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SOFIC TREE-SHIFTS

NATHALIE AUBRUN AND MARIE-PIERRE BÉAL

Abstract. We introduce the notion of sofic tree-shifts which corre-
sponds to symbolic dynamical systems of infinite ranked trees accepted
by finite tree automata. We show that, contrary to shifts of infinite
sequences, there is no unique reduced deterministic irreducible tree au-
tomaton accepting an irreducible sofic tree-shift, but that there is a
unique synchronized one, called the Fischer automaton of the tree-shift.
We define the notion of almost of finite type tree-shift which are sofic
tree-shifts accepted by a tree automaton which is both deterministic
and co-deterministic with a finite delay. It is a meaningful interme-
diate dynamical class in between irreducible finite type tree-shifts and
irreducible sofic tree-shifts. We characterize the Fischer automaton of
an almost of finite type tree-shift and we design an algorithm to check
whether a sofic tree-shift is almost of finite type. We prove that the the
Fischer automaton is a topological conjugacy invariant of the underlying
irreducible sofic shift.

1. Introduction

In [1] we introduced the notion of tree-shifts of finite type defined as sets
of infinite ranked trees avoiding a finite number of forbidden patterns. Infi-
nite trees have a natural structure of one-sided symbolic dynamical systems
equipped with several shift transformations. The ith shift transformation
applied to a tree gives the subtree rooted at the child number i of the tree.
Tree-shifts are highly interesting to study as they constitute an intermediate
class in between one-sided shifts of infinite sequences and multidimensional
shifts.

The conjugacy of multidimensional shifts of finite type, also called textile
systems or tiling systems (see for instance [17],[20],[13],[10]), is undecidable.
The decidability of the conjugacy of finite type shifts of bi-infinite sequences
is unknown. However, the conjugacy of finite shifts of one-sided infinite
sequences is decidable ([25], see also [18]). In [1], we extended William’s
result to trees, showing that the conjugacy of irreducible tree-shifts of finite
type is decidable.

In this paper, we focus on sofic tree-shifts, which are shifts of infinite
trees accepted by finite (bottom-up) tree automata, and thus whose set of
patterns is a recognizable set of finite trees. The goal is to extend to trees
some results of sofic shifts of infinite sequences, to define a hierarchy a sofic
tree-shifts and characterize each level of this hierarchy.
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2 NATHALIE AUBRUN AND MARIE-PIERRE BÉAL

We introduce the notion of irreducible sofic tree-shifts. We show, that,
unlike for sofic shifts of sequences, an irreducible sofic tree-shift may be
accepted by several reduced deterministic irreducible tree automata. This
is due to the lack of a synchronizing block, even in reduced deterministic
irreducible automata. We introduce the notion of synchronized tree automa-
ton and the notion of Fischer automaton of an irreducible sofic tree-shift.
We prove that the Fischer automaton is the unique reduced synchronized
deterministic tree automaton accepting an irreducible sofic tree-shift. We
also define the Krieger automaton of a sofic tree-shift and compare it to the
Fischer automaton in the case the tree-shift is irreducible.

The existence of the Fischer automaton allows us to introduce the class of
almost of finite type tree-shifts, which extends the known notion of almost
of finite type shifts of sequences. Almost of finite type tree-shifts are sofic
shifts accepted by a tree automaton which is both deterministic and co-
deterministic with a finite delay. The almost of finite type concept was
introduced by Marcus in [19] for coding purposes. The class of almost of
finite type shifts is a meaningful class of shifts between irreducible shifts of
finite type and irreducible sofic shifts (see [8], [26], [14], [6], [4]). The class
contains strictly the class of irreducible shifts of finite type and is strictly
contained in the class of sofic shifts. The class is stable by conjugacy and
it is also invariant by a flow equivalence [11]. We characterize the Fischer
automaton of an almost of finite type tree-shift and design an algorithm to
check whether a sofic tree-shift is almost of finite type. We prove that the
the Fischer automaton is a topological conjugacy invariant of the underlying
irreducible sofic shift. This extends a similar result from Krieger in [16] (see
also [8]) in the framework of sequences.

The paper is organized as follows. In Section 2.1 and Section 2.2, we give
basic definitions about tree-shifts and conjugacies between tree-shifts. In
Section 3, we define the notion of a tree automaton accepting a tree-shift. We
refer to [9], [24], and [21] for more general trees and automata on finite and
infinite trees. We define irredudible tree-shifts and irreducible tree automata
in Section 3.3, synchronized tree automata in Section 3.4. The notions of
Fischer and Krieger automata are introduced in Section 3.5. Almost of
finite type tree-shifts are defined and characterized in Section 4. In the
algorithmic issue, Section 5, we give a construction of the Fischer automaton
of an irreducible sofic tree-shift. We design a polynomial-time algorithm to
check whether an irreducible sofic tree-shift given by its Fischer automaton
is almost of finite type. A short version of this paper was presented in [2].

2. Definitions

2.1. Tree-shifts. We first recall some basic definitions of symbolic dynam-
ics on infinite trees. We consider infinite trees whose nodes have a fixed
number of children (ranked trees) and are labeled in a finite alphabet. We
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restrict to binary trees, but all results extend to the case of trees with d
children for a fixed positive integer d.

Let Σ = {0, 1} and Σ∗ be the set of words over Σ. An infinite tree t over a
finite alphabet A is a complete function from Σ∗ to A. A node of an infinite
tree is a word of Σ∗. The empty word, that corresponds to the root of the
tree, is denoted by ǫ. If x is a node, its children are xi with i ∈ Σ. Let t be
a tree and let x be a node, we shall denote t(x) by tx. A sequence of words
(xk)k≥0 of Σ∗ is called a path if for all k, xk+1 = xkik with ik ∈ Σ.

A pattern (or a finite tree) is a function p : L → A, where L is a finite
prefix-closed subset1 of Σ∗. The set L is called the support of the pattern. A
node of a finite tree is a word of L. A node without children is called a leaf.
A subtree of a (finite or infinite) tree t rooted at a node x of t is the tree s
defined by sy = txy for any y ∈ Σ∗ such that xy is a node of t.

If n is nonnegative integer, we denote by Σ≤n the set of words of length at
most n on Σ. A block of height n, where n is a positive integer, is a pattern
whose support is Σ≤n−1. The height of a block u is denoted by height(u).

We say that a pattern (resp. block) u of support L is a pattern of a tree
t (resp. a block of a tree t) if there is a word x ∈ Σ∗ such that txy = uy for
any node y of u. We say that u is a pattern (resp. block) of t rooted at the
node x. If u is not a pattern (resp. block) of t, one says that t avoids p.

Unless otherwise stated, a tree is an infinite tree. When Σ are A are fixed,
we denote by T the set of all infinite trees on A, hence the set AΣ∗

.
We define the shift transformations σi for i ∈ Σ from T to itself as follows.

