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Abstract—Matching pairs of objects is a fundamental oper-
ation in data analysis. However, it requires to define a simi-
larity measure between objects to be matched. The similarity
measure may not be adapted to the various properties of each
object. Consequently, designing a method to learn a measure
of similarity between pairs of objects is an important generic
problem in machine learning. In this paper, a general framework
of fuzzy logical-based similarity measures based on T-equalities
derived from residual implication functions is proposed. Then
a model allowing to learn the parametric similarity measures is
introduced. This is achieved by an online learning algorithm with
an efficient implication-based loss function. Experiments on real
datasets show that the learned measures are efficient at a wide
range of scales, and achieve better results than existing fuzzy
similarity measures. Moreover, the learning algorithm is fast, so
that it can be used in real world applications, where computation
times are a key-feature when one chooses an inference system.

I. INTRODUCTION

Whilst the similarity is an essential concept in human rea-

soning, and plays a fundamental role in theories of knowledge,

there is not an unique and general-purposed definition of

similarity. The reason for this lack of definition comes from

the fact that one can find practical cases where similarity

properties are not satisfied (e.g. symmetry, indiscernibility or

transitivity, see [1]). Indeed, several studies (see [2], [3] and

references therein) have shown that similarity measures do not

necessarily have to be transitive, implying a contradiction with

the most usual approach of comparison, based on geometrical

assumptions in the feature space.

Fuzzy set theory provides a consistent basis for informa-

tion processing, and an elegant, mathematically well-founded,

representation of the uncertainty in the data. Since the data to

be processed are often imprecise, using fuzzy set theory or its

derivatives (e.g. possibility theory or belief function theory)

has become a common approach in recent years [4].

In this paper, similarity measures are defined by the use

of ⊤-equalities derived from fuzzy residual implications. It

does not suffer from the drawbacks of the conventional metric

approaches, and allows to obtain concave or convex iso-

similarity contours.

However, the number of similarity measures induced by the

proposed framework is infinite, due to the infinite number of

triangular norms (t-norms). In practice, the user must choose

the similarity measure, and this wide range of choice is

problematic. Consequently, learning the similarity measure

from the available data is proposed. To this aim, the similarity

measure is defined such that relevance degrees between objects

are respected when then are ranked according to their pairwise

similarity.

Additionally, an online learning setting is adopted, where,

in contrast to batch methods, samples are considered one at

a time. This enable to treat large data sets while keeping

satisfying performances [5].

This paper is organized as follows. Section II first reviews

the main approaches dealing with similarity measurement.

Then, ⊤-equalities are used to define new classes of (para-

metric) similarity measures. Section III presents the learning

algorithm and its properties, as well as examples. In Section

IV, the use of the learning algorithm for supervised classi-

fication is described, and some comments on performances

are given. Finally, conclusion and perspectives are drawn in

Section V.

II. FUZZY SIMILARITY MEASURES

A. Basic material

Aggregating values plays an important role in decision-

making systems. Given n values, an aggregation operator is a

mapping A : [0, 1]n → [0, 1] satisfying boundary conditions

and monotonicity. In the literature, one finds many aggregation

operators, e.g.: t-norms , OWA (Ordered Weighted Averag-

ing) operators, γ-operators, or fuzzy integrals. They belong

to several categories, depending on the way the values are

aggregated: conjunctives, disjunctives, averaging, and mixed

operators. The interested reader can refer to [6], [7] for large,

yet comprehensive, surveys on aggregation operators.

A t-norm is an increasing, associative and commutative

mapping ⊤ : [0, 1]2 → [0, 1] satisfying the boundary condition

⊤(x, 1) = x for all x ∈ [0, 1]. The most popular continuous

t-norms are the minimum ⊤M (x, y) = min(x, y), the product

⊤P (x, y) = x y and the Łukasiewicz t-norm ⊤L(x, y) =
max(x + y − 1, 0). Various parametric families involving a

real value λ lying in a specified domain have been introduced.

The parametric t-norms that are used in the sequel are given

in Table I.
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TABLE I
PARAMETRIC T-NORMS

Family t-norm

Hamacher

⊤H(x, y) =











Drastic t-norm if λ = ∞

0 if λ = x = y
x y

λ+(1−λ) (x+y−x y)
if λ ∈ [0,∞[ and (λ, x, y) 6= (0, 0, 0)

Dombi

⊤D(x, y) =



















Drastic t-norm if λ = 0

⊤M (x, y) if λ = ∞
(

1 +

(

(

1−x
x

)λ
+
(

1−y
y

)λ
)1/λ

)

−1

if λ ∈]0,∞[

Yager

⊤Y (x, y) =











Drastic t-norm if λ = 0

⊤M (x, y) if λ = ∞

max
(

1−
(

(1− x)λ + (1− y)λ
)1/λ

, 0
)

if λ ∈]0,∞[

Frank

⊤F (x, y) =



















⊤M (x, y) if λ = 0

⊤P (x, y) if λ = 1

⊤L(x, y) if λ = ∞

logλ

(

1 + (λx
−1)(λy

−1)
λ−1

)

if λ ∈]0, 1[∪]1,∞[

Schweizer-
Sklar

⊤SS(x, y) =



























⊤M (x, y) if λ = −∞

⊤P (x, y) if λ = 0

Drastic t-norm if λ = ∞
(

max
(

xλ + yλ − 1, 0
)

) 1

λ

if λ ∈]−∞, 0[∪]0,∞[

A general problem in fuzzy logic is to handle conditional

statements if x, then y where x and y are fuzzy predicates.

A widely used method consists in managing them by using

functions I : [0, 1]×[0, 1]→ [0, 1] such that the truth value of I
depends on the initial propositions x and y. We generally speak

about an implication function if I is non-increasing in the

first variable, non-decreasing in the second variable, I(0, 0) =
I(1, 1) = 1, and I(1, 0) = 0, see [8] and [9] for recent surveys

on fuzzy implication functions.

