

Evolutionary genetics evidence of an essential, non-redundant role of the IFN- γ pathway in protective immunity

Jeremy Manry, Guillaume Laval, Etienne Patin, Simona Fornarino, Christiane Bouchier, Magali Tichit, Luis Barreiro, Lluis Quintana-Murci

▶ To cite this version:

Jeremy Manry, Guillaume Laval, Etienne Patin, Simona Fornarino, Christiane Bouchier, et al.. Evolutionary genetics evidence of an essential, non-redundant role of the IFN- γ pathway in protective immunity. Human Mutation, 2011, 32 (6), pp.633-42. 10.1002/humu.21484. hal-00627541

HAL Id: hal-00627541 https://hal.science/hal-00627541

Submitted on 29 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Human Mutation

Evolutionary genetics evidence of an essential, nonredundant role of the IFN-γ pathway in protective immunity

Journal:	Human Mutation
Manuscript ID:	humu-2010-0462.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	23-Jan-2011
Complete List of Authors:	Manry, Jeremy; Institut Pasteur Laval, Guillaume; Institut Pasteur Patin, Etienne; Institut Pasteur Fornarino, Simona; Institut Pasteur Bouchier, Christiane; Institut Pasteur Tichit, Magali; Institut Pasteur Barreiro, Luis; University of Chicago Quintana-Murci, Lluis; Institut Pasteur, EEMI
Key Words:	IFNG, IFNGR1, IFNGR2, natural selection, polymorphism, population genetics

RESPONSES TO REVIEWERS:

Referee: 1

Comments to the Author

Manry et al examine genetics of the IFN-g pathway at a population genetics level. This study presents several interesting observations about selective pressures on the IFNg pathway. The statistical methods are thorough and the resequenced dataset is valuable. Some weaknesses include an unusual selection of samples that may have a sample size and composition that is not ideally matched for the analytic goals of the project. In addition, publicly available Phase III HapMap data is not utilized effectively to enrich the data set and analysis.

Major Points

1. Populations and sample size: 186 individuals were resequenced for 3 genes. The 186 are selected from at least 11 populations. How were these numbers chosen and why were these populations chosen? The rationale is important and not articulated. It is important because the conclusions regarding purifying selection may have more or less generalizability based on the input populations. To make arguments about selection, it is important to have larger numbers of samples from distinct populations where evidence of selection can be observed. To characterize global SNP diversity and genetic effects of population migration, smaller numbers of samples from multiple populations is beneficial. Given that one of the primary goals of this project is to examine natural selection, the sample size for each population is very small (6 Orcadians, 4 Cambodians, 10Japanese in particular). In particular, some of the selected populations are almost certainly composed of highly heterogeneous subpopulations. For example, the 33 Chinese minorities. Are these from geographically proximal or distant locations?

We thank the reviewer for this comment. With respect to the study design and sample choice, this was based on the double and complementary goals of our study. Indeed, as the reviewer suggests, one aim of our study was the discovery of new polymorphisms, in the line of one of the Human Mutation interests. To this end, we included individuals from many distinct ethnic origins. The second aim was to identify signatures of natural selection, where many individuals per continental region are needed. Our population choice reflects the need to balance between the two goals of the study. We think that this choice is the best compromise to allow us to address these two questions: several sub-populations to detect new polymorphisms, 186 individuals taken as a whole to detect signatures of natural selection species wide, and 62 individuals per continental group to detect more subtle signatures of local selection.

The reviewer is also right in wondering the extent to which this population choice may affect our results concerning natural selection. In particular, grouping and analysing together populations that present substantial genetic differentiation could generate biases in neutrality statistics. We have now formally tested this possibility by quantifying the levels of population differentiation among populations we grouped in our analyses, namely those living in the same continental region. Specifically, we have performed an AMOVA to estimate the fraction of the genetic variance of our dataset explained by (i) differences between individuals within a given population, (ii) differences among populations within the same continental region, and (iii) differences among the three continental groups (i.e. each group representing the merge of

the different populations of a given continent). Our analyses show that the fraction of the genetic variance explained equals to 89.27%, 0.45% and 10.28%, respectively. In this view, we can say that the genetic differentiation among populations from the same continental region is negligible (mean=0.45%; African=0.73%, European=0.08%, and Asian=0.55%) and non-significant in our dataset. In addition, and consistent with our data, genome-wide genotyping datasets performed on the same individuals and populations here studied have recently shown that the levels of population structure within continental regions is limited (Li et al. 2008, Science). This is also true for other genome-wide datasets on similar populations, e.g. the HapMap samples of Han Chinese and Japanese have been merged in all analyses due to their high genetic resemblance (Frazer et al. 2007, Nature). Altogether, our analyses, fuelled by the results of recent genome-wide datasets, indicate that the genetic differentiation observed among subpopulations from the same continent is weak enough not to influence any of our conclusions regarding natural selection acting in each continental population group.

With respect to the detection of purifying selection, the test used (MKPRF) is based on the whole sample of 186 individuals merged together, because our aim was to detect how intense have been the selective constraints (i.e. strong purifying selection against amino-acid changes, estimated using ω) at the species-wide level (in all humans). Apart from that, this test is insensitive to the number of populations sampled, because ω relies on the comparison of amino-acid altering and silent sites, where silent sites represent an internal control of what is expected in the absence of selection. Consequently, the sample design, whatever it is, will equally influence both types of segregating sites and will not influence the parameter estimation. In addition, the intensity of purifying selection on *IFNG* estimated from our dataset ($\omega = 0.0189$) is extremely similar to that obtained using another population panel ($\omega = 0.0184$ from Bustamante et al. 2005, Nature), indicating that the detection of strong purifying selection is not sensitive to the population considered.

