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Abstract— Complexity of a particular coordinated system is the degree of difficulty in 
predicting the properties of the system if the properties of the system's correlated parts are 
given. The coordinated system manifests properties not carried by individual parts. The 
subject system can be said to emerge without any “guiding hand”. In systems theory and 
science, emergence is the way complex systems and patterns arise out of a multiplicity of 
relatively simple interactions. Emergence is central to the theories of integrative levels and 
of complex systems. The emergent property of the ultra weak multidimensional coupling of 
p 1-dimensional dynamical chaotic systems for which complexity leads from chaos to 
randomness has been recently pointed out. 
Pseudorandom or chaotic numbers are nowadays used in many areas of contemporary 
technology such as modern communication systems and engineering applications. 
Efficient Chaotic Pseudo Random Number Generators (CPRNG) have been recently 
introduced. They use the ultra weak multidimensional coupling of p 1-dimensional 
dynamical systems which preserves the chaotic properties of the continuous models in 
numerical experiments. Together with chaotic sampling and mixing processes, the 
complexity of ultra weak coupling leads to families of CPRNG which are noteworthy. In 
this paper we improve again these families using a double threshold chaotic sampling 
instead of a single one. A window of emergence of randomness for some parameter value is 
numerically displayed. Moreover we emphasize that a determining property of such 
improved CPRNG is the high number of parameters used and the high sensitivity to the 
parameters value which allows choosing it as cipher-keys. 

1. Introduction 

Characterizing complexity is not easy and there are in science a number of 
approaches to do it. Many definitions tend to postulate or assume that complexity 
expresses a condition of numerous elements in a system and numerous forms of 
relationships among the elements. Some others definitions relate to the algorithmic 
basis for the expression of a complex phenomenon or model or mathematical 
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expression. Warren Weaver [1] has posited that the (organized) complexity of a 
particular system is the degree of difficulty in predicting the properties of the 
system if the properties of the system's parts are given. In Weaver's view organized 
complexity, resides in nothing else than the non-random, or correlated, interaction 
between the parts. These correlated relationships create a differentiated structure 
which can, as a system, interact with other systems. The coordinated system 
manifests properties not carried by individual parts. The organized aspect of this 
form of complexity versus other systems than the subject system can be said to 
emerge without any “guiding hand”. The number of parts does not have to be very 
large for a particular system to have emergent properties. 

In systems theory and science, emergence is the way complex systems and 
patterns arise out of a multiplicity of relatively simple interactions. Emergence is 
central to the theories of integrative levels and of complex systems (M. A. 
Aziz-Alaoui et al. [2]). 

In this paper we use the emergent property of the ultra weak multidimensional 
coupling of p 1-dimensional dynamical chaotic systems for which complexity 
leads from chaos to randomness. Efficient Chaotic Pseudo Random Number 
Generators (CPRNG) have been recently introduced (Lozi [3, 4, 5, 6]) and their 
properties analyzed (Hénaff et al. [7, 8, 9, 10]). The idea of applying discrete 
chaotic dynamical systems, intrinsically, exploits the property of extreme 
sensitivity of trajectories to small changes of initial conditions. The ultra weak 
multidimensional coupling of p 1-dimensional dynamical systems preserves the 
chaotic properties of the continuous models in numerical experiments. The 
process of chaotic sampling and mixing of chaotic sequences, which is pivotal for 
these families, works perfectly in numerical simulation when floating point (or any 
multi-precision) numbers are handled by a computer. 

It is noteworthy that these families of ultra weakly coupled maps are more 
powerful than the usual formulas used to generate chaotic sequences mainly 
because only additions and multiplications are used in the computation process; no 
division being required. Moreover the computations are done using floating point 
or double precision numbers, allowing the use of the powerful Floating Point Unit 
(FPU) of the modern microprocessors (built by both Intel and Advanced Micro 
Devices (AMD)). In addition, a large part of the computations can be parallelized 
taking advantage of the multicore microprocessors which appear on the market of 
laptop computers. 

In this paper we improve the properties of these families using a double 
threshold chaotic sampling instead of a single one. The genuine map f used as 
one-dimensional dynamical systems to generate them is henceforth perfectly 
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hidden. A window of emergence of randomness for some parameter value is 
numerically displayed. 

A determining property of such improved CPRNG is the high number of 
parameters used ( ( 1)p p× − for p coupled equations) which allows to choose it as 

cipher-keys due to the high sensitivity to the parameters values. We call these 
families multi-parameter chaotic pseudo-random number generators (M-p 
CPRNG). 

Several applications can be found for these families as for example producing 
Gaussian noise, computing hash function or in chaotic cryptography. 

In Sec. 2 we review some of the most popular chaotic mappings in low 
dimension in the scope of their use in numerical algorithms and PRNG. 

In Sec. 3 we improve the properties of ultra weak multidimensional coupled of p 
1-dimensional dynamical chaotic systems using a double threshold chaotic 
sampling instead of a single one.  

In Sec. 4 we describe the emergence of randomness from complexity in a 
particular window of parameter value. We point out the parameter sensitivity in 
Sec. 5, with some applications of the M-p CPRNG and we give a conclusion in 
Sec. 6. 

2. Discrete Dynamical Systems in Low Dimension 

Chaotic dynamical systems in low dimension are often used since their 
discovery in the 70’ in order to generate chaotic numbers, because they are very 
easy to implement in numerical algorithms [11]. However, as we point out in this 
section the computation of numerical approximation of their periodic orbits leads 
to very different results from the theoretical ones. Then they are unable to generate 
Pseudo Random Numbers (PRN). We review some of the most used maps in 
dimension from 1 to 3 in this scope. 

2.1. 1-Dimensional Chaotic Dynamical Systems 

2.1.1. Logistic map 
The very well known logistic map [[[[ ]]]] [[[[ ]]]]ag : 0,1 0,1→→→→  is simply defined as 

 (((( )))) (((( ))))ag x ax 1 x= −= −= −= −  (1) 

and generally considered for [[[[ ]]]]a 0,4∈∈∈∈  (see Fig. 1). It is associated to the 

discrete dynamical system [12] 

 (((( ))))n 1 a nx g x++++ ====  (2) 
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Figure 1. Graph of the logistic map for a 4==== . 
 

This dynamical system which has excellent ergodic properties on the real 

interval [[[[ ]]]]0,1  has been extensively studied especially by R. M. May [13], and J. 