In this paper, residual implication functions are considered.

Given a t-norm ⊤, its corresponding residuum is defined by

I⊤(x, y) = sup
t
{t ∈ [0, 1]|⊤(x, t) ≤ y}. (1)

In the sequel, the following notation is adopted:

• X = {x1, · · · , xn} is the (supposed finite) universe of

discourse,

• C(X) and F(X) are the sets of all crisps and fuzzy sets

in X , respectively,

• fA(x), ∀x ∈ X , is the membership function of a fuzzy

set A over X .

There are several ways to compare fuzzy values or fuzzy

quantities. The first one is based on a broad class of measures

of equality based on a distance measure which is specified

for membership functions of fuzzy sets. The second category

involves set-theoretic operations for fuzzy sets (fuzzy inter-

section, union, cardinality) [10], [11]. Finally, a third way of

defining a similarity measure consists in using logical concepts

of fuzzy implication, as first suggested in [12], following the

seminal paper of [13]. Note that a fourth approach, relying on

morphological operators, has been proposed in [14].

First of all, the basic definition of a fuzzy similarity measure

is recalled.

Definition 1. A mapping S : F(X)×F(X)→ [0, 1] is called

a similarity measure if it satisfies

(P1) S(A,B) = S(B,A), ∀A,B ∈ F(X).
(P2) S(A,A) = 1, ∀A ∈ F(X).
(P3) S(D,Dc) = 0, ∀D ∈ C(X).
(P4) ∀A,B,C ∈ F(X), if A ⊆ B ⊆ C, then S(A,C) ≤

S(A,B) ∧ S(B,C)
or, equivalently

∀A,B,C,D ∈ F(X), if A ⊆ B ⊆ C ⊆ D, then

S(A,D) ≤ S(B,C)

However, most of these properties, if not all, are subject to

criticisms and debates. Therefore, it contributes to emphasize

the lack of a clear definition of a general-purposed similarity

measure. The symmetry property (P1) is still subject to exper-

imental investigations: if S(x, y) is the answer to the question

how is x similar to y?, then one focus more on the feature x
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than on y. This corresponds to the notion of saliency [10] of

x and y: if y is more salient than x, then x is more similar

to y than vice versa, which is experimentally confirmed by

observing asymmetries in confusion matrices. The property

(P2) is also discussed, since in some cases, the similarity of a

point to itself is not 1. The property (P4) is the most debatable

one. In particular Tversky and Gati [1] present and criticize the

segmental additivity, i.e. d(A,C) = d(A,B) + d(B,C) prop-

erty of metrics. This assumption is rather intuitive, and include

a wide class of distance functions: all the Minkowski metrics,

and Riemannian curved geometries. When dealing with fuzzy

sets, and considering ⊤-equivalences and ⊤-equalities, the

triangle inequality is replaced by the ⊤-transitivity.

The metric approach takes its roots from studies on how to

measure the distance between two real functions. The basic

concept is to consider a fuzzy set as a point in a vector space.

The general form of a Minkowski r-metric defined for r ≥ 1
is usually taken:

dr(A,B) =

(

∑

x∈X

|fA(x)− fB(x)|r
)1/r

(2)

This metric induces well known distance functions; Hamming

(or Manhattan) for r = 1, Euclidean for r = 2, Tchebychev

(or sup distance) for r = ∞ (which can be written as

supx∈X |fA(x) − fB(x)|). Note that for r < 1, dr does not

define a metric, since it violates the triangle inequality. The

Hamming and Euclidean distances are also denoted L1 and L2

norms, respectively. Increasing the value r gives more weight

to large differences in feature values.

Starting from a distance function, several methods have

been proposed to obtain a similarity measure. The most

natural way is to use a non increasing function g such that

S(A,B) = g(d(A,B)). This idea relies on the link between

a distance in a vector space and a similarity. Intuitively,

when the distance increases, the similarity should decrease.

Popular choices of this function g are the ’Cauchy-like’

function g(x) = 1/(1 + x) suggested by Zimmerman in

[15]. Another function, coming from the work of Shepard

[16], consists in taking g(x) = exp(−αx). The use of the

exponential law comes from the underlying observation that

there is a non linear relationship between the distance and

the similarity which is concave upward. However, obtaining

similarity measures with the help of distance measures implies

that the similarity satisfies the metric properties, which is far

from obvious in practice. This has led researchers to prefer

non-metric models of similarity.

The second way to compare fuzzy values comes from some

basic set-theoretic considerations where union, intersection

and complementation are defined for fuzzy sets. While metric

based measures can be interpreted as proximity of fuzzy sets,

the set-theoretic measures can be viewed as an approximate

equality. Probably the most famous set-theoretic measure is

the consistency index, defined by the supremum over X of

A∩B. The interested reader can refer to [17] for more details

on set-theoretic comparison measures.

The last main approach consists in considering the implica-

tion degrees of the elements belonging to A over the elements

of B [13], and vice-versa. The implication degree is obtained

by using one of the fuzzy implication functions described in

the previous section. Formally, having x an element of A, and

y an element of B, their implication degree is given by I(x, y).
More details on related logical comparison measures are given

in [18]. In order to obtain the implication degrees of A over

B and B over A, we use the bi-implication bI , defined by

bI(x, y) = min(I(x, y), I(y, x)) (3)

In [19], the authors showed that in the case of residual

implications, bI is a ⊤-equality if and only if ⊤ is a left-

continuous t-norm. In this paper, residual implications are

used, since the others (S, QL, D) do not define ⊤-equalities.

Theorem 1. Let bI⊤ be a bi-residual implication function

defining a ⊤-equality E⊤. For arbitrary A,B ∈ F(X), let

S(A,B) =

n

A
i=1

E⊤ (fA(xi), fB(xi)) (4)

for all xi in X , where A is an aggregation operator. Then S
is a similarity measure.