With respect to the detection of positive selection, the reviewer is right in that the potential presence of population substructure in some of our continental populations may influence inferences concerning the effects of local positive selection. Indeed, in contrast with tests that considered the human species as a whole (see MKPRF above), some of the tests aiming to detect local positive selection are influenced by the structure of the studied populations, even if low. For example, tests based on the allele frequency spectrum (Tajima's D, Fu & Li's D* and F^*) are sensitive to the amount of singletons, a feature that can reflect both positive selection and population substructure (Ptak and Przeworski, 2002, Trends Genet). However, we never made any claim of local selection based only on tests that are sensitive to population substructure. For example, as the reviewer points out, the presence of Chinese minorities in the East-Asian sample could be a problem in this respect. However, our results for the IFNGR2 +23133A allele, which is the only case for which we claim selection in Asia, kept being significant when removing Chinese minorities for the DIND test and the F_{ST} statistics (see analyses here below). For this analysis, we used the 2 major Asian populations only: Han Chinese and Japanese (similarly to what was previously done to detect Asian specific signatures of recent positive selection using the HapMap dataset (Voight et al., 2006, PLoS Biol).

DIND test excluding the Asian minorities:

We have now clarified our choice regarding the sampling design in Material and Methods (page 5, and a new Supp. Table S1 to describe our population panel), and we have cautiously discussed the possibility of population structure in the discussion (page 18).

2. HapMap data: Phase 3 of HapMap has full genome sequencing on 11populations and hundreds of individuals. Phase 3 the HapMap dataset is more extensive than the current paper. This paper appears to utilize some data from Phase II of Hapmap" but even this effort does not fully utilize the data. This is a lost opportunity to not use the Phase III Hapmap data and to fully analyze it in conjunction with the authors primary data.

We entirely agree with the reviewer in that the use of genome-wide datasets (e.g. HapMap, 1000 genomes, Celera, etc) is very useful for comparative purposes. Specifically, the reviewer points out that HapMap Phase III has sequenced 10 regions of 100kb on 11 populations and about 1000 individuals. However, there are a number of reasons that prevented us to make full use of the HapMap Phase III dataset: (i) the 10 resequenced regions do not include our 3 genes; (ii) because the remaining data (and this is valid also for HapMap Phase II) is based on genotyping only, we cannot perform neutrality tests such as Tajima's *D*, Fu & Li's *D** and *F** and Fay & Wu's *H*, which need full resequencing data; and (iii) HapMap data is in turn useful for tests based on long-range haplotype homozygosity, in which case we had to use the HapMap Phase II dataset because the SNP density is greater (~3.1 million genotyped SNPs) than that of HapMap Phase III (~1.4 million genotyped SNPs). In the context of our paper, we now used the HapMap Phase III data for allele frequency comparisons (see point 3), obviously for those SNPs that have been genotyped in this dataset.

To circumvent the limitations associated with the nature of the HapMap data (i.e. SNP genotyping which is subject to ascertainment biases), one has to use datasets that are based on full resequencing (e.g. 1000 genomes, Celera dataset, etc). The 1000 genomes project is in a pilot phase that includes 3 distinct approaches (Durbin et al, 2010, Nature). The first is a trio project where 2 trios have been whole-genome sequenced at high coverage, a sample size that is too low to provide with reliable comparisons in the context of our study. The second is an exon-targeted resequencing project where 900 genes have been sequenced at high coverage in 697 individuals. In this case, the number of exploitable genes is much lower than that of other public datasets (see Celera dataset discussed below), especially when it comes to make

comparisons among different functional classes as the reviewer suggests. The third project is a low-coverage whole-genome sequencing in 179 individuals. Although the use of the third project of 1000 genomes project is seducing, there are a number of reasons for which it is hardly comparable with our data: (i) the sequence coverage varies among populations, which complicates comparisons of neutrality statistics among populations (see Suppl Fig 2 in Durbin et al., 2010 Nature), (ii) the variation in coverage along the genome strongly limits comparisons between genes within the same population, (iii) the low coverage of most of this dataset (in average 3.6x) limits the detection of low frequency variants, which in turn, represent the substrate to detect and estimate the intensity of purifying selection (i.e. one aim of our study). Indeed, it has been shown that, because non-synonymous variants are generally found at low frequencies (<5%), this dataset has reduced power to discover variants in this range, and therefore alter interpretation as to selection pressures (Durbin et al, 2010, Nature). In this view, we decided to use the Celera dataset, which contains 11,624 genes that have been fully resequenced (Bustamante et al., 2005, Nature), for the following reasons: (i) it is, by the time being, the resequencing project providing the largest number of resequenced genes (11,624); (ii) genes have been resequenced using standard PCR-based techniques, thereby excluding any of the limitations introduced by next-generation sequencing (e.g. coverage variation), and (iii) this dataset has been already specifically used for the genomewide detection of the intensity of purifying selection (Bustamante et al., 2005, Nature), constituting therefore a perfect comparative dataset in the context of our study.

In the revised version of the manuscript, following the reviewers' and editorial advices, we now compare our data in the context of the genome-wide Celera dataset (see Material and Methods page 7, Results pages 12-13 and Discussion page 19), where we integrate our results in the more general context provided by these 11,624 genes. In addition, we have now added in Supp. Table S3 the SNPs that are also present in HapMap Phase III. We have also complemented this comparison with a new Table (see Supp. Table S4).

3. SNP Discovery & Table S2: Pertinent to point #2, the authors report 53.5% novel mutations in their SNP discovery effort when compared to HapMap. Is this in comparison to Hapmap Phase II with 4 populations? This comparison should be done with Phase III. And, the claim for novelty should be put in a frequency context. Are the novel SNPs singletons in isolated populations? A table summarizing the genotype frequencies(rather than allele frequencies) listed by population is needed to put the data in a frequency and population context.

In the same line of the previous response, there are less SNPs in Phase III than in Phase II. The 53.5% of novel mutations corresponds to what is referenced today in dbSNP (every SNP in HapMap is included in dbSNP). Since the time of submission of our paper, some of the novel SNPs have been now referenced in the dbSNP database, so we have now 47.2% of novel mutations in our paper. These have been submitted to the dbSNP database. Concerning the novel SNPs that are found as singletons, there are neither particularly restricted nor more present in particular/isolated populations.

