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Introduction

Compare the following two statements, one from complex projective geometry, the other one from combinatorial topology.

Theorem 1 (Zak, 1982). Let X d ⊂ P N -1 be a smooth irreducible complex projective variety of dimension d.

(1) If N < 3 d 2 + 3, then the secant variety of X fills out the ambient space, Sec(X) = P N -1 .

(2) If N = 3 d 2 + 3, then either Sec(X) = P N -1 , or d = 2, 4, 8, 16.

Recall that the secant variety Sec(X) is obtained by taking the union of the lines joining any two points of X, and passing to the Zariski closure.

The only exceptions to the second statement are the Severi varieties, the complexifications AP 2 C of the projective planes over A = R, C, H, O, the four normed algebras (see e.g. [START_REF] Baez | The octonions[END_REF]).

Theorem 2 [START_REF] Brehm | Combinatorial manifolds with few vertices[END_REF]. Let X d be a combinatorial manifold of dimension d, having N vertices.

(1) If N < 3 d 2 + 3, then X is topologically a sphere. (2) If N = 3 d 2 + 3, then either X is a sphere, or d = 2, 4, 8, or 16.

Possible exceptions to the second statement are the real Severi varieties, the projective planes AP 2 over A = R, C, H, O.

More precisely, there is a classical triangulation of the real projective plane RP 2 with 6-vertices, described in the picture below where opposite sides of the big triangle must be identified. There is a unique triangulation of the complex projective plane CP 2 with only 9-vertices [START_REF] Banchoff | The 9-vertex complex projective plane[END_REF]. Over the quaternions the situation is not completely clear: it was shown in [START_REF] Brehm | 15-vertex triangulations of an 8-manifold[END_REF] that there exists three different combinatorial triangulations with 15 vertices of an eight-dimensional manifold which is "like the quaternionic projective plane", but the authors could not decide whether this topological manifold was indeed HP 2 or a fake quaternionic plane. Finally, there is no candidate for a combinatorial triangulation of OP 2 with 27 vertices. We will see that the number of maximal faces of such a triangulation should be 100386! Recall that the homology of AP 2 is

H i (AP 2 , k) = k if i = 0, a, 2a, 0 otherwise, 
if k stands for Z when a ≥ 2, and for Z 2 when a = 1. A more uniform statement is that each AP 2 has a Morse function with only three critical points. The precise statement of the second assertion of the theorem of Brehm and Kühnel is that X, if not a sphere, must admit such a Morse function. Manifolds with this property, which are like projective planes, were studied systematically in [START_REF] Eells | Manifolds which are like projective planes[END_REF]. Among other topological restrictions, the fact that the dimension of such a manifold must be 2, 4, 8 or 16 is established there. The goal of our paper is to explore the relationships between the two statements above. Our main observation will be that the numbers of faces of each dimension in a (putative) triangulation of a projective plane AP 2 , must be equal to the dimensions of certain linear representations of the automorphism groups of the corresponding Severi varieties AP 2 C . Moreover, we will construct complexes involving these representations, which we conjecture to be closely related with the face complexes of the triangulations. Over the complex and quaternionic numbers we will reconsider the results of [BrK87] and [START_REF] Brehm | 15-vertex triangulations of an 8-manifold[END_REF] and check that they correctly fit with our perspective. We then present an observation concerning the links of vertices in the triangulations. In a final section we elaborate on possible extensions to projective spaces of higher dimensions.

The Severi varieties

We briefly recall the main geometric properties of the Severi varieties AP 2 C (see e.g. [START_REF] Baez | The octonions[END_REF] and references therein). In all the sequel we denote by a = 1, 2, 4, 8 the dimension of the Hurwitz algebra A = R, C, H, O as a real vector space. Recall that each A has a natural involution generalizing the usual complex conjugation; it can be defined as the orthogonal symmetry with respect to the unity. Then consider the space J 3 (A) of Hermitian 3 × 3 matrices with coefficients in A . This is a real vector space of dimension 3a + 3, endowed with a structure of Jordan algebra defined by symmetrization of the ordinary matrix multiplication.

The automorphism group of the Jordan algebra J 3 (A) will be denoted SO(3, A). It preserves the cubic form defined by the determinant, which exists even over the octonions. The group of invertible linear transformations of the vector space J 3 (A) preserving this determinant will be denoted SL(3, A).

Let J 3 (A C ) denote the complexification of J 3 (A). The Severi variety AP 2 C ⊂ PJ 3 (A C ) can be defined as the cone over the set of rank one matrices, where having rank one is defined by the property that all the derivatives of the determinant vanish (these derivatives are the analogues of 2 × 2 minors). Geometrically, this means that the Severi variety is the singular locus of the determinantal hypersurface. We will only mention a few of its many remarkable properties:

(1) AP 2 C is smooth of dimension 2a. (2) AP 2
C is homogeneous under the action of the complexified group SL(3, A C ).

(3) The secant variety of AP 2 C is the determinantal hypersurface. (The sum of two rank one matrices has rank at most two!) In particular AP 2 C is secant defective, in the sense that the secant variety is smaller that expected. Polarizing the determinant, one obtains a quadratic map c :

J 3 (A C ) → J 3 (A C ) ∨ which we call the comatrix map. Let W (A) = C ⊕ J 3 (A C ) ⊕ J 3 (A C ) ∨ ⊕ C.
One can define the projective variety LG(3, A C ) as the image of the rational map from J 3 (A C ) to PW (A) mapping x ∈ J 3 (A C ) to the line generated by 1 + x + c(x) + det(x). Denote by p the point of LG(3, A C ) defined by x = 0. The following properties do hold:

(1) LG(3, A C ) is smooth of dimension 3a + 3.

