N
N

N

HAL

open science

Using a meta-model to build operational architectures of
automation systems for critical processes

Thibault Lemattre, Bruno Denis, Jean-Marc Faure, Jean-Francois Pétin,

Patrick Salaiin

» To cite this version:

Thibault Lemattre, Bruno Denis, Jean-Marc Faure, Jean-Francgois Pétin, Patrick Salatin. Using a

meta-model to build operational architectures of automation systems for critical processes.

IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2011, Sep

2011, Toulouse, France. pp.CDROM. hal-00627635

HAL Id: hal-00627635
https://hal.science/hal-00627635

Submitted on 29 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00627635
https://hal.archives-ouvertes.fr

Using a meta-model to build operational architectures of automation systems
for critical processes

T. Lemattre, B. Denis, J-M. Faure

LURPA, ENS Cachan
61 av. President Wilson

P. Salaiin
Electricite de France, R& D
6 quai Watier

94235 Cachan Cedex, France 78400 Chatou, France
{lemattre, denis, faure } @lurpa.ens-cachan.fr patrick.salaun @edf.fr
J-F. Pétin
CRAN, UMR 7039 CNRS, Nancy Universite
BP 70239

54506 Vandoeuvre les Nancy, France
jean-francois.petin @cran.uhp-nancy.fr

Abstract

This paper addresses the design of the operational ar-
chitecture of a critical system control. This design results
from the allocation of control functions onto physical de-
vices by taking into account numerous constraints such
as capability, safety, time performance or reliability con-
straints. This paper focuses on the two first ones, capabil-
ity and safety constraints by proposing a method based on
reachability analysis in a network of communicating au-
tomata. The link with complementary studies about time
performance or reliability constraints is established us-
ing an UML architecture meta-model that captures and
shares information about control architectures. Automata
models and their parameters used for reachability analy-
sis are derived from this meta-model and, conversely, gen-
erated operational architectures give rise to a set of meta-
model instances that can be used as input for complemen-
tary evaluation.

1 Introduction

The architecture of an automation system can be char-
acterized by three complementary views [1]:

e the functional architecture, consisting of intercon-
nected control functions, which expresses the users’
needs; each function operates a transformation from
inputs (from the process or from other functions) to
outputs (to the process or to other functions); the
functions are leave functions which are considered as
indivisible; moreover, in the case of critical systems,
functions are characterized by a safety-level that rep-
resents how critic is the impact of their failure on ma-
terial or human being;

e the physical architecture, consisting of controllers
(PLCs or real-time industrial computers), which pro-
vides hardware resources for executing the control
functions and generating signals towards the pro-
cess according to the information gathered on this
latter, and of one or several communication net-
works allowing data exchanges between the con-
trollers and between the controllers and the moni-
toring/supervision system; in the case of critical sys-
tems, the devices involved in the physical architec-
ture are characterized by an integrity factor, that rep-
resents the reliability of the device, thanks for exam-
ple to internal hardware redundancies;

e the operational architecture, built by allocating the
leave functions of the functional architecture onto the
control devices involved in the physical architecture.

The design of operational architecture must be done by
taking into account various and numerous constraints or
criteria such as:

e capabilities constraints that are related to the physical
capabilities of the controllers (such as energy, mem-
ory, numbers of inputs/outputs, CPU charge, etc.);

e safety constraints that are related to the deterministic
allocation rules answering safety purposes; for exam-
ple, the function safety level must be compliant with
the controller integrity factor in which it is allocated
(such as highest critical functions should be imple-
mented in most reliable controllers); enabling or dis-
abling the combination of different functions within
a single controller (due to functional redundancies,
commissioning or testing constraints, etc.) is another
example of safety constraint;

e time performance constraints, for example the time
needed by the control functions to react to stimuli
occurrence from the process; obviously, the quality
of service of the communication networks that link
the controllers would have a crucial impact on time
constraint analysis as well as the functional chain dis-
tribution among several controllers;

e reliability constraints, that are related to both con-
troller and functional reliability and may impact the
design of operational architecture in terms of func-
tional and physical redundancies.

