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Abstract— Complexity of a particular coordinated systenthie degree of difficulty in
predicting the properties of the system if the prtips of the system's correlated parts are
given. The coordinated system manifests propen¢scarried by individual parts. The
subject system can be said to emerge without anigiftgg hand”. In systems theory and
science, emergence is the way complex systemsattetns arise out of a multiplicity of
relatively simple interactions. Emergence is céntr¢éhe theories of integrative levels and
of complex systems. The emergent property of ttre uleak multidimensional coupling of
p 1-dimensional dynamical chaotic systems for whiomplexity leads from chaos to
randomness has been recently pointed out.

Pseudorandom or chaotic numbers are nowadays nsewny areas of contemporary
technology such as modern communication systems eagineering applications.
Efficient Chaotic Pseudo Random Number GeneratGRRNG) have been recently
introduced. They use the ultra weak multidimendior@upling of p 1-dimensional
dynamical systems which preserves the chaotic piepeof the continuous models in
numerical experiments. Together with chaotic samgpland mixing processes, the
complexity of ultra weak coupling leads to famileiSCPRNG which are noteworthy. In
this paper we improve again these families usirdpable threshold chaotic sampling
instead of a single one. A window of emergencenfipbmness for some parameter value is
numerically displayed. Moreover we emphasize thatetermining property of such
improved CPRNG is the high number of parameterd asel the high sensitivity to the
parameters value which allows choosing it as cijxess.

1. Introduction

Characterizing complexity is not easy and thereimrgcience a number of
approaches to do it. Many definitions tend to plastéuor assume that complexity
expresses a condition of numerous elements intarayand numerous forms of
relationships among the elements. Some othersitigfinirelate to the algorithmic
basis for the expression of a complex phenomenomaxel or mathematical
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expression. Warren Weaver [1] has posited thaf{dhganized) complexity of a

particular system is the degree of difficulty inegicting the properties of the
system if the properties of the system's partgi@en. In Weaver's view organized
complexity, resides in nothing else than the nardeoan, or correlated, interaction
between the parts. These correlated relationshgete a differentiated structure
which can, as a system, interact with other systérhg coordinated system
manifests properties not carried by individual pamthe organized aspect of this
form of complexity versus other systems than thgesu system can be said to
emerge without any “guiding hand”. The number atpdoes not have to be very
large for a particular system to have emergent gntags.

In systems theory and science, emergence is thecamplex systems and
patterns arise out of a multiplicity of relativedymple interactions. Emergence is
central to the theories of integrative levels aridcomplex systems (M. A.
Aziz-Alaoui et al. [2]).

In this paper we use the emergent property of lthe weak multidimensional
coupling ofp 1-dimensional dynamical chaotic systems for whicmplexity
leads from chaos to randomness. Efficient ChaoteuBo Random Number
Generators (CPRNG) have been recently introducedi (I3, 4, 5, 6]) and their
properties analyzed (Hénadt al. [7, 8, 9, 10]). The idea of applying discrete
chaotic dynamical systems, intrinsically, exploitse property of extreme
sensitivity of trajectories to small changes ofiaticonditions. The ultra weak
multidimensional coupling gb 1-dimensional dynamical systems preserves the
chaotic properties of the continuous models in migak experiments. The
process of chaotic sampling and mixing of chaagugnces, which is pivotal for
these families, works perfectly in numerical sintiaia when floating point (or any
multi-precision) numbers are handled by a computer.

It is noteworthy that these families of ultra weakbupled maps are more
powerful than the usual formulas used to generh@otic sequences mainly
because only additions and multiplications are uséte computation process; no
division being required. Moreover the computatiars done using floating point
or double precision numbers, allowing the use efgbwerful Floating Point Unit
(FPU) of the modern microprocessors (built by botiel and Advanced Micro
Devices (AMD)). In addition, a large part of thengqoutations can be parallelized
taking advantage of the multicore microprocessdrishvappear on the market of
laptop computers.

In this paper we improve the properties of thesmilfas using a double
threshold chaotic sampling instead of a single diee genuine map used as
one-dimensional dynamical systems to generate tisefrenceforth perfectly
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hidden. A window of emergence of randomness foresq@arameter value is
numerically displayed.

A determining property of such improved CPRNG ig thigh number of
parameters usedo ( p—1)for p coupled equations) which allows to choose it as
cipher-keys due to the high sensitivity to the paeters values. We call these
families multi-parameter chaotic pseudo-random remigenerators (M-p
CPRNG).

Several applications can be found for these famdie for example producing
Gaussian noise, computing hash function or in ébaoyptography.

In Sec. 2 we review some of the most popular chaotappings in low
dimension in the scope of their use in numeriogdathms and PRNG.

In Sec. 3 we improve the properties of ultra weakidimensional coupled qf
1-dimensional dynamical chaotic systems using ablouhreshold chaotic
sampling instead of a single one.

In Sec. 4 we describe the emergence of randommess domplexity in a
particular window of parameter value. We point the parameter sensitivity in
Sec. 5, with some applications of the M-p CPRNG wardgive a conclusion in
Sec. 6.

2. Discrete Dynamical Systemsin Low Dimension

Chaotic dynamical systems in low dimension are roftised since their
discovery in the 70’ in order to generate chaotimhers, because they are very
easy to implement in numerical algorithms [11]. Heer, as we point out in this
section the computation of numerical approximatbtheir periodic orbits leads
to very different results from the theoretical arieisen they are unable to generate
Pseudo Random Numbers (PRN). We review some ofmibst used maps in
dimension from 1 to 3 in this scope.