(2) LG(3, A C ) is homogeneous under the action of a simple Lie group Sp(6, A C ).

(3) The lines through p contained in LG(3, A C ) generate a cone over AP 2 C . The groups we met have the following types:

A R C H O SO(3, A C ) A 1 A 2 C 3 F 4 SL(3, A C ) A 2 A 2 × A 2 A 5 E 6 Sp(6, A C ) C 3 A 5 D 6 E 7
This table is a chunk of the famous Tits-Freudenthal magic square. (For more on this see the survey paper [START_REF] Landsberg | Representation theory and projective geometry, Algebraic transformation groups and algebraic varieties[END_REF] and references therein.)

Faces and representations

3.1. Special properties of minimal triangulations. The triangulations of RP 2 , CP 2 and (supposedly) HP 2 with minimal numbers of vertices have very peculiar properties [BrK87,[START_REF] Brehm | 15-vertex triangulations of an 8-manifold[END_REF], among which:

(1) (Tightness) Each face of dimension a or less is part of the triangulation.

(2) (Duality) A face of dimension a + j is part of the triangulation if and only if the complementary face of dimension 2a -j + 1 is not.

(3) (Secant defectivity) Any two maximal simplices intersect along a simplex of dimension at least a -1.

Note that tightness is a consequence of duality, since there is no face of dimension 2a + 1. Moreover, it was noticed by Marin that the duality property is imposed by the algebra structure of the Z 2 -valued cohomology (see [AM91], and [BrK92, Proposition 2]).

Since the number of vertices is 3a + 3, the dimension of the intersection of two simplices of dimension 2a is at least a -2, and should in general be equal to a -2. In our triangulations any two maximal simplices meet in dimension a -1, and this means that their linear span has dimension 3a + 1 rather than the expected 3a + 2. This is why this property should be understood as the combinatorial version of the secant defectivity property of the Severi varieties.

3.2. Numbers of faces. The numbers of faces f k of each dimension k in a triangulation of a smooth manifold are not independent. For example a codimension one face has to belong to exactly two codimension zero faces, hence the relation

(d + 1)f d = 2f d-1
if d denotes the dimension. More generally, the Dehn-Sommerville equations for simplicial complexes, or rather their extension by Klee (see [NS09, Theorem 5.1]) to a context including combinatorial manifolds, imply that the numbers of faces of dimension smaller than half of d determine the remaining numbers of faces. The precise statement is the following. Let f -1 = 1, and consider the h-vector, which is the sequence h 0 , . . . , h d+1 defined by the identity

d+1 i=0 h i x d+1-i = d+1 j=0 f j-1 (x -1) d+1-j .
For a simplicial complex, the classical Dehn-Sommerville equations assert that the h-vector is symmetric, that is h i = h d+1-i . More generally, for a triangulation of a smooth manifold X, the h-vector is such that

h d+1-i -h i = (-1) i d + 1 i χ top (X) -χ top (S d ) ,
where χ top (X) denotes the topological Euler characteristic. Let us denote by f a k the number of faces of dimension k in a tight triangulation of AP 2 with 3a + 3 vertices. The tightness property means that

f a k = 3a + 3 k + 1 for 0 ≤ k ≤ a.
The generalized Dehn-Sommerville equations show that all the numbers f a k are then completely determined. These numbers are given in the following Main observation. For each k, the number f a k of k-dimensional faces of a minimal triangulation of AP 2 is the dimension of a representation of SL(3, A C ).

3.3.

A connection with Severi varieties. One can be much more precise. We will describe a recipe which allows to understand a priori which representation of SL(3, A C ) has dimension f a k . Note that it will not be an irreducible representation in general, but it will have very few irreducible components, and never more than three.

Consider the variety LG(3, A C ) = G/P , where G = Sp(6, A C ) and P is the stabilizer of the base point p. As any rational homogeneous variety does, LG(3, A C ) has a cellular decomposition defined by the Schubert cells. If B ⊂ P ⊂ G is a Borel subgroup, recall that the Schubert cells can be defined as the B-orbits inside LG(3, A C ). Their closures are called Schubert varieties and usually denoted X u , where u belongs to some index set W P defined in terms of the combinatorics of the root system of G. It is clear from the definition that the boundary of any Schubert variety is a finite union of smaller Schubert varieties. This allows to define an oriented graph, which we call the Hasse diagram. The vertices of this graph are in bijection with the Schubert varieties, that is with W P . Moreover, there is an arrow u → v if X u is an irreducible component of the boundary of X v (or equivalently, X u is a codimension one subvariety of X v ). The Hasse diagram is obviously ranked by the dimension of the Schubert varieties. Moreover, Poincaré duality implies that it is symmetric with respect to the middle dimension. We denote the operation of Poincaré duality on the Hasse diagram by π.

Proposition 1. One has the following properties:

(1) The cone over Proof. The first claim is clear since the cone over AP 2 C is the union of the lines in LG(3, A C ) passing through p. In particular it is stabilized by P , hence by B, which implies that it is a Schubert variety X t since there are only finitely many B-orbits. The second claim follows immediately: there is only one one-dimensional Schubert variety X s (a line), and since the Schubert subvarieties of LG(3, A C ) contained in AP 2

AP 2 C is a Schubert variety of LG(3, A C ). ( 2 
C are exactly the cones over the Schubert subvarieties of the rational homogeneous variety AP 2 C , the interval

I = [s, t] is isomorphic with the Hasse diagram of AP 2
C . Finally, the third claim was first observed in [START_REF] Chaput | Quantum cohomology of minuscule homogeneous spaces II. Hidden symmetries[END_REF] in connection with certain unexpected symmetry properties of quantum cohomology.