Proof:

(P1) By definition, E⊤(x, x) = 1 holds, for any x ∈ [0, 1]. By

boundary conditions on A, the equality S(A,A) = 1 is

obtained.

(P2) by commutativity of ⊤-equality,

S(A,B) =

n

A
i=1

E⊤ (fA(xi), fB(xi))

=

n

A
i=1

E⊤ (fB(xi), fA(xi)) = S(B,A)

(P3) by definition, I⊤(1, 0) = 0, so that E⊤(1, 0) = 0. By

boundary conditions on A, S(D,Dc) = 0.

(P4) since A ⊆ B ⊆ C ⊆ D, for all xi ∈ X ,

fD(xi) ≥ fC(xi) (5)

fB(xi) ≥ fA(xi) (6)

hold. By non-increasingness in the first

variable and non-decreasingness in the second

variable of I⊤, for all xi ∈ X , we have

I⊤(fD(xi), fA(xi)) ≤ I⊤(fC(xi), fA(xi)) by Eq.

(5) and I⊤(fC(xi), fA(xi)) ≤ I⊤(fC(xi), fB(xi)) by

Eq. (6). Using E⊤(x, y) = I(max(x, y),min(x, y))
and (5-6), we obtain E⊤(fD(xi), fA(xi)) ≤
E⊤(fC(xi), fA(xi)) and E⊤(fC(xi), fA(xi)) ≤
E⊤(fC(xi), fB(xi)). Last, monotonicity of A gives

S(A,D) ≤ S(B,C) which concludes the proof.

Remark 1. The minimum operator is used in (3), but any t-

norm also fulfill the desired properties, because for any I⊤,

x ≤ y ⇒ I⊤(x, y) = 1 (by ordering property, see [8]).

B. Examples

Taking particular t-norms and aggregation operators en-

ables to retrieve well-known similarity measures. For instance,

taking the arithmetic mean and ⊤P , ⊤L, the two measures
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Fig. 1. Examples of iso-similarity contours between a reference set A = [ 1
2
]

(denoted by ·) and all fuzzy sets F(X), n = 2 where high and low values
correspond to white and black colors respectively. The arithmetic mean is
used. First row: I⊤M

, I⊤P
and I⊤L

, respectively from left to right. Second
row: Hamacher similarity, where λ = 0, 2, 5 from left to right. Third row:
Dombi similarity, where λ = 1, 2, 5 from left to right.

proposed in [20] are retrieved. Remark that for the arithmetic

mean and the Łukasiewicz implication, the exact contrapo-

sition of the L1 norm is obtained, and taking the minimum

instead of the mean gives the contraposition of the Tchebychev

norm. More details on fuzzy similarity measures that can be

obtained with the generic framework are given in [18].

Remark 2. In this paper, the arithmetic mean, the minimum

and maximum operators are taken as overall aggregation oper-

ators . However, any aggregation operator such as geometric

means, OWA operators or fuzzy integrals can be used. The

use of the latter is currently under study in order to take into

account feature dependencies, as in [21].

For illustration purpose, Figure 1 shows some examples

of fuzzy similarity measures as well as the influence of the

parameter λ for the Hamacher and the Dombi-based measures.

The different plots show the similarity value of a given fuzzy

set A = {0.5/x1, 0.5/x2} to all the possible two-dimensional

fuzzy sets B for various I⊤. As one could expect, the closer

to x1 or x2, the higher the similarity. One can also note that

different I⊤ lead to different shapes of iso-similarity contours.

According to the third line of Figure 1, one can remark that the

Hamacher similarity measure gives a concave contour with a

low λ, which becomes convex when the parameter increases.

Consequently, the similarity measure is much more flexible

than usual metrics, since convex and concave shapes can be

modelized. The interesting point is that a measure without

segmental additivity can be obtained, which is consistent with

the axioms of Tversky and Gati, by choosing a parameter

making the measure concave. Another parameter value allows

to obtain convex iso-similarity contours, yielding a usual

TABLE II
ILLUSTRATION OF RANKING CHANGES FOR PARAMETRIC SIMILARITY

MEASURES.

Fuzzy sets λ Hamacher similarity

A, B 2.0 0.505

A, C 2.0 0.475

A, B 15.0 0.650
A, C 15.0 0.762

Fuzzy sets λ Dombi similarity

A, B 2.0 0.271

A, C 2.0 0.206

A, B 0.25 0.686
A, C 0.25 0.818

metric satisfying the triangle inequality. This property is very

important, since a concave contour of iso-similarities means

that the triangle inequality is violated [22]. However, when

dealing with fuzzy sets, the ⊤-transitivity is preserved, as

discussed earlier.

Moreover, the measures enable to capture the idea that

similarity is easier to quantify and makes more sense locally

(i.e. small variations) than far away in the feature space,

where comparisons and judgments of similarity are difficult.

An appealing property of parametric similarity measures is

that it allows to rank objects in a different order depending

on the parameter λ. Keeping the Hamacher and Dombi based

similarity measures, three fuzzy sets A, B and C are used in

this experiment. They are defined by:

• A = {0.7/x1, 0.05/x2, 0.32/x3, 0.07/x4, 0.10/x5},
• B = {0.82/x1, 0.75/x2, 0.36/x3, 0.90/x4, 0.04/x5},
• C = {0.45/x1, 0.34/x2, 0.69/x3, 0.57/x4, 0.16/x5}.

They can be visually inspected in Figure 2. Even for a human,

the ranking of S(A,B) and S(A,C) is not an easy task.

