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This article proposes a triangular canonical form for a class of 0-flat nonlinear systems. Necessary and sufficient
geometrical conditions are given in order to guarantee the existence of a local diffeomorphism to transform the
studied nonlinear systems into the proposed 0-flat canonical form, which enables us to compute the flat output
as well.
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1. Introduction

Differential flatness is a well-known concept in control
theory, proposed by Fliess, Lévine, Martin and
Rouchon (Fliess, Lévine, Martin, and Rouchon 1992,
1993, 1995, 1997, 1998, 1999a,b; Sira-Ramirez and
Agrawal 2004; Lévine 2009) and nowadays is widely
used in industrial applications, such as trajectory
planning problem (Rotella and Zambettakis 2007).
Other problems, such as isolation of the faults, left
invertibility for nonlinear systems, synchronisation of
chaotic systems, sometimes can be seen as a problem
whether the system is flat (Pomet 1995a; Tilbury,
Murray, and Sastry 1995; van Nieuwstadt, Rathinam,
and Murray 1998; Hagenmeyer and Delaleau 2003;
Lévine 2004; Schlacher and Schöberl 2007).

In fact, flat systems are a generalisation of linear
dynamical systems in the sense that all linear control-
lable dynamical systems are flat and static feedback
linearisable (in Brunovsky’s form) (Jakubczyk and
Respondek 1980; Singh 1981; Shadwick 1990; Sluis
1993; Shadwick and Sluis 1994; Rouchon 1995;
Rudolph 1995; Sluis and Tilbury 1996). In contrast to
the feedback linearisation techniques, the property of
flatness does not need to convert nonlinear systems into
linear ones to design different kinds of feedback laws
(Hagenmeyer and Delaleau 2003; Lévine 2004;
Schlacher and Schöberl 2007). Therefore, when a
system is flat, one can use its structure to design control
for motion, trajectory generation and stabilisation.

In order to apply the concept of flatness, one
key problem is to determine the flat outputs for
nonlinear systems. For this, many approaches have
been proposed in the literature. One approach to deal

with flatness is exterior differential systems where a
control dynamical system is regarded as a Pfaffian
system on an appropriate jet space (Anderson and
Ibragimov 1979; Descusse and Moog 1985; Pomet
1995a; Delaleau and da Silva 1998; van Nieuwstadt
et al. 1998; da Silva 2000a), and flatness is related to
absolute equivalence introduced by Cartan (1914).
Another geometrical approach by means of
Lie–Bäcklund equivalence was addressed in Fliess
et al. (1993, 1997, 1998) and Martin, Murray, and
Rouchon (1997). In addition, since feedback lineari-
sable dynamical systems are flat, some results in this
direction are stated, such that controllable codimen-
sion 1 affine dynamical systems. In da Silva (2000)
authors gave a characterisation of the so-called
k-flatness with the Cartan–Kähler approach. There
are also many interesting results on flatness of driftless
dynamical systems. We can cite the work of Martin
and Rouchon (1995a,b) where the authors proved that
any (controllable) driftless system with m inputs and
mþ 2 states is flat. Another interesting result on
1-flatness can be found in Pomet (1995b) for four-
dimensional dynamical systems.

However, for general nonlinear systems, it is still an
open problem to construct flat outputs. As an exten-
sion of Bououden, Boutat, Barbot, and Kratz (2009),
this article studies this problem from normal form
point of view, by proposing a triangular 0-flat canon-
ical form for a class of nonlinear systems, whose
outputs are flat. Some results on triangular flat forms
are reported by using states transformation and static
states feedback. For instance, for five states and two
controls, every 0-flat system can be transformed into a
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triangular form by state transformation and regular
static-state feedback (Silveira and da Silva 2007). Other
results about the relationship between triangular forms
and flatness can be found in Silveira (2009). It has been
proved that a system can be k-flat but not (k� 1)-flat
and an example, which is not 0-flat but 1-flat, is given
in da Silva (2000b). It should be noted that we treat the
linearisation problem only through state transforma-
tions without static states feedback in this article.
Necessary and sufficient geometrical conditions are
given in order to guarantee the existence of a local
diffeomorphism to transform the studied nonlinear
systems into the proposed 0-flat canonical form.

