in D(A) only the states accessible from the state R and get an irre-
ducible and synchronized tree automaton accepting S. Its minimization gives
the Fischer automaton of S by Proposition 9. It is computed in polynomial
time in the size of D(A) (see for instance [10]).

We now describe algorithms to check whether an irreducible deterministic
tree automaton is left closing.

22 Nathalie Aubrun and Marie-Pierre Béal

6.2 The pair graph of a tree automaton

The algorithm to check whether a tree automaton is AFT basically consists
in computing the productive states of the product tree automaton of the tree
automaton. This algorithm is known in principle and is used to check the
emptiness of tree languages (see [23] and [28]). We give below a direct algorithm
for the sake of completeness.

Given a tree automaton A = (V,A,∆), we define the square tree automaton
of A, denoted by A×A = (V ×V,A,∆′), as the deterministic tree automaton

whose transitions are ((p, p′), (q, q′))
a
−→ (r, r′) if and only if (p, q)

a
−→ r and

(p′, q′)
a
−→ r′ are transitions of A. A diagonal state of A × A is a state (p, p)

for some p ∈ V .
Square automata of finite words (see for instance [25, p. 647]) are used

to check properties of pairs of paths. This notion of square tree automaton
of a tree automaton, together with a notion a pair graph, is used to check
properties of pairs of computations. We used it in [3] to check properties of
locality. Seidl [26] used branch automata to check the degree of ambiguity of
finite tree automata.

Proposition 20 A tree automaton is not left closing if and only if there is
a computation in the square tree automaton ending in a diagonal state and
containing a non diagonal one.

Proof By definition of A×A, the existence of a computation in A×A ending
in a state (p, p) and containing a state (r, s) with r 6= s is equivalent to the
existence of two distinct computations of A on a same tree.

In order to check the above property, we build the pair graph GA =
(VG, EG) of A, where VG ⊆ (V 2 × V 2) ∪ V 2 is the set of vertices, EG ⊆
VG×{0, 1}×A×VG is the set of edges labelled by 0 or 1 and a letter from A.
For more convenience, an edge labelled by 1 is noted by a plain arrow −→ and
is called a plain edge, and an edge labelled by 0 is noted by a dashed arrow
99K and is called a dashed edge. For each pair of transitions (p, q)

a
−→ r and

(p′, q′)
a
−→ r′ of A,

((p, p′), (q, q′))
0,a
−−→ ((r, r′), (s, s′)),

((p, p′), (q, q′))
1,a
−−→ ((s, s′), (r, r′)),

((p, p′), (q, q′))
0,a
−−→ (r, r′),

((p, p′), (q, q′))
1,a
−−→ (r, r′),

are edges of GA, for each pair (s, s′).
A vertex of GA is productive if it has at least one incoming plain edge

and at least one incoming dashed edge. We keep the essential part of the pair
graph obtained by discarding vertices which are not productive together with
their incoming and outgoing edges. A vertex ((p, q), (r, s)) of GA is called non
diagonal if either p 6= q or r 6= s.

Sofic tree-shifts 23

When A is a deterministic tree automaton, we have |VG| = O(|V |4) and
|EG| = O(|V |6). The essential part of the pair graph can be computed in time
O(|VG|+ |EG|) as described in [3].

It is easy to verify that a vertex ((p, p′), (q, q′)) is a vertex of the (essential
part of the) pair graph if and only if there are two computations of A on a
tree s one ending in p, the other one in p′, and there are two computations of
A on a tree t one with a root q, the other one with the root q′.

Note also that there is an edge ((p, p′), (q, q′))
0
−→ ((r, r′), (s, s′)) in the

pair graph if and only if there is a letter a and transitions (p, q)
a
−→ r and

(p′, q′)
a
−→ r′ in A (or transitions (p, q)

a
−→ s and (p′, q′)

a
−→ s′ in A). There is an

edge ((p, p′), (q, q′))
0
−→ (r, r′) in the pair graph if and only if there is a letter a

and transitions (p, q)
a
−→ r and (p′, q′)

a
−→ r′ in A.