In Table II, the amount of similarity between A, B and

C with various λ values are given. In this table, maximum

similarity values (with respect to the other one) are in bold

font. According to this table, it can be seen that one can find a

value of λ1 such that S(A,B) > S(A,C) and a value λ2 such

that S(A,B) < S(A,C). Consequently, the three objects A,

B and C are ranked differently depending on λ. If one cannot

find two values of λ such that the ranking of three objects is

different, then no matter how the measures are learned, they

are all equivalent in terms of information retrieval, and do not

provide efficient similarity measures.

III. LEARNING THE SIMILARITY FUNCTION

A. Loss function

In this paper, an online learning procedure is adopted. In

this setting, the algorithm sequentially receives samples, and

predicts an output. Once the output is obtained, the algorithm

gets a feedback indicating its goodness. Afterwards, parame-

ters can be changed so that the probability of correct output

increases in the next step. An appealing property of online

algorithms is that they are relatively simple to implement and

quickly (i.e. with a few number of iterations) provides good

performances [5]. Moreover, the learning algorithm does not
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Fig. 2. Three fuzzy sets A, B and C where the ranking of similarity measures
S(A,B) and S(A,C) is not obvious.

require to use all the learning set, so that a great improvement

in terms of computation is obtained when one considers large

datasets.

Given information related to the relevance degree of match-

ing between objects described by the help of fuzzy sets, the

problem of learning a similarity function S is addressed. A

relevance degree R can be understood as a pairwise function

of objects a and b which states how strong a and b are

related. For instance, in supervised classification, this could

encode that both are in the same class. The relevance degree

may be defined by user’s input, which may be based on

results of queries, or by knowledge on objects (supervised

classification). More formally, there is a set C of n objects

and some relevance degrees R between objects belonging to

C. The relevance degrees take their values in the unit interval,

1 meaning complete satisfaction, whereas 0 means that there

is no reason at all to match the two objects. Supposing that

R(a, b) > R(a, c), the aim is to define and learn a parametric

similarity measure Sλ such that

Sλ(a, b)→ Sλ(a, c) < 1 (7)

The → operator is a fuzzy implication. In the sequel, only

residual implications are considered but this can be adapted to

any fuzzy implication.

The hinge loss function for every triplet a, b, c is defined

by:

ℓλ = max
{

0,Sλ(a, b)→ Sλ(a, c)− 1
}

(8)

Naturally, the proposed learning framework can be built with

many other fuzzy implication functions (parametric included).

For simplicity, the Łukasiewicz implication is used in the

sequel, so that the loss becomes

ℓλ = max
{

0,−Sλ(a, b) + Sλ(a, c)
}

(9)

The aim is to minimize the total loss Lλ on the learning set.

The total loss is defined by summing up the individual losses

over all the triplet of the learning set:

Lλ =
∑

(a,b,c)∈C

ℓλ(a, b, c) (10)

However, even in the case of moderately large datasets, the

number of all possible triplets is very large and exhaustive

computation becomes intractable in practice. Therefore, an

online learning scheme is adopted. Consequently, the mini-

mum loss is not searched in the entire learning set, but with

randomly selected samples of the set. More precisely, the

sample a is randomly selected in the learning set, and b, c
are also uniformly sampled such that a and b share the same

class, while c belongs to another class.

B. Optimal updating

Since the similarity measure is determined by its parameter

value λ, its optimal value is searched by using an online learn-

ing algorithm based on sequential updates of λ. Depending on

the similarity measure, the initial value λ0 varies, see Section

IV for comments, and subsection II for a discussion on the

various similarity measures that are used in the sequel. It leads

to find λ such that:

λi = argminλ

(

1

2
‖λ− λi−1‖2 + αℓλ(a, b, c)

)

, (11)

where α ≥ 0. In other terms, during the optimization process,

λi is selected in order to obtain a trade-off between minimizing

the loss on (a, b, c) and staying quite close to its previous

value λi−1. This trade-off is controlled by the ‘aggressiveness’

parameter α. Naturally, if α is set to zero, then the optimal λi

value is equal to λi−1. In contrast, setting α to a high value

imposes an important weight on the loss function. It is clear

that when the loss ℓλ(a, b, c) is equal to zero, then the optimal

parameter value does not change from the previous iteration,

i.e. λi = λi−1. Otherwise, the objective function L is defined

by

L(λ) = 1

2
‖λ− λi−1‖2 + α

(

− Sλ(a, b) + Sλ(a, c)
)

(12)

The optimal solution with respect to λ is such that the gradient

of L, ∂L(λ)/∂λ, vanishes:

∂L(λ)
∂λ

= λ− λi−1 − α
∂
(

Sλ(a, b)− Sλ(a, c)
)

∂λ
= 0

(13)

Let Gi be the gradient value
∂
(

Sλ(a,b)−Sλ(a,c)
)

∂λ . Therefore,

the optimal new value λ is given by

λ = λi−1 + αGi

The corresponding algorithm is described in Algorithm 1.

Naturally, the value Gi depends on the similarity measure

that is used. The corresponding gradients for each similarity

measure are given in Table III. For writing convenience,

f1 = max(ak, bk) and f2 = min(ak, bk) for k ∈ N . The

performance of the learning algorithm also depends on the

initial value λ0, which is discussed in Section IV-C. When

λ is out of definition bounds of the t-norm (e.g. negative

values for Hamacher one), the last convenient value λi−1 is

returned. An important case is the one of bound values. When

λ reaches these bounds, then the equivalence obtained with the

corresponding t-norm is used. For instance, if λ = 0 for the



IEEE TRANSACTIONS ON FUZZY SYSTEMS 6

TABLE III
SIMILARITY MEASURES AND THEIR CORRESPONDING RELATIVE GRADIENT WITH RESPECT TO λ WHEN USING THE ŁUKASIEWICZ IMPLICATION IN THE

LOSS FUNCTION.