This article is organised as follows. Notations and
definitions are given in Section 2. In Section 3, a class
of triangular 0-flat canonical form is proposed and its
associated geometrical interpretation is discussed.
Section 4 presents the necessary and sufficient geomet-
rical conditions to locally transform nonlinear systems
into the proposed 0-flat canonical form.

2. Notations and definitions

Let us first recall the notion of flatness of the nonlinear
system of the following form:

_x ¼ f ðx, uÞ, ð1Þ

where x2X �R
n, u2U �R

m and f is assumed to be a
smooth vector field on X �U.

Definition 2.1: Dynamical system (1) is flat if there
exist m functions y¼ ( y1, . . . , ym)

T, called flat outputs,
where m is the number of inputs, such that

(1) the flat output is a unique function of the state
x, the input u and its derivatives u(i), i.e.
yðx, u, _u, . . . , uðr1ÞÞ.

(2) the state can be written as a function of the
flat output and its derivatives, i.e. x ¼
’ð y, _y, . . . , yðr2ÞÞ.

(3) the input can be written as a function of the
flat output and its derivatives, i.e. u ¼
�ð y, _y, . . . , yðr2þ1ÞÞ.

Without loss of generalities, in this article we are
interested in affine dynamical systems in the following
form:

_x ¼ f ðxÞ þ
Xm
i¼1

giðxÞui: ð2Þ

Remark 1: A system of the form (1) can be brought
into the form (2) by adding an integrator to each input.

The objective of this article is to characterise a class
of dynamical systems for which the flat outputs are

only functions of states x. This implies that in (1) of
Definition 2.1 we have only y(x). In the literature, these
systems are called 0-flat (da Silva 2000a).

Let us denote for i¼ 1 :m by adf gi the Lie bracket
of f with gi, i.e.

adf gi ¼ ½ f, gi�

and by induction we have adk
f gi ¼ ½ad

k�1
f gi, gi� for 0� k

with conventional notation ad 0
f gi ¼ gi. It is well-known

that, if (2) can be linearised by a diffeomorphism
z¼�(x) and a static states feedback u¼ �(x)þ �(x)v
into the following form:

_zi, j ¼ ziþ1, j, for 1 � j � m and 1 � i � �j � 1,

_z�j, j ¼ vj
ð3Þ

with
Pm

j¼1 �j ¼ n, then yj¼ z1, j for 1� j�m are the
0-flat outputs of (2). To transform a dynamical system
into the form (3) is called the static states feedback
linearisation problem and we have the following
famous result (see e.g. Jakubczyk and Respondek
1980; Hunt, Su, and Meyer 1983).

Theorem 2.2: The linearisation problem for (2) can be
solved if and only if

(1) the dimension of Gi is constant on X for
1� i� n� 1,

(2) the dimension of Gn�1 is of n,
(3) the distribution Gk is involutive for each

1� k� n� 2,

where

G0 ¼ spanfg1, . . . , gmg,

G1 ¼ spanfg1, . . . , gm, adf g1, . . . , adf gmg,

..

.

Gk ¼ spanfad j
f gi, for 0 � j � k, 1 � i � mg:

Another famous class of 0-flat dynamical systems is
controllable affine systems with n states and n� 1
inputs (Martin et al. 1997; Rotella and Zambettakis
2007). In what follows, we will propose a more general
triangular canonical form than (3) and prove that it is
0-flat. Then we will give sufficient and necessary
geometrical conditions to guarantee the existence of a
local diffeomorphism which transforms (2) into the
proposed canonical form.

3. A class of 0-flat dynamical system

This section first gives a cascade 0-flat normal form
which represents a class of affine flat dynamical
systems, then gives a geometrical characterisation of
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such a normal form. It should be noted that the

proposed conditions are only sufficient and the con-

sidered dynamical systems are only a small class.