2.1. 1-Dimensional Chaotic Dynamical Systems

2.1.1. Logistic map
The very well known logistic mayg, : [O,l] . [O,J] is simply defined as

9. () = (1= 3 1)
and generally considered f(ﬂD[O,4] (see Fig. 1). It is associated to the

discrete dynamical system [12]

X1 = Ga( X)) 2
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Figure 1. Graph of the logistic map far= 4.

This dynamical system which has excellent ergodaperties on the real
interval [O,l] has been extensively studied especially by R. My [43], and J.
Feigenbaum [14] who introduced what is now callés: tFeigenbaum’s

constantd =4.669201609102990671853203¢ explaining by a new
theory (period doubling bifurcation) the onset béos.
For every value ofa there exist two fixed pointsXx =0 which is always

a-1 . i
unstable andX=—— which is stable foraD]l,i{ and unstable for

ad0]o,f0]14. ’

When a=4 , the system is chaaotic. The set
{5_8\6,5+8\/_5}={O.3454915028,O.9O45084§}7 is the period-2

orbit. In fact there exist infinity of periodic atb and infinity of periods. This
d ical syst invariant med3(ix¢)= ! (
ynamical system possesses an invariant me =—F—— (see
7T X(1- X)

Fig. 2).
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Figure 2. Graph of the invariant measu?é X ) of the logistic map foa = 4.

2.1.2. Numerical approximation of the logistic map

In order to compute longer periodic orbits the aseomputer is required, as
it is equivalent to find roots of polynomial equatiof degree greater than 4 for
which Galois theory teaches that no closed formslavailable. However,
numerical computation uses ordinarily double pieaisiumbers (IEEE-754) so
that the working interval contains roughly*iéepresentable points. Doing such a
computation in Eq. (2) with 1,000 randomly choseitidl guesses, 596.e., the
majority, converge to the unstable fixed po¥iE O, and 404 converge to a cycle
of period 15,784,521. (see Table 1) [15].

Table 1. Coexisting periodic orbits found usingdD®andom initial
points for double precision numbers

Period Orbit Relative Basin size
1 X = Qunstable fixed point 596 over 1,000
15,784,521 Scattered over the interval 404 ovedd,,0

Thus, in this case at least, the very long-ternabiglur of numerical orbits is,
for a substantial fraction of initial points, irafirant disagreement with the true
behaviour of typical orbits of the original smodtlgistic map.
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In others numerical experiments we have perforrttesl computer working
with fixed finite precision is able to represemitiéely many points in the interval in
question. It is probably good, for purposes of ma¢ion, to think of the case
where the representable points are uniformly spacetthe interval. The true
logistic map is then approximated by a discretime&p, sending the finite set of
representable points in the interval to itself.

Describing the discretized mapping exactly is Uuguadmplicated, but it is
roughly the mapping obtained by applying the exsaesboth mapping to each of
the discrete representable points and "rounding' tbsult to the nearest
representable point. In our experiments [16, 1djfoumly spaced points in the
interval with several order of discretization (ramggfrom 9 to 2,001 points) are
involved, the results for 2,000 and 2,001 poinesdisplayed in Table 2. In each
experiment the questions addressed are:

» how many periodic cycles are there and whatlze® periods ?
» how large are their respective basins of attoactie. , for each periodic cycle,
how many initial points give orbits with eventualiynd on the cycle in question ?

Table 2. Coexisting periodic orbits for the diszation with regular

meshes ofN = 2,000 and 2,00 points.

N Period Orbit Relative Basin Size
2,000 1 {0} 2 over 2,000
2,000 2 {1,499} 14 over 2,000
2,000 2 {691;1,808} 138 over 2,000
2,000 3 {276;1,221;1,900} 6 over 2,000
2,000 8 {3;11;43;168;615;1,703.1,008.1,9981,840 over 2,000
2,001 1 {0} 5 over 2,001
2,001 1 {1500} 34 over 2,001
2,001 2 {91; 1809} 92 over 2,001
2,001 8 {3;11;43;168;615;1,703;1,011;1,999}608 over 2,001

2,001

18 {35;137;510;1,519;1,461;1,574;...} 263 026901
2,001 25

{27;106;401,1,282;1,840,588;...} 1,262 026001

The existence of very short periodic orbit (seeld@dh, the existence of a non
constant invariant measure (see Fig. 2) and thi¢ygasognized shape of the
function in the phase spage, , X,,,) avoid the use of the logistic map as a PRN
generator. However, its very simple implementatiorcomputer program led
some authors to use it as a base of cryptosytenipl8
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2.1.3. Symmetric tent map
Another often studied dynamical system is defingthle symmetric tent map

on the intervalJ =[—1,ZI] , £33
fa(X)=1= 2§ ®3)

X = fa(%,) 4)
Despite its simple shape (see Fig. 3), it has séweteresting properties. First,
when the parameter valu@= 2, the system possesses chaotic orbits. Because of
its piecewise-linear structure, it is easy to findse orbits explicitly. More, owing
to its simple definition, the symmetric tent magt®pe under iteration is very well
understood. The invariant measure is the Lebesgasune. Finally, and perhaps
the most important, the tent map is conjugate ¢dalyistic map, which in turn is
conjugate to the Hénon map for small valueb [i2].

1=

05T

05+

-1,0 -0,5 0,0 0,5 1,0

Figure 3. Graph of the symmetric tent mapdrfor a= 2.