S
∂

∂λ

(

Sλ(ak, bk)
)

SH
(f2 − f1f2)(f1 − f2)

(

f2(λi + f1 − λif1) + f1 − f2
)2

SY −
(

(1− f2)
λ − (1− f1)

λ
)1/λ 1

λ2

(

λ
log(1− f2)(1− f2)λ − log(1− f1)(1− f1)λ

(1− f2)λ − (1− f1)λ
− log((1− f2)

λ − (1− f1)
λ)

)

SD

(

(

1− f2

f2

)λ

−

(

1− f1

f1

)λ
)1/λ









−
1

λ2
log

(

(

1− f2

f2

)λ

−

(

1− f1

f1

)

)

+
1

λ

log
(

1−f2
f2

)(

1−f2
f2

)λ
− log

(

1−f1
f1

)(

1−f1
f1

)λ

log

(

(

1−f2
f2

)λ
−
(

1−f1
f1

)

)









SF
1

log(λ)2







log(λ)

1 +
(λf2−1)(λ−1)

(λf1−1)

(λf1 − 1)(λf2 + f2λf2 − λf2 (f2/λ)− 1)− (λf2 − 1)(λ− 1)λf1f1

(λf1 − 1)2
−

1 +
(λf2−1)(λ−1)

(λf1−1)

λ







SSS

(

1 + fλ
2 − fλ

1

)1/λ
(

−
1

λ2
log(1 + fλ

2 − fλ
1 ) +

1

λ

log(f2)fλ
2 − log(f1)fλ

1

1 + fλ
2 − fλ

1

)
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Fig. 3. Three fuzzy sets A, B and C where the similarity of A and B is
clearly higher than the similarity of A and C.

SS norm, then the equivalence obtained by the product is used,

thanks to the continuity around 0 of this t-norm. Note also that

for a reasonable number of iterations (e.g. n2/2), limit bounds

such as infinity are not reached. For illustration purpose, three

Algorithm 1 Online Similarity Learning algorithm

1: procedure ONLINE SIMILARITY LEARNING

2: λ0 ← initial value

3: repeat

4: Random selection of a, b and c such thatR(a, b) >
R(a, c).

5: Gi ←
∂
(

Sλ(a,b)−Sλ(a,c)
)

∂λ ⊲ See Table III.

6: λ← λi−1 + αGi

7: until convergence

8: return λ
9: end procedure

fuzzy sets are used for which the ranking of the similarities

S(A,B) and S(A,C) is natural. Such fuzzy sets are plotted

in Figure 3. Here, there are only three samples, so they are

repeatedly selected into the learning algorithm, where α = 1.

If the difference between two similarities increases, then the

similarity measure is more efficient for the discrimination of

other objects belonging to the learning data (and hopefully

on the test set). The difference S(A,B)−S(A,C) is studied

as a function of the iterations. The corresponding graph is

plotted in Figure 4 (dashed line). Naturally, since B is more

similar to A than C, even at the beginning of the algorithm,

the difference is quite large. The most interesting point is the

evolution of the parameter λ that makes A and B more and

more similar, and A and C more and more dissimilar as λ
is updated. This difference does not exceed an upper bound

reached around the 130-th update of λ.

Now, the three fuzzy sets introduced in the previous section

are considered. As already mentioned, the ranking of S(A,B)
and S(A,C) is not easy. Consequently, the learning algorithm

is run a first time, with the supposition that B is more similar

to A than C. The corresponding difference curve is plotted in

Figure 4 as a solid line. Then, the algorithm is run a second

time with the supposition that C is more similar to A than B.

The S(A,C)− S(A,B) difference curve is plotted in Figure

4 as a dotted line. As can be seen, supposing that B is more

similar to A than C leads to quickly reach the upper bound

(around the 200-th iteration). In contrast, supposing that C is

more similar to A than B requires much more iterations for the

learning algorithm to reach its upper bound. Note that at the

beginning, the difference is negative, that is to say S(A,B) >
S(A,C), and as λ is updated, S(A,B) < S(A,C) is obtained,

accordingly to the assumption that C is more similar to A than

B. This example shows the ability of the learning algorithm to

adapt the similarity measure to the data, since the ranking of

the similarity between three objects can be modified according

to prior knowledge.

IV. EXPERIMENTS

In this section, an application in supervised classification of

the proposed learning model is presented.
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Fig. 4. Difference S(A,B)−S(A,C) as a function of the number of update
of λ, (see text for details).

A. Protocol

Let X = {(x1, y1), · · · , (xn, yn)} be a learning set having

c classes. Each sample xi is represented by a set of p features,

and its discrete class label yi ∈ {1, · · · , c} is known. In order

to use the similarity measures previously introduced, each

sample x must be described by a fuzzy set. In the sequel,

an automatic fuzzification scheme is proposed. Each sample

is described by a discrete fuzzy set of c ∗ p elements. The

basic idea of the fuzzification is to estimate, for each feature

of each class, its mean and standard deviation, giving two

matrices M and S of size (c× p). For each sample, the fuzzy

set is obtained by evaluating a membership function on each

of its features with respect to all classes. For simplicity, the

Gaussian membership function is used. It is defined by

f(x|σ,m) = exp

(

− (x−m)2

2σ2

)

(14)

where m is the mean and σ the standard deviation. The general

procedure is described in Algorithm 2, where the set Xi
j is

composed of the j-th feature of the class i.

Example 1. For illustration purpose, we give an example for a

dataset composed of a mixture of three normal 1-dimensional

distributions of 100 points each. The means are equal to -

2, 1, 3 and standard deviations are equal to 0.4, 0.9 and

0.7, respectively. Each sample is then described by three

membership degrees corresponding to the three classes. The

membership functions obtained are plotted in Figure 5.

During the learning phase, 3 samples are randomly selected

in each iteration step . The first one, a, is the reference one.

The sample b is randomly chosen so that it belongs to the

same class of a, and c is randomly selected such that its class

is not the class of a. Since a and b are in the same class,

and c belongs to another class, R(a, b) > R(a, c) holds.