Therefore there exists many dynamical systems, in

particular flat driftless systems do not check the

proposed conditions, and examples can be found in

Martin and Rouchon (1995a,b) and Pomet (1995b).

3.1 Triangular 0-flat canonical form

In this section, we give a class of 0-flat dynamical

systems, represented by its normal form, which gener-

alises the well-known controllable affine systems with

n states and n� 1 inputs. For this, it is assumed that

there exists a list of integers:

�1 � �2 � � � � � �m

such that
Pm

j¼1 �j ¼ n.
Now, for all 1� j�m, denote zj ¼ ðz1, j, . . . , z�j, jÞ

T

and define the following system:

_zi, j ¼ ziþ1, jþ
Xm
l¼1

�li, jðzÞul for 1� j �m, 1� i � �j � 1,

ð4Þ

_z�j, j ¼ a
j
ðzÞ þ

Xm
l¼1

�l�j, jðzÞul, ð5Þ

where �li, jðzÞ and aj(z) satisfy the following property.

Property 3.1:

(1) Functions �li, j for 1� l�m, 1� j�m and

1� i� �j are as follows:

. � j
�j, j
6¼ 0 on X ;

. if �l4 i, then �li, j ¼ 0;

. if �l� i, then �li, j depend only on zs,k for

1� k�m and 1� s�min{iþ 1, �k}.

(2) Functions aj for 1� j�m depend only on the

following variables:

. zi,k for k2 {k2 [1,m] j �k4 �j} and 1� i�

�jþ 1;
. zi,k for k2 {k2 [1,m] j �k� �j} and 1� i� �k.

Remark 2: According to the form (4), (5), for

1� j�m, the dynamics _z1, j depends only on ul for

l2 {l2 [1,m] j �l¼ 1}, z1,k for 1� k�m and z2,k
for k2 {k2 [1,m] j �k� 2}. For 1� j�m, the dynamics
_z2, j depends only on ul for l2 {l2 [1,m] j �l� 2}, z1,k for

1� k�m, z2,k for 1� k�m and z3,k for k2 {k2

[1,m] j �k� 3}.

By induction, it can be seen that the dynamics _zi, j
for 1� j�m and 1� i� �j depend on the following
variables:

. ul for l2 {l2 [1,m] j �l� i};

. zs,k for 1� k�m and 1� s�min{iþ 1, �k},

which implicitly yield a triangular structure allowing to
calculate ziþ1, j for 1� j�m and 1� i� �j� 1 and ul for
1� l�m step by step.

Remark 3: By using a linear change of coordinates,
we can always assume that aj for 1� j�m contains
only the terms with orders greater than 1, i.e. O2(z),
and �li, j for 1� l�m, 1� j�m and 1� i5 �j is
of O1(z).

Remark 4: By setting �l�j, j ¼ 1, aj¼ 0 and
�l�j, j ¼ 0 for i 6¼ �j, we see that the form (3) is a
special case of the form (4), (5).

3.2 Geometrical interpretation

Before giving a geometrical interpretation of the above
conditions, let us rewrite dynamical system (4), (5) into
the following compact form:

_z ¼ �fþ
Xm
k¼1

�gkuk, ð6Þ

with

�f ¼ col �f1, �f2, . . . , �fm�1, �fm
� �

and

�fj ¼ col z2, j, z3, j, . . . , z�j, j, aj
� �

for 1� j�m, and

�gl ¼ col �gl1, �gl2, . . . , �glm
� �

and

�glj ¼ col �l1, j,�
l
2, j, . . . ,�l�j, j

� �

for 1� l�m and 1� j�m.
Since �li, j for 1� l�m, 1� j�m and 1� i� �j

satisfies Property 3.1, for 1� l�m we have

�glj ¼ 0 if �j 5 �l,

which gives the geometrical characteristic of (4), (5) in
the compact form (6) as follows.