If t is a tree, σi(t) is the tree rooted at the i-th child of t, i.e. σi(t)x = tix for
all x ∈ Σ∗. The set T equipped with the shift transformations σi is called
the full shift of infinite trees over A.

We define a tree-shift X of T as the set XF of all trees avoiding any element
of a set of blocks F . The set F is called a set of forbidden blocks of X. If
the set of trees on A is equipped with the usual product topology, where the
topology in A is the discrete one, a tree-shift is closed and σi(X) ⊆ X for
any shift transformation σi. A tree-shift of finite type (SFT) X of T is a set
XF of all trees avoiding any block of a finite set of blocks F .

We denote by L(X) the set of patterns of all trees of the tree-shift X, by
B(X) the set of all blocks of X and by Bn(X) the set of all blocks of height
n of X. The set L(X) is called the set of allowed patterns of X. If u is a
block of height n with n ≥ 2 and i ∈ Σ, we denote by σi(u) the block of
height n − 1 such that σi(u)x = bix for x ∈ Σ≤n−2. The block u is written
u = (uε, σ0(u), σ1(u)).

A set of patterns L is factorial if u ∈ L and v is a subtree of u rooted
at a node x of u (i.e. v is a sub-pattern of u) implies v ∈ L. The set L
is extendable if for any pattern u in L, there is a pattern v ∈ L such that
the support of v contains the support of u, v and v coincide with u on the
support of u, and for any node x of the u, x0 and x1 are nodes of v.

1each prefix of L belongs to L.



4 NATHALIE AUBRUN AND MARIE-PIERRE BÉAL

The language of allowed patterns of a tree-shift is factorial and extendable.
Conversely, such a language of finite trees is the set of allowed patterns a tree
shift as is shown in the following result which is similar as the one known
for shifts of bi-infinite words (see for instance [7]).

Proposition 1. Let L be a factorial and extendable set of finite trees. The
set X (L) of infinite trees whose patterns belong to L is a tree-shift and
L(X (L)) = L. Conversely, if X is a subshift, then X = X (L(X)).

Proof. Let X = X (L). It is clear that X is a tree-shift and L(X) ⊆ L. We
show that L ⊆ L(X). Let u be a finite tree of L. Since L is extendable and
factorial, we can construct an infinite tree t such that u is a subtree of t
rooted at the empty node, and such that any block of t belongs to L. Then
u ∈ L(X).

For the second assertion, let L = L(X). It is clear that X ⊆ X (L(X).
The converse follows by compactness. �

Example 1. In Figure 1 is pictured an infinite tree of a tree-shift X on the
alphabet {a, b}. The forbidden blocks are those containing an even number
of a between two b on any path in the tree. This tree-shift is not of finite
type.

b

a

b b

a

a a

Figure 1. An infinite tree of the tree-shift XF , where F is
the set of patterns containing an even number of a between
two b on any path in the tree.

2.2. Block maps and conjugacies. Let A,A′ be two finite alphabets, T
(resp. T ′) the set of trees on A (resp. A′). Let X be a tree-shift of T and
m be a positive integer. A map Φ : X → T (A′) is called an m-local map (or
an m-block map) if there exists a function φ : Bm(X) → A′ such that, for all
x ∈ Σ∗, Φ(t)x = φ(u), where u is the block of t of height m rooted at x. The
smallest integer m− 1 such that Φ is an m-block map, is called the memory
of the block map. A block map is a map which is an m-block map for some
positive integer m. The function φ is called the block function of Φ.

It is known from the Curtis-Lyndon-Hedlund theorem (see [12]) that block
maps are exactly the maps Φ : X → Y which are continuous and commute
with all tree-shifts transformations, i.e. such that σi(Φ(t)) = Φ(σi(t)) for
any t ∈ X and any i ∈ Σ.

The image of X by a block map is also a tree-shift, and is called a factor
of X. A one-to-one and onto block map from a tree-shift X onto a tree-shift
Y has an inverse which is also a block map, as for shifts of sequences. It
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is called a conjugacy from X onto Y . The tree-shifts X and Y are then
conjugate. We call sofic a tree-shift which is a factor of a tree-shift of finite
type.

Let X be a tree-shift and m a positive integer. We denote by X(m) the
higher block presentation of X. It is a tree-shift on the alphabet Bm(X).

For each tree t in X(m), there is tree t′ in X such that, for each node x,
tx is the block of height m of t′ rooted at x. The shifts X and X(m) are
conjugate (see [1]).

3. Sofic tree-shifts

3.1. Tree automata. In this section we consider bottom-up tree automata
accepting finite or infinite trees. Such an automaton starts its computation
from the the leaves, or from the infinite branches, and moves upward. A
(finite) tree automaton is here a structure A = (V,A,∆) where V is a finite
set of states, A is a finite set of input symbols, and ∆ is a set of transitions
of the form (p, q), a → r, with p, q, r ∈ V , a ∈ A. A transition (p, q), a → r
is called a transition labeled by a, going out of the pair of states (p, q) and
coming in the state q. A transition (p, q), a→ r will be pictured by

a : r

p q

Note that no initial nor final state is specified. This means that all states
are both initial and final. All tree automata considered here will be finite.

Such an automaton is deterministic if for each pair of states (p, q) and
for each a ∈ A, there is at most one transition (p, q), a → q. Then the set
of transitions defines a partial function δ from V 2 × A to V . We denote
by δ(p, q, a) the unique state r such that (p, q), a → r ∈ ∆ when such a
transition exists.

A (bottom-up) computation of A on the infinite tree t is an infinite
tree c labeled in V such that, for each node x of t, there is a transition
(cx0, cx1), tx → cx ∈ ∆. A tree t is accepted by A if there exists a computa-
tion of A on t.

Given a tree automaton A, it is always possible to transform it into a de-
terministic tree automaton which accepts the same set of trees (this process
is called a determinization, see for instance [9] for details). In the sequel, we
assume that all states of an automaton are accessible, i.e. each state ends
some computation of the automaton.

A finite tree is complete binary if any node has zero or two children. A
(bottom-up) finite computation of A on a finite tree t is a finite complete
binary tree c on V such that, for each node x of t, there is a transition
(cx0, cx1), tx → cx ∈ ∆.

The set of infinite trees accepted by A is a tree-shift. Indeed, since all
states of A are accessible, the language L of patterns accepted by A is the
factorial and extendable. Then X is the tree shift X (L).
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A tree automaton is called a transition tree automaton if all transitions
have distinct labels. A transition tree-shift is a tree-shift (of finite type)
which is accepted by a transition tree automaton.

Let A = (V,A,∆) be a tree automaton. Let E be the set of transitions of
A. The set of trees t labeled on the alphabet E such that tx = (cx0, cx1), t

′
x →

cx for some computation c of A on a tree t′ is called the transition tree-shift
XA of A.