However the symmetric tent map is dramatically nucadly instable:
Sharkovski's theorem applies for it [20]. Whea = 2there exists a period three
orbit, which implies that there is infinity of pedic orbits. Nevertheless the orbit
of almost every point of the interval of the discretized tent map converges to
the (unstable) fixed poink = —1 (this is due to the binary structure of floating
points) and there is no numerical attracting peciadbit [11].
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The numerical behaviour of iterates with respeathaos is worse than the
numerical behaviour of iterates of the approximabgstic map. This is why the
tent map is never used to generate numerically tthaombers. However in
Sec. 3 we will show that it is possible to preseitgechaotic properties when
several logistic maps are ultra weakly coupled.

2.2. 2-Dimensional System Chaotic Dynamical Systems

2.2.1. Hénon map
In order to study numerically the properties of tterenz attractor [11], M.
Hénon in 1976 [21] introduced a simplified modettud Poincaré map [12] of this
attractor. The Lorenz attractor being in dimens3pthe corresponding Poincaré

map is a map fronR? to R?. The Hénon map is then also defined in dimension

2 as
F:(qu(y+1—axj 6
y bx

It is associated to the dynamical system
—_— 2
{xm =y, +1-ax,

(6)
Yoer = DX,

For the parameter valu@ = 1.4, b= 0.3 Hénon pointed out numerically
that there exists an attractor with fractal street{see Fig. 4). This was the first
example of strange attractor (previously introdubgdD. Ruelle and F. Takens
[22]) for a mapping defined by an analytic formula.

Nowadays hundreds of research papers have bedshmdbn this prototypical
map in order to fully understand its innermostaute. However as in dimension
1, there is a discrepancy between the mathemattioglerties of this map in the

plane R? and the numerical computations done using (IEEB-7&duble
precision numbers.
If we call Megaperiodic orbits [23], those whosedth of the period belongs

to the interval of natural numbe[le6 ,109[ and Gigaperiodic orbits, those

whose length of the period belongs to the inteE/]atDg ,1012[, Hénon map

possesses Gigaperiodic orbits. On a Dell compuigh a Pentium IV
microprocessor running at the frequency of 1.5 Bége, using a Borland C
compiler and computing with ordinary (IEEE-754) Biprecision numbers, one

can find fora = 1.4 andb = 0.3one attracting period of length 3,800,716,788

8
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i.e.two hundred forty times longer than the longestquokof the one-dimensional
logistic map (see Table 1).

04

0sF

0z

IR

-04
-15

Figure 4. The strange attractor of the Hénon mamafe 1.4 andb = 0.3.

This periodic orbit (we call it here Orbit 1) ismarically slowly attracting.
Starting with the initial value
(X0, Yo)1 = (-0.35766, 0.14722356) one obtains:
(X11,574,730,767 Y11,574,730,760 = (X15,375,447,555 Y15,375 447,55k
=(1.27297361350955662, — 0.0115735710153616837)
The length of the period is obtained subtracting
15,375,447,555 - 11,574,730,767 = 3,800,716,788.
However this periodic orbit is not unique: startimigh the initial value
(X0, Yo)2 = (0.4725166, 0.25112222222356) the following @did orbit (which is
a Megaperiodic orbit of period 310,946,608 (Orh)ti& computed.
(X12,935,492,516 Y12,935,492, 51k = (X13,246,430,128Y13,246 439,12
=(1.27297361350865113, — 0.0115734779561870744)
This orbit can be reached more rapidly startingiftiie other initial value
(X0, Yo) = (0.881877775591, 0.0000322222356), then
(Xa,450 790,707 Ya.450,700,70y = (1.27297361350865113, — 0.0115734779561870744).
It is possible that some others periodic orbitsisiavith both Orbit 1 and Orbit 2.
The comparison between Orbit 1 and Orbit 2 givgsedect idea of the
sensitive dependence on initial conditions of citaattractors: Orbit 1 passes

9
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through the pointl(27297361350955662-0.0115735710153616837) and Orbit
2 passes through the poiftZ7297361350865113 - 0.0115734779561870744).
The same digits of these points are bold printegly &ire very close.

Nevertheless, as displayed in Fig. 4 the orbinateuniformly distributed on
the phase space, then it is not possible to userthp as a PRN generator.

Beside the problem of PRN generator, logistic agtidh maps are recently
used together with a secret key, by N. Pastelt.[24], in order to build a chaotic
block cipher which is extremely robust, due to #wellent confusion and
diffusion properties of these maps. The resulthefstatistical analysis show that
the chaotic cipher possesses all features needadéxure system and useable for
the security of communication system.

L. dos Santos Coelhet al. [25], introduced a chaotic particle swarm
optimisation (PSO) which is a population-based swartelligence algorithm
driven by the stimulation of a social psychologicaétaphor instead of the
survival of the fittest individual. Based on theaokic systems theory (using Hénon
map sequences which increase its convergence meteeaulting precision) the
novel PSO combined with an implicit filtering allevgolving economic dispatch
problems.

2.2.2. Lozi map

The Lozi map [26] is a linearized version of thend@ map, built in order to
simplify the computations, mainly because it isgilole to compute explicitly any
periodic orbits solving a linear system. It is defil as

Xoe1 = Yo+ 1= 9 |
_ (7)
yn+1 - bXn
or equivalently
X1 = 1= 8 X |+ bx., (8)

Fora= 1.7 andb = 0.5 there exists a strange attractor. The particylanit
this strange attractor is that it has been rigdyouoved by Misiurewicz in 1980
[27].

In the same conditions of computation as for Hémnaap, running the
computation during nineteen hours, one can findgageriodic attracting orbit of
period 436,170,188,959 more than one hundred tloreger than the period of
Orbit 1 found for the Hénon map.