It clearly appears that the problem of designing an oper-
ational architecture that fulfil all these constraints cannot
be addressed by a single technique or model: the two first
constraints can be addressed by using deterministic and
untimed model for constraint solving while the two last
ones require respectively using temporal and stochastic
models. In the current industrial practice, design of opera-
tional architecture is a tedious and time-consuming activ-
ity, based on the expertise of designers and then performed
in a non-automated way. Note that actuators and sensors
location cannot provide help since the system architecture
is basically centralized (one or several computing centres)
for safety constraints (protected area against fire, external
attacks, etc.).

This paper aims to automate part of this activity and
focuses on the two first constraints related to capability
and safety issues:

e generation an operational architecture that fulfil ca-
pability and safety constraints is seen as a constraint
solving problem and is addressed using an original
approach based on reachability analysis on a discrete
state space using communicating automata;

e a meta-model that centralizes all useful information
regarding the architecture is sketched out to share a
common and consensual information about the op-
erational architecture between the various design ac-
tivities; the proposed meta-model is built to integrate
capabilities and safety constraints the paper is focus-
ing on, as a basis to be further enriched by time per-
formance and reliability constraints.

In section 2, the architecture meta-model is given us-
ing UML class diagram to represent the objects of func-
tional and physical architectures while Object Constraint
Language (OCL) expressions [2] allows the description
of capabilities and safety constraints to be applied for
operational architecture design. Illustrative examples of
capability and safety constraints are provided by OCL
constraints respectively related to the number of in-
puts/outputs and to the compliance between controller in-
tegrity factor and the function safety level. Then, an auto-
matic method to allocate all leave functions to controllers,
while respecting the capabilities and safety constraints
identified in the architecture meta-model, is proposed in

section 3. This method relies on reachability analysis on
a network of communicating automata whose transition
guards implements OCL constraints; conversely, the re-
sult of the first operational architecture design must be
translated into meta-model instance diagrams to be used
for further engineering activities (temporal performance
evaluation, reliability analysis, etc.). Two case studies il-
lustrate this way of building operational architecture in
section 4 and prospects for further work are sketched in
Section 5.

2 Architectures meta-model

The aim of the architecture meta-model is to capture
useful information about functional, physical and oper-
ational architecture in order to facilitate the analysis of
the control architecture with regards to several constraints
or criteria and using various modelling and analysis tech-
niques. Main benefit rely in the ability for various engi-
neering activity (architecture sizing according to capabili-
ties and safety constraints, architecture time performance
analysis, architecture reliability analysis, etc.) to share
common concepts (functions, controllers, inputs/outputs
etc) and their attributes using UML class diagrams and
to formalise the various constraints to be satisfied us-
ing Object Constraint Language (OCL) expressions. This
Model Driven Engineering way of thinking, based on the
use of UML/SysML for system specification before us-
ing dedicated models such as state-based formalisms for
behavioural design, has been promoted in automation en-
gineering by projects such as Oooneida [3] or Corfu [4] or
by UML profile for Process Automation [5].

The paper focuses on the automatic design of the op-
erational architecture based on capability constraint re-
lated to the number of I/O and safety constraint related
to the relationship between function safety level and con-
troller integrity factor. This first attempt is currently be-
ing extended using OCL to capture additional capability
or safety constraints within the context of the industrial
project that supports this work.