The performance of all similarity measures is evaluated by

using standard ranking precision measures based on nearest

neighbors. For each sample, all other test samples are ranked

according to their similarity to the sample. The number

Algorithm 2 Fuzzification of each sample x

1: procedure FUZZIFICATION(X)

2: Set p← number of features

3: Set c← number of classes

4: for i = 1 to c do

5: for j = 1 to p do

6: M(i, j)← componentwise average(Xi
j)

7: S(i, j)← componentwise standard dev.(Xi
j)

8: end for

9: end for

10: for each sample xk ∈ X do

11: for i = 1 to c do

12: for j = 1 to p do

13: Set membership degrees of xk using (14),

14: with M(i, j) and S(i, j).
15: end for

16: end for

17: end for

18: end procedure

−4 −2 0 2 4 6
0

0.2
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0.6

0.8

1

Fig. 5. Plot of the 1-dimensional dataset and the membership functions
obtained by the fuzzification scheme. Samples of different classes are repre-
sented by different colored dots.

of same-class samples among the top k similar samples is

computed, giving the precision measure for this sample. When

averaged over all samples, an average precision (AP) measure

as a function of k is obtained:

AP (k) =
1

n

n
∑

i=1

1

k

k
∑

j=1

(y(xi) = y(xj))

where xj , j = 1, · · · , k are the k most similar objects with

respect to xi. The mean average precision (mAP) is obtained

for each similarity measure by averaging the precision at level

k across all k values:

mAP =
1

kmax

kmax
∑

k=1

AP (k)

Both AP and mAP are commonly used evaluation measures

of similarity based classifiers [23], [5].



IEEE TRANSACTIONS ON FUZZY SYSTEMS 8

B. Datasets

To validate the efficiency of the proposed learning model,

a comparison of its performance on various real datasets

available at http://archive.ics.uci.edu/ml/ is conducted. The

following datasets are considered:

• the well-known IRIS dataset [24], [25]. The data contains

3 classes of 50 samples each, where each class is a type or

iris plant. Each sample is described by a 4 features: sepal

length and width, petal length and width. It is a classical

dataset in pattern recognition literature, which is known

to have one class linearly separable from the other two,

and two classes which are not linearly separable.

• the Wine dataset contains 3 classes and 178 samples.

Each sample is described by 13 constituents found in each

wine. The classes are quite well separated, and samples’

classification is not reputed to be a challenging task.

• the Pima dataset contains 2 classes of 768 samples, each

described by 8 features. The class, 0 or 1, denotes the

absence or presence of diabetes pathology.

• the Yeast dataset. This is a genetic dataset of phylogenetic

profiles for the Yeast genome. It contains 1484 samples,

described by 8 attributes. The ten classes of the problem

correspond to the various localization sites of the proteins.

• the Heart dataset contains 270 samples of 13 attributes

each, describing medical data of each patient. The class,

0 or 1, denotes the absence or presence of heart disease.

• the Ionosphere dataset is composed of 351 instances. For

each sample, there are 17 pulse numbers, each pulse num-

ber is described by 2 attributes, giving 34 features. The

goal is to discriminate radar returns from the ionosphere.

The two classes correspond to radar returns showing

evidence of some type of structure in the ionosphere, and

those that do not.

• The Tae dataset consists of evaluations of 151 teaching

assistant. Each assistant is described by 5 attributes. The

teacher may belong to three classes: low, medium or high.

• The Ecoli dataset contains 336 observations described by

7 attributes. Each sample is a sequence of protein, and

the 8 classes correspond to their respective localization

sites.

• the Liver Disorders dataset contains 345 samples. Each

sample constitutes the record of a single male individual,

and is described by 7 features such as blood tests, or

number of drinks per day. The class, 0 or 1, denotes some

sort of liver disorders.

• the Newthyroid dataset is composed of 215 instances. The

instances are described by 5 chemical features designed

to the diagnostic of the functioning of the thyroid gland.

This functioning may be normal, hypo or hyper, and

corresponds to the three classes of the problem.

• the Vowel dataset is composed of 528 samples described

by 10 features. The goal is to recognize one of the eleven

vowels of British English.

• the original Breast Cancer Wisconsin dataset contains 699

samples, described by 10 attributes. Each sample has one

of two possible classes: benign or malignant.

As can be seen, the datasets that are considered present a

large variety of problems, ranging from linearly separable (e.g.

Wine) to hard classification problems (e.g. Yeast).

C. Results

In this section, the learning algorithm of fuzzy similarity

measure is compared to standard fuzzy similarity measures

issued from the literature. Here, the aim is to analyze the im-

provement (if any) of the learning scheme compared to usual

similarity measures. In all experiments, and for all similarity

measures, the initial value of λ is set to 10. The influence of

this initialization is discussed in the sequel. First, a detailed

study on the IRIS dataset is provided. The number of top k
samples varies from 1 to kmax = 10, and the individual average

precision measures for each similarity measure are obtained.

The corresponding performances are reported in Table IV,

where the best score for each k is reported in bold font. The

parametric measures are shown to be the best measures over all

top k samples. The Hamacher measure performs particularly

well, ranking first in 7 out of 10 levels. The second experiment

demonstrates the efficiency of the approach on the twelve

aforementioned datasets. Here again, the average precision

measure over the top k samples from 1 to 10 is considered,

and the mean average precision is obtained by taking the

means across the 10 average precision measures. The results

for each dataset and each similarity measure are given in Table

V, where best scores for each dataset are reported in bold

font. The last column is the average rank of each similarity

measure over all datasets. For comparison purpose, results

obtained with a recent online similarity learning algorithm

(OASIS, see [5]) are also given in the last row of the table. In

the experiments, the OASIS algorithm uses the same feature

vectors as the other similarity measures. Here, the aim is to

compare fuzzy similarity measures, so that OASIS is not taken

into account for the rank computation. According to Table V,

the following remarks can be made.