As suggested by the reviewer, we have now added a table (Supp. Table S4) summarizing the genotype frequencies of each SNP in our 3 continental populations and added the genotype frequencies given by HapMap Phase II and III to put our results in a frequency and population context.

4. Nonsynonymous mutations & fitness (table 2): the authors use the Polyphen algorithm to predict fitness effects of NS SNPs. Bioinformatic predictions of fitness are highly inaccurate and this data analysis is unlikely to be very meaningful. Very subtle amino acid changes can have dramatic effects on function. Large amino acid changes on the protein surface in unconstrained areas can have no effect on function.

Most bioinformatic predictions of fitness are based on 3D protein structure, for the few genes whose protein structure has been characterized, and on the conservation of polymorphic sites across numerous species and gene paralogs. These methods have been shown to present a high false negative rate, i.e. they are highly conservative. Consequently, those mutations that are predicted to be probably damaging have a high probability to be true positives, while many mutations predicted as benign have good probability to be damaging. Importantly, as said by the reviewer, these algorithms have low power to predict the exact impact of a mutation on protein activity or stability, but rather indicate the relevance of the site of interest for survival, because they are based conservation through evolution. We used the PolyPhen algorithm to give some clues about the putative functional role of each non-synonymous mutation. While in the first version of the manuscript we used the PolyPhen v1, we have now used the recently released updated version of the algorithm (PolyPhen v2) (Adzhubei et al., 2010, Nature Methods). PolyPhen-2 achieved true positive prediction rates of 92% on HumDiv dataset. This updated version has been shown to provide a better confidence than PolyPhen v1 (82%) and than any other predictive tool (Adzhubei et al., 2010, Nature Methods). Indeed, in agreement with the reviewer's comment, some polymorphisms that were predicted to be benign by Polyphen v1 now become possibly or probably damaging with Polyphen v2. However, in our paper, the most important point supporting the somehow deleterious effects of non-synonymous mutations does not come from the PolyPhen predictions but instead from their observed frequencies in natura, which are all at very low frequency except one in *IFNGR2* (interestingly predicted as being benign). More generally, this result is also observed at the genome-wide level, since mutations predicted to be damaging by Polyphen are generally found at lower population frequencies than mutations predicted as being benign (Ng et al., 2009 Nature).

We have now updated the PolyPhen predictions using <u>PolyPhen v2</u> and clarified the actual meaning of these predictions, which are expected to be more accurate (Material and Methods page 8, and Results pages 11-12). Because PolyPhen is widely used by the scientific community, we still believe that our results may provide some comparative data to scientists interested in predictive methods.

5. Purifying selection of IFNg: An important finding of the paper is that IFNg has evidence of purifying selection compared to IFNGR1 and IFNGR2 (Figs 2, 3). This data looks solid and interesting and includes reference to a CA microsatellite and SNP 874 which have been partially functionally analyzed previously. Although the functional effect of these polymorphisms on IFNg production remains incompletely characterized, the connection of the data in this manuscript to this locus is suggestive of a biologically meaningful genetic observation. One major question is whether the magnitude of effect of the purifying selection (omega value and DIND test) are relatively high compared to other genes. Although there is an interesting difference compared to IFNGR1 and IFNGR2, how does this compare to other immune genes? Or other gene classes? Although this could partially be treated in the Discussion, it could also be addressed with analysis of HapMap data to emphasize the relative importance of the IFNg finding.

We thank the reviewer for this useful comment. To put our results on a broader genome-wide context of purifying selection, HapMap data is not suitable because it is based on genotyping data and we need full resequencing data. In this case, 1,000 genomes data could be useful but the low coverage of most of the pilot data available does not allow proper genotype calls (see detailed explanation in point 2). To circumvent this limitation, we have now used the genome-wide sequence dataset of 11,624 genes provided by Celera (Bustamante et al., 2005, Nature) (see again point 2 for detailed explanation). This dataset, which has been already specifically used for the genome-wide detection of purifying selection, provides reliable data on both divergence and polymorphism of silent and non-synonymous sites. Among the 7,557 genes presenting at least one nonsynonymous variant, we found that only 7.7% exhibit an ω value (indicating purifying selection) lower than that observed for our *IFNG*. When restricting the analyses to genes classified as being involved in immune system process, only 10.3% of them presented ω values lower than that observed for *IFNG*.

We have now added in the revised version of our paper this detailed analysis (see Material and Methods pages 7, Results pages 12-13 and Discussion page 19), where we integrate our results in the more general context provided by these 11,624 genes.

John Wiley & Sons, Inc.

Referee: 2

Manuscript Review for the Journal Human Mutation Title: Evolutionary genetics evidence of an essential, non-redundant role of the IFN - \hat{I}^3 pathway in protective immunity Manuscript number: humu-2010-0462Authors: Manry J et al. In this manuscript the authors use a number of classical and well-established, as well as more recent powerful tests applied to DNA sequence diversity results at genomic loci encoding three specific genes in the IFN-g pathway to uncover and distinguish the effects of natural selection. The choice of the genomic loci is well-based, because of the role of the gene products in innate immunity and adaptive cell-mediated immunity against intracellular pathogens. These have been major pathogens affecting human populations, and susceptibility or protection almost certainly has had an overarching effect on reproductive success throughout human evolutionary history. Three genes in the pathway (IFNG, IFNGR1, and IFNGR2) were re-sequenced in 186 individuals from a number of populations. After confirming Hardy-Weinberg equilibrium for detected SNPs, and after haplotype reconstruction $\hat{a} \in \hat{a}$ number of tests of neutrality and evolutionary selection were carried out, and the results analyzed and compared. Some of these tests are classical, but cannot readily distinguish effects of selection from those of population demographic events, whereas others which are based on re-sequencing and other approaches are more useful in making this distinction. More particularly, in order to correct for the mimicking effects of demography, the authors incorporated demographic models based on re-sequencing data of non-coding regions in different samples from comparable populations reported in the literature. Tests included neutrality statistics, such as Tajima's D, or Fu and Li's D and F, as well as Fay and Wu's H. In addition, tests considering both inter-species, and within-species diversity were conducted using the McDonald-Kreitman Poisson Random Field (MKPRF) test. Perhaps the most powerful and enlightening analysis in this study, looks for evidence of recent positive selection using DIND (Derived Intra-allelic Nucleotide Diversity), based on the levels of nucleotide diversity associated with haplotypes in the ancestral, versus the derived alleles. This test is based on the presumption that the derived allele under positive selection which reaches high population frequencies should present lower levels of nucleotide diversity at linked sites than expected(excluding singletons and doubletons). In addition, long-range haplotypes were sought. For amino-acid-altering mutations, predicted fitness effects were also examined, based on predicted protein structure or sequence conservation information. The bottom line findings from these results and analyses, were that the IFNG gene shows evidence of strong purifying selection against non-synonymous variants, consistent with intolerance to disruption in the function of this gene product, whereas the other two genes in the pathway examined, seemed to have evolved under more relaxed selective constraints. The evidence for possible population-specific positive selection is presented, but somewhat weaker. Overall, this is a thorough, thoughtful, elegant, and significant scientific contribution that is interesting and important from several points of view:

- Biologically interesting, in terms of the genes examined and the innate immune pathway.

- A tour de force and important template for using re-sequencing and combining multiple tests and approaches to unravel the relative influence of selection and demographic history in shaping human genomic diversity at loci of interest.

We thank the reviewer for these general comments and suggestions.

54

55 56

57

58 59

60

I think that the manuscript could be somewhat improved with attention to the following points:

- While it is laudable that the authors have based their analyses and inferences on their own re-sequencing data, it is not clear whether they are taking advantage of additional data now available in the public domain from the 1000 Genomes Project, which could possibly strengthen and sharpen their conclusions.

We entirely agree with the reviewer in that the use of genomewide resequencing datasets (e.g. 1000 genomes, Celera, etc) is very useful for comparative purposes, especially when it comes to detect natural selection. The 1000 genomes project is in a pilot phase that includes 3 distinct approaches (Durbin et al, 2010, Nature). The first is a trio project where 2 trios have been whole-genome sequenced at high coverage, a sample size that is too low to provide with reliable comparisons in the context of our study. The second is an exon-targeted resequencing project where 900 genes have been sequenced at high coverage in 697 individuals. In this case, the number of exploitable genes is much lower than that of other public datasets (see Celera dataset discussed below), especially when it comes to make comparisons among different functional classes as the reviewer suggests. The third project is a low-coverage whole-genome sequencing in 179 individuals. Although the use of the third project of the 1000 genomes project is seducing, there are a number of reasons for which its use is not appropriate in the context of our study: (i) the sequence coverage varies among populations (see Suppl Fig 2 in Durbin et al., 2010 Nature), which complicates comparisons of neutrality statistics among populations, (ii) the variation in coverage along the genome strongly limits comparisons between genes within the same population, (iii) the low coverage of most of this dataset (in average 3.6x) limits the detection of low frequency variants, which in turn, represent the substrate to detect and estimate the intensity of purifying selection (i.e. one aim of our study). Indeed, it has been shown that, because non-synonymous variants are generally found at low frequencies (<5%), this dataset has reduced power to discover variants in this range, and therefore alter interpretation as to selection pressures (Durbin et al, 2010, Nature). In this view, we decided to use the Celera dataset, which contains 11,624 genes that have been fully resequenced (Bustamante et al., 2005, Nature), for the following reasons: (i) it is, by the time being, the resequencing project providing the largest number of resequenced genes (11,624); (ii) genes have been resequenced using standard PCR-based techniques, thereby excluding any of the limitations introduced by next-generation sequencing (coverage variation), and (iii) this dataset has been already specifically used for the genomewide detection of the intensity of purifying selection (Bustamante et al., 2005, Nature), constituting therefore a perfect comparative dataset in the context of our study.

In our revised version of the manuscript, we now use the Celera genome-wide dataset for comparative analyses (see Material and Methods page 7, Results pages 12-13 and Discussion page 19). For frequency comparisons, in turn, we have now used the HapMap Phase III data, obviously for those SNPs that have been genotyped by HapMap III (see Supp. Table S3). We have also complemented this comparison with a new Table (see Supp. Table S4).

- The authors could consider using ASD (allele sharing distance) for population demographic history, as it has a number of advantages related to potential biasing inherent in $F_{\rm ST}.$

We agree with the reviewer than methods such as ASD can be helpful to detect population relationships and admixture. However, the reason by which we did not use these methods is that the aim of this paper is not to provide data on population demographic scenarios. In addition, the analyses we performed using F_{ST} were not intended to enlighten population demographic history but instead provide a background empirical distribution to better understand the effects of natural selection. Indeed, the only reason by which we need a demographic model is to correct the mimicking effects that demography and selection have on the patterns of genetic diversity. To this end, we used the demographic scenario given by (Voight et al. 2005, PNAS) determined using non coding regions, which are expected to be more appropriated for demographic studies. Consequently, to detect robust signatures of natural selection in our genes, we performed neutral simulations incorporating this demographic model. In this respect, the Voight's model does not use F_{ST} to infer any population demographic parameter. Furthermore, to avoid biases associated with the use of a single demographic model (with its own methodological strengths and weaknesses), we have now used in parallel a second demographic model that also used data from independent noncoding regions (Laval et al., 2010, PLoS One). Interestingly, all tests for selection that were significant under the Voight's model remain significant under the Laval's model. The only discrepancy was the Fay and Wu's H statistics for IFNG in the African population, which was found to be sensitive to intercontinental migration rates. This additional information has now been added, and accordingly discussed, in the Material and Methods section (page 7), Results (pages 14-15) and Discussion (page 20). We thank the reviewer for this comment, which has allowed us to improve our understanding and interpretations of our results.

- The authors describe an interesting result with respect to SNP density. A higher SNP density was found in African, than in the two Eurasian population groups which were re-sequenced. Once again, an examination of the 1000 Genomes data would be helpful here, although this would probably simply confirm the finding. However, it might allow a more quantitative analysis and inference, to make this finding more significant and far-reaching, and enable discussion and interpretation that is more confident. For example, in the Results, the authors indicated that even if most of these population-specific SNPs were found as singletons, a number of them display minor allele frequencies exceeding 5%, as indicated in the Supplementary Table. This specific finding could be solidified and consolidated with additional data from the 1000 Genomes Project.