2.1 Functional architecture

A functional architecture (Figure 1) is a set of intercon-
nected functions which receives and sends data from/to
the process. Hence, the part of the meta-model (Figure
3) which describes this architecture contains two main
classes: Function and Data.

e A function f? € F is defined as a 9-tuple (SL', NILp',
NIAp', NOLp', NOAp', NILf', NIAf', NOLf",
NOAS") with:

- SLie Safety_Level ; the lower this level is, the
more critical the function. In the sequel of this
paper, the functions are ranked in four levels;
hence, the set Safety_Level is Safety_Level =
{1,2,3,4};

NILp',NIAp' € N: numbers of respectively
logic and analogic input data received from the
controlled process;

— NOLp',NOAp' € N: numbers of respectively
logic and analogic output data sent to the con-
trolled process;

— NILf,NIAf' € N: numbers of respectively
logic and analogic input data coming from
other functions;

— NOLfI,NOAf' € N: numbers of respectively
logic and analogic output data going to other
functions.

e Data are typed; they are either logic or analogic.
Moreover, they are ranked in three disconnected
sets:Input data (received from the process),Output
data (sent to the process) and Inter-functions data.

It matters to underline that any data issued from a
function is sent either to the process or to another
function, as the three sets are disconnected. More-
over, self-loops are forbidden (a same data cannot act
both as input and output for a same function) and the
flow is directed; inter-functions data must then sat-
isfy the following relation:

context function

INV: f1 <> f2 1)
Function \
F]\flgclion j /'5 m £J
Function - @

-l
f Function

@%@

fl‘ Function ;@
])
Process
! Function [~

A

Figure 1. Example of functional architecture

2.2 Physical architecture

A physical architecture (Figure 2) is seen as a set of
controllers which are connected by one or several net-
works. Hence, the part of the meta-model which describes
this architecture contains two main classes: Controller
and Network.

Process

Figure 2. Example of physical architecture

e A controller ¢/ € C is defined as a 5-tuple

(CF, LImax,Almax, LOmax,AOmax) with (cf. figure
3):

— CF € Criticality_Factor of the controller, the
lower the criticality factor is, the more depend-
able the controller must be; in the sequel of this
paper, it will be assumed that this factor can
take 3 values: Criticality_Factor = {1,2,3};

— Limax,Almax € N maximum numbers of re-
spectively logic and analogic input interfaces of
the controller;

— LOmax,AOmax € N maximum numbers of re-
spectively logic and analogic output interfaces
of the controller.

e A network flow models communication between two

controllers. It is then assumed that relation (2) holds,
i.e. that the source and the target of a flow are differ-
ent.

context controller

INV:cl <> 2 2)
In-Log-i | |In-Ana-f| | Out-Ana-i Out-Log-
Inter-functions datd > data <
- ﬁ In-Log-p
function input data |
+SL : Safety_Level
+/NILp : Integel 17 N~ In-Ana
* . = -p
+/NOLp : Integel / 1
+/NIAp : Integel 1 process
+/NOAp : Integer]] Out-Log-f
+/NILi : Integer . 1. ‘ 1
+/NOL1 : Integel ™
output data —
+/NIAf : Integer < Out-Ana-p
+/NOATf : Integel
1.7 -
1 <<enumeration>>
controller Safety_Level
+LImax : Integel 1
+Almax : Integel 2
+LOmax : Integel 3
+AOmax : Integel 4
+CF : Criticality_Factol <<enumeration>>

Criticality_Factor
1
Network 2
3

Figure 3. Architectures meta-model

2.3 Operational architecture

The operational architecture is built by allocating the
leave functions of the functional architecture onto the con-
trollers of the physical architecture. Following assump-
tions will be taken:

1. a controller can host between 1 to n functions;

2. afunction must be allocated to one and only one con-

troller.

These assumptions are included in the meta-model in the
form of the relation between the classes Function and
Controller.

If F is the set of functions fi, with i € N* and C the set
of controllers ¢/, with j € N*, the allocation of f' to the
controller ¢/ will be denoted by ¢/ < f'.

Moreover, each allocation has to satisfy capabilities
and safety constraints which are formalized thanks to
OCL expressions below.