• Whatever the datasets, SM leads to the worst rank. This

measure is a point-wise measure in the sense that it uses

a single degree of membership to determine their value.

• Although SmL is also a point-wise measure, the average

performance of this measure is better than SM . The

reason is that the measure uses a combination of two

degrees of membership, instead of one for SM .

• Whatever the datasets, there are at least two parametric

similarity measures that perform better than commonly

used similarity measures.

• The average rank of each similarity measures gives an

overview of their performance compared to the others.

The parametric similarity measures can be ranked as

follows: SSS ≻ SH ≻ SY ≻ SD ≻ SF . It is not

surprising to observe that the Schweizer-Sklar based

measure performs the best results. This is the only t-norm

(among the considered ones) that is equal to the four

basic t-norms, depending on the λ value. Consequently,

the similarity measure derived from this t-norm is more

flexible than the others.
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TABLE IV
AVERAGE PRECISION MEASURE (%) ON IRIS DATASET, FOR THE TOP k SIMILAR SAMPLES (k RANGES FROM 1 TO kMAX = 10).

k = 1 2 3 4 5 6 7 8 9 10

SP 92.66 92.66 92 92.33 92.26 92.44 91.71 91.41 90.96 90.53
SL 94.66 94.66 93.77 92.83 92.53 92.55 92.47 92.41 92.44 92.20
SM 62.66 62 61.77 62 62.13 60.33 60.19 59.50 58.51 58.20
SmL 94.66 94.66 94.22 94.16 93.46 92.55 91.61 91.33 90.81 90.60

SH(λ⋆ = 58.53) 93.33 94.33 93.77 94.50 94.53 94.66 94.47 94.33 94.22 93.66

SY (λ⋆ = 1.41) 95.33 94.66 94 93.33 92.80 93 92.85 92.83 92.96 92.93
SD(λ⋆ = 0.10) 95.33 95 93.77 94 93.46 93.44 93.33 93.08 92.96 92.80

SF (λ⋆ = 107) 94.66 95 94.22 93.66 93.60 93.88 93.61 93.33 93.25 93.26
SSS(λ

⋆ = 0.5) 94.66 94 94.44 93.66 93.06 93.33 93.42 93.33 93.33 93.26

TABLE V
MEAN AVERAGE PRECISION (%) FOR ALL DATASETS, α = 1.

S Iris Wine Pima Yeast Heart Ionosphere Tae Ecoli Liver Newthyroid Vowel Breast Avg. rank

SP 91.90 93.42 66.45 43.13 75.34 89 48.59 67.80 55.72 91.24 78.27 95.33 7.33
SL 93.05 95.65 66.39 46.26 75.56 88.97 49.31 74.64 56.05 94.95 82.98 95.87 5.25
SM 60.73 49.37 52.89 25.21 49.93 70.77 34.26 47.27 49.80 78.82 11.60 80.41 9
SmL 92.81 92.96 67 45.33 69.06 71.48 48.19 76.45 54.42 91.86 81.96 94.23 7.08

SH 94.18 94.55 68.39 47.01 75.39 89.64 49.82 76.51 57.73 95.11 85.11 95.97 2.75
SY 93.47 95.83 67.32 46.89 75.64 89.66 49.44 74.77 58.37 95.32 83.05 96.02 3.08
SD 93.72 93.92 68.65 46.79 75.41 92.61 49.54 70.57 57.66 91.97 83.17 95.43 4
SF 93.85 95.35 68.12 46.77 75.47 89.70 49.43 75.45 55.96 93.65 84.11 95.37 4.08
SSS 93.65 95.76 67.13 47.12 75.52 89.95 49.46 76.97 59.03 95.44 83.28 95.94 2.41

OASIS 93.25 94.11 65.41 42.21 73.21 89.58 45.05 73.25 58.05 95.11 82.98 94.37 –

• When compared to OASIS, parametric equivalences be-

haves favorably. In particular, all similarity measures

except Dombi and Frank give better results than OASIS.

In order to compare multiple similarity measures over multiple

datasets, a combination of a Friedman test and a Nemenyi

post-hoc test is used, following the recommendations of [26].

Let Ri
j be the rank of the j-th similarity measure on the i-

th dataset. The Friedman test compares the average ranks Rj

over all datasets (last column of Table V). Under the null-

hypothesis, stating that two similarity measures are equivalent,

their ranks should be equal (here Rj = 5 for all j). The

Friedman statistic is given by

χ2
F =

12N

ns(ns+ 1)





∑

j

R2
j −

ns(ns+ 1)2

4



 (15)

where N , the number of datasets, and ns the number of

similarity measures are big enough, typically N > 10 and

ns > 5. A derived and better statistic proposed in [27] is

given by

FF =
(N − 1)χ2

F

N(ns− 1)− χ2
F

(16)

The Friedman test χ2
F = 68.95 proves that the average

ranks are significantly different from the mean Rank Rj = 5
expected under the null hypothesis. Moreover FF = 28.04 is

distributed according to the F distribution with 9 − 1 = 8
and (9 − 1) × (12 − 1) = 88 degrees of freedom. The p-

value computed by using the F (8, 88) distribution is almost

zero, so that the null hypothesis is rejected at a high level of

confidence.

If the null hypothesis is rejected, the Nemenyi post-hoc test

is proceeded. The performance of two similarity measures is

significantly different if the corresponding average ranks differ

by at least the critical difference, defined by

CD = qα

√

nc(nc+ 1)

6N
, (17)

where qα values are based on the Studentized range statistic

divided by
√
2, (see [26] for details). Finally, a (#similarity

measures × #similarity measures) matrix that summarizes

the results is obtained. Each entry of the matrix is 1 if the

difference of ranks is significant, and 0 otherwise. In order

to provide a more informative visualization, a new matrix is

created where each entry ({i}, {j}) shows the difference of

individual ranks R({i}) − R({j}) obtained with similarity

measures {i} and {j}, or black if the difference is not

statistically significant under the Nemenyi test, (see Figure

6).

