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ABSTRACT
One of the major challenges is using subspace-based ap-
proaches for the determination of the parameters of one- or
multidimensional signals is their practical applicability on
real data containing damped exponentials. In this paper, we
present a comparison survey of low complexity subspace-
based methods and we focus on 2-D nuclear magnetic reso-
nance (NMR) spectroscopy application. We first present free
search 2-D estimation approaches for damped sinusoids and
we analyze their performances using simulated signals. Then,
we present the results obtained on real 2-D NMR data.

Index Terms— Two-dimensional NMR, parameter esti-
mation, high-resolution, damped sinusoids.

1. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is a pow-
erful technique for determining the structure of matter. Mul-
tidimensional NMR data can be modeled as a sum of mul-
tidimensional damped sinusoids. In the recent decades, nu-
merous high-resolution subspace-based methods have been
proposed to estimate the parameters of one-dimensional (1-
D) and multidimensional (M-D) signals. For 1-D signals, we
can cite the Kumaresan and Tuft approach [1], matrix pen-
cil, ESPRIT, etc. Some method developed for the 2-D case
are 2-D TLS-Prony [2], matrix enhancement and matrix pen-
cil (MEMP) [3], 2-D ESPRIT [4], multidimensional folding
(MDF) [5], multidimensional embedding (MDE) [6]. Maxi-
mum likelihood methods have been shown to achieve the best
estimation performance. However they need usually a pro-
hibitive computational complexity to obtain the global maxi-
mum of the likelihood function. Among the subspace estima-
tion approaches mentioned, there are methods that apply only
to undamped sinusoids. However, the NMR signals consist of
damped sinusoids, therefore, they cannot be used directly.

In this paper we present a comparison of free search (low
complexity) subspace-based method that can be applied to 2-
D NMR data. This comparison is based on the computational
complexity and the accuracy of the estimates in terms of their
mean square error. Application on real data is also presented.

The paper is organized as follows. After a brief description of
the signal model of 2-D NMR data, the TLS-Prony, MEMP,
2-D ESPRIT and MDE methods are described in Section 3.
Then computer examples are presented in Section 4 and the
application of compared methods to experimental NMR data
is presented in section 5. Conclusions are drawn in Section 6.

2. 2-D NMR DATA MODEL

NMR data can be described as:

y(m,n) = x(m,n)+e(m,n) =
F
∑

f=1

cfa
m
f bnf +e(m,n) (1)

for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1, where
af = e(−αa+j2πfa) and bf = e(−αb+j2πfb), with (αa, αb)
are damped factors and (fa, fb) are frequencies. cf are
complex amplitudes and e(m,n) is a 2-D additive noise.
Let a = [a1, a2, · · · , aF ]T , b = [b1, b2, · · · , bF ]T , c =
[c1, c2, · · · , cF , ]T . Define two Vandermonde matrices: A
and B of size M × F and N × F with generators a and b
respectively. We denote Al the l first rows of A and Bl the l
first rows of B.

3. 2-D ESTIMATION ALGORITHMS

3.1. 2-D TLS-Prony Methods

TLS-Prony 2-D estimation method [2] is a generalization of
the 1-D TLS Prony. This method decompose the original 2-D
estimation problem into two 1-D estimation problems. First,
the noiseless data model in (1) can be rewritten as:

x(m,n) =
K
∑

k=1

Lk
∑

l=1

ck,lb
n
k,la

m
k =

K
∑

k=1

hk(n)a
m
k (2)

where hk(n) =
∑Lk

l=1 ck,lb
n
k,l. Therefore, it is obvious that

the last term in expression (2) is the 1-D multi-snapshots ex-
ponential signals model. Then, the modes {ak}Kk=1 and the



amplitudes {hk(n)}Kk=1 for N snapshots are estimated by 1-
D TLS-Prony algorithm or other algorithm for estimating 1-
D damped exponential signal parameters [7, 8]. Modes and
amplitudes {bk,l, ck,l}K,Lk

k=1,l=1 are then estimated applying the
same approach to {hk(n)}.

In the above algorithm (TLS-Prony1), modes of the sec-
ond dimension (b-modes) are estimated from estimate of
hk(n). This will cause error propagation and may result in
poor b-modes estimates. To avoid this error propagation,
a second algorithm (TLS-Prony2) is proposed in which the
TLS-Prony1 algorithm is applied first to estimate the a-modes
then the b-modes as above, second, it is applied to estimate
b-modes, then a-modes. Modes with high accuracy obtained
from the two estimations are matched using a distance-based
matching algorithm.