2.3.1 Capabilities constraints

Capability constraints can be modelled using OCL expres-
sions in terms of inequations where controller attributes
are involved in. In our study, capability constraints (and
controller attributes) are limited to the number of I/O in-
terfaces. Roughly speaking, these constraints mean that
the sums of inputs/outputs from/to the process of the func-
tions that are allocated to a given controller must not ex-
ceed the numbers of input/output interfaces of this con-
troller.
The numbers of interfaces are positive integers:

context controller

INV : Limax > 0 3)
INV : Almax >0 4
INV : LOmax > 0 ®))
INV : AOmax > 0 (6)

The numbers of inputs/outputs from/to the process of a
given function are defined by the number of existing rela-
tionship between this functions and its associated I/O; this
information can be built from the instance diagram that
defines a particular functional architecture using the OCL
size() function:

context function
DEF : /NILp = self.In-Log-p — > size() @)
DEF : /NIAp = self.In-Ana-p — > size() ®)
DEF : /NOLp = self.Out-Log-p — > size() (9)
DEF : /NOAp = self.Out-Ana-p — > size() (10)

Then, the capabilities constraints state that the sum of I/O
functions allocated to a given controller must be lower or
equal than the controller I/O capability; it is modelled us-
ing OCL sum() function as follows:

context controller

INV : function./NIL— > sum
INV : function./NIA— > sum

() < LImax an

(
INV : function./[NOL— > sum(

(

LOmax (13)

)<
) < Almax (12)
) <
) < AOmax (14)

INV : function./NOA— > sum

2.3.2 Safety constraints

One of the main safety constraints is related to the com-
pliance between function safety level and controller in-
tegrity factor in which the function is allocated. More pre-
cisely, the most critical functions (SL = 1) must be allo-
cated only to controllers whose criticality factor equals 1,
the medium-critical controllers (CF = 2) can accept func-
tions whose safety level equals 2 or 3 and the less critical
controllers can accept functions whose safety level equals
3 or 4. Given the instances diagrams of the functional
and physical architectures, these constraints are then ex-
pressed as follows:

context controller

INV : self.CF = 1 implies function.SL = 1 (15)

INV : self.CF =2 implies(function.SL = 2 or function.SL = 3)

(16)

INV : self.CF = 3 implies(function.SL = 3 or function.SL =4)

a7

3 Automatic construction of operational ar-
chitecture

For a given functional architecture, it is possible to
build the corresponding instances diagram from the meta-
model of Figure 3; this diagram contains obviously as
many instances of the class function as there are ’leave’
functions in the functional architecture and is one of the
inputs of the method to construct automatically opera-
tional architectures; L will denote the number of ’leave’
functions.

The other input is a parametric instances diagram of
physical architecture where the number of controllers,
noted M, and the criticality factor of each controller are
parameters. This approach allows several operational ar-
chitectures to be defined from the same functional ar-
chitecture while satisfying all capability and safety con-
straint; the choice of a solution among this set is under the
responsibility of the automation system designer and can
be represented as particular relationships between func-
tion and controller instances of the meta-model.

3.1 Principles

The aim of the method to construct automatically oper-
ational architectures is then to allocate a set of functions to
a set of controllers, while respecting the capabilities and
safety constraints (Figure 4).

As the capabilities constraints consider only the num-
bers of inputs/outputs from/to the process, the inter-
functions data are no more useful data when allocating
the functions. Hence, a function f’ becomes merely a 5-
tuple fi = (SL, NILp', NIAp', NOLp', NOAp'). Each
controller ¢/ is still represented by a 5-tuple, but the initial
value of CF, when no function is allocated to this con-
troller, will be 0. The criticality factor will be defined dur-
ing functions allocation while respecting the safety con-
straints.