According to Figure 6, the following remarks are drawn.

Two main sets of measures : {1, 2, 3, 4} and {5, 6, 7, 8, 9} can

be identified. They correspond to the commonly used simi-

larity measures and the new parametric similarity measures,

respectively. Within the first set, one must distinguish the

measure {2}, i.e. SL, which is not different from the second

set at significance level α = 0.05. However, at α = 0.10,

it becomes significantly worse than the measure SSS . In the

second set, two measures can be distinguished. The first is {8},
i.e. SF . In terms of statistical significance, this is the worst

parametric measure. Although its average rank is better than

those of {2, 4}, this is not significant at level 0.05. One may

argue that at significance level α = 0.05, the post-hoc test

is not powerful enough to detect any significant differences
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Fig. 6. Comparison of each similarity measures for 2 confidence levels α = 0.05 (left) and α = 0.10 (right). In each plot, entries (a, b) are the paired rank
differences of similarity measures {i} and {j}, (see text). Black entries correspond to not statistically significant differences under the Nemenyi post-hoc test.

between the measures. The second interesting measure is {9},
i.e. SSS , which is significantly better than the entire first set.

Considering α = 0.10, one may conclude:

• SSS is significantly better than all commonly used simi-

larity measures,

• none of the parametric measures is significantly better

than the others,

• SP , SM and SmL are significantly worst than the para-

metric measures,

• we cannot conclude on the statistical significance of SL,

except for SSS (worse) and SM (better).

The next experiment is the analysis of the initial value of

λ with respect to the performance obtained with the learning

algorithm, where α = 1. In order to make the reading clear,

only the results for the Hamacher based similarity measure

are reported, although similar comments are valid for the other

parametric measures. The mean average precision as a function

of λ0 is plotted in Figure 7. The mAP values range from

94.16% to 94.29%, yielding a maximum difference of 0.13%,

so that it can be concluded that the initial value does not

have a large influence on the performance. Note that the best

mAP 94.29% is greater than the value reported in Table V.

Finally, the effect of the input parameter α on the performance

of the similarity measures is investigated. To this aim, the

learning algorithm 1 is run with different values of α on the

IRIS dataset. The mean average precisions and average losses

of algorithms as a function of α varying from 0.1 to 10 are

depicted in Figure 8. As can be seen from the graphs, the

value α have a larger effect on the performance (up to 0.4%)

of the learning algorithm than the initial value λ0. As expected,

while the loss is decreasing, the corresponding mean average

precision is increasing. An interesting point is that local peaks

of the loss also correspond to local decreasing of the mean

average precision, e.g. log(α) = 1.5, showing the ability of the

loss structure to efficiently describe the problem constraints.

Here again, one can note that a better performance than the one

reported in Table V can be obtained, i.e. greater than 94.18%.

Since α is a weight applied on the loss, one can expect that

0 20 40 60 80 100
94.14

94.16

94.18

94.2

94.22

94.24

94.26

94.28

94.3

λ0

m
A
P

Fig. 7. Mean average precision for the Hamacher based similarity measure
SH as a function of the initial value λ0.

for very small values of α, the loss will be high. On the other

hand, when increasing α, the optimal λ value can be reached

quickly, but noisy data influences the result.

So far, the number of iterations within the learning algo-

rithm was fixed. The effect of α as a function of the number

of iterations is now discussed. The learning algorithm is run

for α = 0.1, α = 10 and α = 100. At the end of each

iteration, the mean average precision is computed using the

actual λ value. Results are given in Figure 9. Naturally, a

small α value (α = 0.1) leads to a slow progress rate, since

λi is not very different of λi−1. In contrast, when α is large

(α = 100), the precision increases faster, but at the price of

a worst performance than a medium value (α = 10) later on.

Additionally, the more α, the less smooth the curve. A large

value of α heavily modifies λi, resulting in a large difference

in terms of performance. In contrast, with a small α value,

λi−1 and λi slightly differ, which results in a small variation

in terms of performance.
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Fig. 8. Mean average precision (top) and average loss (bottom) for the
Hamacher based similarity measure SH as a function of log(α).

V. CONCLUSION

The contribution of this paper lies in the development

of generalized fuzzy similarity measures. First, a generic

framework of designing similarity measures based on the use

of residual implication functions is proposed. This construction

presents two main advantages: 1) classical fuzzy similarity

measures are retrieved for particular residual functions, 2)

verifying if a newly constructed similarity measure satisfies

the required properties is facilitated. Then, some new families

of parametric similarity measures by using parametric residual

implications are presented. An algorithm that allows to learn

the parameter of each similarity measure based on relevance

degrees is given. Experiments on a number of real datasets

show the superiority, which is statistically significant, of the

learning algorithm over commonly used similarity functions.

The proposed similarity measures can be used in many

classification methods, e.g. induction of pattern trees [28],

hierarchical clustering [29], content-based image retrieval [30],

or ranking image similarities [5].

Among the potential perspectives, a more sophisticated

updating scheme, using the passive-aggressive family of algo-

rithms [31] can be developped. In each step, the weight applied
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Fig. 9. Mean average precision for the Hamacher based similarity measure
SH as a function of the number of iterations, for different values of α.

on the loss is varying so that the new parameter value better

reflects the data. Another interesting perspective is to analyze

the fuzzy equivalences between each similarity measures as

proposed in [32] in order to select a particular function within

the large variety of measures.

Returning to aggregation operators, it would be interesting

to consider ideal samples that characterize the classes, and

then adopt a metric that can be learnt with the help of particular

aggregation operators [33].
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