We agree with the reviewer in that obtaining a higher SNP density in Africa compared to Europe and Asia is expected and it is indeed confirmed by several studies (for an exhaustive review, see Campbell & Tishkoff, 2010, Curr Biol). Also, we agree with the reviewer in that comparing our data with the final phase of the 1000 Genomes project could allow a more quantitative view of our results, in a genome-wide context. However, as described in our response to the first point raised by the reviewer, the 1000 Genomes project in its pilot phase does not allow such a quantitative analysis, because the sequencing coverage of African and non-African populations is different. Specifically, the power of SNP discovery is increased in European-Americans (CEU) with respect to Yoruba (YRI) and East-Asians (CHB+JPT).

We are now clearly mentioning this in the main text (Results page 11).

- The examination of length variation at the +875 (CA)n microsatellite within IFNG, is perhaps the least convincing and unimportant part of this manuscript. One can consider

omitting it without much loss of the otherwise elegant and strong manuscript. In fact, I think that this is a weakness, especially given the problematic nature of understanding the evolution of microsatellite diversity.

We entirely agree with the reviewer that the section related to the microsatellite is certainly the less strong and the manuscript could perfectly "survive" without it. However, there is a wide literature concerning the *IFNG* microsatellite, and many scientists are interested in this topic beyond the aspect of natural selection. Therefore, we prefer to keep this extra observation, more as descriptive data for those interested in this, than as an evidence of natural selection. We think that this result can be interesting for immunologists interested in the mechanisms of regulation of the production of IFN- γ .

- A short description of the structure of the gene in the Introduction would help orient the reader (here I am referring to chromosomal location, size, exons). This is particularly true for the non-initiated reader.

We added a Supp. Figure S1 to illustrate chromosomal location, size and exons. We also describe the 3 genes and the proteins they encode in the revised version of the Introduction (see page 4).

- The authors should indicate the total size that was sequenced.

The size of each sequenced region is now given in Supp. Table S2.

- The GenBank number for each reference to sequence that was used should be provided.

The GenBank number is now added in Supp. Table S2.

- A simple linkage disequilibrium (LD) Figure for each gene within each population would be helpful to demonstrate high degrees of LD among SNPs. This is of course very simple to create using Haploview.

We have now added a new Supplementary Figure S3 to illustrate the LD between each SNP with Minor Allele Frequency >1% for each gene within each population (see also Material and Methods, page 6) and Results (page 15).

- The ancestral state of SNPs would be of interest in some cases for which the haplotype tree is not rooted.

We added the ancestral and derived alleles of each SNP in the Supp. Figure S5.

- One would assume that novel SNPs found in this study have been submitted to the dbSNP database.

We have now submitted the novel SNPs to the dbSNP database, and are waiting for the corresponding #rs numbers.

EDITORIAL BOARD'S COMMENTS

This paper has several interesting observations stemming from a solid statistical analysis of resequencing data applied to sequence diversity results at specific genomic loci to uncover and distinguish the effects of natural selection and demographic history in shaping human genomic diversity at loci of interest. As such the paper is of interest yet it would benefit from proper consideration and handling of the reviewers' comments. In agreement with the latter we strongly suggest that the authors do a more thorough analysis of publicly available datasets and avoid possible biases from an unusual selection of samples for their dataset. In addition, the authors do not fully articulate the significance of their findings. In the HapMap age (not to mention the 1000G project), population geneticists can finally make more genome-wide statements regarding selective pressure on a candidate region. Ultimately we would like to know whether IFNgamma shows evidence of a different level of purifying selection than other immune genesât" the authors only partially get to that answer and they fill that out much more thoroughly with publicly available databases and a modest amount of work. Such additional substance would raise the impact of this contribution.

In revision, since the format is being changed, please carefully indicate in your response exactly what was added/removed in the revision process.

First of all, we thank the two reviewers as well as the editorial board for both the comments and suggestions as well as for the "upgrade" to research Article. In the revised version of the manuscript, we have followed all reviewers' and editorial's suggestions, which in our opinion have greatly contributed to improve the clarity and the quality of the manuscript. More generally, the revised version of the manuscript has been considerably changed and new figures and tables are now provided. The corresponding changes are now <u>highlighted in red</u> in the revised version of the manuscript.

In brief,

- 1. **Population choice of samples:** we now explain carefully the criteria and rationale of our population choice and study design, and showed that the presence of minorities in our sample collection does not influence our claims on selection (see detailed response to point 1 of Reviewer 1, and pages 5 and 18 of the revised manuscript, and the new Supp. Table S1).
- Use of public genome-wide datasets: We entirely agree with both the reviewers and 2. the editorial board in that the use of genomewide datasets (e.g. HapMap, 1000 genomes, Celera, etc) is very useful for comparative purposes. In the revised version of the manuscript, we are now comparing our data with genome-wide datasets, obviously when the data are comparable. Specifically, for frequency comparisons purposes (see reviewer 2), we are using both HapMap Phase II and III. Note however that SNP density is greater in HapMap Phase II (~3.1 million genotyped SNPs) than in HapMap Phase III (~1.4 million genotyped SNPs). We are therefore using now HapMap Phase III data for those SNPs that have been genotyped in this dataset. For tests regarding the detection of natural selection, one has to use datasets that are based on full resequencing (e.g., 1000 genomes, Celera dataset, etc), to circumvent the limitations associated with the nature of the HapMap data (i.e. SNP genotyping which is subject to ascertainment biases). Although the use of the 1000 genomes project is seducing, there are a number of reasons for which it is hardly comparable with our data: (i) the sequence coverage varies among populations (see Suppl Fig 2 in Durbin et al., 2010, Nature), which complicates comparisons of neutrality statistics among