Proposition 3.2: The canonical form (4), (5) in the
compact form (6) satisfies the following conditions:

(1) The distribution

D ¼ spanfadk
f gj for 1 � j � m, 0 � k � �j � 1g

International Journal of Control 3
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is of dimension n. In this case we say that (2) is
controllable and �j for 1� j�m are the con-
trollability indices.1

(2) The distribution �D defined as follows:

�D ¼ spanfadk
�f

�gi, for j2 f j2 ½1,m� j �j � 2g,

0 � k � �j � 2g

is involutive.
(3) The item (2) of Property 3.1 is equivalent to the

following condition:

½ �gl,ad
�k��l�1�s
�f

�gk�2 spanfad
i
�f
�gj for 0� j � �i� �l � s

and j2f j2½1,m� j �j � �lþ sgg,

where k2 {k2 [1,m] j �k� 2}, l2 {l2 [1,m] j
�l5 �k} and 0� s� �k� �l� 1.

Proof: According to the triangular structure of (4), (5),
condition (1) of Proposition 3.2 is easy to be proved.
Moreover, the structure of (4), (5) allows to calculate �gl
for 1� l�m, and by some straightforward calculations
one can check that (3) of Proposition 3.2 is evident,
and thus we only prove here (2) of Proposition 3.2.

Denote by �D? the annihilator of �D. According to
the form (6) with Property 3.1, it can be proved that

�D? ¼ spanfdz1, j, for 1 � j � mg,

which is spanned by the exact differential forms. Thus
according to Frobenius Theorem, the distribution �D is
involutive. œ

Then we have the following preliminary result.

Proposition 3.3: Dynamical system (4), (5) is locally
0-flat and the variables z1, j for 1� j�m are the flat
outputs.

Proof: As mentioned in Remark 2, we can obtain a
triangular structure to calculate the states and inputs
step by step. For this, denote Ss for 1� s�
max{�j, 1� j�m} the following set of dynamics:

Ss ¼ f _zi, j, 1 � j � m and 1 � i � minfs, �jgg, ð7Þ

which in fact depends only on the following variables:

. ul for l2 {l2 [1,m] j �l� i};

. zs,k for 1� k�m and 1� s�min{iþ 1, �k};

and specially we denote S0 ¼ fz1, j, 1 � j � mg as the
set of the flat outputs, thus we have S1 ¼ f _z1, j,
1 � j � mg ¼ f�, �2 _S0g.

Now we will show that yj ¼ z1, j 2S0 for 1� j�m
are the 0-flat outputs. First let us compute the
following variables:

. z2, j for �j� 2,

. ul for �l¼ 1

from the flat outputs and their derivatives. According

to the form (4), (5),we have

_z1, j � z2, j �
Xm
l¼1

�li, jul ¼ 0 for j2 f j2 ½1,m� j �j � 2g,

_z1, j � aj �
Xm
l¼1

�li, jul ¼ 0 for j2 f j2 ½1,m� j �j ¼ 1g,

ð8Þ

where aj and �
l
1, j satisfy Property 3.1, and thus depend

only on the known variable z1,k for 1� k�m and the

unknown variables uk for k2 {k2 [1,m] j �k¼ 1} and

z2,k for k2 {k2 [1,m] j �k� 2}.
So (8) is formed with m equations and contains m

unknown variables. According to Property 3.1 and

Remark 3, partial differentiation of the left-hand side

of (8) with respect to @
@ ðz2, j, ukÞ

is equal to IþO1(z, u).

Therefore, thanks to the implicit function theorem one

can find m functions: ’j for �j� 2 and �l for �l¼ 1

such that

z2, j ¼ ’j ðz1,k, _z1,kÞ for 1 � k � m,

ul ¼ �l ðz1,k, _z1,kÞ for 1 � k � m:
ð9Þ

Thus it can be stated that

z2, j 2 f�, �2S0 [S1g for j2 f j2 ½1,m� j �j � 2g,

ul 2 f�, �2S0 [S1g, for l2 fl2 ½1,m� j �l ¼ 1g

and S2 ¼ f�, �2 _S0 [ €S0g.
Now, similar to the first step, for the following

variables:

. z3, j for �j� 3,

. ul for �l¼ 2,

one can obtain

z3, j ¼ ’j ðz1,k, _z1,k, z2,k, _z2,kÞ,

ul ¼ �l ðz1,k, _z1,k, z2,k, _z2,kÞ,
ð10Þ

which implies that

z3, j 2 f�, �2S0 [ _S0 [ €S0g for j2 f j2 ½1,m� j �j � 3g,

uj 2 f�, �2S0 [ _S0 [ €S0g for j2 f j2 ½1,m� j �j ¼ 2g

and S3 ¼ f�, �2 [
3
i¼1 S

ðiÞ
0 g.