Proposition 21 A tree automaton is not left closing if and only its there is
in its pair graph an edge from a non diagonal vertex and ending to a vertex
(p, p).

Proof Let A be a tree automaton and GA its pair graph. Suppose that there
is a path in GA from vertex ((p, p′), (q, q′)) with p 6= p′ or q 6= q′ to a vertex
(r, r). Then there are two computations c, c′ of A on a same tree t such that
the root of c is p and the root of c′ is p′, and there are two computations d, d′

of A on a same tree s such that the root of d is q and the root of d′ is q′.
There are also transitions (p, q)

a
−→ r and (p′, q′)

a
−→ r′. This implies that there

are two distinct computations of A on a same tree whose root is r. Thus A is
not left closing.

Conversely, if A is not left closing, there are two distinct computations c, c′

of A on a same tree t sharing a same root r. Let x be a node of the tree t such
that cx 6= c′x. Then there is path in GA labelled by (x,w) going from some
vertex ((cx, c

′
x), (s, s

′)) or some vertex ((s, s′), (cx, c
′
x)) (depending on the last

letter of x) to (r, r), where w is is the label of the path of the tree t from the
root to the node x. The existene of such a path implies the existence of an
edge going from a non digonal vertex to a diagonal one. Hence the conclusion.

If A is a deterministic tree automaton, the number of vertices of GA is
at most O(|V |4) and its number of edges of GA is at most O(|V |6). The
property of Proposition 21 can be checked in a linear time in the size of GA.
As a consequence, it can be checked in polynomial time whether the Fischer
automaton of an irreducible sofic tree-shift is AFT. Note that Seidl’s check of
the finite degree of ambiguity of tree automata in [26] has a similar complexity
(the cube of the size of the transitions of the tree automaton). The pair graph
for the tree automaton A of Example 1 is given in Figure 5.

Conclusion

In this article, we have shown that sofic tree-shifts differ from one-sided sofic
shifts of infinite sequences at least concerning the following property: there

24 Nathalie Aubrun and Marie-Pierre Béal

(q0, q0)(q0, q0) (q1, q1)(q1, q1)

(q0, q1)(q0, q1) (q1, q0)(q1, q0)

a

a

a

a

b

Fig. 5 The pair graph for the tree automaton of Example 2. A thick edge represents a
plain edge and a dashed edge with the same label. Each vertex (p, q) is identified with the
vertex (p, q)(p, q). The tree-shift S accepted by A satisfies the property of Proposition 21
since there is no edge from a non diagonal vertex to diagonal one. Then A is a left closing
tree automaton and as a consequence the tree-shift S is AFT. It is not a tree-shift of finite
type since there is a loop around a non-diagonal state (see [3]).

may be more than one reduced deterministic irreducible tree automata ac-
cepting the same irreducible sofic tree-shift. The reason is that reduced tree
automata may not have a synchronizing block. For irreducible sofic tree-shifts,
the Fischer automaton remedy for this lack. There is also a natural extension
of the class of almost of finite type shifts of sequences to tree-shifts.

Acknowledgements The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions.

References

1. N. Aubrun and M.-P. Béal. Decidability of conjugacy of tree-shifts of finite type. In
ICALP ’09: Proceedings of the 36th International Colloquium on Automata, Languages
and Programming, pages 132–143, Berlin, Heidelberg, 2009. Springer-Verlag.

2. N. Aubrun and M.-P. Béal. Sofic and almost of finite type tree-shifts. In CSR, volume
6072 of Lecture Notes in Computer Science, pages 12–24. Springer, 2010.

3. N. Aubrun and M.-P. Béal. Tree-shifts of finite type. Theor. Comput. Sci., 459:16–25,
2012.

4. T. Bates, S. Eilers, and D. Pask. Reducibility of covers of AFT shifts. Israel J. Math.,
185:207–234, 2011.

5. M.-P. Béal, J. Berstel, S. Eilers, and D. Perrin. Symbolic dynamics. CoRR,
abs/1006.1265, 2010.

6. M.-P. Béal, F. Fiorenzi, and D. Perrin. A hierarchy of shift equivalent sofic shifts. Theor.
Comput. Sci., 345(2-3):190–205, 2005.