populations, (ii) the variation in coverage along the genome strongly limits comparisons between genes within the same population, (iii) the low coverage of most of this dataset (in average 3.6x) limits the detection of low frequency variants, which in turn, represent the substrate to detect and estimate the intensity of purifying selection (our study). Indeed, it has been shown that, because non-synonymous variants are generally found at low frequencies (<5%), this dataset has reduced power to discover variants in this range, and therefore alter interpretation as to selection pressures (Durbin et al, 2010, Nature). In this view, we decided to use the Celera dataset, which contains 11,624 genes that have been fully resequenced (Bustamante et al., 2005, Nature), for the following reasons: (i) it is, by the time being, the resequencing project providing the largest number of resequenced genes (11,624); (ii) genes have been resequenced using standard PCR-based techniques, thereby excluding any of the limitations introduced by next-generation sequencing (coverage variation), and (iii) this dataset has been already specifically used for the genomewide detection of the intensity of purifying selection (Bustamante et al., 2005, Nature), constituting therefore a perfect comparative dataset in the context of our study.

We now discuss the results obtained for the *IFNG* in a much wider genome-wide context. For all these changes, see Material and Methods pages 7, Results pages 12-13 and Discussion page 19, as well as Supp. Table S3 and Supp. Table S4.

- 3. *Microsatellite*: The reviewer 2 suggests omitting the section related to the IFNG microsatellite, and we agree that the manuscript could perfectly "survive" without it. However, there is a wide literature concerning the IFNG microsatellite, and many scientists are interested in this topic beyond the aspect of natural selection. Therefore, we prefer to keep this extra observation, more as descriptive data for those interested in this, than as an evidence of natural selection. We think that this result can be interesting for immunologists interested in the mechanisms of regulation of the production of IFN- γ . Moreover, note that reviewer 1 comments the interest of using the microsatellite to provide some functional/biological meaning of our results on natural selection.
- 4. *Other points*: in addition to your requests, and those of the reviewers, new analyses have been done including:
 - We have used the most updated, and recently released, version of the Polyphen algorithm, which has been shown to have a highly accurate predictive power (PolyPhen v2, Adzhubei et al., 2010, Nature Methods) (see Material and Methods page 8, and Results pages 11-12)
 - We now correct our selection tests for two demographic models (instead of only one), see Material and Methods section (page 7), Results (pages 14-15) and Discussion (pages 20)
 - We have also taken advantage of genome-wide data from HapMap to perform another test of selection (XP-EHH, which is based on the degree of long range haplotype homozygosity). We particularly thank the reviewers and the editorial board to "push" us to go further in the genome-wide analyses since we have obtained an interesting result regarding the IFNGR1 gene in Africa (pages 8, 16, 22-23).
 - Because one of the reviewers asks for a table reporting the genotype information per individual, we have had to create an excel file (it is impossible to do as a .doc file) which is being sent as a separate email attachment to the editorial office.

We hope that we have now satisfied both the reviewers' and the editorial board's comments and that the manuscript is suitable for publication in *Human Mutation*.

MANAGING EDITOR COMMENTS:

Please respond to these points under "Response to Managing Editor", otherwise the final decision could be delayed.

1) Please include the OMIM accession number for the genes discussed, at first mention in the Introduction.

--Human gene symbols must be in all caps-italics.

--Please ensure that you use HUGO HGNC-approved gene symbols. Common gene symbol aliases may also be used at first mention. OMIM entries do not always feature the approved symbol prominently. Verify gene symbols at http://www.genenames.org/

We added the OMIM number of the 3 genes at first mention in the introduction (see page 4).

2) The mutation nomenclature must follow the format indicated in the Author Instructions (see the website <u>http://www.hgvs.org/mutnomen/</u> and also the nomenclature checklist at <u>http://www.hgvs.org/mutnomen/checklist.html</u>). Things to watch for:

a-If there is a dbSNP accession number, then descriptions like rs123456:A>G are acceptable.

The mutation nomenclature follows the format indicated in the Author Instructions, and also the nomenclature checklist.

b-Mention the GenBank reference sequence and version number for the genes studied (i.e., include the decimal point following the accession number in the sequence record) in the Materials and Methods and as a footnote to the relevant tables.

We mentioned the GenBank reference sequence and version number for the 3 genes studied in the Material and Methods (Page 6) and in Supp. Table S2.

c-Clearly indicate in the Methods text and tables that the DNA mutation numbering system you follows the journal's approved nomenclature. For example:

"Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence, according to journal guidelines (<u>www.hgvs.org/mutnomen</u>). The initiation codon is codon 1."

We better described the journal's approved nomenclature (page 5).

d-Authors are advised to check sequence variant descriptions using the Mutalyzer program

(<u>http://www.LOVD.nl/mutalyzer/</u>) - using batch mode, all variants for a gene can be analyzed at once.

We checked sequence variants descriptions using the Mutalyser program.

e-Please verify that the mutations reported (especially novel ones) have been or will be submitted to an existing locus-specific database for the genes involved. Visit the HGVS-LSDB list to search for databases: <u>http://www.hgvs.org/dblist/glsdb.html</u> Novel SNPs have been now submitted to the dbSNP database, and we are waiting for the corresponding #rs numbers.

3) On resubmission:

a-Please double check the author names and affiliations carefully. These are often a source of typographical errors.

Done

b-An unformatted Title Page (with corresponding author contact information and other affiliations), Abstract (180-200 words max), Key Words, Main Text, References, and Figure Legends should be combined into one file for the manuscript and submitted as a *.doc file.

--The text should be made 12 point double-spaced throughout.

Done

c-Figures for main article must be submitted as separate files with high resolution (at least 200 dpi) as *.tif or *.eps format only.

--For color figures in print: submit two files for each color figure: one in CMYK color space and one in RGB color space (with the true color you wish to have published). If you cannot provide CMYK color e-files for the print version, please let me know. (see below regarding color costs)

--For online-only color figures, please only submit one RGB color space file.

Only Figure 3 is submitted with colours, in two separate files (CMYK and RGB).

d-Tables must be submitted individually as separate *.doc files (with their titles and legends included). Please use the MS Word table format if possible. Excel (*.xls) files should not be submitted.