Let SA be the tree-shift accepted by A. There is a one-block map
λA : XA → SA where the block function assigns to each transition e =
(cx0, cx1), a→ cx its label a. The transition tree-shift XA is a shift of finite
type. It is accepted by the automaton A = (V,E, µ) whose transitions are

(p, q)
(p,q,a,r)
−−−−−→ r for (p, q, a, r) ∈ ∆. It is defined by the finite set of for-

bidden blocks (e, f, g) of height 2, where e = (p, q, a, r), f = (p1, q1, a1, r1),
g = (p2, q2, a2, r2), and either r1 6= p or r2 6= q.

Example 2. We define a tree automaton A with three state qb, q0 and
q1 which accepts the tree-shift X of Example 1. The two states q0 and q1
only label nodes with an a, and they control the parity of the number of a
encountered from any last b below. The state qb only labels nodes with a b.
The transitions of the tree automaton A are

a : q1

q0 q0

a : q0

q1 q1

a : q0

qb, q1 qb, q1

b : qb

qb, q1 qb, q1

The proof of the following proposition is similar to the one for shifts of
infinite or bi-infinite sequences (see [18], [15]).

Proposition 2. A tree-shift is sofic if and only if it is accepted by a tree
automaton.

Proof. Let S be a sofic tree-shift. By definition, it is the image of a tree-
shift of finite type X by an m-block map Φ. Without loss of generality, by
changing X into its conjugate X(m), we can assume that Φ is a one-block
map. Then the block function φ of Φ extends to patterns. Since X is of
finite type, there is a positive integer n such that X = XF where F is a
subset of the set of blocks of height n. The shift X is accepted by the
automaton A = (V, V,∆) where V is the set of blocks of height n − 1 and

(p, q)
r
−→ r ∈ ∆ if and only if (rε, p, q) /∈ F . The tree-shift S is thus accepted

by the automaton B = (V,A,∆′) where (p, q)
φ(r)
−−→ r ∈ ∆′ if and only if

(p, q)
r
−→ r ∈ ∆.

Conversely, if S is a set of infinite trees accepted by a tree automaton

B = (V,A,∆′). Let A = (V,∆′,∆) where (p, q)
(p,q,a,r)
−−−−−→ r ∈ ∆ if and only

if (p, q)
a
−→ r ∈ ∆′. Then A accepts a shift of finite type X and S = Φ(X)

where Φ is the one-block map defined by φ(p, q, a, r) = a. �
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3.2. Symbolic conjugacy. We define the notion of symbolic conjugacy for
tree automata which extends the notion of symbolic conjugacy of automata
on sequences (see [5]). Let A and B be two tree automata accepting the
sofic tree shifts SA and SB and whose transition tree-shifts are XA and
XB. We say that A and B are symbolic conjugate if there exists conjugacies
Φ : XA → XB and Ψ : SA → SB such that the following diagram commutes.

XA
Φ

−−−−→ XB

λA





y





y

λB

SA
Ψ

−−−−→ SB

3.3. Irreducible tree-shifts. In this section, we define a notion of irre-
ducibility which is suitable for tree-shifts.

A finite complete prefix code of Σ∗ is a prefix set 2 P of finite words in Σ∗

such that any word of Σ∗ which is longer than the words of P has a prefix
in P .

A tree-shift X is irreducible if for each pair of blocks u, v with u ∈ Bn(X),
there is a tree t in X and a finite complete prefix code P ⊂ Σ≥n, such that
u is a subtree of t rooted at ε, and v is a subtree of t rooted at x for all
x ∈ P .

q

q

q q

p

Figure 2. (left) An irreducible tree-shift. Let t denotes the
tree pictured. If u denotes the black block and v the white
one, u is a subtree of t rooted at ε, and v is a subtree of t
rooted at each x ∈ P , where P is the complete prefix code
{00, 010, 011, 1}. (right) An hyperpath from q to p in a tree
automaton.

A tree automaton is irreducible if for each pair of states p, q, there is
a finite complete prefix code P ⊂ Σ∗ and a finite computation c of the
automaton on a pattern u such that cε = p and cx = q for each x ∈ P . We
say in this case that there is an hyperpath from q to p labeled by u. For two
states p, q of a tree automaton, we say that p is accessible from q if there is
a hyperpath from q to p.

Proposition 3. An irreducible automaton accepts an irreducible sofic tree-
shift. Conversely, for any irreducible sofic tree-shift, there is an irreducible
automaton accepting it.

2i.e. no word is prefix of another one.
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Proof. The forward implication is easy. The converse will be proved later
by using the notion of Fischer automaton. �

Proposition 4. Let S and T be two conjugate tree-shifts. Then S is irre-
ducible if and only if T is irreducible.

Proof. The proof is straightforward. �

3.4. Synchronizing blocks. We define below the notion of synchronizing
pattern 3 or block of a deterministic tree automaton.

Let A = (V,A,∆) be a deterministic tree automaton accepting a sofic
tree-shift X, and u be a pattern (resp. block). We say that u is a syn-
chronizing pattern (resp. block) of A if the set of computations of A on u
is nonempty and all computations of A on u end in the same state q ∈ Q.
We say that the pattern u focuses to the state q. A tree t such that all
computations of A on t end in the same state q ∈ Q is a synchronizing tree
of A. A deterministic tree automaton which has a synchronizing pattern is
called synchronized.

Note that if u is a synchronizing pattern, then any pattern v such that u
is a subtree of v rooted at ε is also synchronizing.

3.5. Minimal deterministic tree automata. Let X be a tree-shift. A
context ℓ is a pattern where one leaf is replaced by a hole. If u is a pattern,
ℓu is the pattern obtained by substituting u in place of the hole of ℓ. If
ℓu ∈ L(X), we say that ℓ is a context of u in X. Given a block u, we denote
by contX(u) the set of all the contexts of u in X.

Given a tree automaton A = (V,A,∆) accepting a sofic tree-shift X, the
context of a state q ∈ V in A is the set of contexts ℓ, with a hole at the node
x, on which there exists a finite computation c of A with cx = q. We denote
this set by contA(q). Note that the context of a pattern u of X is the union
of the contexts of the states p such that there is a computation of A on u
ending in p. As a consequence, a sofic tree-shift has only a finite number of
distinct contexts.

Let A = (V,A,∆) be an automaton. The automaton A is said to be
reduced if p 6= q implies contA(p) 6= contA(q) for all states p, q in V .

Let A = (V,A,∆) and B = (V ′, A,∆′) be two deterministic automata. A
reduction from A onto B is a map h from V onto V ′ such that, for any letter
a ∈ A, one has (p, q), a→ r ∈ ∆ if and only if (h(p), h(q)), a→ r ∈ ∆′.