7. M.-P. Béal and D. Perrin. Symbolic dynamics and finite automata. In Handbook of
formal languages, Vol. 2, pages 463–505. Springer, Berlin, 1997.

8. M. Boyle, B. Kitchens, and B. Marcus. A note on minimal covers for sofic systems. Proc.
Amer. Math. Soc., 95(3):403–411, 1985.

9. T. Ceccherini-Silberstein, M. Coornaert, F. Fiorenzi, and Z. Sunic. Cellular automata
on regular rooted trees. In CIAA, pages 101–112, 2012.

10. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. http://www.grappa.univ-
lille3.fr/tata, 2007. release October, 12th 2007.

11. E. Coven, A. Johnson, N. Jonoska, and K. Madden. The symbolic dynamics of multi-
dimensional tiling systems. Ergodic Theory Dynam. Syst., 23(02):447–460, 2003.

12. G. Fici and F. Fiorenzi. Topological properties of cellular automata on trees. In DCM,
pages 255–266, 2012.

Sofic tree-shifts 25

13. M. Fujiwara and M. Osikawa. Sofic systems and flow equivalence. Math. Rep. Kyushu
Univ., 16(1):17–27, 1987.

14. G. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Theory
of Computing Systems, 3(4):320–375, 1969.

15. A. S. A. Johnson and K. M. Madden. The decomposition theorem for two-dimensional
shifts of finite type. Proc. Amer. Math. Soc., 127(5):1533–1543, 1999.

16. N. Jonoska and B. Marcus. Minimal presentations for irreducible sofic shifts. IEEE
Trans. Inform. Theory, 40(6):1818–1825, 1994.

17. B. P. Kitchens. Symbolic Dynamics. Universitext. Springer-Verlag, Berlin, 1998. One-
sided, two-sided and countable state Markov shifts.

18. W. Krieger. On sofic systems. I. Israel J. Math., 48(4):305–330, 1984.
19. D. Lind and K. Schmidt. Symbolic and algebraic dynamical systems. In Handbook of
Dynamical Systems, Vol. 1A, pages 765–812. North-Holland, Amsterdam, 2002.

20. D. A. Lind and B. H. Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, 1995.

21. B. H. Marcus. Sofic systems and encoding data. IEEE Trans. Inform. Theory,
31(3):366–377, 1985.

22. M. Nasu. Textile Systems for Endomorphisms and Automorphisms of the Shift. Amer-
ican Mathematical Society, 1995.

23. J. Neumann, A. Szepietowski, and I. Walukiewicz. Complexity of weak acceptance
conditions in tree automata. Inform. Process. Lett., 84(4):181–187, 2002.

24. D. Perrin and J. Pin. Infinite words. Elsevier Boston, 2004.
25. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
26. H. Seidl. On the finite degree of ambiguity of finite tree automata. In Fundamentals of
computation theory (Szeged, 1989), volume 380 of Lecture Notes in Comput. Sci., pages
395–404. Springer, New York, 1989.

27. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer
Science, Vol. B, pages 133–191. Elsevier, Amsterdam, 1990.

28. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Vol. III, pages 389–455. Springer, New York, 1997.

29. J. Verdú-Mas, R. Carrasco, and J. Calera-Rubio. Parsing with probabilistic strictly
locally testable tree languages. IEEE Trans. Pattern Anal. Mach. Intell., 27(7):1040–
1050, 2005.

30. R. F. Williams. Classification of subshifts of finite type. In Recent advances in topological
dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, Conn., pages 281–
285. Lecture Notes in Math., Vol. 318. Springer, Berlin, 1973.

31. S. Williams. Covers of non-almost-finite type sofic systems. Proc. Amer. Math. Soc.,
104(1):245–252, 1988.