Feigenbaum [14] who introduced what is now called the Feigenbaum’s 
constant 4.66920160910299067185320382...δ ====  explaining by a new 
theory (period doubling bifurcation) the onset of chaos. 

For every value of a  there exist two fixed points: x 0====  which is always 

unstable and 
a 1

x
a

−−−−==== which is stable for ]]]] [[[[a 1,3∈∈∈∈ and unstable for 

]]]] [[[[ ]]]] [[[[a 0,1 1,4∈ ∪∈ ∪∈ ∪∈ ∪ . 

When a 4==== , the system is chaotic. The set 

{{{{ }}}}5 5 5 5
, 0.3454915028,0.9045084972

8 8

    − +− +− +− +     ====    
        

is the period-2 

orbit. In fact there exist infinity of periodic orbits and infinity of periods. This 

dynamical system possesses an invariant measure 
1

P( x )
x(1 x )π

====
−−−−

 (see 

Fig. 2). 
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Figure 2. Graph of the invariant measure P( x ) of the logistic map fora 4==== . 

 
2.1.2. Numerical approximation of the logistic map 

In order to compute longer periodic orbits the use of computer is required, as 
it is equivalent to find roots of polynomial equation of degree greater than 4 for 
which Galois theory teaches that no closed formula is available. However, 
numerical computation uses ordinarily double precision numbers (IEEE-754) so 
that the working interval contains roughly 1016 representable points. Doing such a 
computation in Eq. (2) with 1,000 randomly chosen initial guesses, 596, i.e., the 
majority, converge to the unstable fixed point x 0==== , and 404 converge to a cycle 
of period 15,784,521. (see Table 1) [15]. 
 

Table 1. Coexisting periodic orbits found using 1,000 random initial 
points for double precision numbers 

 
Period Orbit Relative Basin size 

1 x 0==== unstable fixed point 596 over 1,000 

15,784,521 Scattered over the interval 404 over 1,000 
 
Thus, in this case at least, the very long-term behaviour of numerical orbits is, 

for a substantial fraction of initial points, in flagrant disagreement with the true 
behaviour of typical orbits of the original smooth logistic map. 
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In others numerical experiments we have performed, the computer working 
with fixed finite precision is able to represent finitely many points in the interval in 
question. It is probably good, for purposes of orientation, to think of the case 
where the representable points are uniformly spaced in the interval. The true 
logistic map is then approximated by a discretized map, sending the finite set of 
representable points in the interval to itself. 

Describing the discretized mapping exactly is usually complicated, but it is 
roughly the mapping obtained by applying the exact smooth mapping to each of 
the discrete representable points and "rounding" the result to the nearest 
representable point. In our experiments [16, 17], uniformly spaced points in the 
interval with several order of discretization (ranging from 9 to 2,001 points) are 
involved, the results for 2,000 and 2,001 points are displayed in Table 2. In each 
experiment the questions addressed are: 
• how many periodic cycles are there and what are their periods ? 
• how large are their respective basins of attraction, i.e. , for each periodic cycle, 
how many initial points give orbits with eventually land on the cycle in question ? 
 

Table 2. Coexisting periodic orbits for the discretization with regular 
meshes of N 2,000 and 2,001====  points. 

 
N Period Orbit Relative Basin Size 

2,000 1 {0} 2 over 2,000 
2,000 2 {1,499} 14 over 2,000 
2,000 2 {691;1,808} 138 over 2,000 
2,000 3 {276;1,221;1,900} 6 over 2,000 
2,000 8 {3;11;43;168;615;1,703.1,008.1,998} 1,840 over 2,000 
2,001 1 {0} 5 over 2,001 
2,001 1 {1500} 34 over 2,001 
2,001 2 {91; 1809} 92 over 2,001 
2,001 8 {3;11;43;168;615;1,703;1,011;1,999} 608 over 2,001 
2,001 18 {35;137;510;1,519;1,461;1,574;…} 263 over 2,001 
2,001 25 {27;106;401;1,282;1,840;588;…} 1,262 over 2,001 

 
The existence of very short periodic orbit (see Table 1), the existence of a non 

constant invariant measure (see Fig. 2) and the easily recognized shape of the 
function in the phase space (((( ))))n n 1x ,x ++++  avoid the use of the logistic map as a PRN 
generator. However, its very simple implementation in computer program led 
some authors to use it as a base of cryptosytem [18, 19]. 
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2.1.3. Symmetric tent map 
Another often studied dynamical system is defined by the symmetric tent map 

on the interval [[[[ ]]]] aJ 1,1 , f : J J= − →= − →= − →= − →  

 af ( x ) 1 a x= −= −= −= −  (3) 

 (((( ))))n 1 a nx f x++++ ====  (4) 

Despite its simple shape (see Fig. 3), it has several interesting properties. First, 
when the parameter value a 2==== , the system possesses chaotic orbits. Because of 
its piecewise-linear structure, it is easy to find those orbits explicitly. More, owing 
to its simple definition, the symmetric tent map’s shape under iteration is very well 
understood. The invariant measure is the Lebesgue measure. Finally, and perhaps 
the most important, the tent map is conjugate to the logistic map, which in turn is 
conjugate to the Hénon map for small values of b [12]. 

-1

-0,5

0

0,5

1

-1,0 -0,5 0,0 0,5 1,0

  
Figure 3. Graph of the symmetric tent map on J  for a 2==== . 

 
However the symmetric tent map is dramatically numerically instable: 

Sharkovskiǐ’s theorem applies for it [20]. When a 2==== there exists a period three 
orbit, which implies that there is infinity of periodic orbits. Nevertheless the orbit 
of almost every point of the interval J  of the discretized tent map converges to 
the (unstable) fixed point x 1= −= −= −= −  (this is due to the binary structure of floating 
points) and there is no numerical attracting periodic orbit [11]. 
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The numerical behaviour of iterates with respect to chaos is worse than the 
numerical behaviour of iterates of the approximated logistic map. This is why the 
tent map is never used to generate numerically chaotic numbers. However in 
Sec. 3 we will show that it is possible to preserve its chaotic properties when 
several logistic maps are ultra weakly coupled. 