The picture below shows the Hasse diagram of LG(3, O), the Freudenthal variety, which is a homogeneous space of exceptional type, with automorphism group Sp(6, O C ) of type E 7 . The interval I is in blue while π(I) is in red.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • X t X s
Remark. There is another connection between these Hasse diagrams. By Birkhoff's theorem, the Hasse diagram of LG(3, A C ), being a distributive lattice, is the lattice of upper ideals of a poset P . This poset is precisely the poset encoded by the Hasse diagram of AP 2 C . In particular the vertices of the latter can be associated with the join-irreducibles of the former Hasse diagram. That the Hasse diagram of LG(3, A C ) is a distributive lattice is a consequence of the fact that this is a minuscule homogeneous space [START_REF] Hiller | Geometry of Coxeter groups[END_REF].

3.4. Wedge powers of the Jordan algebra. On the other hand, consider the following problem: decompose the wedge powers of J 3 (A C ) into irreducible components, with respect to the action of SL(3, A C ). We shall see shortly that this decomposition is multiplicity free. This allows to define an oriented graph G(J 3 (A C )) as follows. The vertices are in bijection with the components of the wedge powers of J 3 (A C ). There is an edge between a component U of

∧ k J 3 (A C ) and a component V of ∧ k+1 J 3 (A C ) if the composite map V ⊗ J 3 (A C ) ∨ ֒→ ∧ k+1 J 3 (A C ) ⊗ J 3 (A C ) ∨ → ∧ k J 3 (A C ) → U is non-zero. Here the morphism ∧ k+1 J 3 (A C ) ⊗ J 3 (A C ) ∨ → ∧ k J 3 (A C
) is the natural contraction map, and the map ∧ k J 3 (A C ) → U is the projection with respect to the other irreducible components. Before giving the proof, we need to recall certain properties of the relationship between AP 2 C and LG(3, A C ). First, the latter being minuscule, the Lie algebra g = sp(6, A) of its automorphism group has an associated three-step grading

g = g -1 ⊕ g 0 ⊕ g 1 ,
where g 0 is a reductive Lie algebra with one dimensional center and with semisimple part sl(3, A C ), while g 1 is isomorphic with J 3 (A C ) as a sl(3, A C )-module. The positive part g 0 ⊕ g 1 of the grading is the Lie algebra of the parabolic subgroup P of Sp(6, A C ) such that G/P = LG(3, A C ). This parabolic is always maximal, hence associated to a simple root α 0 . Its Weyl group W P can then be defined as the stabilizer, inside the Weyl group W of Sp(6, A), of the associated fundamental coweight ω ∨ 0 . The orthogonal hyperplane to ω ∨ 0 cuts the root system Φ of Sp(6, A) along the root system Φ 0 of SL(3, A C ), which is the root subsystem generated by the simple roots except α 0 . The positive roots which do not belong to Φ 0 are those that appear in g 1 , that is, they are exactly the weights of J 3 (A C ). This module is again minuscule, which means that W P acts transitively on the roots having positive evaluation on ω ∨ 0 . Proof of the proposition. We have mentioned the fact that the vertices of the Hasse diagram are indexed by a set W P , a subset of the Weyl group of Sp(6, A). This is the set of minimal length representatives of W/W P , and it can be characterized as follows:

W P = {w ∈ W, w(α) ∈ Φ + ∀α ∈ Φ + 0 }. Now, the cotangent space to LG(3, A C ) at the point p is nothing else than J 3 (A C ), not only as a vector space but as a P -module, hence also as an SL(3, A C )-module since SL(3, A C ) is the semi-simple part of P . (In fact the action of the unipotent radical of P is trivial, because LG(3, A C ) is minuscule). Under such favourable circumstances, the decomposition of the bundle of k-forms has been obtained by B. Kostant [START_REF] Kostant | Lie algebra cohomology and the generalized Borel-Weil theorem[END_REF]:

∧ k J 3 (A C ) = v∈WP ,ℓ(v)=k V ρ-v -1 (ρ) ,
where ρ denotes the half-sum of the positive roots in the root system of Sp(6, A C ).

In particular, the vertices of G(J 3 (A C )) are in bijection with W P , hence with the vertices of the Hasse diagram of LG(3, A C ) There remains to check that the edges are the same. In the Hasse diagram, consider u of length k and v of length k + 1. There is an edge u → v if and only if v = su for some reflection s in the Weyl group W . We claim that this is equivalent to the condition that u -1 (ρ) -v -1 (ρ) is a weight of J 3 (A C ). Admitting this, we conclude the proof as follows. If

u -1 (ρ) -v -1 (ρ) is not a weight of J 3 (A C ), then V ρ-v -1 (ρ) cannot be a component of V ρ-u -1 (ρ) ⊗ J 3 (A C ) by [Zh73, section 131]. If u -1 (ρ) -v -1 (ρ) is a weight of J 3 (A C ), then the fact that V ρ-v -1 (ρ) is a component of V ρ-u -1 (ρ) ⊗ J 3 (A C
) is a special case of the PRV conjecture, proved in [START_REF] Kumar | Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture[END_REF].

There remains to prove our claim. First recall that in the minuscule setting the strong Bruhat order coincides with the weak Bruhat order [LW90, Lemma 1.14].