Let A = (V,A,∆) be a deterministic automaton accepting a sofic tree-
shift X. We define a deterministic automaton R(A) accepting X called the
reduction of the automaton A as follows. The states of R(A) are the classes
of the coarsest partition of V such that if p, q belong to the same class, then
for each letter a and each state r, δ(p, r, a) and δ(q, r, a) (resp. δ(r, p, a) and
δ(r, q, a)) belong to the same class, and δ(p, r, a) (resp. δ(r, p, a)) is defined
if and only if δ(q, r, a) (resp. δ(r, q, a)) is defined. Let [p] denotes the class

3also called a homing pattern or a magic pattern.
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of the state p. The transition ([p], [q]), a→ [δ(p, q, a)] is a transition of R(A)
if and only if δ(p, q, a) is defined. It can be shown that this definition is
consistent, i.e. does not depend on the choice of the leader in each class. By
definition, the automaton R(A) is reduced and there the map h defined by
h(p) = [p] is a reduction from A to R(A).

The minimization algorithm for deterministic tree automata accepting
languages of finite trees, which is for instance described in [9, Section 1.5],
can be applied for computing the reductions of tree automata accepting
tree-shifts. Remember that all states in tree automata accepting tree-shifts
are both initial and final.

In the framework of shifts of bi-infinite words, irreducible sofic shifts have
a unique reduced deterministic automaton (i.e. all reduced deterministic
automata accepting the shift are equal up to a renaming of the states), see
[18]. The situation is quite different for trees since, as is shown below in
Example 3, irreducible sofic tree-shifts may have several reduced determin-
istic tree automata. Indeed, contrary to the situation that we have for shifts
of infinite or bi-infinite sequences, an irreducible reduced deterministic tree
automaton may not have a synchronizing block.

Proposition 5. There are reduced irreducible deterministic tree automata
which are not synchronized.

Example 3. Let X be the full tree-shift on the alphabet A = {a, b}. It is
accepted by a trivial one-state automaton with to transitions labeled by a
and b. It is also accepted by the deterministic tree automaton A = (V,A, δ)
described by the following transitions and which is reduced.

a : p1

p0 p0

a : q1

q0 q0

b : p1

p0 p0

b : p1

p1 p1

b : q1

p1 q1

a : q0

p1 p1

a : p1

p1 q1

a : q1

q1 p1

a : p0

q1 q1

This automaton is irreducible. Indeed there is a hyperpath

p0  p1  q0  q1  p0

where p  q denotes a hyperpath from p to q. It is reduced since any
two states have distinct contexts. Indeed, the states q0, q1 have not the
same context as p0, p1 since the pattern whose root is b with a left hole is
only a context of p0, p1. Furthermore the following pattern whose hole is
represented with a black dot

a

b
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is a context of p0, q1 only. Hence all states have distinct contexts.
Nevertheless, this automaton is not synchronized. Indeed, let D(A) be

the accessible part from V of the tree automaton (P(V ), A, δ′)4, where, if
P,Q ∈ P(V ), δ′(P,Q, a) = {δ(p, q, a) | p ∈ P, q ∈ Q} if this set is nonempty,
and is not defined otherwise. The automaton D(A) contains two states
V = {p0, q0, p1, q1} and {p1, q1} and hence no singleton state.

One can overcome this difficulty with the notion of Fischer automaton for
irreducible tree-shifts.

Let X be a sofic tree-shift. The context tree automaton of X is the
deterministic automaton C = (V,A,∆), where V is the set of nonempty
contexts of blocks of X. Since X is sofic, V is finite. The transitions
of C are (contX(u), contX(v)), a → contX(a, u, v), where u, v ∈ B(X) and
contX(a, u, v) is nonempty.

Proposition 6. The context tree automaton of a tree-shift X accepts X.

Proof. It is clear that a tree of X is accepted by the context tree automaton
of X. Conversely, if there is a computation of context tree automaton of X
on a tree t, any block of t belongs to B(X). Thus t is in X. �

Proposition 7. The context tree automaton of a sofic tree-shift is synchro-
nized.

Proof. Let C be the context tree automaton of a sofic shift X. There
is a finite computation c1 in C on some block u1 ending in contX(u1).
Let us assume that u1 is not a synchronizing block of C. Hence there is
another computation c2 of C on u1 ending in contX(u2) for some block
u2 such that contX(u2) 6= contX(u1). We get contX(u2) ( contX(u1)
since contX(u2) 6= contX(u1). If u2 is not a synchronizing block of C,
there is another computation c2 of C on u2 ending in contX(u3). We get
contX(u3) ( contX(u2). By iterating this process, we either get a syn-
chronizing block for C or an infinite strictly decreasing sequence of con-
texts. Hence, since the number of contexts is finite, there is a synchronizing
block. �

We say that a tree automaton A′ = (V,A′,∆′) is a subautomaton of a tree
automaton A = (V,A,∆) if V ′ ⊆ V and ∆′ = ∆ ∩ (V ′ × V ′ × A × V ′). A
subautomaton A′ is minimal if any transition of A going out of states of A′

ends in A′. A minimal irreducible component of an automaton is a minimal
subautomaton which is irreducible.

Proposition 8. Let X be an irreducible sofic tree-shift and C its context
automaton. Let z be a synchronizing block of C and F be the automaton
obtained from F by keeping only the states accessible from contC(z). The
automaton F is the unique minimal irreducible component of C.

4P(V ) denotes the set of parts of V .
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Proof. We assume that z is a block of height n. Let q = contC(z). Let us
show F is a minimal irreducible subautomaton. It is enough to prove that
there is a hyperpath from any state of C to q. Let p = contC(u) be a state
of C. Since X is irreducible, there is a pattern w of X and a finite complete
prefix code P ⊂ Σ≥n, such that z is a subtree of w rooted at ε, and u is a
subtree of w rooted at x for all x ∈ P . Let c be a computation of C on w.
We have cε = q, and for all x ∈ P , cx = p. Hence there is an hyperpath
from p to q. �

We define the Fischer automaton5 of an irreducible sofic tree-shift X as
the unique minimal irreducible component of its context tree automaton.

Note that each state in this automaton is the context of some synchro-
nizing block of the context tree automaton. Furthermore, any computation
of C on a synchronizing block of C ends in the Fischer automaton.

Proposition 9. The Fischer automaton of an irreducible tree-shift X ac-
cepts X.

Proof. Since the Fischer automaton F ofX is a subautomaton of the context
tree automaton, any tree accepted by F is in X. Conversely, let t be a tree
of X. We show that any block u of t of height n is accepted by F . Let z
be a synchronizing block of C. Since X is irreducible, there is a pattern w
of X and a finite complete prefix code P ⊂ Σ≥n, such that u is a subtree
of w rooted at ε, and z is a subtree of w rooted at x for all x ∈ P . It
follows that there is computation of C on w. Since any computation of C on
a synchronizing block ends in F , and since F is a minimal subautomaton of
C, we obtain a computation of F on u. Thus u is accepted by F . �

We now prove that the Fischer automaton is the unique reduced determin-
istic irreducible and synchronized tree automaton accepting an irreducible
sofic tree-shift.