By induction, assume that for 1� s5max{vj,

1� j�m} we have computed Ss ¼ f�, �2 supsi¼1 S
ðiÞ
0 g,

and one has

zsþ1, j2f�, �2 [
s
i¼1 S

ðiÞ
0 g for j2f j2 ½1,m� j �j � sg,

ul2f�, �2 [
s
k¼1 S

ðkÞ
0 g for l2fl2½1,m� j �l ¼ s� 1g:

Finally, we show that all states and inputs can be

written as functions of y1, j for 1� j�m and its

derivatives, and thus prove Proposition 3.3. œ

4 S. Bououden et al.
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Let us give an example which is already in the 0-flat

canonical form (4), (5), in order to show the procedure

of computation of the state variables and the inputs

proposed in the above proof.

Example 3.4: Consider the following dynamical

system:

_z1,1 ¼ z2,1,

_z2,1 ¼ z3,1 þ
z2,1

z2,2 � 1
u2,

_z3,1 ¼ z2,2 � 1
� �

u1 þ
z3,1

z2,2 � 1
u2,

_z1,2 ¼ z2,2,

_z2,2 ¼ u2,

8>>>>>>>>><
>>>>>>>>>:

ð11Þ

and suppose that y1¼ z1,1 and y2¼ z1,2, we will give the

procedure to compute all state variables and inputs

from the outputs. For this, let us consider the following

dynamics:

_z1,1 � z2,1 ¼ 0,

_z1,2 � z2,2 ¼ 0,

�

we obtain z2,1 ¼ _y1 and z2,2 ¼ _y2.
Let us again consider the derivatives of these

obtained variables

_z2,1 ¼ z3,1 þ
z2,1

z2,2 � 1
u2,

_z2,2 ¼ u2,

8<
:

which gives u2¼ €y2 and z3,1 ¼ €y1 �
_y1

_y2�1
€y2.

Finally, from the third equation of (11) we obtain

_z3,1 � z2,2 � 1
� �

u1 �
z3,1

z2,2 � 1
u2 ¼ 0,

which gives

u1 ¼
1

_y2 � 1
y
ð3Þ
1 �

@ _y1
_y2�1

€y2

� �
@t

�
€y1 �

_y1
_y2�1

€y2

_y2 � 1
€y2

0
@

1
A:

4. Geometrical conditions to transform nonlinear

systems into the proposed canonical form

In this section, we will show that conditions (1)–(3) of

Proposition 3.2 are sufficient for the existence of a

local diffeomorphism which transforms an affine

dynamical system of the form (2) into (4), (5).
For this, assume that for (2) there exist m integers

�1� �2� � � � � �m such that

(1)
Pm

i¼1 �i ¼ n,
(2) D¼ spanfadk

f gj for 1� j�m and 1� k� �k� 1g

is of constant dimension n on X .

Let us also define the following distribution:

�D¼ spanfadk
f gj for i2fi2½1,m� j �j � 2g, 0� k� �j� 2g,

ð12Þ

then we are ready to give our main result.

Theorem 4.1: There exists a local diffeomorphism
which transforms dynamical system (2) into the (4), (5)
form if and only if

(1) �D defined in (12) is involutive;
(2)

½ gl, ad
�k��l�1�s
f gk� 2 spanfad

i
f gj for 0 � i � �j � �l � s

and j2 f j2 ½1,m� j �j � �l þ sgg,

where k2 {k2 [1,m] j �k� 2}, l2 {l2 [1,m] j �l5 �k} and
0� s� �k� �l� 1.