This means that the reflexion s must be the simple reflection s i associated to a simple root α i . Since ℓ(v) = ℓ(s i u) = ℓ(u) + 1 we must have u(α i ) > 0. We also need that v belongs to W P , which means that any positive root in the subsystem Φ 0 must be sent to a positive root. Since this is already the case for u, and since the only positive root that s i sends to a negative root is α i , this is equivalent to the condition that the positive root β = u -1 (α i ) does not belong to Φ + 0 . Since Φ 0 is the set of roots in Φ orthogonal to ω ∨ 0 , our condition can be restated as ω ∨ 0 (β) > 0. But this means that the root β appears in g 1 , hence that it is a weight of J 3 (A C ). Since u -1 (ρ) -v -1 (ρ) = β, our claim follows.

A nice consequence is that the interval I = [s, t] defines a submodule of the exterior algebra of J 3 (A C ), namely

L k = v∈WP ,ℓ(v)=k, s≤v≤t V ρ-v -1 (ρ) .
Our refined version of the main observation is the following:

Proposition 3. f a k = dim L k+1 .
This is straightforward to check case by case. A conceptual proof would probably require an interpretation of the generalized Dehn-Sommerville equations in representation theoretic terms. We have no idea of what could be such an interpretation.

As we already mentioned, although not always irreducible, L k has only a very small number of irreducible components. More precisely, it contains at most three components, as is apparent on the Hasse diagrams of LG(3, A C ). For k small enough ∧ k J 3 (A C ) is irreducible, hence by symmetry L k is also irreducible when 2a + 1 -k is small. A natural question to ask is, when the representation is not irreducible, whether there is any natural way to split the faces into subsets of the corresponding dimensions.

Maximal faces. In particular, the number of faces of maximal dimension is the dimension of the irreducible module L 2a+1 . This module can be interpreted as follows. Recall that each point of AP 2 C defines an A-line on the dual plane in PJ 3 (A C ) ∨ . This A-line is a quadric of dimension a, whose linear span is projective space of dimension a + 1. Hence an equivariant map 1) is equal to the d-th power of the hyperplane line bundle on AP 2 C , we get a non-zero equivariant map

π : AP 2 C → G(a + 2, J 3 (A C ) ∨ ) If this map is of degree d, in the sense that π * O(
H 0 (G(a + 2, J 3 (A C ) ∨ ), O(1)) = ∧ a+2 J 3 (A C ) π * -→ H 0 (AP 2 C , O(d)) = (J 3 (A C ) ∨ ) (d) , the d-th Cartan power of J 3 (A C ) ∨ . Dualizing, we get an inclusion of J 3 (A C ) (d) inside ∧ a+2 J 3 (A C ) ∨ = ∧ 2a+1 J 3 (A C ). In fact d = a/2 + 1 and L 2a+1 = J 3 (A C ) (a/2+1) .
(This still makes sense for a = 1 because the hyperplane class of RP 2 C , the Veronese surface, is divisible by two.)

In general the number of irreducible components of L k behaves as follows:

#irred L k+1 = 1 if 0 ≤ k ≤ a 2 -1 or 3a 2 + 1 ≤ k ≤ 2a, 2 if a 2 ≤ k ≤ a -1 or a + 1 ≤ k ≤ a 2 , 3 if k = a.
(There is a strange similarity with the homology of AP 2 .) Tightness. Note that π(I) = [π(s), π(t)] where the dimension of the Schubert variety X π(t) is a + 1, being complementary to the dimension of X t , which is 2a + 1 since it is a cone over AP 2 C . Since the whole Hasse diagram is the disjoint union of I, π(I) and the two extremities, this implies that

L k = ∧ k J 3 (A C ) for 1 ≤ k ≤ a + 1.
This is the algebraic version of tightness.

Duality. Duality can also be interpreted in the representation theoretic setting. Indeed, there exists an exterior automorphism of SL(3, A) exchanging the representations J 3 (A C ) and its dual J 3 (A C ) ∨ . Since

∧ k J 3 (A C ) ≃ ∧ 3a+3-k J 3 (A C ) ∨ ,
the graph G(J 3 (A C )) has an induced symmetry which can be seen to coincide with Poincaré duality. Since, once again, the disjoint union of I and π(I) is the whole Hasse diagram minus its two extremities, we must have the identity

∧ k J 3 (A C ) = L k ⊕ (L 3a+3-k ) ∨ .
This is the algebraic version of duality. Indeed, taking dimensions, we conclude that the number of (k -1)-dimensional faces is equal to the number of (3a + 2 -k)dimensional "non-faces".

Secant defectivity. In [START_REF] Eisenbud | Enriques surfaces and other non-Pfaffian subcanonical subschemes of codimension 3[END_REF] the minimal triangulation ∆ of RP 2 is considered. The Stanley-Reisner ideal I ∆ defines an arrangement of 10 hyperplanes in P 5 . Over a field k of characteristic two, the corresponding scheme is Gorenstein and its canonical bundle is 2-torsion. Moreover, this scheme can be flatly deformed into a family of special smooth Enriques surfaces in P 5 . This family is defined in terms of Lagrangian subspaces in ∧ 3 k 6 , endowed with the quadratic form (characteristic two !) induced by the wedge product.

In terms of representations (and over C), the relevant property is that

∧ 3 (Sym 2 C 3 ) = Sym 3 C 3 ⊕ (Sym 2 C 3 ) ∨
where both components are Lagrangian (with respect to the skew-symmetric form induced by the wedge product). In the other cases we have the following substitute:

Proposition 4. Consider (L 2a+1 ) ∨ as an irreducible component of ∧ a+2 J 3 (A C ) ≃ ∧ 2a+1 J 3 (A C ) ∨ .
Then the natural map

(L 2a+1 ) ∨ ⊗ (L 2a+1 ) ∨ → ∧ 2a+4 J 3 (A C ) = ∧ a-1 J 3 (A C ) ∨ is zero.
Otherwise stated, (L 2a+1 ) ∨ is isotropic with respect to a whole system of bilinear forms parametrized by ∧ a-1 J 3 (A C ), which is a very strong property. Moreover these forms are symmetric for a ≥ 2, exactly as for a = 1 in characteristic two (but skew-symmetric for a = 1 in characteristic zero...).