--Do not use custom paper sizes - only use Letter or A4.

Table 1 and Table 2 are provided as separate *.doc files, with their titles and legends.

e-Any Supporting Tables or Figures should be named and cited from the text as follows: 'Supp. Table S1' and 'Supp. Figure S1' (see below).

--If possible, do not use custom paper sizes - Letter or A4 are preferred.

Done

f- Supporting Figures and Tables should be prepared in a single MS Word *.doc file labeled 'Supp_Mat', with Figures preceding Tables. Each table/figure should be accompanied with its legend.

All Supporting Tables and Figures have been merged into a single *.doc file. However, the Supp. Table S4, which contains an excessive number of columns to be included in a standard format, is provided as a *.xls file. In addition, this file in .xls format will be highly useful for the readers (possibility of filtering, data mining, etc)

3) Please check to see that the references follow the journal's standard format and are cited properly. See our online Author Instructions <u>http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291098-1004/homepage/ForAuthors.html</u>

We checked that the references follow the journal's standard format and are cited properly.

4) Figures 1 and 2 currently require color in the print version in order to be fully understood because the color "red" is mentioned and must be identified. In Figure 1, it could be re-drawn to use black or grey, thus eliminating need for color. Figure 2 may still require color in order to be understandable unless different levels of gray/white are used.

Figures 1 and 2 are now in black and white.

As noted in our Author Instructions, there are no page charges for publication in Human Mutation but there are costs associated with publication of color images in print: \$500 USD per printed color page. Alternatively, there is an option of publishing the color images in black-and-white in the print article and in color online, at no cost to you - but no information must be lost in a conversion to b/w from color for the print version. Please confirm your preference in reply.

We prefer Figure 3 to appear in colors in both the online and the printed versions.

5) Human Mutation can accommodate researchers funded by agencies requiring open access publication. More information on Wiley-Blackwell's policy is available at: http://olabout.wiley.com/WileyCDA/Section/id-406241.html

Human Mutation abides by the NIH Mandate. If your work was funded by the NIH, be sure to include a grant number in an "Acknowledgments" section of the manuscript right before the References. Visit this site for more information: http://www.wiley.com/go/nihmandate

6) IMPORTANT INFORMATION REGARDING PREPRINTS

a-Human Mutation is now publishing online preprints of accepted manuscripts prior to typesetting and page proof corrections. It is therefore crucial that you revise your manuscript carefully so that errors (typographical and grammatical) are corrected BEFORE the final accepted manuscript is posted online. The accepted preprint version will remain online until the corrected proofs are received and the typeset manuscript is finalized. At that time, the preprint version will be replaced with the final, typeset version online, in Early View.

b-It is essential that you submit a copyright transfer agreement (CTA) upon submission of your revised manuscript. This will avoid delay in publication of your article upon acceptance. If possible, the CTA must be signed by the corresponding author and should be signed by all contributing authors if practical. All authors must be made aware of the CTA and the rights it conveys to them.

The CTA can be found here: www.wiley.com/go/ctaaus and must be filled out completely, including the article title and manuscript number. Please fax it to this number: (201) 748-6091.

Submission of a CTA does not guarantee acceptance in the journal, but it will facilitate rapid online publication of your paper if it is accepted.

The CTA has now been faxed.

Human Mutation

1		
2 3 4	1	Evolutionary genetics evidence of an essential, non-redundant role of the IFN- γ pathway in
5 6 7	2	protective immunity
8 9	3	
10 11	4	Jérémy Manry ^{1,2} , Guillaume Laval ^{1,2} , Etienne Patin ^{1,2} , Simona Fornarino ^{1,2} , Magali Tichit ³ ,
12 13 14	5	Christiane Bouchier ³ , Luis B. Barreiro ⁴ , Lluis Quintana-Murci ^{1,2}
15 16	6	
17 18	7	
19 20 21	8	¹ Institut Pasteur, Human Evolutionary Genetics, Department of Genomes and Genetics, F-75015
22 23	9	Paris, France; ² Centre National de la Recherche Scientifique, URA3012, F-75015 Paris, France ;
24 25 26	10	³ Institut Pasteur, Plate-forme Génomique, Pasteur Genopole, Paris, France; ⁴ Department of
20 27 28	11	Human Genetics, University of Chicago, Chicago, USA
29 30	12	
31 32 33	13	*Correspondence to Dr. Lluis Quintana-Murci, CNRS URA3012, UP Génétique Evolutive
34 35	14	Humaine, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France ; Phone :
36 37	15	+33.1.40.61.34.43 ; Fax :+33.1.45.68.86.39 ; E-mail : <u>quintana@pasteur.fr</u>
38 39 40	16	
41 42	17	
43 44 45	18	Short Title: Natural Selection acting on IFN-γ pathway
46 47	19	
48 49		
50 51		
52		
53 54		
55		
56 57		
57 58		
59		
60		

ABSTRACT

Identifying how natural selection has affected immunity-related genes can provide insights into the mechanisms that have been crucial for our survival against infection. Rare disorders of either chain of the IFN- γ receptor, but not of IFN- γ itself, have been shown to confer predisposition to mycobacterial disease in patients otherwise normally resistant to most viruses. Here, we defined the levels of naturally-occurring variation in the three specific genes controlling the IFN- γ pathway (IFNG, IFNGR1, IFNGR2) and assessed whether and how natural selection has acted on them. To this end, we resequenced the three genes in 186 individuals from sub-Saharan Africa, Europe and East-Asia. Our results show that *IFNG* is subject to strong purifying selection against nonsynonymous variants. Conversely, IFNGR1 and IFNGR2 evolve under more relaxed selective constraints, although they are not completely free to accumulate amino-acid variation having a major impact on protein function. In addition, we have identified signatures of population-specific positive selection, including at one intronic variant known to be associated with higher production of IFN- γ . The integration of our population genetic data into a clinical framework demonstrates that the IFN- γ pathway is essential and non-redundant in host defense, probably because of its role in protective immunity against mycobacteria.