2.2. 2-Dimensional System Chaotic Dynamical Systems 

2.2.1. Hénon map 
In order to study numerically the properties of the Lorenz attractor [11], M. 

Hénon in 1976 [21] introduced a simplified model of the Poincaré map [12] of this 
attractor. The Lorenz attractor being in dimension 3, the corresponding Poincaré 

map is a map from 2
ℝ  to 2

ℝ . The Hénon map is then also defined in dimension 
2 as 

 
2x y 1 ax

F :
y bx

    + −+ −+ −+ −    
→→→→         

         
 (5) 

It is associated to the dynamical system 

 
2

n 1 n n

n 1 n

x y 1 ax

y bx
++++

++++

 = + −= + −= + −= + −
 ====

 (6) 

 
For the parameter value a 1.4====  , b 0.3====  Hénon pointed out numerically 

that there exists an attractor with fractal structure (see Fig. 4). This was the first 
example of strange attractor (previously introduced by D. Ruelle and F. Takens 
[22]) for a mapping defined by an analytic formula. 

Nowadays hundreds of research papers have been published on this prototypical 
map in order to fully understand its innermost structure. However as in dimension 
1, there is a discrepancy between the mathematical properties of this map in the 

plane 2
ℝ and the numerical computations done using (IEEE-754) double 

precision numbers. 
If we call Megaperiodic orbits [23], those whose length of the period belongs 

to the interval of natural numbers 6 910 ,10          and Gigaperiodic orbits, those 

whose length of the period belongs to the interval 9 1210 ,10         , Hénon map 

possesses  Gigaperiodic orbits. On a Dell computer with a Pentium IV 
microprocessor running at the frequency of 1.5 Gigahertz, using a Borland C 
compiler and computing with ordinary (IEEE-754) double precision numbers, one 
can find for a 1.4====  and b 0.3==== one attracting period of length 3,800,716,788  
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i.e. two hundred forty times longer than the longest period of the one-dimensional 
logistic map (see Table 1). 
 
 

 
Figure 4. The strange attractor of the Hénon map for a 1.4====  and b 0.3==== . 

 
 

This periodic orbit (we call it here Orbit 1) is numerically slowly attracting. 
Starting with the initial value  

(x0 , y0)1 = (-0.35766, 0.14722356) one obtains: 
(x11,574,730,767 , y11,574,730,767)1 = (x15,375,447,555 , y15,375,447,555)1 
= (1.27297361350955662, – 0.0115735710153616837) 

The length of the period is obtained subtracting  
15,375,447,555 – 11,574,730,767 = 3,800,716,788. 

However this periodic orbit is not unique: starting with the initial value 
(x0 , y0)2 = (0.4725166, 0.25112222222356) the following periodic orbit (which is 
a Megaperiodic orbit of period 310,946,608 (Orbit 2)) is computed. 

(x12,935,492,515, y12,935,492,515)2 = (x13,246,439,123, y13,246,439,123)2 
= (1.27297361350865113, – 0.0115734779561870744) 

This orbit can be reached more rapidly starting form the other initial value  
(x0, y0) = (0.881877775591, 0.0000322222356), then 

(x4,459,790,707, y4,459,790,707) = (1.27297361350865113, – 0.0115734779561870744). 

It is possible that some others periodic orbits coexist with both Orbit 1 and Orbit 2.  
The comparison between Orbit 1 and Orbit 2 gives a perfect idea of the 

sensitive dependence on initial conditions of chaotic attractors: Orbit 1 passes 
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through the point (1.27297361350955662, – 0.0115735710153616837) and Orbit 
2 passes through the point (1.27297361350865113, – 0.0115734779561870744). 
The same digits of these points are bold printed, they are very close. 

Nevertheless, as displayed in Fig. 4 the orbit are not uniformly distributed on 
the phase space, then it is not possible to use this map as a PRN generator.  

Beside the problem of PRN generator, logistic and Hénon maps are recently 
used together with a secret key, by N. Pareek et al. [24], in order to build a chaotic 
block cipher which is extremely robust, due to the excellent confusion and 
diffusion properties of these maps. The results of the statistical analysis show that 
the chaotic cipher possesses all features needed for a secure system and useable for 
the security of communication system. 

L. dos Santos Coelho et al. [25], introduced a chaotic particle swarm 
optimisation (PSO) which is a population-based swarm intelligence algorithm 
driven by the stimulation of a social psychological metaphor instead of the 
survival of the fittest individual. Based on the chaotic systems theory (using Hénon 
map sequences which increase its convergence rate and resulting precision) the 
novel PSO combined with an implicit filtering allows solving economic dispatch 
problems. 

 
2.2.2. Lozi map 
The Lozi map [26] is a linearized version of the Hénon map, built in order to 

simplify the computations, mainly because it is possible to compute explicitly any 
periodic orbits solving a linear system. It is defined as 

 

 n 1 n n

n 1 n

x y 1 a x

y bx
++++

++++

 = + −= + −= + −= + −
 ====

 (7) 

or equivalently 

 n 1 n n 1x 1 a x bx+ −+ −+ −+ −= − += − += − += − +  (8) 

For a 1.7====  and b 0.5====  there exists a strange attractor. The particularity of 
this strange attractor is that it has been rigorously proved by Misiurewicz in 1980 
[27]. 

In the same conditions of computation as for Hénon map, running the 
computation during nineteen hours, one can find a Gigaperiodic attracting orbit of 
period 436,170,188,959 more than one hundred times longer than the period of 
Orbit 1 found for the Hénon map. 
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Starting with (x0, y0) = (0.88187777591, 0.0000322222356) one obtains 
(x686,295,403,186 , y686,295,403,186) = (x250,125,214,227 , y250,125,214,227) 

= (1.34348444450739479, -2.07670041497986548. 10-7). 
There is a transient regime before the orbit is reached. It seems that there is no 

periodic orbit with a smaller length. This could be due to the quasihyperbolic 
nature of the attractor. However, the orbit-shifted shadowing property of  Lozi 
map (and generalized Lozi map), which is the property which ensures that 
pseudo-orbits of a homeomorphism f can be traceable by actual orbits even if 
rounding errors in computing are not inevitable has been recently proved [28]. 

Hence this attractor is very efficient, in order to generate chaotic numbers 
without repetition for standard simulation using either the first or the second 
component. However they are not equally distributed on the plane (see Fig. 5). The 
non constant density forbids its direct use as a PRN generator. Nevertheless there 
are some U.S. patents for “method of generating pseudo-random numbers in an 
electronic device, and a method of encrypting and decrypting electronic data” in 
which the Lozi map is involved [29, 30]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Invariant density of the second component y  of Eq. (7) computed 

using 1010 iterations. 
 