Proof. Since (L 2a+1 ) ∨ is irreducible, it is enough to prove that ω ∧ ω ′ = 0 when ω, ω ′ are two highest weight vectors. Since L 2a+1 is a Cartan power of J 3 (A C ), these highest weight vectors correspond to two points p, p ′ of the dual AP 2 C . Moreover, we have seen that the associated points in ∧ a+2 J 3 (A C ) correspond to the linear spans of the A-lines on AP 2 C defined by p and p ′ . But two such A-lines always meet non-trivially (we are dealing with a plane projective geometry!), and this implies that ω ∧ ω ′ = 0.

Complexes

4.1. A subcomplex of the Koszul complex. Recall that the wedge powers of J 3 (A C ) can be put together into a Koszul complex: for any non-zero linear form φ ∈ J 3 (A C ) ∨ , the contraction by φ,

• • • → ∧ k+1 J 3 (A C ) φ -→ ∧ k J 3 (A C ) → • • • defines an exact complex K • (φ)
. By their very definition, the contraction map by any linear form φ maps L k+1 to L k and we get a subcomplex L • (φ)

0 → L 2a+1 → • • • → L k+1 φ -→ L k → • • • → L 1 → 0.
This complex is not exact. Indeed, suppose that φ ∈ J 3 (A C ) ∨ is general, in the sense that it does not belong to the determinantal hypersurface. The stabilizer

SO(φ) of φ in SL(3, A) is then a conjugate of SO(3, A) = Aut(J 3 (A C
)) (such that φ becomes the identity of the twisted Jordan structure). The complex L • (φ) is SO(φ)-equivariant. In particular we consider its Euler characteristic as an element of the representation ring of SO(φ). A direct check with LiE [LiE] yields:

Proposition 5. The Euler characteristic of the complex L • (φ) is χ(L • (φ)) = χ top (AP 2 ) [C],
where [C] denotes the class of the trivial representation of SO(φ). In particular the Euler characteristic is SO(φ)-invariant.

One can also check that the SO(φ)-invariants of the complex are

(L k+1 (φ)) SO(3,A) = C if k = 0, a, 2a, 0 otherwise.
The existence of these invariants can be seen as follows. Inside L 1 = J 3 (A C ) there is the invariant hyperplane J 3 (A C ) φ = φ ⊥ . This is an irreducible SO(φ)-module, and therefore it admits a unique invariant supplementary line

ℓ φ ⊂ J 3 (A C ). Since J 3 (A C ) = J 3 (A C ) φ ⊕ ℓ φ as SO(φ)-modules, we have for any integer k S k J 3 (A C ) = ⊕ k ℓ=0 S ℓ J 3 (A C ) φ .
It turns out that a similar statement holds for Cartan powers:

J 3 (A C ) (k) = ⊕ k ℓ=0 J 3 (A C ) (ℓ)
φ . In particular there is always a unique line of SO(φ)-invariants inside J

3 (A C ) (k) , hence inside L 2a+1 = J 3 (A C ) (a/2+1) . Moreover this line is contained in ∧ 2a+1 J 3 (A C ) φ , and since J 3 (A C ) φ is self-dual of dimension 3a+2, there is an induced line of SO(φ)- invariants inside ∧ a+1 J 3 (A C ) φ ⊂ ∧ a+1 J 3 (A C ) = L a+1 .
Proposition 5 suggests the following conjecture:

Conjecture. Let φ ∈ J 3 (A C ) ∨ be general. Then the inclusion of L • (φ) SO(φ) inside L • (φ) is a quasi-isomorphism.
Proposition 5 also shows that L • (φ) has one of the main properties of the face complex of a triangulation of AP 2 . 4.2. The main conjecture. Let ∆ be a simplicial complex. Associate to each vertex v of ∆ a variable x v . Let I ∆ ⊂ k[x v , v ∈ ∆ 0 ] denote the ideal generated by all the square-free monomials

x v1 • • • x vr such that (v 1 , . . . , v r ) is not a face of ∆. Then R = k[x v , v ∈ ∆ 0 ]/I ∆ is the Stanley-Reisner ring of ∆ [BH93]
. When ∆ is a spherical complex, R is a Cohen-Macaulay ring. If ∆ is a triangulation of a topological manifold (not necessarily a sphere), then R is only Buchsbaum [START_REF] Novik | Socles of Buchsbaum modules, complexes and posets[END_REF].

The face complex C • ∆ is defined by

C k ∆ = v1,...,v k R xv 1 •••xv k ,
where the sum is over all (k-1)-dimensional faces. (In order to define the morphisms one has to chose an ordering of ∆ 0 .) This complex computes the local cohomology of R at the maximal ideal. For Buchsbaum modules the local cohomology is closely connected with the socle (see [START_REF] Novik | Socles of Buchsbaum modules, complexes and posets[END_REF], in particular Corollary 3.5).