Set of functions Set of controllers

NO Controller c

Controller ¢/

Constraints
on the
assignment
of functions

Controllers of the
operational architecture

Figure 4. Aim of the construction

The problem of allocation can then be seen as a bin
packing problem than can be solved by optimisation meth-
ods such as linear programming or heuristic even if suf-
fering from the exponential explosion problem. Ap-
proaches proposed by [6] and [7] showed the effectiveness
of the timed automata and reachability analysis to address
scheduling problems thanks to a modular, parametric and
instanciable modelling. The method proposed in this pa-
per takes advantage of these approaches but differs from
them because time is not considered in an allocation prob-
lem. Based on communicating automata, the automatic
allocation of functions is based on two principles:

e modelling the allocation problem as a set of com-
peting call-response mechanisms between models, in
the form of communicating automata, of allocation
requests and of requests acceptances;

e investigating whether the execution of this set, which
is a network of communicating automata, can lead
to a state reachable from the initial state where all
functions are allocated.

3.2 Toy example

Figure 6 represents a functional architecture which
comprises five functions f!, 2, 3, f*, 7, whose safety
level is in {1,2} C SL, and which are defined as follows:
f'=(2,5,4,1,3); f2=(1,5,6,2,4); f>=(2,1,3,6,4);
f+=(1,6,8,5,2); f5=(1,3,4,5,2).

These functions have to be allocated on a set of M=3
controllers ¢!, c?, ¢, whose capabilities are the same:
Vje{1,2,3},LImax = Almax = LOmax = AOmax = 10

One possible allocation of these functions to the three
controllers is described in Figure 5. This solution was ob-
tained by first allocating the function f! to the controller
c!, thus fixing the value of its criticality factor to CF! = 2.
The function f? was then allocated to the controller ¢?,
thus fixing the value of its criticality factor to CF? = 1.
Then the function f> was allocated to the controller ¢! be-
cause its safety level is consistent with CF! = 2 and the
sums of the numbers of inputs/outputs of the two functions
do not exceed the capabilities of the controller. The func-
tion f* was then allocated to the controller ¢ because the
sums of logic and analogic inputs of functions f2 and f*

are beyond the capabilities of the controller c. The func-
tion 3 was finally allocated to controller ¢, because the
remaining capabilities of the controller ¢3 were too small
for £ be allocated to this controller.

Once all functions are allocated, the list of functions
which are allocated to each controller is known. These
lists are instances of the relation between the two classes
controller and function in the meta model (Figure 3).

Fapetion |
Function 7 m
=i
s F“lncmm - .

v

Function
4

f mj

‘Network

Process

Figure 5. Example of allocation of 5 func-
tions on 3 controllers

3.3 Generic models of allocation request and of re-
quests acceptance

As mentioned in 3.1, allocation of functions is mod-
elled in this approach as a set of competing call-response
mechanisms between models of allocation requests and
of requests acceptances. Figures 6 and 7 present respec-
tively the generic model of an allocation request sent by a
function and of the acceptance of requests by a controller;
these models are denoted 6 and «.

3.3.1 Definition of the formalism used

The formalism used is a network of automata communi-
cating through shared variables and synchronized by tran-
sition labels. Every transition of these automata may com-
prise a synchronization label, a guard (condition transition
which must be true to fire the transition) and variables
(numbers of input/output interfaces used, criticality fac-
tor) updates. The following conventions are used in these
models:

e the initial locations are indicated by a source arc;

e the marked locations are indicated by two concentric
circles;

e the location names are in bold;

o the label names are in italics and followed by an !
(resp. ?7) for emission (resp. reception) labels;

e the variables updates are underlined;

e the guards (transition conditions) are in normal char-
acters.

3.3.2 allocation request model

The initial location of the model is *Function not allo-
cated’. Only one transition, which corresponds to the
emission of an allocation request can be fired from this
location. Once this request has been emitted, the model
waits (in the location ’allocation Possible?’) for the re-
sponse from an acceptance model, which can be:

e Refusal, then the model returns to the initial location;

e Ok, then the model evolves to the location ”Function
allocated” which is a terminal marked location.

Function not
allocated

Allocation
possible ?
Ok?