Proposition 10. Two reduced deterministic irreducible and synchronized
tree automata accepting the same irreducible sofic tree-shift are equal up to
a renaming of the states.

Proof. Let M = (V,A,∆) and M′ = (V ′, A,∆′) be two reduced determin-
istic irreducible synchronized automata accepting a same sofic tree-shift X.
Let u ∈ Bm(X) (resp. v ∈ Bm(X)) be a synchronizing block of M (resp.
M′). We assume that z focuses to the state p in M. Since X is irreducible,
there is a pattern z of X and a finite complete prefix code P ⊂ Σ≥m, such
that u is a subtree of z rooted at ε, and that v is a subtree of z rooted
at x for all x ∈ P . Since M and M′ are deterministic, the pattern z is
a synchronizing block for both M and M′. Each computation of M on z
focuses to the state p while each computation of M′ on z focuses to some
state p′ in V ′.

5also called the Shannon automaton of the tree-shift. It corresponds to the right Fischer
automaton of a sofic shift of sequences.
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We define a bijection ϕ : V → V ′ as follows. Let q be a state of M. Since
M is irreducible, there is a computation c of M on a pattern w, and a prefix
code P such that cε = q and cx = p for all x ∈ P . Since M is deterministic
and z synchronizing for M, any finite computation of M on w ends in q.
Hence the context of q in M is the context of w in X. Moreover, any finite
computation of M′ on w ends in a same state q′ and the context of q′ in M′

is the context of w in X.
Since M (resp. M′) is reduced, two states having the same context in M

(resp. M′) are equal. Hence if q = contX(w), r = contX(v), and (q, r), a→
s is a transition of ∆, we have s = contX(a, w, v). We define ϕ(q) = q′. One
can check that ϕ defines an isomorphism between M and M′ in the sense
that (q, r), a→ s is a transition of ∆ if and only if (ϕ(q), ϕ(r)), a→ ϕ(s) is
a transition of ∆′. �

Hence two reduced deterministic irreducible and synchronized tree au-
tomata accepting a same tree-shift are equal to the Fischer automaton of
this tree-shift.

If t ∈ T and ℓ a context. Let ℓt denotes the pattern obtained where the
hole is replaced by the infinite tree t. If ℓt is an (infinite) pattern of an infinite
tree of X, we say that ℓ is a context of t in X. Given a tree t in T , we denote
by contX(t) the set of all the contexts of t in X. The Krieger automaton of a
tree-shift X is the automaton whose states are the nonempty sets of the form
contX(t), and whose transitions are (contX(t), contX(t′), a, contX(a, t, t′)),
where t, t′ ∈ T and contX(a, t, t′) is nonempty. Hence the states of the
Krieger automaton are contexts of infinite trees while the states of the con-
text automaton are contexts of finite trees.

Proposition 11. The Krieger automaton of a sofic tree-shift X accepts X.

Proof. It is clear that a tree of X is accepted by the Krieger automaton of
X. Conversely, if there is a computation the Krieger automaton of X on a
tree t, any block of t belongs to B(X). Thus t is in X. �

Proposition 12. The Krieger automaton of a sofic tree-shift X is, up to
an isomorphism, a subautomaton of the context tree automaton of X. It
is reduced and synchronized. If X is irreducible, the Krieger automaton
of X has a unique minimal irreducible subautomaton which is the Fischer
automaton of X.

Proof. Let K = (V,A,∆) be the Krieger automaton of a sofic tree-shift X
and C = (V ′, A,∆′) its context tree automaton. Let t be an infinite tree and
un its subtree of height n rooted at ε. We have contX(ui+1) ⊆ contX(ui) for
any i ≥ 0. Since the number of contexts is finite, there exists a nonnegative
integer n such that contX(un+i) = contX(un) for all nonnegative integers i.
Let us define s(t) = contX(un).

We show that the map contX(t) 7→ s(t) is well defined and one to one.
We have s(t) = contX(t). Indeed, clearly contX(t) ⊆ s(t). Let c ∈ s(t) −
contX(t) with a marked leaf x. There a nonnegative integer n such that
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c(ui) ∈ L(X) for all i ≥ n. Let s be an infinite tree such that c is a subtree
of s rooted at ε and t and t is the subtree of s rooted at x. Then s ∈ X
and c ∈ contX(t). As a consequence, if t, t′ are two infinite trees, then
contX(t) = contX(t′) if and only if s(t) = s(t′).

We next show that K is reduced. If p is a state equal to contX(t) for some
tree t ∈ T , then contK(p) = contX(t). As a consequence, X is reduced.

We now show that K is synchronized. Let rA(t) be the number of states
of A ending a computation of an automaton A on a tree t. By Proposition 7,
the context tree automaton is synchronized. Hence, by definition, there is a
pattern u such that rC(contX(u)) = 1.

This implies that there for any infinite tree t ∈ X such that u is a subtree
of t rooted at ε, all computations of C on t end in contX(u). As a conse-
quence, all computations of K on t end in contX(u). Thus K is synchronized.

Let us assume that X is irreducible. Let z be a synchronizing block of
height n of K and p ending any finite computation of K on z. Let W be the
set of states accessible from the state p. The automaton K′ = (W,A,∆) is a
minimal subautomaton of K. Indeed, for any q ∈W , there is an hyperpath
from p to q labeled by u. Further, if v denotes the finite tree obtained by
substituting any leaf of u by z, q ends any computation of K on v. Since
X is irreducible, there is a tree t in X and a finite complete prefix code
P ⊂ Σ≥n, such that z is a subtree of t rooted at ε, and v is a subtree of
t rooted at x for all x ∈ P . Thus there is an hyperpath from q to p in K.
Next, if r is a state of a minimal irreducible subautomaton of K ending a
finite computation of K on some pattern w, then, since X is irreducible,
there is a tree t′ in X and a finite complete prefix code Q ⊂ Σ≥n, such that
z is a subtree of t′ rooted at ε, and w is a subtree of t′ rooted at x for all
x ∈ Q. Thus there is an hyperpath from r to p and p ∈ V ′. It follows that
K ′ is the only minimal irreducible subautomaton of K. �

3.6. Finite type tree-shifts. Tree-shifts of finite type are accepted by tree
automata having very strong synchronization properties.

Let m be a nonnegative integer. A deterministic m-local tree automaton
(or an m-definite tree automaton) is a deterministic tree automaton A =
(V,A, δ) such that whenever there are two finite computations c, c′ of A
on a same block of height m, then cε = c′ε (the computations end in a
same state). A tree automaton is local (or definite) if it is m-local for some
nonnegative integerm (andm stands for memory). For instance a transition
tree-shift is accepted by a 1-local automaton.