Nevertheless Lozi map is now widely used in chaotic optimisation which 
belongs to a new class of algorithms: the evolutionary algorithms (EA). In a 
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founding paper, R. Caponetto et al. [31] propose an experimental analysis on the 
convergence of EA. The effect of introducing chaotic sequences instead of random 
ones during all the phases of the evolution process is investigated. The approach is 
based on the substitution of the PRNG with chaotic sequences. Several numerical 
examples are reported in order to compare the performance of the EA using 
random and chaotic generators as regards to both the results and the convergence 
speed. The results obtained show that chaotic sequences obtained from Lozi map 
are always able to increase the value of some measured algorithm-performance 
indexes with respect to random sequences. 

Several authors following this idea use Lozi map in chaotic optimization in 
order to avoid local optima stagnation and embed a superior search strategy [32 – 
40]. 

2.3. 3-Dimensional System Chaotic Dynamical Systems 

In order to generalize in higher dimension the tent map, G. Manjunath et al. [41] 

introduce a three-dimensional map 3 3F : I I→→→→ where [[[[ ]]]]I 0,1====  (see Fig. 6) 

which is continuous in the Euclidian topology and prove its chaotic properties: 
 

 

y z
1 2x 1

2

x z
F( x, y,z ) 1 2y 1

2

x y
1 2z 1

2

    ++++− + −− + −− + −− + −    
    
    ++++
    = − + −= − + −= − + −= − + −
    
    ++++    − + −− + −− + −− + −    
    

 (9) 

 
The related dynamical system is 
 

 (((( )))) (((( ))))n 1 n 1 n 1 n n nx , y ,z , F x , y ,z ,+ + ++ + ++ + ++ + + ====  (10) 

They emphasize that most of the well known examples of higher dimensional 
chaotic dynamical systems belong to the class of hyperbolic diffeomorphisms on a 
n-torus. These higher dimensional maps on the torus are not continuous on the 
standard topology of the Euclidean space since they exhibit jump discontinuities. 
The realization of such jump discontinuities in an electronic circuit 
implementation is not reliable. They prove the following theorem: 
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Theorem (G. Manjunath et al.) The map defined in (9) is topologically 
transitive and exhibits sensitive dependence on initial conditions with any real 

number 
3

0,
2

δ
    

∈∈∈∈         
    

 as sensitivity constant. 

Once again the sequence of iterated points (((( ))))n n nx , y ,z obtained from the 
dynamical system (10) is not equally distributed on the volume 3I . The invariant 
density of the first component nx  is displayed in Fig. 7. The relative discrepancy 
of this invariant density versus the uniform one lies between 4% and 5%. 

 

 
Figure 6. Tessellation of3I  into 33 regions by parallel set of critical planes 

y ,zT ( z ) 0 and 1==== , x,zT ( y ) 0 and 1==== , x,zT ( z ) 0 and 1====  , pertaining 

to the map (9). 
 

To allow the generation of PRN using complexity and emergence theory we 
consider in the next section how to generate these numbers with uniform 
repartition on a given interval, or on a given square of the plane or more generally 
in a given hypercube of n

ℝ  involving the ultra weak multidimensional coupling 
of p 1-dimensional chaotic dynamical systems. 
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Figure 7. Invariant density of the first component x  of Eq. (10) computed using 

1011 iterations. 
 

3. Multi-parameter Chaotic Pseudo-Random Number Generator (M-p 
CPRNG) 

As previously seen, when a dynamical system is realized on a computer using 
floating point or double precision numbers, the computation is of a discretization, 
where finite machine arithmetic replaces continuum state space. For chaotic 
dynamical systems, the discretization often has collapsing effects to a fixed point 
or to short cycles [15, 42]. In order to preserve the chaotic properties of the 
continuous models in numerical experiments we consider an ultra weak 
multidimensional coupling of p one-dimensional dynamical systems. 

3.1. System of p-Coupled Symmetric Tent Map 

In order to simplify the presentation of the M-p CPRNG we introduce, we use 
as an example the symmetric tent map previously defined (3), even though others 
chaotic map of the interval (as the logistic map, the baker transform, …) can be 
used for the same purpose (as a matter of course, the invariant measure of the 
chaotic map chosen is preserved). 

The considered system of the p-coupled dynamical systems is described by 
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 (((( )))) (((( ))))n 1 n nX F X A f ( X )++++ = = ⋅= = ⋅= = ⋅= = ⋅  (11) 

with 

 

1 1( )

, ( )

( )

n n

n n

p p
n n

x f x

X f X

x f x

⋮ ⋮

   
   = =   
   
   

 (12) 

and 

1,1 1,
2

2,2 2,
1, 2

1

, ,
1

j p

j 1,2 1,p-1 1,p
j

j p

2,1 j 2,p-1 2,p
j j

j p

p,1 p,p-1 p p p j
j

=1- ε ε ε ε

ε =1- ε ε ε

A

ε ε =1- ε

ε

ε

ε

⋯

⋯

⋮ ⋱ ⋮ ⋮

⋮ ⋱ ⋮ ⋮

⋯ ⋯

=

=

=

= ≠

= −

=

 
 
 
 
 
 =  
 
 
 
 
 
 

∑

∑

∑

 (13) 
 

F is a map of [ ]1,1
pp pJ ℝ= − ⊂  into itself. 

Considering 
j p

i , i i , j
j 1, j i

= 1-ε ε
=

= ≠
∑ , the matrix A is always a stochastic matrix 

iff the coupling constants verify 0i , jε >   for every i and j. 

If i, j
i j

i,j ε 0
≠

∀ =  the maps are totally decoupled, instead they are fully 

crisscross coupled when for example i, j
i j

1
ε

p 1≠

=
−

. Generally, researchers do 

not consider very small values of ,i jε  because it seems that the maps are 

quasi-decoupled with those values and no special effect of the coupling is 
expected. In fact it is not the case and ultra small coupling constants (as small as 
10-7 for floating point numbers or 10-16 for double precision numbers), allows the 
construction of very long periodic orbits, leading to sterling chaotic generators. 
This is the way in complexity leads to randomness from chaos. 
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Moreover each component of these numbers belonging to p
ℝ  is equally 

distributed over the finite interval J ℝ⊂ , when one chooses a function f with 
uniform invariant measure. Numerical computations (up to 1013 numbers) show 
that this distribution is obtained with a very good approximation. They have also 
the property that the length of the periods of the numerically observed orbits is 
very large [23]. 