10
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Starting with (%, yo) = (0.88187777591, 0.0000322222356) one obtains
(Xe86,295,403,186 Y686,295,403,185 = (X250,125,214,227 ¥250,125,214,22)
= (1.34348444450739479, -2.07670041497986548).10

There is a transient regime before the orbit ished. It seems that there is no
periodic orbit with a smaller length. This could tee to the quasihyperbolic
nature of the attractor. However, the orbit-shifsddowing property of Lozi
map (and generalized Lozi map), which is the prgpehich ensures that
pseudo-orbits of a homeomorphisfncan be traceable by actual orbits even if
rounding errors in computing are not inevitable hasn recently proved [28].

Hence this attractor is very efficient, in ordergenerate chaotic numbers
without repetition for standard simulation usingher the first or the second
component. However they are not equally distribatethe plane (see Fig. 5). The
non constant density forbids its direct use as B B&erator. Nevertheless there
are some U.S. patents for “method of generatinggiseandom numbers in an
electronic device, and a method of encrypting actypting electronic data” in
which the Lozi map is involved [29, 30].

2

: s
L4 A

Y Vd IS

i |
il —f }
0,2-—/

O+—TFTT TV T T T T TrTrr T T T T Tl

-0,68 -049 029 -009 01 03 05 0,68

Figure 5. Invariant density of the second comporgnif Eq. (7) computed
using 16° iterations.

Nevertheless Lozi map is now widely used in chaofitimisation which
belongs to a new class of algorithms: the evolatipralgorithms (EA). In a

11
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founding paper, R. Caponetto et al. [31] proposexgerimental analysis on the
convergence of EA. The effect of introducing chasgquences instead of random
ones during all the phases of the evolution proisassestigated. The approach is
based on the substitution of the PRNG with chassiuences. Several numerical
examples are reported in order to compare the peafoce of the EA using
random and chaotigenerators as regards to both the results andbthemence
speed. The results obtained show that chaotic segaebtained from Lozi map
are always able to increase the value of some medslgorithm-performance
indexes with respect to random sequences.

Several authors following this idea use Lozi maghaotic optimization in
order to avoid local optima stagnation and embsdperior search strategy [32 —
40].

2.3. 3-Dimensional System Chaotic Dynamical Systems

In order to generalize in higher dimension the teap, G. Manjunatht al.[41]
introduce a three-dimensional mé&p: 1% - | *where =[0,1] (see Fig. 6)
which is continuous in the Euclidian topology amdye its chaotic properties:

1- 2x+u—4‘
2
Fxy. 2z |+ 2w 2 % ©
1-|2z+ XY *\
2
The related dynamical system is
(Xz: Yo Zws) = F( %% 12), (10)

They emphasize that most of the well known exampfdsigher dimensional
chaotic dynamical systems belong to the class péiolic diffeomorphisms on a
n-torus. These higher dimensional maps on the taresot continuous on the
standard topology of the Euclidean space sincedhhipit jump discontinuities.
The realization of such jump discontinuities in adectronic circuit
implementation is not reliable. They prove thedaling theorem:

12
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Theorem (G. Manjunathet al) The map defined in (9) is topologically
transitive and exhibits sensitive dependence dairaintonditions with any real

3
numberd O O >y as sensitivity constant.

Once again the sequence of iterated pdir)@,yn ,z]) obtained from the
dynamical system (10) is not equally distributedtmvolumel 3 The invariant
density of the first componerX, is displayed in Fig. 7. The relative discrepancy
of this invariant density versus the uniform ores Ibetween 4% and 5%.

Figure 6. Tessellation of into 3 regions by parallel set of critical planes
Ty(z)=0and . Tx(y)=0and Tx.(z)=0and :, pertaining
to the map (9).

To allow the generation of PRN using complexity angergence theory we
consider in the next section how to generate thmsmbers with uniform
repartition on a given interval, or on a given sgua the plane or more generally
in a given hypercube dR" involving the ultra weak multidimensional coupling
of p 1-dimensional chaotic dynamical systems.

13
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Figure 7. Invariant density of the first componetiof Eq. (10) computed using
10" iterations.

3. Multi-parameter Chaotic Pseudo-Random Number Generator (M -p
CPRNG)

As previously seen, when a dynamical system iszexhlon a computer using
floating point or double precision numbers, the patation is of a discretization,
where finite machine arithmetic replaces continustaite space. For chaotic
dynamical systems, the discretization often haspsing effects to a fixed point
or to short cycles [15, 42]. In order to preserkie thaotic properties of the
continuous models in numerical experiments we chamsian ultra weak
multidimensional coupling g one-dimensional dynamical systems.

3.1. System of p-Coupled Symmetric Tent Map

In order to simplify the presentation of the M-pRI¥G we introduce, we use
as an example the symmetric tent map previousiyne@f(3), even though others
chaotic map of the interval (as the logistic méye, baker transform, ).can be
used for the same purpose (as a matter of coureanvariant measure of the
chaotic map chosen is preserved).

The considered system of theoupled dynamical systems is described by

14
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X, = F(X,)= A[(_f (X, )) (11)
with
X f(x)
X,=| [, f(X)=| (12)
Xy f(x?)
and
i=p
gl,l:]'_zgl,j €12 ] €1p
i=2
i=p
€1 52,2:1"2 € " €ap1 €ap
A= j=1,j#2
=p-1
gp’l ces ces gp’p_l gp p:l- zl & 0
]:
(13)

FisamapoflP = [—1,]]p O R into itself.
i=p
Considering€; ;= 1- & ; , the matrixA is always a stochastic matrix

SN

iff the coupling constants verif;?iyj >0 for everyi andj.