Remark. Note that a consequence of ∆ not being Cohen-Macaulay is that the hvector is not symmetric. As explained in [START_REF] Novik | Socles of Buchsbaum modules, complexes and posets[END_REF], the symmetry can be recovered by changing the h-vector into a h ′′ -vector, the modification taking into account the Betti numbers of the manifold triangulated by ∆. For AP 2 we would get

h ′′ k = h ′′ 2a-k = a + k + 1 k for 0 ≤ k ≤ a.
These numbers are the dimensions of the graded part of a Gorenstein Artinian ring ([NS09], Conjecture 7.3), and by Macaulay's theorem one can associate a polynomial F a to this ring. What is the significance of F a ?

We will now define a variant of the face complex. Considering a space V endowed with a basis e v indexed by vertices of ∆. We can then define

L k ∆ = v1,...,v k Ce v1 ∧ • • • ∧ e v k ⊂ ∧ k V,
the sum being again over all (k -1)-dimensional faces. Since every subset of a face is a face, each contraction map by a linear form φ ∈ V * sends L k ∆ to L k-1 ∆ . Conjecture. There exists a degeneration of L • to L • ∆ , for some triangulation ∆ of AP 2 C with 3a + 3 vertices. More precisely, such a degeneration should exist inside the Koszul complex of J 3 (A C ), which means that we do not need to care about the morphisms, but only to prove the existence of a degeneration L k t of each L k to L k ∆ inside the Grassmannian parametrizing subspaces of ∧ k J 3 (A C ) of the same dimension. Of course we require that for any φ ∈ V ∨ = J 3 (A C ) ∨ , the contraction map by φ sends L k t to L k-1 t . It would even be natural to require that for all k,

L k t = Im(L 2a+1 t ⊗ ∧ 2a+1-k J 3 (A C ) ∨ → ∧ k J 3 (A C )).
Then we would only have to degenerate L 2a+1 , subject to the condition that these contractions maps have constant rank.

Proposition 6. The conjecture is true for a = 1.

Proof. In this case we only have a three term complex to deal with:

L 3 → L 2 = ∧ 2 V → L 1 = V.
Here V = S 2 U for U of dimension three. In particular there is only L 3 to degenerate in the Grassmannian of ten-dimensional subspaces of ∧ 3 V , subject to the condition that the contraction map to ∧ 2 V is surjective. Since this is an open condition, we can certainly degenerate it to the space L 3 ∆ defined by the classical triangulation ∆ of RP 2 .

It turns out that something rather special happens. Let u 1 , u 2 , u 3 be a basis of U , and consider the Borel subgroup of GL(U ) defined by this basis. Then L 3 = S 411 U is the submodule of ∧ 3 (S 2 U ) with highest weight vector u 2 1 ∧ u 1 u 2 ∧ u 1 u 3 with respect to our Borel subgroup. We denote this vector by (11)(12)(13). A basis of L 3 , consisting in eigenvectors of the maximal torus defined by the basis, can then be obtained by applying successively the root vectors associated to the opposite of the two simple roots of sl 3 . We get the following diagram.

(11)(12)(13) (11)(12)(23) + (11)(22)(13) ' ' O O O O O O O O O w w o o o o o o o o o (11)(22)(23) + (12)(22)(13) + + W W W W W W W W W W W W W W W W W (11)(12)(33) + (11)(23)(13) (12)(22)(23) (11)(22)(33) + 2(12)(23)(13)
s s g g g g g g g g g g g g g g g g g (13)(22

)(23) + (12)(22)(33) ' ' O O O O O O O O O (11)(23)(33) + (12)(33)(13) w w o o o o o o o o o (12)(23)(33) + (13)(22)(33) (13)(23)(33)
Now we may consider each basis vector u i u j = (ij) of V as a vertex of a triangulation. Then a decomposable tensor (ij)(kl)(mn) in ∧ 3 V encodes a two-dimensional face. Not all the vectors in our basis are decomposable, but those that are not are the sum of only two decomposable vectors, and there is a unique way to choose one among these two, for each of the seven non decomposable vectors, in such a way that the ten faces that we obtain define a triangulation ∆ of RP 2 (the minimal triangulation). The terms corresponding to these ten faces are indicated in bold on our diagram. In particular we can get a degeneration of L 3 to L 3 ∆ just by rescaling the terms that are not in bold.

Let us review how this can be connected to our approach. For A = C, the Jordan algebra J 3 (A C ) can be identified with the tensor product A ⊗ B of two vector spaces of dimension three. The terms of the Koszul complex are given by the Cauchy formula, and the subcomplex L • is encoded in the following graph:

[1] ⊗ [1] # # G G G G G G G [3] ⊗ [111] # # G G G G G G G [311] ⊗ [311] [2] ⊗ [11] ; ; w w w w w w w # # G G G G G G G [31] ⊗ [211]
; ; w w w w w w w

[21] ⊗ [21]

; ; w w w w w w w

Our notation here is the following: by [µ] ⊗ [ν] we mean the tensor product of Schur powers S µ A ⊗ S ν B, plus the symmetric term S ν A ⊗ S µ B if µ = ν. We have

L k = ∧ k (A ⊗ B) for 1 ≤ k ≤ 3,
corresponding to the first three columns of the complex. On the extreme right,

L 5 = S 311 A ⊗ S 311 B = S 2 A ⊗ det A ⊗ S 2 B ⊗ det B has dimension 36.
If we choose a basis a 1 , a 2 , a 3 of A and a basis b 1 , b 2 , b 3 of B, we get a basis a i ⊗ b j = (ij) of A ⊗ B and an induced basis of its wedge powers. Note that L 5 = [311] ⊗ [311] is a multiplicity free module. As a submodule of ∧ 5 (A ⊗ B), it is generated by the highest weight vector (11)(12)(13)(21)(31). Taking into account the action of the Weyl group W = S 3 × S 3 , we get nine decomposable vectors. Our principle is that each weight vector (ij) should be identified with a vertex of the triangulation, and each decomposable vector to a face of this triangulation. Starting from the configuration of the nine faces that have to be associated to the nine decomposable vectors, we are led to the following identification between our weight vectors and the vertices of the Brehm-Kühnel triangulation: (3) The maximal faces split into four H-orbits of nine elements, corresponding to the four W -orbits among the weights of L 5 . (4) Each weight space is generated by a vector which is the sum of one, two or four decomposable vectors, and exactly one of these decomposable vectors correspond to a maximal face of the triangulation.