The following proposition was shown in [1].

Proposition 13. A deterministic local tree automaton accepts a tree-shift
of finite type. Conversely, a tree-shift of finite type is accepted by a deter-
ministic local automaton.
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4. Almost of finite type tree-shifts

The following notion of almost of finite type tree-shift extends to trees the
notion of almost of finite type shift of bi-infinite sequences. Almost of finite
tree-shifts are irreducible and accepted by tree automata which are deter-
ministic and codeterministic with a finite delay. The class contains strictly
the class of irreducible tree-shifts of finite type and is strictly contained in
the class of irreducible sofic tree-shifts.

Let X,Y be two tree-shifts. A block map Φ : X → Y is left closing if
there are non negative integers m, a (m for memory and a for anticipation)
such that, whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi with
0 ≤ i ≤ (a+m), and sx = tx for all x ∈ Σi with 0 ≤ i ≤ m− 1, then sx = tx
for any x ∈ Σm. Note that he trees have to be pictured horizontally with
their root on the right side to see the left closing property.

1

a

ma

1

mφ φ

Figure 3. (left) The notion of left closing map. (right) The
notion of right closing map.

A tree automaton A = (V,A,∆) is left closing if any two computations of
A on a same tree and ending in a same state are equal. Equivalently, there
is a nonnegative integer a such any two finite computations c, c′ of A on a
same block u ∈ Ba(X) such that cε = c′ε satisfy cx = c′x for all x ∈ {0, 1}.

It is straightforward to check that the composition of a left closing map
with a conjugacy is still left closing.

A block map Φ : X → Y is right closing if there are non negative integers
m, a such that, whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi

with 0 ≤ i ≤ (a+m), and sx = tx for all x ∈ Σi with a+ 1 ≤ i ≤ (a+m),
then sx = tx for all x ∈ Σa. The map Φ is right resolving if it is a one-block
map and if one can choose m = 1 and a = 0.

We now introduce the notion of resolving block (see [19]). Let Φ be a
1-block map from X to Y . A resolving block is a block z of Y for which
there is a positive integer m such that if φ(u) = φ(v) = z where u and v are
two blocks of X of height m and φ is the block function of Φ extended two
the blocks, then uε = vε.

The composition of a one-block map with a resolving block with a conju-
gacy is still a one-block map with a resolving block.

A sofic tree-shift is almost of finite type (AFT) if it is the image of an irre-
ducible tree-shift of finite type via a one-block map which is right resolving,
left closing, and has a resolving block.
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Proposition 14. Let S and T be two conjugate irreducible sofic tree-shifts.
Then S is AFT if and only if T is AFT.

Proof. We assume that S is AFT. Let Θ be a one-block map from a tree-
shift of finite type X onto a sofic tree-shift S, which is right resolving, left
closing, and has a resolving block. Let Φ be a conjugacy from S to T . We
can assume that Φ is an m block map with an n-block inverse. Let X(n)

(resp. S(n)) be the higher block presentation of X (resp. S) of order n, and

τ (resp. τ ′) be the natural conjugacy from X to X(n) (resp. from S to S(n)).

The tree-shift X(n) is a shift of finite type. The one-block map Θ extends in
a natural way to a one-block map Θ from X(n) to S(n). Let Φ′ = Φ ◦ τ ′(−1)

and Ψ = Φ′ ◦ Θ′. The map Ψ : X(n) → T is a one-block right resolving
map. Since it is also left closing and has a resolving block, the tree-shift T
is AFT.

X X(n)

S S(n) T

τ

τ ′ Φ′

Ψ
Θ Θ′ Ψ

Φ
�

We say that an automaton is an almost of finite type automaton (AFT
automaton) if it is irreducible, deterministic, left closing and synchronized.

Proposition 15. A tree-shift is AFT if and only if it is accepted by an AFT
automaton.

Proof. Let S be an AFT tree-shift on the alphabet A. Let Φ : X → S be a
one-block map from an irreducible tree-shift of finite type X onto S which
is right resolving, left closing and has a resolving block. Without loss of
generality, by changing X into a higher block presentation of X, we can
assume that Φ is left closing with parameters m′ = 1.

Let A = (V,E,∆) be an irreducible transition tree automaton accepting
X. Let B = (V,A,∆′) where (p, q, φ(e), r) ∈ ∆′ if and only if (p, q, e, r) ∈ ∆.
Since Φ is a one-block right resolving map, B is a deterministic automaton.

Since Φ has a resolving block z, the block z is a synchronizing block of B
focusing to some state q. Let us keep in B only the states accessible from q.
Since S is irreducible, B remains irreducible and still accepts S.

Let us now show that B is left closing. If B were not left closing, there
would be two distinct computations c, c′ of B on a same tree t ending in a
same state p. Let (p, q, e, r) ∈ ∆ be a transition going out of (p, q) for some
states p, r ∈ V (if there is none, there is a transition of A going out of (q, p)
since A is irreducible). We get two distinct computations (r, c, d), (r, c′, d′)
of B ending in r on a same tree u = (φ(e), t, t′) for some tree t′. These two
distinct computations of B also give two distinct computations of A on two
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trees s, s′ of X with sε = s′ε = e and such that Φ(s) = Φ(s′). Since Φ is left
closing with parameters m′ = 1, we get s = s′ and thus c = c′.

Conversely, if S is accepted by an AFT automaton A = (V,A,∆), let X
be the transition tree-shift accepted by T = (V,∆,∆′), whose transitions are
(p, q, (p, q, a, r)) → r for (p, q, a, r) ∈ ∆. Let Φ be the one-block map from
X onto S defined by φ(p, q, a, r) = a. This map is right resolving since A is
deterministic. It is left closing since A is left closing. It has a synchronizing
block since A is synchronized. As a consequence, S is AFT. �

Corollary 1. An irreducible sofic tree-shift is AFT if and only if its Fischer
automaton is AFT.

Proof. Let S be an irreducible sofic tree-shift. By Proposition 10, any irre-
ducible sofic tree-shift is accepted by an irreducible deterministic synchro-
nized automaton F equal to the Fischer automaton of S.

Let us assume that S is AFT. By Proposition 15, F is equal to the
minimization of an AFT automaton A. Let us show that F is left closing. If
it is not left closing, then there is a tree t ∈ S and two distinct computations
of F on t ending in a same state. As a consequence, there are two distinct
computations of A on t ending in two distinct states p, p′ which have the
same context.

Let z be a synchronizing pattern of A focusing to the state q. Since A is
irreducible, is an hyperpath from p to q labeled by some pattern w such that
z is a subtree of w rooted at ε. Let P be the complete prefix code defining
this hyperpath. Thus there is a computation c of A on a tree s such that,
for any node x in P , the tree rooted at x in s is t, cx = p, and the pattern
rooted at the root of s is z.