 

3.2. Chaotic Sampling and Mixing 

However chaotic numbers are not pseudo-random numbers because the plot 

of the couples of any component (((( ))))l l
n n 1x , x ++++  of iterated points ( )1,n nX X +  in 

the corresponding phase plane reveals the map f used as one-dimensional 
dynamical systems to generate them via Eq. (11). 

Nevertheless we have recently introduced a family of enhanced Chaotic 
Pseudo Random Number Generators (CPRNG) in order to compute very fast long 
series of pseudorandom numbers with desktop computer [3, 4, 5]. This family is 
based on the previous ultra weak coupling which is improved in order to conceal 
the chaotic genuine function. 

In order to hide f in the phase space ( )l l
n n 1x , x +  two mechanisms are used. 

The pivotal idea of the first one mechanism is to sample chaotically the sequence 

(((( ))))l l l l l
0 1 2 n n 1x , x , x , , x , x ,++++… …  generated by the l-th component lx , selecting  

l
nx every time the value mnx  of the m-th component mx , is strictly greater (or 

smaller) than a threshold T J∈ , with l ≠ m, for 1 ≤ l, m ≤ p. 
That is to say to extract the subsequence 

( )(0) (1) ( 2) ( ) ( 1)
, , , , , ,

q q

l l l l l
n n n n nx x x x x… …

+
denoted here 

(((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  of the original one, in the following way 

 
Given 1 , ,l m p l m≤ ≤ ≠  

 

{ }( )

( 1)

( ) ( 1)

1

,
q

l m
q n q q r

r

n

x x with n Min r n x T
ℕ

−

−∈

= −
 = = > >

 (14) 
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The sequence (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  is then the sequence of 

chaotic pseudo-random numbers. 
The mathematical formula (14) can be best understood in algorithmic way. The 
pseudo-code, for computing iterates of (14) corresponding to N iterates of (11) is: 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed…

−= =  

n 0; q 0= =  

do {  while n < N 

        do {  while ( )m
nx T≤  

           compute ( )1 2 p 1 p
n n n nx , x , , x , x…

− ; n + +}  

        compute ( )1 2 p 1 p
n n n nx , x , , x , x…

− ; 

    then 
( )q

l
q nn( q ) n ; x x ;= = n + +; q + +}  

This chaotic sampling is possible due to the independence of each component 
of the iterated points nX  vs. the others [3]. 

Remark 1: Albeit the number iterNSampl  of pseudo-random numbers 

qx corresponding to the computation of N iterates is not known a priori, 

considering that the selecting process is again linked to the uniform distribution of 

the iterates of the tent map on J , this number is equivalent to 
2

1

N

T−
. 

 
A second mechanism can improve the unpredictability of the pseudo-random 

sequence generated as above, using synergistically all the components of the 

vector nX , instead of two. Given p - 1 thresholds  

 1 2 1pT T T J⋯ −< < < ∈  (15) 

and the corresponding partition of J  

 
1

0

p

k
k

J J∪
−

=

=  (16) 

with [ ]0 1J 1,T= − , ] [1 1 2J T ,T= , [ [1 1 1k k kJ T ,T for k p+= < < −  and 

1 1 1p pJ T ,− −− −− −− −    ====      , this simple mechanism is based on the chaotic mixing of the 

p-1 sequences 
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(((( ))))1 1 1 1 1
0 1 2 n n 1x , x , x , , x , x ,++++… … ,             (((( ))))2 2 2 2 2

0 1 2 n n 1x , x , x , , x , x ,++++… … ,…, 

                            (((( ))))p 1 p 1 p 1 p 1 p 1
0 1 2 n n 1x , x , x , , x , x ,− − − − −− − − − −− − − − −− − − − −

++++… … ,… 

using the last one (((( ))))p p p p p
0 1 2 n n 1x , x , x , , x , x ,++++… …  in order to distribute the 

iterated points with respect to this given partition defining the subsequence 

( )(0) (1) ( 2) ( ) ( 1)
, , , , , ,

q q

l l l l l
n n n n nx x x x x… …

+
here denoted 

(((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  by 

 

 

{ }{ }( q ) k
k

( 1 )

k p
q n ( q ) k k ( q 1 ) r k

1 k p 1 r

n 1

x x , with n Min s ( q ) Min r n x J
ℕ

−

−≤ ≤ − ∈

= −

 = = = > ∈

(17) 

 
The pseudo-code, for computing the iterates of (17) corresponding to N 

iterates of (11) is: 
 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed…

−= =  

n 0; q 0= =  

do {  while n < N 

       do { while ( )p
n 0x J∈  compute 

            ( )1 2 p 1 p
n n n nx , x , , x , x…

− ; n + +}  

       compute ( )1 2 p 1 p
n n n nx , x , , x , x…

−  

     let k be such that p
n kx J∈  

then 
( )q

k
q nn( q ) n ; x x= = ; n + +; q + +}   

 

Remark 2: In this case also, iterNSampl  is not known a priori, however, 

considering that the selecting process is linked to the uniform distribution of the 

iterates of the tent map on J , one has 
1

2

1iter

N
NSampl

T
≈

−
. 
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Remark 3: This second mechanism is more or less linked to the whitening 
process [43, 44]. 

Remark 4: Actually, one can choose any of the components in order to 
sample and mix the sequence, not only the last one. 

3.3. Double Threshold Chaotic Sampling 

On can eventually improve the CPRNG previously introduced with respect to the 

infinity norm instead of the 1L  or 2L  norms because the L∞ norm is more 

sensitive than the others ones to reveal the concealed function f [5]. For this 
purpose we introduce a second kind of threshold 'T ℕ∈ , together with 

1 1, , pT T J⋯ − ∈ such that the subsequence (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  is 

defined by 
 

{ }{ }( q ) k
k

( 1 )

k p
q n ( q ) k k ( q 1 ) r k

1 k p 1 r

n 1

x x , with n Min s ( q ) Min r n T ' x J
ℕ

−

−≤ ≤ − ∈

= −

 = = = > + ∈
 (18) 
 
In pseudo-code Eq. (18) is then: 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed…

−= =  

n 0, q 0= =  

do {  while n < N 

         do { while ( )p
( q 1 ) n 0n n T ' and x J−≤ + ∈  

             compute ( )1 2 p 1 p
n n n nx , x , , x , x…

− ; n + +}  

          compute ( )1 2 p 1 p
n n n nx , x , , x , x…

−  

          let k be such that p
n kx J∈  

      then 
( )q

k
q nn( q ) n ; x x= = ; n + +; q + +} 

 

Remark 5: In this case also, iterNSampl  is not known a priori, it is more 

complicated to give an equivalent to it. However, considering that the selecting 
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process is linked to the uniform distribution of the iterates of the tent map on J , 

and to the second threshold T’, it comes that 
1

2
,

1iter

N N
NSampl Min

T T

 
≤  ′− 

. 