If Oi,j €5 =0 the maps are totally decoupled, instead they alg f
i#]

1
crisscross coupled when for exampﬂej = ——. Generally, researchers do
i#] -1
not consider very small values & j because it seems that the maps are

quasi-decoupled with those values and no specfakctebf the coupling is
expected. In fact it is not the case and ultra somalpling constants (as small as
107 for floating point numbers or 16 for double precision numbers), allows the
construction of very long periodic orbits, leaditagsterling chaotic generators.
This is the way in complexity leads to randomnessifchaos.

15
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Moreover each component of these numbers belongin®” is equally
distributed over the finite interval [1 R, when one chooses a functibwith
uniform invariant measure. Numerical computatioms {0 16° numbers) show
that this distribution is obtained with a very gaagproximation. They have also
the property that the length of the periods of henerically observed orbits is
very large [23].

3.2. Chaotic Sampling and Mixing
However chaotic humbers are not pseudo-random manigeause the plot
of the couples of any compone(n('rI , )<1+1) of iterated points(Xn, Xn+1) in

the corresponding phase plane reveals the maged as one-dimensional
dynamical systems to generate thamEq. (11).

Nevertheless we have recently introduced a familyemhanced Chaotic
Pseudo Random Number Generators (CPRNG) in orasmipute very fast long
series of pseudorandom numbers with desktop comfitd, 5]. This family is
based on the previous ultra weak coupling whidmjzroved in order to conceal
the chaotic genuine function.

In order to hidd in the phase spac(@(l'q , )§+1) two mechanisms are used.
The pivotal idea of the first one mechanism isampgle chaotically the sequence
(X(') , )31 , )kz .o ,X, ,xfl ,..) generated by theth componentxI , selecting

XLevery time the value<|2n of the m-th componentx™, is strictly greater (or

smaller) than a thresholfl [J J , with | # m, for 1<, m<p.
That is to say to extract the subsequence

(XL(O), )<M>’ ){kz),..., )'g,(q) ) thﬂ) ,) denoted here

(XO y X X E 1 %1 ,) of the original one, in the following way

Givenl<l,m< p,[#m

n_,=-1 (14)

(-1

% =%, with ng = MMD q¢l)‘>{">1}
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The sequence()(0 P X % e E T)&l ,) is then the sequence of

chaotic pseudo-random numbers.
The mathematical formula (14) can be best undedsio@lgorithmic way. The
pseudo-code, for computing iterates of (14) cowadjng toN iterates of (11) is:

X0=(><é,>§,...,>§”,>§): see
n=0;9g=0
do{ whilen <N
dof while (X' <T)
compute(xi,)gf,...,)grl,)gp);n++}
compute()(i,)gf,...,)ﬁ“,)gp);
thenn(g)=n; x = *tq) N+ +q++}

This chaotic sampling is possible due to the inddpace of each component
of the iterated pointsX, vs.the others [3].

Remark 1: Albeit the numberNSampl, of pseudo-random numbers
g corresponding to the computation bf iterates is not knowra priori,

considering that the selecting process is agakedirio the uniform distribution of

2N
the iterates of the tent map ah, this number is equivalent t]e?—_l_

A second mechanism can improve the unpredictalofitthe pseudo-random
sequence generated as above, using synergistalhlthe components of the

vector X, instead of two. Givep - 1thresholds
T <T,<--<T_0J (15)
and the corresponding partition df
p-1
I={JJ (16)
k=0
with Jo=[-1T], 3, =|T.T[ . I =[Ty T| forl< k< p-1 and
Jou = [Tp_l ,1[ this simple mechanism is based on the chaotiéngiaf the

p-1sequences
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(6% 6 i) (€% Ry )
(Xg"l,xj*l,g‘”,... ,>g’“,>g'f’11,..),...
using the last one()(éJ DD N S ,..) in order to distribute the

iterated points with respect to this given partitidefining the subsequence

(XL(O), )<M>’ ){kz),..., )'g,(q) , thﬂ) ,) here denoted

(3.5 5% v+ % Hps 5+ by

N (17)
X =%, withng, = Min{ 5 (@ Mif 1> e 0 4]

The pseudo-code, for computing the iterates of @atyesponding to N
iterates of (11) is:

X0=(x3,>§,... ,>§”,>§): see
n=0;9g=0
do{ whilen <N

dof while (er’ O JO) compute

(X,f,)gf,... ,)fl,)gp);n++}
compute(xﬁ,)gf . ,)ﬁ*l,&p)
letk be such thax? [ J,
thenn(q)=n; X = >§q);n++;q++}

Remark 2: In this case alsoNSamp], is not knowna priori, however,
considering that the selecting process is linkethéouniform distribution of the

2N
iterates of the tent map ad, one hasNSampl, = -7
—h
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Remark 3: This second mechanism is more or less linked ¢oathitening
process [43, 44].

Remark 4. Actually, one can choose any of the componenterder to
sample and mix the sequence, not only the last one.

3.3. Double Threshold Chaotic Sampling

On can eventually improve the CPRNG previouslyodtrced with respect to the
infinity norm instead of thel, or L, norms because thk_ norm is more

sensitive than the others ones to reveal the céettdanctionf [5]. For this
purpose we introduce a second kind of threshbld]N , together with

Tl,---,Tp_l 0 J such that the subsequenéx0 dX X% e E T)&l ,) is
defined by

M.y =-1
Z:){q)  with QQ):EML[]l{§ (aF kI\D/INir{ > Ryt T ‘ 40 4}}
(18)

In pseudo-code Eq. (18) is then:

X0=(>§,>§,...,>§1,>§): see
n=0,g=0
do{ whilen <N

do{while (n<n, ,,+T' and X0 J)

compute()(i,)gf . ,)ﬁ“,)ﬂp);n++}
comput{ X2, 3¢ ..., ¥, )

letk be such thax? [ J,
thenn(q)=n; X = >§);n++;q++}

Remark 5: In this case alsoNSampl, is not known a priori, it is more
complicated to give an equivalent to it. Howevamsidering that the selecting
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process is linked to the uniform distribution oé titerates of the tent map ah,

and to the second threshdld it comes thatNSamp),, < Mir{lzl\_ll_ ,%}
—h

Remark 6: the second kind of thresholll' can also be used with only the
chaotic sampling, without the chaotic mixing.