Proof: According to Proposition 3.2, the necessity of
Theorem 4.1 is obvious. Thus we prove only the
sufficiency. For this, without loss of, generality,
assume that there exists 1� r�m such that

�j � 2 for 1 � j � r

and

�j ¼ 1 for rþ 1 � j � m:

Thus, according to the definition of �D in (12), since
�rþ1þ � � � þ �m¼m� r, one has

dim �D ¼ �1 þ � � � þ �r � r

¼ n� ð�rþ1 þ � � � þ �mÞ � r

¼ n�m,

which means that the codistribution �D? has

dim �D? ¼ m:

If �D is involutive, then by Frobenius Theorem,
there exists a set of functions {h1, . . . , hm} locally
defined around some x02X , such that the set
{dh1, . . . , dhm} is locally independent around x0 and

dhjð �DÞ ¼ 0 for 1 � j � m,

dhjðad
�k�1
f gjÞ 6¼ 0 on X for 1 � j � m, 1 � k � m:

After having hj for 1� j�m, define the following
new variables:

zi, j ¼ Li�1
f hj for 1 � i � �j:

Set zj¼ col(zi, j) for 1� j�m and 1� i� �j, and
z¼ col(zj) for 1� j�m which then defines a local
diffeomorphism, noted as z¼�(x)¼ col(�i, j) for
1� j�m and 1� i� �j with �i, j ¼ zi, j ¼ Li�1

f hj.
Let us now analyse the expression of the system in

the new coordinates. Denote �f ¼ �	ð f Þ and �gs ¼ �	ð gl Þ

International Journal of Control 5
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for 1� l�m with �gl ¼ col ð�lj Þ for 1� j�m where

�lj ¼ col ð�li, jÞ for 1� i� �l.
First, according to the definition of the above

diffeomorphism z¼�(x), it is easy to see that for
1� j�m and 1� i5 �j one has

�i, j	 f ¼ dLi�1
f hj f ¼ Li

f hj ¼ �iþ1, j ¼ ziþ1, j:

Moreover, by the involutivity condition, functions aj
for 1� j�m fulfil (2) of Property 3.1, thus �*f is in the
form �f of (4), (5).

By the definition of the diffeomorphism, for
1� j�m, 1� i� �j and 1� l�m we have

�li, j ¼ ½�	ð gl Þ�i, j ¼ dLi�1
f hjgl :

Since dhjð �DÞ ¼ 0 for 1� j�m, then for
l2 {l2 [1,m] j �l� 2}, k� �l� 2 and 1� j�m one has

dhjad
k
f gl ¼ dLk

f hjgl ¼ �
l
kþ1, j ¼ 0,

which means that for 1� j�m, 1� i� �j and 1� l�m,

one obtains

�li, j ¼ 0 if �l 4 i:

Moreover, because � is a diffeomorphism, thus for
1� l�m and k� 0 one has the following equality:

�	ðad
k
f gl Þ ¼ �	½ad

k�1
f gl, gl � ¼ ½�	ad

k�1
f gl,�	gl �

¼ ½adk�1
�f

�gl, �gl � ¼ adk
�f

�gl:

Thus, by applying the diffeomorphism �, the second
condition of Theorem 4.1 yields

½ �gl, ad
�k��l�1�s
�f

�gk� 2 spanfad
i
�f
�gj for 0 � i � �j � �l � s

and j2 f j2 ½1,m� j �j � �l þ sgg,

where k2 {k2 [1,m] j �k� 2}, l2 {l2 [1,m] j �l5 �k} and
0� s� �k� �l� 1. According to Proposition 3.2, this

means that, for 1� l�m, �* (gl) is transformed into �gl
of the form defined in (4), (5). œ

Corollary 4.2: Suppose that indices �j and �k for
1� j�m, 1� k�m and i 6¼ j satisfy j�j� �kj � 1. The
dynamical system (2) can be transformed into (4), (5) if
and only if the distribution �D defined in (12) is involutive.