Since p and p′ have the same context, there is also a computation c′

of A on s such that, for some node x in P , one has c′x = p′. Since z is
synchronizing, cε = c′ε. This gives two distinct computations of A on a same
tree ending in the same state q, which contradicts the fact that A is left
closing. This proves that the Fischer automaton of an AFT is left closing.

Conversely, if F is AFT, then X is AFT by Proposition 15. �

Corollary 2. Let S be an irreducible sofic shift accepted by a deterministic
tree automaton. It is decidable whether S is AFT.

Proof. One can compute the Fischer automaton of the sofic tree-shift and
check whether it is AFT as explained in Section 5. �

4.1. Conjugacy invariants. In the case of shifts in dimension one, Krieger
proved that the Fischer automaton is a topological conjugacy invariant of
the underlying irreducible sofic shift [16] (see also [8]). In this section, we
extend Krieger’s theorem to sofic tree-shifts.

Lemma 1. Let A = (V,A,∆) be the Fischer automaton of the irreducible
sofic tree-shift SA with transition tree shift XA. Let λA : XA → SA the one-
block map assigning to each transition its label. Let us assume that there is
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a block map Θ such that the following diagram commutes.

XA
Θ

−−−−→ XA

λA





y





y

λA

SA
id

−−−−→ SA
Then Θ is the identity map.

Proof. Let u be a synchronizing block of height n of SA. Let z be a block of
height n of XA such that λA(z) = u. Let Z be the subset of XA containing
the trees t of XA such that

• z is a subtree of t rooted at ε;
• for any node x ∈ Σ∗, there is a finite prefix code P depending on x
such that, for any ℓ ∈ Σn and any y ∈ P , z is a subtree of t rooted
at the position x+ ℓ+ y.

Note that Z is not a subshift of XA. It is clear that λA is one-to-one on
Z. Hence Θ is one-to-one on Z. Let us assume that Θ is an m-block map
which is not the identity map on XA. Then there is a block v of height m
such that θ(v) 6= vε. Since XA is irreducible, the block v is a subblock of
some tree in Z, which is a contradiction. �

Proposition 16. Let A = (V,A,∆) (resp. B = (V ′, B,∆′)) be the Fischer
automaton of the irreducible sofic tree-shift SA (resp. SB). Let XA (resp.
XB) be the transition tree-shift of A (resp. B). If SA and SB are conjugate,
then A and B are symbolic conjugate. As a consequence XA and XB are
conjugate.

Proof. There is are one-block and onto map λA : XA → SA (resp. λB :
XB → SB). Let Φ be a conjugacy from SA to SB. We assume that Φ is an
m-block map and Φ−1 is an n-block map. Since A is deterministic, the map

λA is a one-block right resolving map. Let X
(m+n−1)
A (resp. S

(m+n−1)
A ) be

the higher block presentation of XA (resp. SA) of order (m+n−1), and τA

(resp. µA) be the m + n − 1-block conjugacy from XA to X
(m+n−1)
A (resp.

from SA to S
(m+n−1)
A ) assigning to each tree t the tree t′ whose nodes are

blocks of height m+ n− 1 of t. Let λ′A be the natural one-block map such
that τA ◦ λ′A = λA ◦ µA.

Let Φ′ = µ
(−1)
A ◦ Φ. Since Φ is an m-block map, the map Ψ = Φ′ ◦ λ′A is

a one-block map from X
(m+n−1)
A to SB. Since Φ(−1) is an n-block map, Ψ is

right resolving.

Let C = (B(X
(m+n−1)
A ), B,Θ) be the automaton on the alphabet B whose

transitions are (u, v), b → w, where (wε, u, v) ∈ B(X
(m+n)
A ), w is the sub-

block of size m + n − 1 rooted at ε of (wε, u, v), and ψ(w) = b. Since Ψ is
right resolving, C is a deterministic tree automaton accepting SB.

We consider the partitioning of the states of C into classes of states having
the same context. We denote by [u] the class of the state u. We define a
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one-block and onto map Γ from X
(m+n−1)
A to XB by γ((u, v), b → w) =

([u], [v]), b→ [w]. We have Γ ◦ λB = Ψ. Hence the block map θ1 = τA ◦ Γ is
onto from XA to XB. We get the following commutative diagram.

XA X
(m+n−1)
A XB

SA S
(m+n−1)
A SB

τA Γ

µA Φ′

Ψ
λA λ′A λB

By exchanging the roles played by A and B, we also get a block map θ2 :
XB → XA such that following diagram commutes.

XA XB XA

SA SB SA

θ1 θ2

Φ′ ◦ µA (Φ′)−1 ◦ µB

λA λB λA

By Lemma 1, θ2 ◦ θ1 is the identity map. As a consequence the maps θ1 and
θ2 are conjugacies. �

5. The algorithmic issue

In this section, we design algorithms to check whether a tree automaton
is synchronized, and whether it is left closing. We also describe an algorithm
to compute the Fischer automaton of an irreducible sofic tree-shift given by
a tree automaton that accepts it.

5.1. Computation of the Fischer automaton. Let A = (V,A,∆) be a
tree automaton. We define the deterministic tree automaton D(A), called
the determinized automaton of A, as the accessible part from the state V
of the tree automaton (P(V ), A, δ′)6, where, for P,Q ∈ P(V ), δ′(P,Q, a) =
{r | (p, q, a, r) ∈ ∆, p ∈ P, q ∈ Q} if this set is nonempty, and is not defined
otherwise.

Proposition 17. It can be checked in polynomial time whether a tree au-
tomaton is irreducible.

Proof. Let A = (V,A,∆) be a tree automaton. For any state p in V , and
any positive integer n, we define the sets

P0 = {p},

Pn = Pn−1 ∪ {q ∈ V |∈ A, r, s ∈ Pn−1 such that (r, s)
a
−→ q ∈ ∆}.

The sequence of subsets (Pn)n≥0 is increasing for the inclusion. Thus there
is an integer n0 such that Pn = Pn0

for any n ≥ n0. By construction, there

6P(V ) denotes the set of parts of V .
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is an hyperpath from p to q if and only if q ∈ Pn0
. Thus A is irreducible

if and only if Pn0
= V for any state p. The set Pn0

is computed with at
most |V | steps, the time complexity of each step being at most the number
of transitions, hence the global polynomial complexity. �

Proposition 18. It is decidable whether a tree automaton is synchronized.

Proof. The automaton A is synchronized if and only if D(A) contains a
singleton state. The time and space complexity for computing D(A) is
exponential in the number of states of A. �

Proposition 19. Let A = (V,A, δ) be a tree automaton accepting an irre-
ducible sofic tree-shift S. The Fischer automaton of S is computable from A.