Remark 6: the second kind of threshold 'T  can also be used with only the 
chaotic sampling, without the chaotic mixing. 

4.  Emergence of Randomness 

Numerical results about chaotic numbers produced by (11) — (17) show that 
they are equally distributed over the interval J with a very good precision [3, 4]. 

In this section we emphasize that when the parameters ,i jε  belong to a 

special window (called the window of emergence) the M-p CPRNG defined above 
behaves well. 

4.1. Approximated Invariant Measures 

In order to perform numerical computation, we have to define some numerical 
tools: the approximated invariant measures. 

First we define an approximation , ( )M NP x of the invariant measure also called 

the probability distribution function linked to the 1-dimensional map f when 
computed with floating numbers (or numbers in double precision). In this scope 
we consider a regular partition of M small intervals (boxes) r i of J  defined by: 

 i

2i
s 1 , i 0, M  

M
= − + =  

 i i i 1r   s  ,  s   ,  i  0, M - 2+= =    

 [ ]M 1 M 1r   s  , 1− −=  

 
1

0

M

iJ r∪
−

=  

the length of each box is 

 i 1 i

2
s s

M++++ − =− =− =− =  

(note that this regular partition of J is different from the previous one linked to 

the threshold values iT  (16)). 

All iterates f (n)(x) belonging to these boxes are collected (after a transient 
regime of Q iterations decided a priori, i.e. the first Q iterates are neglected). Once 
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the computation of N + Q iterates is completed, the relative number of iterates with 

respect to N/M in each box r i represents the value ( )N iP s . The approximated 

( )NP x  defined in this article is then a step function, with M steps. As M may vary, 

we define 

 ( ), ( ) #M N i i

1 M
P s r

2 N
=  

where #r i is the number of iterates belonging to the interval r i and the constant 1/2 

allows the normalisation of M ,NP ( x ) on the interval J . 

 M ,N M ,N i iP ( x ) P ( s ) x r= ∀ ∈= ∀ ∈= ∀ ∈= ∀ ∈  

In the case of p-coupled maps, we are more interested by the distribution of 

each component ( ), , , ,1 2 1 p
2x x x x…  of X rather than the distribution of the 

variable X itself in pJ . We then consider the approximated probability 

distribution function , ( )j
M NP x  associated to one among several components of 

F(X) defined by (11) which are one-dimensional maps. In this paper we use 

equally discN  for M and iterN  for N when they are more explicit. 

The discrepancies 1E  (in norm 1L ), 2E  (in norm 2L ) and E∞   (in norm 

L∞ ) between 
disc iterN , NP ( x ) and the Lebesgue measure which is the invariant 

measure associated to the symmetric tent map, are defined by 

 
1

1, , ,( ) ( ) 0.5
disc iter disc iterN N N N L

E x P x= −  

 
2

2, , ,( ) ( ) 0.5
disc iter disc iterN N N N L

E x P x= −  

 , , ,( ) ( ) 0.5
disc iter disc iterN N N N L

E x P x
∞

∞ = −  

In the same way an approximation of the correlation distribution function 

, ( , )M NC x y  is obtained numerically building a regular partition of 2M  small 

squares (boxes) of 2J  imbedded in the phase subspace (xl, xm) 

 , , , ,i j

2i 2 j
s 1 t 1 i  j  0 M  

M M
= − + = − + =  

 i , j i i 1 j j 1 0, M-2r   s  , s  t  , t  , i, j   + ++ ++ ++ +    = × == × == × == × =               

 [ [ [ ]i ,M 1 i i 1 M 1r   s  , s t  , 1  , j   0, M-2− + −= × =  
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 [ ] [ ]M 1,M 1 M 1 M 1r   s  , 1 t  , 1  − − − −= ×  

the measure of the area of each box is 

 (((( )))) (((( ))))
2

i 1 i i 1 i

2
s s t t

M+ ++ ++ ++ +
    − × − =− × − =− × − =− × − =     
    

 

Once N + Q iterated points (((( ))))l m
n nx , x  belonging to these boxes are collected 

the relative number of iterates with respect to N/M 2 in each box r i,j represents the 
value CN (si, tj). The approximated probability distribution function CN (x, y) 
defined here is then a 2-dimensional step function, with M 2 steps. As M can take 
several values in the next sections, we define 

 (((( ))))
2

M ,N i j i , j

1 M
C ( s , t ) # r

4 N
====  (19) 

where #r i,j is the number of iterates belonging to the square r i,j and the constant 1/4 

allows the normalisation of M ,NC ( x, y ) on the square 2J  

 M ,N M ,N i j i , jC ( x, y ) C ( s ,t ) ( x, y ) r= ∀ ∈= ∀ ∈= ∀ ∈= ∀ ∈  (20) 

The discrepancies 
1CE  (in norm 1L ), 

2CE  (in norm 2L ) and CE
∞

  (in norm 

L∞ ) between 
disc iterN , NC ( x, y ) and the uniform distribution on the square, are 

defined by 

 
1

1
, , ,( , ) ( , ) 0.25

disc iter disc iterC N N N N L
E x y C x y= −  

 
2

2
, , ,( , ) ( , ) 0.25

disc iter disc iterC N N N N L
E x y C x y= −  

 , , ,( , ) ( , ) 0.25
disc iter disc iterC N N N N L

E x y C x y
∞

∞
= −  

 

Finally let 
disc iterN , NAC ( x, y ) be the autocorrelation distribution function 

which is the correlation function 
disc iterN , NC ( x, y ) of (20) defined in the phase 

space (((( ))))l l
n n 1x , x ++++  instead of the phase space ( ),l mx x . In order to control that the 

enhanced chaotic numbers (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  are uncorrelated, we 

plot them in the phase subspace (((( ))))q q 1x , x ++++  and we check if they are uniformly 

distributed in the square 2J  and if f is concealed (i.e. 
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1 2, , 1 , , 1( , ), ( , ),
disc iter disc iterAC N N q q AC N N q qE x x E x x+ + , , 1( , )

disc iterAC N N q qE x x∞ +  

vanish). 
 