The 2-D TLS-Prony algorithms are computationally ef-
ficient because TLS-Prony1 resolve twice a 1-D estimation
problem and TLS-Prony2 apply twice algorithm1 plus the
pairing processing.

3.2. MEMP Method

Matrix Enhancement andMatrix Pencil (MEMP) method was
proposed to estimate 2-D modes. To cope rank deficiency of
the data matrix, an enhanced matrix Hankel block structure
Xs is formed from the 2-D data:

Xs =







X0 X1 · · · XM−K

...
...

...
XK−1 XK · · · XM−1







(3)

where

Xm =







x(m, 0) · · · x(m,N − L)
...

...
x(m,L − 1) · · · x(m,N − 1)






(4)

Using (1) in (4), Xm becames

Xm = BLD(c)Dm(a)BT
M−L+1. (5)

where D(c) is a square matrix with diagonal elements c.
Then, using (5) in (3), Xs becomes:

Xs = ELD(c)ER (6)

where

EL =











BL

BLD(a)
...
BLD

K−1(a)











(7)

ER = [BT
N−L+1, D(a)BT

N−L+1, · · · , D
M−K(a)BT

N−L+1]
(8)

The singular value decomposition (SVD) of Xs yields to:

Xs = UFSFVH
F + UnSnVH

n (9)

where UF , SF and VF contain the F principal components
whereas Un, Sn and Vn contain the remaining non-principal
components. Estimation of the 2-D modes can then be sum-
marized in three steps:

1. Estimate a-modes from the matrix D(a), i.e., from the
eigenvalues of the matrix F1 = U†

1U2 where U1 = UF

with the last L rows deleted, and U2 = UF with the
first L rows deleted.

2. Estimate b-modes from the matrix D(b), i.e., from the
eigenvalues of the matrix F2 = U†

1PU2P where U1P =
PUF with the last L rows deleted, and U2P = PUF

with the first L rows deleted. P is a defined permutation
matrix.

3. Pairing the 2-D modes by maximizing the following
criterion:

J(f, i) =
F
∑

t=1

‖ uHt eL(af , bi) ‖
2, for f = 1, 2, . . . , F

(10)
where ut is the tth column of UF , and eL(af , bi) =
[1, af , · · · , a

K−1
f ]⊗ [1, bi, · · · , b

L−1
i ].

In this pairing criterion, eL(af , bi) is a column in EL only
if the damping factors are null. It can also achieve incor-
rect pairing when there exist identical modes in certain di-
mensions. To avoid this problem, another pairing algorithm
has been proposed [4]. The MEMP algorithm gives accurate
mode estimates and it has the advantage to avoid the polyno-
mial rooting step like in 2-D TLS-Prony algorithms. On the
other hand, it requires large memory due to the dimensions of
the enhanced matrix.

3.3. 2-D ESPRIT method

The original ESPRIT method is used to estimate the param-
eters of pure superimposed sinusoids. For damped signals,
a 2-D ESPRIT method was proposed in [4] to estimate the
frequencies and damping factors. The problem formulation
is the same as for MEMP. However, estimation of the 2-D
modes is given in the following steps:

1. Eigenvalue decomposition is computed to diagonalize
a linear combination of F1 and F2:

βF1 + (1− β)F2 = T−1
1 DT1. (11)

2. Da and Db are obtained by applying transformation T1

to F1 and F2:
{

Da = T1F1T−1
1

Db = T1F2T−1
1

(12)

3. a-modes and b-modes are extracted frommain diagonal
of Da and Db, respectively.



It must be noted that the mode vectors a and b are cor-
rectly ordered. This means that the 2-D ESPRIT method does
not need a pairing step.

3.4. Multidimensional embedding method

Multidimensional embedding algorithm is an SVD-based 2-D
damped sinusoid estimation algorithm. It uses the enhanced
data matrix Xs and data folding, i.e., the 2-D NMR data are
folded in a vector

x = [x(0, 0),x(0, 1), · · · , x(0, N − 1),

x(1, 0), · · · , x(M − 1, N1)]
T (13)

Then it can be verified that:

x = (A% B)c. (14)

The matrices EL and ER discussed in the MEMP method be-
comes here:

EL =
(

A(K) % B(L)
)

and ER =
(

A(M−K+1) % B(N−L+1
)T

.

(15)
Under the conditions on K and L insuring to the matrix Xs

to be almost rank F , and using the singular values decompo-
sition of the staking of E1 and E2 (E1 = EL with the last
rows deleted, E2 = EL with the first rows deleted), the 2-D
modes can be estimated from the eigenvectors instead of the
eigenvalues (see [6]). This algorithm achieve automatic mode
pairing, but it fails in the case of identical modes in a certain
dimension because eigenvectors are not linearly independent
anymore.