Function
allocated

Figure 6. Generic model of allocation re-
quest ()

3.3.3 Requests acceptance model

Four transitions of this model include guards which are
obtained from the OCL expressions which define the ca-
pabilities and safety constraints. The guard Violation of
one of the allocation constraints, for instance, mean that at
least one of the constraints is not satisfied if the requesting
function is allocated to the considered controller.

Some notations must be introduced to ease the descrip-
tion of this model.

o Let: F; = {f" € F|c/ « f'} be the set of functions f'
which are allocated to ¢/;

o Let: [; = {i € {1,...,L}|c/ + f'} be the set of index
of functions f which are allocated to ¢/.

Then the notations Y NILp';Y" NIAp';Y NOLp'; Y NOAp'

icl; i€l; i€l i€l;

represent respectively the sums of logic and analogic
inputs, logic and analogic outputs from/to the process of
the functions which are already allocated to controller ¢/
at a given moment. The initial values of these sums, at
the beginning of the allocation, are obviously equal to 0.

From the initial location, which is also marked, this
model can evolve to the location *Checking constraints’
only upon reception of an allocation request. The three
transitions which can be fired from this latter location cor-
respond to:

e the violation of at least one of the allocation con-
straints, and the label Refusal is then emitted;

o the acceptance of a request whereas no other function
has been previously allocated to the controller (guard

’First allocation’ true). The variables

Y NILp'; Y NIAp'; Y NOLp'; Y NOAp', are
i€l; i€l; i€l; i€l;

then updated and the criticality factor CF/ is set to
the value of the safety level of the function;

e the acceptance of a request whereas at least one
other function has been previously allocated (guard
’Additional allocation’ true). Only the variables
Y NILp". Y NIAp'; Y NOLp';) NOAp', are up-
i€l; i€l; i€l; i€l;
dated. The criticality factor CF/ remains unchanged.

In the latter two cases, the label Ok is emitted. From the
location *Analysis of the state of the controller’, two evo-
lutions are possible which correspond to:

e the fact that all capabilities of the controller have
been reached : ‘ ' ‘
ZNILp’ = LImax’ ; ZNIAp’ = Almax’

iEIj iGIj
Y NOLp' = LOmax’ ; Y NOAp' = AOmax’ ;
ie[j lelj

(guard "no other possible allocation’ true), then the
model evolves to the marked location *Controller sat-
urated’;

o the fact that at least one capability of the controller is
not reached (guard ’other possible allocation’ true),
then the model evolves to the initial location *Con-
troller waiting’.

Controller waiting

the allocation
constraints

Refusal!

Additional
allocation

Ok!
Variables

update

Analysis of the
state of the controller

possible

llocati
aflocation No other possible

allocation
Controller
Saturated

Figure 7. Generic model (o) of requests ac-
ceptance

3.4 Instantiated model

This model is a network of communicating automata
NA = 8'(|82||...|| 8| ' || &2]|...|| &M that includes:
e as many instances (§',82,...,8%) of the model in

Figure 6 as there are functions,

e M instances (o', o2, ...,) of the model in Figure
7; the choice of the parameter M is let to the de-
signer. An obvious value to obtain a solution is to

set M = L; in that case indeed, functions allocation
is always possible if no function owns a number of
inputs or outputs larger than the corresponding capa-
bility of controllers. From the observation of the so-
lution yielded with M = L, a more compact solution,
with a smaller number of controllers, can be obtained
as it will be shown in section 4.

A synchronous evolution of two automata is possible only
if these two automata emit and receive one of the follow-
ing label pairs:

e Request! and Request?;
e Ok! and Ok?;
e Refusal! and Refusal?.

To avoid inconsistencies such as the fact that an instance
o emits a reply to an instance 8/ which is not the one hav-
ing emitted the allocation request, the call-response mech-
anism must be designed as a critical section protected by
a semaphore. The achievement of this critical section de-
pends on the implementation and will not be discussed
further in this paper.