Moreover, for any 1� j�m and 1� k�m, if �j¼ �k,
then the 0-flat canonical form (4), (5) can be written in
the following simpler form:

_zi, j ¼ ziþ1, j for 1 � i � �j � 2,

_z�j�1, j ¼ z�j, j þ
Xm
l¼1

�l�j�1, jul,

_z�j, j ¼ aj þ
Xm
l¼1

�l�j, jul,

8>>>>>><
>>>>>>:

where aj and �
l
i, j satisfy Property 3.1.

In particular, a codimension 1 dynamical system, i.e.
m¼ n� 1, is flat (the well-known result in Charlet and
Lévine (1989)).

Remark 5: If �j� 2 for all 1� j�m, then there exists
a local diffeomorphism which transforms dynamical
system (2) into (4), (5) if and only if the distribution

�D ¼ fgj, for j2 f j2 ½1,m� j �j ¼ 2g

is involutive, since the second condition of
Theorem 4.1 is always fulfilled. In fact, it is a special
case of Corollary 4.2.

Remark 6: For single input systems, i.e. m¼ 1, we
only need the first condition of Theorem 4.1 and this
condition is equivalent to the condition for the
linearisation problem by means of a diffeomorphism
and a static feedback.

Remark 7: For the case of codimension 2, i.e.
m¼ n� 2, by reordering gj for 1� j�m if necessary,
we have the following two cases:

(1) �1¼ 2 and �2¼ 2;
(2) �1¼ 3.

The first case is similar to Remark 5, thus we
need to check the involutivity of the distribution
�D ¼ spanfg1, g2g.

For the second case, we have to check the following
two conditions:

. the distribution �D ¼ fg1, adf g1g is involutive;

. for all 2� k�m, [gk, g1]2 span{g1, adfg1}.

Example 4.3: Consider the following academic exam-
ple (da Silva 2000a) modified for a regularity question:

_x1 ¼ x2 þ x4x3,

_x2 ¼ x4,

_x3 ¼ x5,

_x4 ¼ u1,

_x5 ¼ u2:

8>>>>>><
>>>>>>:

A simple calculation shows that distribution D is
spanned by the following vector fields:

g1 ¼
@

@x4
,

adf g1 ¼ �
@

@x2
� x3

@

@x1
,

ad 2
f g1 ¼ 1� x5ð Þ

@

@x1
,

g2 ¼
@

@x5
,

adf g2 ¼ �
@

@x3
,
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with dimD¼ 5 on an open set of 0 such that x5 6¼ 1 and

�1¼ 3 and �2¼ 2.
Then it is easy to check that the distribution

�D ¼ span g1, adf g1, g2
� �

is involutive. Thus, the first condition of Theorem 4.1
is fulfilled. The second condition of Theorem 4.1 is

obviously satisfied, because g2 commutes with g1 and
adf g1, i.e. [g2, g1]¼ [g2, adfg1]¼ 0. Hence Theorem 4.1 is
satisfied and the studied system can be locally trans-
formed into the proposed 0-flat canonical form by a
local diffeomorphism.

In order to deduce the local diffeomorphism, let us
calculate the codistribution of �D. It is easy to see that

�D? ¼ spanfdh1, dh2g,

where h1¼ x3x2� x1 and h2¼ x3, which gives the
diffeomorphism

z1,1 ¼ h1,

z2,1 ¼ Lf h1 ¼ x5 � 1ð Þx2,

z3,1 ¼ L2
f h1 ¼ x5 � 1ð Þx4,

z1,2 ¼ h2,

z2,2 ¼ Lf h2 ¼ x5

by which the studied system is locally transformed into
the following 0-flat form:

_z1,1 ¼ z2,1,

_z2,1 ¼ z3,1 þ
z2,1

z2,2 � 1
u2,

_z3,1 ¼ z2,2 � 1
� �

u1 þ
z3,1

z2,2 � 1
u2,

_z1,2 ¼ z2,2,

_z2,2 ¼ u2:

8>>>>>>>>><
>>>>>>>>>:

Remark 8:

. The specialists of linearisation by dynamic
states feedback will argue that the above
discussed system is linearisable, but we
should remark that here we do not need the
derivatives of u.