4.2. A window of Emergence of Randomness 

In order to point out the usefulness of  the double threshold chaotic sampling 
with simply consider the case of only 4 coupled equations, and such 

that i , j i= i jε ε ∀ ≠  and i , i i= 1-3ε ε . Eq. (11) becomes 

 

 

1 1 2 3 4
n 1 1 n 1 n 1 n 1 n
2 1 2 3 4
n 1 2 n 2 n 2 n 2 n
3 1 2 3 4
n 1 3 n 3 n 3 n 3 n
4 1 2 3 4
n 1 4 n 4 n 4 n 4 n

x (1 3ε ) f ( x ) ε f ( x ) ε f ( x ) ε f ( x )

x ε f ( x ) (1 3ε ) f ( x ) ε f ( x ) ε f ( x )

x ε f ( x ) ε f ( x ) (1 3ε ) f ( x ) ε f ( x )

x ε f ( x ) ε f ( x ) ε f ( x ) (1 3ε ) f ( x )

++++

++++

++++

++++

 = − + + += − + + += − + + += − + + +
 = + − + += + − + += + − + += + − + +
 = + + − += + + − += + + − += + + − +
 = + + + −= + + + −= + + + −= + + + −

 (21) 

 

Moreover we assume that i 1ε i ε====  

For the shake of simplicity we consider only the chaotic sampling method (i.e. 
we use only one threshold T ), without the chaotic mixing. We then compute 

1, , 2, , , ,( ), ( ), ( )
disc iter disc iter disc iterN N N N N NE x E x E x∞  and , , 1( , )

disc iterAC N N q qE x x∞ +  

1 2, , 1 , , 1( , ), ( , ),
disc iter disc iterAC N N q q AC N N q qE x x E x x+ + for 1,024discN =  and 

1110iterN = . We choose, 0.9T =  and ' 20T = . We display on Fig. 8 the 

values of the six computed error when 17 1
1ε 10 ,10− −− −− −− −    ∈∈∈∈      . The seed (initial 

values) being 
1 2 3
0 0 0x 0.330000, x 0.338756,x 0.504923,= = = 4

0x 0.324082.=  

A window of emergence comes clearly into sight for the values 
15 7

1ε 10 ,10− −− −− −− −    ∈∈∈∈       if one considers all together the six errors. 

The errors , , ( ),
disc iterN NE x∞  , , 1( , )

disc iterAC N N q qE x x∞ +   narrowing this window 

in which 340,753,095 340,768,513iterNSampl≤ ≤  out of 1110iterN = . 
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Figure 8. The window of emergence of randomness 

4.3. The Underneath of Randomness 

The double threshold chaotic sampling is very efficient because its aim is 
mainly to conceal f in the most drastic way. In order to understand the underneath 

mechanism consider first that in the phase space ( )l l
n n 1x , x +  the graph of the 
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chaotically sampled chaotic numbers is a mix of the graphs of  the f (r) for all 
r ∈∈∈∈ℕ  (see Fig. 9). 

 

 
 

Figure 9. Graphs of the symmetric tent map f, f (2) and f (3) on the interval [-1, 1]. 
 

It is obvious as showed on Fig. 10 that for r = 1 if M = 1 or 2, , ( , )M NAC x y   

is constant and normalized on the square hence 

1 2, , , , , ,( , ) ( , ) ( , ) 0
disc iter disc iter disc iterAC N N AC N N AC N NE x y E x y E x y∞= = =   

 

 
Figure 10. In shaded regions the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f on the interval [-1, 1] for M = 1 or 2. 
 
The autocorrelation function is different from zero only if M > 2 (see Fig. 11). 

In the same way as displayed on Fig. 12, 13 and 14, 

1 2, , , , , ,( , ) ( , ) ( , ) 0
disc iter disc iter disc iterAC N N AC N N AC N NE x y E x y E x y∞= = =  for f (i) 

iff iM 2<<<< . Hence for a given M , if we cancel the contribution of all the f (i) for 
i2 M<<<< , it is not possible to identify the genuine function f. 
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Figure 11. Regions where the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f are shaded, for M = 4. (The square on the 

bottom left  hand side of the graph shows the size of the r i,j  box). , ( , )M NAC x y  

vanishes on the white regions. 

 
Figure 12. In shaded regions the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f (2) on the interval [-1, 1] for M = 1, 2 and 4. 

 
Figure 13. Regions where the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f (2) are shaded for M = 8. 
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Figure 14. Regions where the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f (3) are shaded for M = 16. 

4.4. Testing the Randomness 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Error of , , 1( , )
disc iterAC N N q qE x x∞ + , 1 102 2discN to= , 

910iterN = , thresholds 0.9T =  and ' 20T = , i 1ε i ε==== , 14
iε 10−−−−==== . 
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Computations are done using double precision numbers (~14-15 digits). 
 

As shown previously [3] the errors in 1L  or 2L  norms decrease with the 

number of chaotic points (as in the law of large numbers) and conversely increase 

with the number M of boxes used to define , ( , )M NAC x y . It is the same for the 

error in L∞  norm. Fig. 15 shows that when M is greater than 25, the sequence 

defined by (18) behaves better than the one defined by (14) or (17) when applied to 
Eq. (21). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 16. Error of , , 1( , )
disc iterAC N N q qE x x∞ +  1 102 2discN to= , 

9 1110 10iterN to= , thresholds 0.9T =  and ' 20T = , i 1ε i ε==== , 
14

iε 10−−−−==== . Computations are done using double precision numbers (~14-15 
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digits). 
Fig. 16 shows that when the number of chaotic points increases the error 

, , 1( , )
disc iterAC N N q qE x x∞ + decreases drastically. If for example T ' 100>>>> , it is 

necessary to use a huge grid of 2100x2100 boxes splitting the square 2J  in order to 
find a trace of the genuine function f. This is numerically impossible with double 
precision numbers. Then the chaotic numbers emerge as random numbers. 

5.  Applications 

Generation of random or pseudorandom numbers, nowadays, is a key feature 
of industrial mathematics. Pseudorandom or chaotic numbers are used in many 
areas of contemporary technology such as modern communication systems and 
engineering applications. 

More and more European or US patents using discrete mappings for this 
purpose are obtained by researchers of discrete dynamical systems [29, 30]. 

When an efficient M-p CPRNG is defined, there exists a huge number of 
applications for the pseudo-random numbers it can generate, as for example 
chaotic masking, chaotic modulation or chaotic shift keying in the fields of secure 
communications [7, 8, 9, 10]. 