4. Emergence of Randomness

Numerical results about chaotic numbers produced by— (17) show that
they are equally distributed over the interndhvith a very good precision [3, 4].

In this section we emphasize that when the paraméte, belong to a

special window (called the window of emergence)Mhp CPRNG defined above
behaves well.

4.1. Approximated | nvariant Measures

In order to perform numerical computation, we heveefine some numerical
tools: the approximated invariant measures.

First we define an approximatio, \ (X) of the invariant measure also called
the probability distribution function linked to the-dimensional mag when
computed with floating numbers (or numbers in deytrecision). In this scope
we consider a regular partition ®f small intervals (boxes) of J defined by:

2i .
=-1+—, i=0,M
S M !
n =8 sal iz OM-
-1 = [SM—l ’]]
M-1
J={r
0
the length of each box is
_ 2
Sa~ %7 M

(note that this regular partition af is different from the previous one linked to
the threshold value$; (16)).

Al iteratesf ™(x) belonging to these boxes are collected (aftemmstent
regime ofQ iterations decided priori, i.e. the firstQ iterates are neglected). Once
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the computation dfl + Q iterates is completed, the relative number oéiees with
respect toN/M in each box; represents the valul, (q) . The approximated
P (X) defined in this article is then a step functioithw/ steps. A may vary,
we define

1M
Ran ()= 51 (#1)
where #; is the number of iterates belongmg to the interyvand the constant 1/2
allows the normalisation oB,  (X) on the intervalJ .

Ran(X)=Ryn(s) O
In the case op-coupled maps, we are more interested by the loigioin of
each componer(txl, X2, le,..., Xp) of X rather than the distribution of the

variable X itself in J° . We then consider the approximated probability
distribution functionR, \ (') associated to one among several components of

F(X) defined by (11) which are one-dimensional mapsthis paper we use

equally N forM and N, for N when they are more explicit.

The discrepancie&; (in norm L), E, (in normL,) andE_ (in norm

L) betweenPNd N, (X) and the Lebesgue measure which is the invariant

isc 1

measure associated to the symmetric tent map edireed by

Eldeisc'Niler (X) = H PNd\sc' Niler(
2 Nd\sc Nner (X) = H PNdisc iter

oonSc ,Ie,( ) H Naisc: Nner(x) OSH

In the same way an approximation of the correlatiistribution function
Cu n (X ) is obtained numerically building a regular pastitiof M 2 small

squares (boxes) o ? imbedded in the phase subspacex()

s_—1+%, g:—1+%, i j=0M

[S $+l |: ’J+l[ !j= 01 M-2
L= s osa[x[bs 1 Li= OM-

21



Published In Mathematics in Science and Technology: MathemiatMathods, Models and
Algorithms in Science and TechnoloByoceedings of the Satellite Conference of ICM1T%August

2010 Delhi, India (A.H. Siddigi, R.C. Singh, P. M&randa Editors)World Scientific Publisher,
Singapore (2011) pp. 93-125.

s = [Swa s %[ty 2 1

the measure of the area of each box is

2 )2
(3= 9)<(1a- 0 =( 5
OnceN + Q iterated points()q'q , ){?) belonging to these boxes are collected
the relative number of iterates with respedit 2 in each box;; represents the
value Cy (s, t;). The approximated probability distribution furstiCy (X, y)
defined here is thenZdimensional step function, witki ? steps. AV can take
several values in the next sections, we define

1M?
Cun(s )_Z_N (#[J-) (19)
where #;; is the number of iterates belonging to the squasnd the constant 1/4
allows the normalisation o€, \ (X, y ) on the square z

Cun(Xy)= Gun($.1) OOXYNH (20)
The discrepancieECl (innorm L), ECZ (innormL,)and E  (in norm

L.) betweenCNdiSC’N (X,y)and the uniform distribution on the square, are

iter

defined by

B, (0 ) =] Gy, (X 9-0.29)
B (6 Y) =] Gy, (X 9= 028
Ec_ e (6 ¥ =] Gy, (X 9-0.25

Finally let AC,  (X,Yy)be the autocorrelation distribution function

which is the correlation functioy  (X,Y)of (20) defined in the phase

space(XL , ><q+1) instead of the phase spa(oé, X" ) . Inorder to control that the

enhanced chaotic numbe(sx0 VX X E X1 ,) are uncorrelated, we

plot them in the phase subspa(dg, )gm) and we check if they are uniformly

distributed in the square J> and if f is concealed ie.
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EACJ.! Ndiscv Niter (T(q’ 7(q"l)’ EAQ ’ N.ﬂscY Nter (_Xq’ _qu)’ EACoo, Nd\scv Niter (T(q’ 7(‘:1"1)
vanish).