. If, instead of the first dynamic _x1 ¼ x2 þ x4x3
we take the same dynamic _x1 ¼ x4x3 as in
da Silva (2000a), then, D is of rank 5 on an
open dense of 0. In this case, the same flat
outputs work well except that dy1ðad

3
f g1Þ 6¼ 0

and dy2ðad
2
f g2Þ 6¼ 0 on an open dense subset.

. We think that we can generalise Theorem 4.1
by assuming that distribution D is of dimension
n in a dense subset of X and �D is regular on X .

Let us give another example to highlight the second
condition of Theorem 4.1.

Example 4.4: Consider the following dynamical

system:

_x1 ¼ x2 þ �u2 þ ð1þ x3Þ�þ x5ð Þu3,

_x2 ¼ x3 þ x4u2 þ x3u3,

_x3 ¼ u1,

_x4 ¼ x5,

_x5 ¼ u2 þ x3u3,

_x6 ¼ x3x5e
x4 þ ex4u1 þ u3,

8>>>>>>>><
>>>>>>>>:

where � ¼ x6 � x3e
x4 .

The straightforward calculation shows that the

distribution D is generated by the following vector

fields:

g1 ¼
@

@x3
þ ex4

@

@x6
,

adf g1 ¼ �
@

@x2
,

ad 2
f g1 ¼

@

@x1
,

g2 ¼
@

@x5
þ �

@

@x1
þ x4

@

@x2
,

adf g2 ¼ �
@

@x4
� x4

@

@x1
� x3e

x4
@

@x6
þ x5

@

@x2
,

g3 ¼
@

@x6
þ x3

@

@x5
þ x3

@

@x2
þ ðx5 þ ð1þ x3Þ�Þ

@

@x1
:

Thus �1¼ 3, �2¼ 2 and �3¼ 1.
It is easy to see that

½ g2, g1� ¼ 02 spanfg1, adf g1g,

½ g3, g1� ¼ �
@

@x2
�

@

@x5
� �

@

@x1
2 spanfg1, adf g1, g2g:

Thus, the second condition of Theorem 4.1 is fulfilled.
In fact, the first condition of Theorem 4.1 is also

fulfilled, since the distribution

�D ¼ spanfg1, adf g1, g2g

is involutive, which gives the following annihilator:

�D? ¼ spanfdh1, dh2, dh3g,

where h1 ¼ x1 � x5ðx6 � x3e
x4 Þ, h2¼ x4 and h3 ¼

x6 � x3e
x4 .

By setting z1,1¼ h1, z1,2¼ h2 and z1,3¼ h3, we obtain

the following diffeomorphism:

z1,1 ¼ x1 � x5 x6 � x3e
x4ð Þ,

z2,1 ¼ Lf h1 ¼ x2 and z3,1 ¼ L2
f h1 ¼ x3,

z1,2 ¼ h2 ¼ x4 and z2,2 ¼ Lf h2 ¼ x5,

z1,3 ¼ h3 ¼ x6 � x3e
x4 ,

International Journal of Control 7
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which locally transforms the dynamic into the follow-
ing 0-flat form (4), (5):

_z1,1 ¼ z2,1 þ z1,3u3,

_z2,1 ¼ z3,1 þ z1,2u2 þ z3,1u3,

_z3,1 ¼ u1,

_z1,2 ¼ z2:2,

_z2,2 ¼ u2 þ z3:1u3,

_z1,3 ¼ u3:

8>>>>>>>><
>>>>>>>>:

5. Conclusion

A triangular 0-flat canonical form was proposed in this
article, which characterises a class of nonlinear dynam-
ical systems. Sufficient and necessary geometrical
conditions were given in order to deduce a local
diffeomorphism with which the studied systems can be
locally transformed into the proposed triangular 0-flat
canonical form. Those conditions appear to be a
natural generalisation of that of codimension 1
dynamical systems.
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Note

1. Other definitions of observability indices can be found in
Charlet, Lévine, and Marino (1989).
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de France, 42, 12–48.
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Comptes Rendus Mathématique, Académie des Sciences,
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Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1993),
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275–292.
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