4. SIMULATION RESULTS

In this section, we present Monte Carlo (300 runs) simula-
tion results to compare performance measured by the mean
square error (MSE). The 2-D ESPRIT, MEMP with the new
pairing process [4], MDE with only the algebraic step and the
two 2-D TLS-Prony algorithms are applied to estimate modes
from simulated signals expressed in (1) with 20 × 20 sam-
ples in additive complex Gaussian white noise with variance
σ2. The amplitudes {cf}Ff=1 are set to (3.184, 2.846, 2.846).
In the first example, we choose three non identical and well
separated modes:

(f1,1, α1,1; f1,2, α1,2) = (0.10, 0.080; 0.20, 0.075),
(f2,1, α2,1; f2,2, α2,2) = (0.30, 0.075; 0.10, 0.050),
(f3,1, α3,1; f3,2, α3,2) = (0.40, 0.050; 0.25, 0.090).

Figure 1 shows the MSE of the MDE, 2-D ESPRIT (β = 8),
MEMP, TLS-Prony1–2 algorithms on the estimation of f2,2.
We plot also associated Cramr-Rao lower bounds (CRB). It
can be seen that 2-D ESPRIT and MEMP algorithms exhibit
almost the same MSE which is close to the CRB. They have
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Fig. 1. Performance comparison of the MDE, 2-D ESPRIT,
MEMP, TLS-Prony1–2 algorithms. Distinct modes in each
dimension.

5 10 15 20 25 30 35
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

M
SE

(f 2,
2)

 

 
2−D TLS−Prony1
2−D TLS−Prony2
MEMP (new pairing)
2−D ESPRIT
CRB

Fig. 2. Performance comparison of the 2-D ESPRIT, MEMP,
TLS-Prony1–2 algorithms. Identical and close modes in each
dimension.

also a better resolution threshold than TLS-Prony algorithms.

In the second example, we choose close modes in such a
way they cannot be separated by 2-D FFT. Since the resolu-
tion limit with 2-D FFT for 20×20 data set is 0.05, simulated
modes are:

(f1,1, α1,1; f1,2, α1,2) = (0.20, 0.075; 0.20, 0.075),
(f2,1, α2,1; f2,2, α2,2) = (0.20, 0.075; 0.22, 0.050),
(f3,1, α3,1; f3,2, α3,2) = (0.22, 0.050; 0.20, 0.075).

Note that there exist identical modes along the two dimen-
sions. Therefore, MDE is not applicable in this case. As we
can see (figure 2), the results are similar to those of the first
example, with the exception that the four algorithms have the
same resolution threshold and it is at an SNR of about 20 dB
rather than 10 dB for 2-D TLS algorithms and 0 dB for both 2-
D ESPRIT and MEMP. These results show that 2-D ESPRIT,
MEMP and TLS-Prony1–2 can estimate close and identical
modes. Therefore they are good candidates for estimating
NMR parameters. However, 2-D ESPRIT andMEMP achieve
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Fig. 3. Magnitude spectrum of the NMR signal. The numbers
indicate the number of peaks detected by 2-D ESPRIT.
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Fig. 4. Results obtained by MDE (top) and 2-D ESPRIT (bot-
tom) in the subband [0.25, 0.37]× [−0.10,−0.06].

more accurate estimate than TLS-Prony1–2 algorithms.

5. RESULTS ON EXPERIMENTAL DATA

The 2-D ESPRIT and MDE are now compared using an ex-
perimental NMR signal. The later correspond to an HMBC
experiment (1H–13C correlation by J-coupling). The mea-
sured 2048× 128 2-D NMR data was obtained obtained from
NMR Methodology Laboratory (Nancy, France). Due to the
large dimension of the matrix, we used a subband decomposi-
tion scheme in order to reduce the computational complexity.
The spectrum of the 2-D signal together with the subbands
processed are shown on figure 3.

The results obtained by MDE and 2-D ESPRIT are quite
similar except the case where exist identical frequencies in a
given dimension. For instance, the results obtained by the two

methods in the band [0.25, 0.37]× [−0.10,−0.06] are shown
on figure 4. We observe that 2-D ESPRIT succeeds in the
detection of all the peaks whereas MDE exhibits an erratic
behavior.

6. CONCLUSIONS

In this paper, a comparison survey of two-dimensional low
cost estimation method for 2-D NMR spectroscopy signals is
presented. Performances of different techniques have been
tested using simulation examples. It appeared that 2-D ES-
PRIT is better than other estimation techniques in terms of
the MSE. MDE fails in the case of identical modes in a cer-
tain dimension. This is the major limitation for the use of this
method for NMR data processing.
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