4.2. A window of Emergence of Randomness

In order to point out the usefulness of the doubieshold chaotic sampling
with simply consider the case of only 4 coupled amuns, and such

thatg, ;=& Li #] and& ;=1-3¢ . Eq. (11) becomes

Xour = (1= 36, )T () +e T (X)) +e F(X)+e  F(XT)
Xorr =€, TOG)+ (1= 3 ) f(x2)+e ,F (X)) +e ,f(X])
Xorr =€ 5 (X)) e F(X2)+(1-3e ) f(x})+e 4F(X7)
Xua T4 T +e  F(X0)+e , F(X7)+(1- 36 )F(XT)

(21)

Moreover we assume that =i g,

For the shake of simplicity we consider only thaatic sampling method.é.
we use only one thresholll), without the chaotic mixing. We then compute

Eldeischiter (7()’ Ezde\sch (7)’ E" deiscrN (_X) and EACmde\schiter (T(q’ T(Q"l)

iter

Enc N N (X Xg1)s Eng e e (Xg Xqu)s for - Ngg, 1,024 and
N

iter

=10". We chooseT =0.9 and T"' = 20. We display on Fig. 8 the

iter
values of the six computed error when[] I:lO'17 ,10'1]. The seed (initial

values) being
Xé = 0.330000,§<= 0.3387563)(: 0.5049)(3’ =0.324082

A window of emergence comes clearly into sight fdre values
g U |:10'15 ,10'7] if one considers all together the six errors.

The errorsE N (X5 Encenyn, (Xgr Xg1) narrowing this window

mdeiscv iter
in which 340, 753,09% NSampl,, < 340,768,5. out of N =10".

iter
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Figure 8. The window of emergence of randomness

4.3. The Underneath of Randomness

The double threshold chaotic sampling is very gffit because its aim is
mainly to concedl in the most drastic way. In order to understarduhderneath

mechanism consider first that in the phase sp(a¢e )§+1) the graph of the
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chaotically sampled chaotic numbers is a mix of ghephs of thd © for all

r 0N (see Fig. 9).

1.0

)
o
S
=g
R

00

Figure 9. Graphs of the symmetric tent miap® andf © on the interval [-1, 1].

It is obvious as showed on Fig. 10 thatfer 1 ifM = 1 or 2, AC, (X V)
is constant and normalized on the square hence
EACJ.! Ndiscv N (X’ y) = EAQ! Ni\scv Nter( X }) = EA@’* Niiscv Nter( )’( y: O

iter

Figure 10. In shaded regions the autocorrelation distributR@,, (X Y) is
constant for the symmetric tent miapn the interval [-1, 1] foM = 1 or 2.

The autocorrelation function is different from zerdy if M > 2 (see Fig. 11).
In the same way as displayed on Fig. 12, 13 and 14,
EACL' Ndisc! Niter (X' y) = EACZ' Nﬁ\sc' Nler( X » = EA@V Njisc' Nler( x yz O for f (I)

ifft M <2'.Hence for a giverM , if we cancel the contribution of all thé for
2' < M, itis not possible to identify the genuine fupatf.
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/

Figure 11. Regions where the autocorrelation distributiéC,, (X }) is
constant for the symmetric tent mbpre shaded, favl = 4. (The square on the
bottom left hand side of the graph shows the sfber;; box). AC, (X V)

vanishes on the white regions.

Figure 12. In shaded regions the autocorrelation distributA@,, (X Y) is
constant for the symmetric tent mi&f on the interval [-1, 1] foM = 1, 2 and 4.

Figure 13. Regions where the autocorrelation distributiéC,, (X ) is
constant for the symmetric tent m&f are shaded favl = 8.
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Figure 14. Regions where the autocorrelation distributiéC,, (X ) is
constant for the symmetric tent m&) are shaded favl = 16.

4.4. Tedting the Randomness

N disc
2 4 8 6 32 64 128 256 512 1024
100 A A A A A A A A .

Eac

0,1

0,01

0,001

0,0001

—@— Threshold T = 0.9, Niter = 10”9

---m---Thresholds T=0.9 and T = 20, Niter = 10”9

Figure 15. Error of E,.. \ (X5 Xg1) Ny =2' 102,
N, =10°, thresholdsT =0.9 and T'=20, ¢ =ig, , g =107 .
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Computations are done using double precision nusnpdrd-15 digits).

As shown previously [3] the errors b, or L, norms decrease with the
number of chaotic points (as in the law of largenbers) and conversely increase
with the numbeM of boxes used to definAC, (X V). Itis the same for the

error in L, norm. Fig. 15 shows that whén is greater than®2the sequence

defined by (18) behaves better than the one debgédl4) or (17) when applied to
Eqg. (21).

Ndisc
2 4 8 1 32 64 18 256 52 1024
0 M . . . .
_m
1 -
.=
= A
01 = s
o= &
- A
0,01 = et
o o -~
< - K
] = A
0,001 +—m= x
JE
0,0001 7
/
0,00001 1 £
0,000001

- - #-- Threshold T=0.9 and T'= 20, Niter = 10"9
—&— Threshold T=0.9 and T'= 20, Niter = 10"10

— —A— - Threshold T= 0.9 and T= 20, Niter = 10711

Figure 6. Error of EACw'Ndiscv Niter (T(Q’T(Wl) NdiSC = 21 to 210 ’
N\ =10° to 10" , thresholds T=0.9 and T'=20 , g =g

& = 107, Computations are done using double precision eus~14-15
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digits).
Fig. 16 shows that when the number of chaotic gointreases the error
Enceon,.n,, (X Xg1) decreases drastically. If for example > 100, it is

necessary to use a huge grid 852" boxes splitting the squard® in order to
find a trace of thgenuine functiod. This is numerically impossible with double
precision numbers. Then the chaotic numbers ensgrgandom numbers.