5.1. Parameter sensitivity 

A determining property of the M-p CPRNG we have improved in this paper 
via Eq. (21) and double threshold chaotic sampling (18) is the high number of 
parameters used ( ( 1)p p× − for p coupled equations) which allows to choose it as 
cipher-keys however this achievement is possible only if there is a high sensitivity 
to the parameters values. 

In order to point up this sensitivity, it is enough to consider the simplest case 

of 2-coupled equations with two sets of slightly different parameters ( )1 2,ε ε  

and ( )*
1 2,ε ε 1 0.000,001ε = , *

1 0.000,001,000,000,000,000,3ε = , 

and 2 0.000,002ε = . 

 

 

1 1 2
n 1 1 n 1 n
2 1 2
n 1 2 n 2 n

x (1 ε ) f ( x ) ε f ( x )

x ε f ( x ) (1 ε ) f ( x )
++++

++++

 = − += − += − += − +
 = + −= + −= + −= + −

 (22) 
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*1 *1 * *2
n 1 1 n 1 n

*2 *1 *2
n 1 2 n 2 n

x (1 ε ) f ( x ) ε f ( x )

x ε f ( x ) (1 ε ) f ( x )
++++

++++

 = − += − += − += − +
 = + −= + −= + −= + −

 (23) 

The double threshold sampling is done using 0.9T =  and ' 20T =  and the 
same seed is taken 

 ( ) ( )1 2 * *1 *2
0 0 0 0 0 0X x , x X x , x= = =  

Despite the fact that the difference between 1ε  and *
1ε  is tiny: 

*
1 1 13

1

3 10
ε ε

ε
−

−
= ×  the sequences (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  and 

(((( ))))* * * * *
0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  differ completely as displayed in Table 3 (In fact 

all the components ( )( q ) ( q )

1 2
n nx , x  and ( )( q ) ( q )

*1 *2
n nx , x  are different). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1ε  0.000,001 *
1ε  

0.000,001,000,

000,000,000,3
 

1
0x  

0.330,000,013,

113,021,851
 *1

0x  
0.330,000,013,

113,021,851
 

( 0 )

1
nx  

0.959,214,817,

207,605,153

−
( 0 )

*1
nx  

-0.058,536,729,

173,974,455,5  

( 1 )

1
nx  

0.657,775,688,

600,752,417
 

( 1 )

*1
nx  

0.386,129,403,

866,398,935
 

( 2 )

1
nx  

-0.784,600,935,

471,051,031
 

( 2 )

*1
nx  

0.471,824,729,

381,262,631
 



Published In Mathematics in Science and Technology: Mathematical Methods, Models and 
Algorithms in Science and Technology. Proceedings of the Satellite Conference of ICM, 15-17 August 
2010 Delhi, India (A.H. Siddiqi, R.C. Singh, P. Manchanda Editors), World Scientific Publisher, 
Singapore (2011) pp. 93-125. 

 31 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Sequences ( )( q ) ( q )

1 *1
n nx , x  and ( )( q ) ( q )

2 *2
n nx , x of Eq. (22) and (23) with 

1 0.000,001ε = , *
1 0.000,001,000,000,000,000,3ε =  and 

2 0.000,002ε = . ( ) ( )1 2 * *1 *2
0 0 0 0 0 0X x , x X x , x= = =  

 
Then rather than a unique CPRNG which is introduced here, there is a 

quasi-infinite family of CPRNG that the M-p CPRNG define allowing several 
possibilities of applications. 

5.2. Gaussian Noise 

As an example of such application, the generation of Gaussian noise from the 

sequences (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  is very easy when a Box-Muller 

transform is applied. 
A Box–Muller transform [45] is a method of generating pairs of independent 

standard normally distributed (zero expectation, unit variance) random numbers, 
given a source of uniformly distributed random numbers. The polar form [46] of 

such a transform takes two samples from a different interval, [ ]1,1−  and maps 

them to two normally distributed samples without the use of sine or cosine 
functions. This form of the polar transform is widely used, in part due to its 
inclusion in Numerical Recipes. 

1ε  0.000,001 *
1ε  

0.000,001,000,

000,000,000,3
 

2
0x  

0.338,756,413,

113,021,848
 *2

0x  
0.338,756,413,

113,021,848
 

( 0 )

2
nx  

0.914,472,270,

898,123,885
 

( 0 )

*2
nx  

-0.646,249,812,

458,326,023
 

( 1 )

2
nx  

0.915,684,412,

995,676,6
 

( 1 )

*2
nx  

0.894,262,910,

879,751,405
 

( 2 )

3
nx  

0.910,813,705,

361,448,345
 

( 2 )

*2
nx  

0.820,811,987,

022,524,114
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As the sequences (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯  are uniformly distributed in 

[ ]1,1J ℝ= − ⊂ , the application is straightforward. 

5.3. Hash Function 

Another example of application could be the computation of hash function. A 
hash function is any well-defined procedure or mathematical function that 
converts a large, possibly variable-sized amount of data into a small one. The 
values returned by a hash function are called hash values, hash codes, hash sums, 
checksums or simply hashes. 

Hash functions are mostly used to speed up table lookup or data comparison 
tasks — such as finding items in a database, detecting duplicated or similar records 
in a large file, finding similar stretches in DNA sequences, and so on. 

A hash function may map two or more keys to the same hash value. In many 
applications, it is desirable to minimize the occurrence of such collisions, which 
means that the hash function must map the keys to the hash values as evenly as 
possible. Depending on the application, other properties may be required as well. 
Although the idea was conceived in the 1950s, the design of good hash functions is 
still a topic of active research. 

Although hash function generally involve integers, on can consider that the 

application which maps the initial seed ( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x…

−=   into any 

predetermined term of the sequence (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++⋯ ⋯   is a hash 

function working on floating point numbers. 
We will explore this application in a forthcoming paper. 
Others applications show the high-potency of such M-p CPRNG. Due to 

limitation of this article, they will be published elsewhere. 

6. Conclusion 

Using a double threshold in order to sample a chaotic sequence, we have 
improved with respect to the infinity norm the M-p CPRNG previously 
introduced. When the value of the second threshold T '  is greater than 100, it is 
impossible to find the genuine function used to generate the chaotic numbers. The 
new M-p CPRNG family is robust versus the choice of the weak parameter of the 
system for 10-14 < ε < 10-5, allowing the use of this family in several applications as 
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for example producing Gaussian noise, computing hash function or in chaotic 
cryptography. 
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