The minimal triangulation of CP 2 and its symmetries thus become much more transparent when interpreted in our representation theoretic setting.

The quaternionic case, revisited

In [START_REF] Brehm | 15-vertex triangulations of an 8-manifold[END_REF], three combinatorial triangulations were constructed of a manifold "like a quaternionic projective plane". One of these triangulations is more symmetric than the two others: its automorphism group, the icosahedral group A 5 , acts transitively on the 15 vertices. It can be characterized as the unique tight triangulation of a manifold with this symmetry property. The authors conjectured that the underlying manifold is really the quaternionic projective plane HP 2 , but up to our knowledge this conjecture remains open.

For A = H, the Jordan algebra J 3 (H C ) can be identified with the second wedge power ∧ 2 A of a vector space a of dimension six. The subcomplex L • of the Koszul complex is encoded in the following graph: 

[11] $ $ J J J J [222] $ $ J J J [3322] $ $ J J J [44222] $ $ J J J [552222] [211] $ $ J J J : : t t
: : t t t
Here again we denote by [λ] the Schur power S λ A. In particular [11] denotes the minuscule representation ∧ 2 A, whose fifteen weights (with respect to some fixed maximal torus) should represent the fifteen vertices of the Brehm-Kühnel triangulation. This suggests in particular that the action of the icosahedral group A 5 on these vertices, which is produced in [START_REF] Brehm | 15-vertex triangulations of an 8-manifold[END_REF] by exhibiting an explicit embedding in S 15 , is in fact induced by a much more simple embedding in S 6 . This is indeed the case, and we consider this fact as a strong hint that our insights should be correct. Consider the permutations defined in cyclic notation by p = (1)(23456), r 1 = (1)(2)(36)(45), s = (156)(243), r 2 = (4)(5)(36)(12).

There is an induced action on the set of pairs of distinct integers, that we put in correspondence with integers between 1 and 15 by identifying the following tables: It is then straightforward to check that the resulting permutations of S 15 coincide with the permutations denoted P, R 1 , S, R 2 in [START_REF] Brehm | 15-vertex triangulations of an 8-manifold[END_REF], pp. 170-171.

The maximal simplices defining the Brehm-Kühnel triangulation (see [START_REF] Brehm | 15-vertex triangulations of an 8-manifold[END_REF], Table 2 p. 174) can then be identified with sets of nine pairs of integers. In particular, the simplex denoted M 1 corresponds to (12)(13)(14)(15)(16)(23)(24)(25)(26). This expression can be seen as defining a highest weight vector of the representation [552222] inside ∧ 9 [11], in complete agreement with our expectations.

Spherical links

Assuming that the vertex-transitive action by a symmetry group, which exists for the known triangulations of RP 2 and CP 2 and for the conjectural triangulation of HP 2 , also exists for the hypothetical case of OP 2 , one can consider the link of an arbitrary vertex in one of these triangulations. This link does not depend on the chosen vertex, up to isomorphism, and defines a triangulation of a sphere of dimension 2a -1.

Knowing the number of simplices in the triangulation of AP 2 , one can compute the number of simplices in this triangulated sphere by a double counting argument. First note that in order to count simplices of the link, one can study the star instead of the link. Consider now the set of pairs (v, f ) where v is a vertex in the triangulation of AP 2 and f is a simplex in the star of v. Every k-dimensional simplex of the triangulation of AP 2 belongs exactly to the links of its k +1 elements, hence will appear k + 1 times in the set of pairs (v, f ). One can then count pairs (v, f ) such that f is k-dimensional in two different ways.

The results for the spherical triangulations are listed below by increasing dimensions. The spherical link in RP 2 is a pentagonal circle. According to [BrK92, §5], the spherical link in CP 2 is a non-polytopal 3-sphere, called the Brückner-Grünbaum sphere, and the spherical link in HP 2 is a non-polytopal 7-sphere. This is the dimension of the irreducible representation of the Lie algebra so(a + 4), whose highest weight is aω, where ω is the fundamental weight defining the vector representation of dimension a + 4.

The meaning of this observation remains unclear to us. Moreover we could not find similar interpretations for the other numbers of faces.

As a curiosity, one can note that the numbers of maximal faces also appear in the sequence A129869 of the On-Line Encyclopedia of Integer Sequences (oeis.org), which counts tilting modules for quivers of type D.