Proof. We first compute the determinized automaton D(A) of A. Let R
be a state of D(A) which is minimal for the inclusion. Let u the label of
a hyperpath from V to R. Then u is a synchronizing pattern of D(A).
Indeed, any finite computation of D(A) on u ends in R by minimality of R.
We now keep in D(A) only the states accessible from the state R and get
an irreducible and synchronized automaton accepting S. Its reduction gives
the Fischer automaton of S by Proposition 10. It is computed in polynomial
time in the size of D(A) (see for instance [9]). �

We now describe algorithms to check whether an irreducible deterministic
automaton is left closing.

5.2. The pair graph of a tree automaton. Given a tree automaton
A = (V,A,∆), we define the square automaton of A, denoted by A ×
A = (V × V,A,∆′), as the deterministic automaton whose transitions are
(p, p′), (q, q′), a → (r, r′) if and only if (p, q), a → r and (p′, q′), a → r′ are
transitions of A. A diagonal state of A×A is a state (p, p) for some p ∈ V .

Square automata of finite words (see for instance [22, p. 647]) are used to
check properties of pairs of paths. We extend this notion, together with a
notion a pair graph, to trees, to check properties of pairs of computations.
Seidl [23] used branch automata to check the degree of ambiguity of finite
tree automata.

Proposition 20. A tree automaton is not left closing if and only if there
is a computation in the square automaton ending in a diagonal state and
containing a non diagonal one.

Proof. By definition of A × A, the existence of a computation in A × A
ending in a state (p, p) and containing a state (r, s) with r 6= s is equivalent
to the existence of two distinct computations of A on a same tree. �

In order to check the above property, we build the pair graph GA =
(VG, EG) of A, where VG ⊆ (V 2 × V 2) ∪ V 2 is the set of vertices, EG ⊆
VG×{0, 1}×A×VG is the set of edges labeled by 0 or 1 and a letter from A.
For more convenience, an edge labeled by 1 is noted by a plain arrow −→ and
is called a plain edge, and an edge labeled by 0 is noted by a dashed arrow
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99K and is called a dashed edge. For each pair of transitions (p, q), a → r
and (p′, q′), a→ r′ of A,

((p, p′), (q, q′))
0,a
−−→ ((r, r′), (s, s′)),

((p, p′), (q, q′))
1,a
−−→ ((s, s′), (r, r′)),

((p, p′), (q, q′))
0,a
−−→ (r, r′),

((p, p′), (q, q′))
1,a
−−→ (r, r′),

are edges of GA, for each pair (s, s′).
A vertex of GA is useful if it has at least one incoming plain edge and

at least one incoming dashed edge. We keep the essential part of the pair
graph obtained by discarding vertices which are not useful together with
their incoming and outgoing edges. A vertex ((p, q), (r, s)) of GA is called
non diagonal if either p 6= q or r 6= s.

WhenA is a deterministic automaton, we have |VG| = O(|V |4) and |EG| =
O(|V |6). The essential part of the pair graph can be computed in time
O(|VG|+ |EG|) as described in [3].

It is easy to verify that a vertex ((p, p′), (q, q′)) is a vertex of the (essential
part of the) pair graph if and only if there are two computations of A on a
tree s one ending in p, the other one in p′, and there are two computations
of A on a tree t one ending in q, the other one in q′.

Note also that there is an edge ((p, p′), (q, q′))
0
−→ ((r, r′), (s, s′)) in the

pair graph if and only if there is a letter a and transitions (p, q)
a
−→ r and

(p′, q′)
a
−→ r′ in A (or transitions (p, q)

a
−→ s and (p′, q′)

a
−→ s′ in A). There

is an edge ((p, p′), (q, q′))
0
−→ (r, r′) in the pair graph if and only if there is a

letter a and transitions (p, q)
a
−→ r and (p′, q′)

a
−→ r′ in A.

Proposition 21. A tree automaton is not left closing if and only its there
is a path in its pair graph starting at non diagonal vertex and ending in the
vertex (p, p).

Proof. Let A be a tree automaton and GA its pair graph. Suppose that
there is a path in GA from vertex ((p, p′), (q, q′)) with p 6= p′ or q 6= q′ to
a vertex (r, r). Without loss of generality, we can assume that this path is
an edge. Then there are two computations c, c′ of A on a same tree t such
that c ends in p and c′ ends in p′, and there are two computations d, d′ of
A on a same tree s such that d ends in q and d′ ends in q′. There are also

transitions (p, q)
a
−→ r and (p′, q′)

a
−→ r′. This implies that there are two

distinct computations of A on a same tree ending in r. Thus A is not left
closing.

Conversely, if A is not left closing, there are two distinct computations
c, c′ of A on a same tree t ending in a same state r. Let x be a node of the
tree t such that cx 6= c′x. Then there is path in GA labeled by (x,w) going
from some vertex ((cx, c

′
x), (s, s

′)) or some vertex ((s, s′), (cx, c
′
x)) (depending
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on the last letter of x) to (r, r), where w is is the label of the path of the
tree t from the root to the node x. Hence the conclusion. �

(qb, qb)(qb, qb) (q0, q0)(q0, q0) (q1, q1)(q1, q1)

(qb, qb)(q1, q1)

(q1, qb)(q1, q1); (qb, q1)(q1, q1)

(q1, qb)(qb, qb); (qb, q1)(qb, qb

(q1, qb)(q1, qb); (qb, q1)(q1, qb); (qb, q1)(q,q1)

b
a

a

a

b

a

b

bb

b

b

b

b

a

a a

Figure 4. The pair graph for the tree automaton of Exam-
ple 1. A thick edge represents a plain edge and a dashed edge
with the same label. The non useful edges and vertices are
drawn in gray. Each vertex (p, q) is identified with the vertex
(p, q)(p, q). For the test, the pair ((p, q), (r, s)) may not be
represented if ((r, s), (p, q)) does. The tree-shift S accepted
by A satisfies the property of Proposition 21 since there is no
path from a diagonal state to a non diagonal one. Then A is
a left closing automaton and as a consequence the tree-shift
S is AFT.

If A is a deterministic tree automaton, the number of vertices of GA is
at most O(|V |4) and its number of edges of GA is at most O(|V |6). The
property of Proposition 21 can be checked in a linear time in the size of
GA. As a consequence, it can be checked in polynomial time whether the
Fischer automaton of an irreducible sofic tree-shift is AFT. Note that Seidl’s
check of the finite degree of ambiguity of tree automata in [23] has a similar
complexity (the cube of the size of the transitions of the tree automaton).
The pair graph for the tree automaton A of Example 1 is given in Figure 4.

Conclusion

In this article, we have shown that tree-shifts differ from one-sided shifts
of infinite sequences at least concerning the following property: there may
be more than one reduced deterministic irreducible tree automata accepting
the same irreducible sofic tree-shift. The reason is that such automata do
not always have a synchronizing block. For irreducible sofic tree-shifts, the
Fischer automaton remedy for this lack and allows us to define the class of
almost of finite type tree-shifts.
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