5. Applications

Generation of random or pseudorandom numbers, reysads a key feature
of industrial mathematics. Pseudorandom or chautiobers are used in many
areas of contemporary technology such as modernmemication systems and
engineering applications.

More and more European or US patents using disenaigpings for this
purpose are obtained by researchers of discretenuigal systems [29, 30].

When an efficient M-p CPRNG is defined, there existhuge number of
applications for the pseudo-random numbers it camegate, as for example
chaotic masking, chaotic modulation or chaotictdtgfing in the fields of secure
communications [7, 8, 9, 10].

5.1. Parameter sensitivity

A determining property of the M-p CPRNG we have lioyed in this paper
via Eq. (21) and double threshold chaotic sampling {¢8he high number of
parameters usedox ( p—1)for p coupled equations) which allows to choose it as
cipher-keys however this achievement is possiblg ibthere is a high sensitivity

to the parameters values.
In order to point up this sensitivity, it is enoughconsider the simplest case

of 2-coupled equations with two sets of slightly diéet parameteréé‘l ) 82)
and (&, &,) £ =0.000,00:, & =0.000,001,000,000,000,00C,
and £, =0.000, 00

Xr]{+l =(l—81)f(Xi)+8 1f(xi)

o =, () (12 ,)f () @2
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X|*ql+1 =(1_31)f(X*§ )+8*1f()(*i )
Xo =€, (X0 )+ (1=¢,)F (X))

The double threshold sampling is done using 0.9 and T ' = 20 and the
same seed is taken

X, =(%.%)=%=(% %)

Despite the fact that the difference betweén and 5‘1* is tiny:

(23)

‘51;_51*‘:3x1013 the sequences(z,z,z _)S K ) and
1

(XO , X1 , )(2 oo ,*)g ,*)& 1 ,) differ completely as displayed in Table 3 (In fact

1

all the componentéqu) , >§2m) and (X;(lq) , ){fq)) are different).

0.000, 001,00
000,000, 000,
.| 0.330,000,015 ., 0.330,000, 01
% 113,021,851 % 113,021,851
-0.959,214,81 ., -0.058,536,72¢
207,605,153 X’ko) 173,974,455,5
0.657,775,68¢| ., 0.386,129,40:
600,752,417 X 866,398,935
-0.784,600,93t ., 0.471,824,72¢
471,051,031 ") 381,262,631

g | 000000 | &

,O:><r—\

T_.D><H

/3><r—\

2
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.| 0.000,001,00¢

& | 0.000,00: | & ,

000,000,000,

,| 033875641z ,, | 0.338,756,41:

% %

113,021,848 113,021,848

, | 0914,47227¢| ., | -0.646,249,81:
0| 898,123,885 | "o | 458,326,023

, | 091568441z ., | 0.894,262,91c
“w| 9956766 | " | 879,751,405

, | 0910813,70¢] ., | 0.820,811,98i
“o| 361,448,345 | o | 022,524,114

Table3. Sequence%xrlm , ){qu)) and(xﬁ(q) , ){fq))of Eq. (22) and (23) with
g =0.000,00: &, =0.000,001,000,000,000,00C  and
£,=0.000,00% X, =(%.%)= X% =(% .%)

Then rather than a unigue CPRNG which is introdubetk, there is a
quasi-infinite family of CPRNG that the M-p CPRNfithe allowing several
possibilities of applications.

5.2. Gaussian Noise

As an example of such application, the generatfdBamssian noise from the

sequences()(0 VXX E 1 %1 ,) is very easy when a Box-Muller

transform is applied.

A Box—Muller transform [45] is a method of genengtpairs of independent
standard normally distributed (zero expectatiorit wewriance) random numbers,
given a source of uniformly distributed random nensb The polar form [46] of

such a transform takes two samples from a diffeirgetval, [—1,]] and maps

them to two normally distributed samples withoug¢ thse of sine or cosine
functions. This form of the polar transform is wideised, in part due to its
inclusion in Numerical Recipes.
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As the sequence(sx0 VX X E T)&l ,) are uniformly distributed in
J= [—1,]] I R, the application is straightforward.

5.3. Hash Function

Another example of application could be the comiparieof hash function. A
hash function is any well-defined procedure or raathtical function that
converts a large, possibly variable-sized amourdash into a small one. The
values returned by a hash function are called tiakles, hash codes, hash sums,
checksums or simply hashes.

Hash functions are mostly used to speed up tablaulw or data comparison
tasks — such as finding items in a database, diegedtiplicated or similar records
in a large file, finding similar stretches in DNAcuences, and so on.

A hash function may map two or more keys to theeshash value. In many
applications, it is desirable to minimize the ocence of such collisions, which
means that the hash function must map the keyisetdash values as evenly as
possible. Depending on the application, other pitiggemay be required as well.
Although the idea was conceived in the 1950s, &sggeh of good hash functions is
still a topic of active research.

Although hash function generally involve integess, can consider that the

application which maps the initial seei, = ()Ql) X X ,>§) into any

predetermined term of the sequer(c)% VX X E T)&l ,) is a hash

function working on floating point numbers.

We will explore this application in a forthcominger.

Others applications show the high-potency of sucip BPRNG. Due to
limitation of this article, they will be publishedsewhere.

6. Conclusion

Using a double threshold in order to sample a ¢hamquence, we have
improved with respect to the infinity norm the M-@PRNG previously
introduced. When the value of the second thresHolds greater than 100, it is
impossible to find the genuine function used toggete the chaotic numbers. The
new M-p CPRNG family is robust versus the choic¢éhefweak parameter of the
system for 13* < < 10°, allowing the use of this family in several apptions as
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for example producing Gaussian noise, computindy fiasction or in chaotic
cryptography.
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