Higher ranks

Much of what we have explained in the previous section remains true for higher rank, that is, for the projective spaces AP n = RP n , CP n , HP n with n ≥ 3. Their complex versions AP n C are homogeneous under the action of a group SL(n + 1, A). Moreover there exists a bigger homogeneous variety LG(n + 1, A), with automorphism group Sp(2n + 2, A), such that AP n C can be identified with the space of lines in LG(n + 1, A) passing through a prescribed point p. d + (λ) = (λ 1 , λ 2 + 1, . . . , λ ℓ + ℓ -1, ℓ λ ℓ , (ℓ -1) λ ℓ-1 -λ ℓ -1 , . . . , 1 λ1-λ2-1 ), where powers mean repetitions. A = C. Then J n+1 (C C ) = U ⊗ V where U and V have dimension n + 1. We have

∧ k J n+1 (C C ) = |λ|=k, ℓ(λ),h(λ)≤n+1 S λ U ⊗ S λ ∨ V,
where the sum is over partitions λ = (λ 1 ≥ • • • ≥ λ ℓ > 0) of size k and of height h(λ) = λ 1 and length ℓ(λ) = ℓ at most n + 1. A = H. Then J n+1 (H C ) = ∧ 2 U where U has dimension 2n. We have In each case the Hasse diagram of LG(n + 1, A) coincides with the graph of partitions with the partial order defined by the inclusion relation. The minimal element s of I corresponds to the partition of size one, while t corresponds to the partition (n), (n + 1, 1 n ), (2n + 1, 2n) respectively. This yields L an+1 = J n+1 (A C ) (d) where d = a n -1 2 + 1.

∧ k J n+1 (H C ) =
The other terms are then easy to write down explicitly:

A = R. Then L k = S k+1,1 k-1 U for 1 ≤ k ≤ n + 1. This implies that f 1,n k = 1 2 n + k + 2 k + 1 n + 1 k + 1 . A = C. Here L k = ⊕ i+j=k-1 S i+1,1 j U ⊗ S j+1,1 i U for 1 ≤ k ≤ 2n + 1. Therefore f 2,n k = n + 1 k + 1 2 i+j=k n + i + 1 i n i n + j + 1 j n j .
A = H. Here L k = ⊕ i+j=k,i>j S d-(i,j) U .

If we fix a generic element φ ∈ J n+1 (A C ) ∨ , its stabilizer is a conjugate of SO(n + 1, A) = Aut(J n+1 (A C )). We expect that the complex L • (φ) should be quasi-isomorphic with the complex of SO(n + 1, A)-invariants, with trivial arrows. Moreover, we have:

)

  The Hasse diagram of AP 2 C embeds in the Hasse diagram of LG(3, A C ), as an interval I. (3) The Hasse diagram of LG(3, A C ) is the disjoint union of the interval I, the Poincaré dual π(I), and the two extremities given by the fundamental class and the punctual class.

Proposition 2 .

 2 The graph G(J 3 (A C )) coincides with the Hasse diagram of LG(3, A C ).

  (32) (11) (21) (33) (12) (22) (31) (13)We can then make several observations:(1) The transitive action of H on the vertices coincides with the natural action of the subgroup A 3 × A 3 of the Weyl group S 3 × S 3 . (2) The involution τ coincides with the external symmetry (ij) → (ji).

  P n ) P n × P n G(2, 2n + 2) SL(n + 1, A) SL(n + 1) SL(n + 1) × SL(n + 1) SL(2n + 2) LG(n + 1, A) LG(n + 1, 2n + 2) G(n + 1, 2n + 2) S 2n+2 Sp(2n + 2, A) Sp(2n + 2) SL(2n + 2) SO(4n + 4)Exactly as for n = 2, this allows to embed the Hasse diagram of AP n C into that of LG(n+1, A), as an interval I = [s, t]. Moreover the Hasse diagram of LG(n+1, A) is canonically identified to the graph constructed from the wedge powers of J n+1 (A C ), the complexification of the space of Hermitian matrices of size n+1 with coefficients in A. These wedge powers are given by the following classical formulas.A = R. Then J n+1 (R C ) = Sym 2 U where U has dimension n + 1. We have ∧ k J n+1 (R C ) = |λ|=k, h(λ)≤n S d+(λ) U,where the sum is over strict partitions λ = (λ 1 > • • • > λ ℓ > 0) of size k and of height h(λ) = λ 1 at most n. Moreover d + (λ) is the partition of size 2k obtained by putting together λ and its conjugate:

S

  d-(λ) U, where the sum is over strict partitions λ = (λ 1 > • • • > λ ℓ > 0) of size k and of height h(λ) = λ 1 at most 2n. Moreover d -(λ) is the conjugate partition to d + (λ).

table :

 : 

		RP 2 CP 2	HP 2	OP 2
	#vertices	6	9	15	27
		15	36	105	351
	#2 -dim	10	84	455	2925
			90	1365	17550
	#4 -dim		36	3003	80730
				4515	296010
				4230	888030
				2205	2220075
	#8 -dim			490	4686825
					8335899
					12184614
					14074164
					12301200
					7757100
					3309696
					853281
	#16 -dim				100386

Proposition 7.

(L k+1 ) SO(n+1,A) = C if k = 0, a, . . . , na, 0 otherwise. Proof. Consider for example the case where a = 4. It follows from the branching rules from SL to Sp [Li40] that a Schur module S µ U has a Sp(2n)-invariant if and only if the conjugate partition µ ∨ has only even parts, in which case this invariant is unique up to scalars. For µ = d -(i, j), hence µ ∨ = d + (i, j), this means that i = j + 1 and j is even. Hence i + j -1 = 2j must be divisible by four, and the claim follows.

There is therefore an intriguing relation between these modules and the cohomology of AP n , confirmed by the following statement: Proposition 8. For any a = 1, 2, 4 and any n ≥ 2, one has

An optimistic guess would be that some degeneration of the complex L • (φ) should be the Stanley-Reisner complex of some triangulation of AP n . This triangulation would have f a,n k faces of dimension k, in particular it would have exactly a n+1 2 + n + 1 vertices. Unfortunately, this is definitely over-optimistic: it was proved in [AM91] that RP 3 does not admit any triangulation with only 10 vertices!