3.5 Definition of the reachability property searched

All the functions are allocated when the marked loca-
tion is reached in all the instances of 6. In this case, the
active location of the instances of & may be the termi-
nal location or the initial location, which are both marked.
Hence, the reachability property to check can be infor-
mally stated as follows: From the initial state, is it pos-
sible to reach a state of the network of automata such
that the active location is a marked location in all the au-
tomata of the network?

3.6 Implementation with a formal verification tool

The techniques of formal verification by model check-
ing [8] aim to prove that a model satisfies or does not sat-
isfy a formal property, which may be a reachability prop-
erty. It is hence natural to consider the implementation of
the method proposed by using such a technique. This re-
quires first to formally state the property searched, given
in textual way in the previous section. Using the quanti-
fiers of the CTL temporal logic, this property, noted P, can
be written "P: EF Full allocation’

Full allocation designating the state of the network
such that the active location is a marked location for all au-
tomata. This property is verified if there exists at least one
trace from the initial state of the network which reaches
the state Full allocation.

4 Case studies

4.1 Choice of the formal verification tool

Several model-checking-based formal verification
tools, such as NuSMV, SPIN, UPPAAL, may be consid-
ered for achieving the reachability analysis on which the

search for an allocation solution relies. The UPPAAL tool
[9] was selected for these studies because it has a very er-
gonomic graphical interface and can provide an execution
trace even in case of positive proof. It is important to note
that only these features have motivated this choice; the
ability of this tool to check properties on timed models
does not constitute a selection criterion, as the communi-
cating automata considered in this work are not timed. In
the following case studies, the UPPAAL parameters have
been set so that reachability analysis be done depth first to
fasten analysis.

4.2 First case study

This case aims to illustrate the approach. The func-
tional architecture consists of twenty functions which are
defined in Table 1, and the controllers features are as fol-
lows: Vje {1,...,M},
Limax’ = AImax! = LOmax! = AOmax’ = 32

Table 1. Functions description

Functions | SL' | NILp' | NIAp' | NOLp' | NOAp'
1 1 3 5 2 4
2 1 4 6 1 3
3 2 3 7 2 1
4 2 3 4 4 3
5 2 7 5 6 2
6 2 7 2 8 6
7 1 4 5 2 4
8 2 3 6 4 5
9 1 3 7 4 2
10 1 7 2 6 4
11 3 3 5 2 4
12 4 4 6 1 3
13 3 3 7 2 1
14 4 3 4 4 3
15 3 7 5 6 2
16 2 7 2 8 6
17 4 4 5 2 4
18 3 3 6 4 5
19 4 3 7 4 2
20 1 7 2 6 4

A first reachability analysis with an initial number of
controllers M = 20 provides a solution in which only
N =5 controllers are hosting at least one function (15 con-
trollers are not used). By performing a new analysis with
an initial number of controllers M = 4, a more compact
solution can be found, in which 4 controllers are actually
used. It is not possible to further reduce the number of
controllers, as an analysis with M = 3 does not provide
any solution. The final allocation solution for N = 4 con-
trollers is detailed in Table 2.

4.3 Second case study

To assess scalability of the proposal, a study based
on 200 functions was subsequently undertaken. These
200 functions are all different from each other, and their

characteristics are randomly distributed as follows:Vi €
{0,...,L}, SL' € {1,2,3,4}, {NILp' € {0,...,9}, NIAp' €

Table 2. Controllers features and functions
distribution for the set of functions of Table

¢l CFI F; Y viLp' | Y NiApf ZN()Lp” Y Noap!
icl; icl; icl; icl;
3 {25} 7 13 3 4
T
3l 2 % len 30 26 32 23
f()~ »8‘ 16
11 4 15
A3 [T 23 32 22 20
- f”.f'*.f‘g ~ =
4 {7 f ,}
A .10 720} 28 27 21 21

{0,...,9}, NOLp' €{0,...,9}, NOAp'} € {0,...,9}.

The controllers used are all the same and their character-
istics are: Vj € {1,...,M},

Limax’) = AImax) = LOmax/ = AOmax’ = 32.

A first reachability analysis was conducted, providing an
allocation solution in which some controllers are not host-
ing any function; the number of really useful controllers
is then N = 37. The analysis performed with M = 36 also
provides a solution. The number of controllers required
to achieve the operational architecture cannot however be
reduced further, as the analysis performed with M = 35
controllers does not provide any solution. The allocation
solution hence uses at least N = 36 controllers.

Table 3 shows the durations of the different reachabil-
ity analyses conducted in this case study. These values
show that the approach proposed is quite feasible in the
industrial context of operational architectures design.

Table 3. Duration of the reachability analy-
sis with L=200

Initial numbers of controllers | 200 37 36
Duration 110s | 46s | 50s

5 Conclusion and Perspectives

The contribution of this paper is twofold. First an ar-
chitectures meta-model that contains all information on
the architectures of automation systems for critical pro-
cesses has been proposed; OCL expressions have been
introduced to express the generic constraints on the op-
erational architecture. Second, a method to construct au-
tomatically an operational architecture from instances di-
agrams and the OCL expressions has been presented; this
proposal is based on a novel modelling of the allocation of
functions and reachability analysis of a network of com-
municating automata.

Ongoing works are aiming at introducing new capabil-
ities and safety constraints and to propose not only one
allocation solution but a set of solutions in the automatic
construction of an operational architecture. Comparison
to other methods, like integer linear programming, is also
planned on the basis of several case studies.

These results will allow in a near future to focus on
validation of operational architectures, e.g. by time per-
formances assessment; this will imply to extend the archi-

tectures meta-model so as to introduce time features of the
classes.

References

[1] F. Simonot Lion and J-P. Elloy. An Architecture De-
scription Language for In-Vehicle Embedded System
Development. In /5th Triennial World Congress of
the International Federation of Automatic Control,
Barcelona, Spain, 2002. Elsevier Science.

[2] M. Richters and M. Gogolla. On Formalizing the
UML Object Constraint Language OCL. In Tok-
Wang Ling, Sudha Ram, and Mong Li Lee, editors,
Conceptual Modeling-ER’98, volume 1507 of Lecture
Notes in Computer Science, pages 449-464. Springer
Berlin / Heidelberg, 1998.

[3] F. Auinger, R. Brennan, J. Christensen, L.M. Lastra,
and V. Vyatkin. Requirements and solutions to Soft-
ware encapsulation and engineering in next genera-
tion manufacturing systems: OOONEIDA approach.
International Journal of Computer Integrated Manu-
facturing, 18(7):p 572-585, 2005.

[4] C. Tranoris and K. Thramboulidis. A tool supported
engineering process for developing control applica-
tions. Computers in Industry, 57(5):p 462-472, 2006.

[5] U. Katzke and B. Vogel-Heuser. UML-PA as an En-
gineering Model for Distributed Process Automation.
In 16th IFAC world Conference, Prague, 2005.

[6] G. Behrmann, E. Brinksma, M. Hendriks, and
A. Mader. Production Scheduling by Reachability
Analysis - A Case Study. International Parallel and
Distributed Processing Symposium, Volume 3:p. 140—
148, 2005.

[71 S. Subbiah and S. Engell. Short-Term Schedul-
ing of Multi-Product Batch Plants with Sequence-
Dependent Changeovers Using Timed Automata
Models. In 20th European Symposium on Computer
Aided Process Engineering, volume 28, pages 1201—
1206, 2010.

[8] B.Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Pe-
tit, L. Petrucci, and P. Schnoebelen. Systems and Soft-
ware Verification. Springer, 2001.

[9]1 G. Behrmann, J. Bengtsson, A. David, K. Larsen,
P. Pettersson, and W. Yi. UPPAAL implementation
secrets. In Proc. of 7th International Symposium on
Formal Techniques in Real-Time and Fault Tolerant
Systems (FTRTFT), Oldenburg, Germany, September
2002.