KEY WORDS: *IFNG*, *IFNGR1*, *IFNGR2*, polymorphisms, natural selection, population genetics

Human Mutation

1 INTRODUCTION

Interferons (IFNs) are helicoidal cytokines that play a key role in innate and adaptive immune responses. Most IFNs present an antiviral activity and are intercellular mediators able to modulate several major biological functions, such as cell proliferation and differentiation, or lymphocyte activation. IFNs are today classified into three types, on the basis of gene sequence similarity, chromosomal location, and receptor specificity (see [Pestka et al., 2004] for an extensive review). The first IFNs to be identified were classified as type-I IFNs (17 molecules of IFN- α/β and related molecules) and signal through a ubiquitously expressed receptor composed of two chains: IFN- α R1 and IFN- α R2. The last IFNs to be described are known as type-III IFNs, and the three molecules that have been identified so far (IL28A, IL28B and IL29) activate the same main signaling pathway as type-I IFNs but have evolved a completely different receptor structure. Type-III IFNs act through a receptor composed of two chains, a type-III IFN-specific IL28RA selectively expressed in certain cell types and the ubiquitously expressed IL10RB. Finally, only one type-II IFN has been identified, IFN- γ , which presents a distinct sequence, role and functions with respect to type-I and type-III IFNs [Schroder et al., 2004]. The type-II IFN- γ binds to its own receptor made of the 2 transmembrane proteins, IFN- γ R1 and IFN- γ R2, to both induce antimicrobial and antitumor mechanisms and to up-regulate antigen processing and presentation pathways. More precisely, IFN- γ , which is produced mostly by natural killer (NK) and T lymphocytes, orchestrates leukocyte attraction and directs growth, maturation, and differentiation of many cell types, in addition to enhancing NK cell activity and

- 21 regulating B-cell functions such as immunoglobulin (Ig) production and class switching
- 22 [Schroder et al., 2004]. Consequently, IFN-γ plays a central role in innate immunity and in
- 23 adaptive cell-mediated immunity against intracellular pathogens and is the major macrophage-

activating cytokine. Today, IFN-γ is used to treat chronic granulomatous disease [Todd and Goa, 1992], osteopetrosis [Key et al., 1992] and IL12/IL12RB1 deficiency [Filipe-Santos et al., 2006]. The IFN-γ protein, which is composed of 166 amino-acids including the signal peptide, is encoded by the *IFNG* gene (MIM# 147570), which is located on chromosome 12 and is composed of 4 exons (Supp. Figure S1). The *IFNGR1* (MIM# 107470) and *IFNGR2* (MIM# 147569) genes, containing both 7 exons (Supp. Figure S1), encode the two receptor subunits of 489 and 337 amino-acids including the signal peptide and are located on chromosomes 6 and 21, respectively. Whereas *IFNGR1* is physically isolated from other IFN receptors, *IFNGR2* is located in a cluster of 4 genes (*IFNAR1*, *IFNAR2*, *IL10RB* and *IFNGR2*) that are all known to interact with IFN proteins.

The evolutionary genetics approach has proven to be useful to increase our understanding of the evolutionary forces that affect the human genome, providing an indispensable complement to clinical and epidemiological genetics approaches [Akey, 2009; Barreiro and Quintana-Murci, 2010; Di Rienzo, 2006; Nielsen, et al., 2007; Quintana-Murci, et al., 2007; Sabeti, et al., 2006]. The aims of this study were to (i) identify the whole spectrum of population genetic variation, based on a full resequencing scheme, in the three core genes involved in the IFN- γ pathway (*IFNG*, *IFNGR1* and *IFNGR2*), and (ii) investigate, using an evolutionary genetics approach, whether and how natural selection has targeted the type-II IFN system. Identifying the intensity and type of natural selection exerted upon these 3 genes should help to better understand the mode in which the different components of the type-II IFN system have contributed to host defense. Likewise, the evolutionary dissection of *IFNG*, *IFNGR1* and *IFNGR2* should shed light on how genetic variation at these genes may be involved in the current susceptibility to, and pathogenesis of, infectious diseases.

MATERIALS AND METHODS

Human Mutation

Population samples Sequence variation for the IFNG, IFNGR1 and IFNGR2 genes was determined in 186 individuals from sub-Saharan Africa, Europe and East-Asia (62 individuals per geographic region) from the HGDP-CEPH panel [Cann et al., 2002]. Sub-Saharan African populations were composed of 19 Bantu from Kenya, 21 Mandenka from Senegal and 22 Yoruba from Nigeria; European populations were composed of 20 French, 14 Italians, 6 Orcadians and 22 Russians; and East-Asian populations were composed of 15 Han Chinese and 33 individuals from Chinese minorities, 10 Japanese and 4 Cambodians. For a complete description of this HGDP-CEPH sub-panel, see Supp. Table S1. This study was approved by the Institut Pasteur Institutional Review Board (n° RBM 2008.06). DNA Resequencing and SNP Discovery For each gene, the totality of the exonic region and at least an equivalent amount of non-exonic regions were sequenced, including intronic, 5' and 3' regions (Supp. Table S2). Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence, according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1. In addition to the annotation of coding DNA described above [den Dunnen and Antonarakis, 2000], we used another SNP annotation of genomic DNA (referred to as "ATG position") starting at the first nucleotide of the ATG-translation initiation codon (+1) and including in the counting both coding and noncoding nucleotides. All sequences were obtained using the Big Dye terminator kit and the 3730 XL automated sequencer from Applied Biosystems. Sequence files and chromatograms were inspected using the GENALYS software [Takahashi et al., 2003]. All singletons or ambiguous polymorphisms were systematically reamplified and resequenced. We were unable to resequence

the first exon of *IFNGR2* because of technical reasons, most likely resulting from the very high GC content of the region (73%). We used the NG 015840.1, NG 007394.1 and NG 007570.1 as reference sequences for IFNG, IFNGR1 and IFNGR2, respectively. *IFNG* +875 CA microsatellite genotyping We performed a standard PCR protocol to amplify the fragment using the True Allele PCR Premix by Applied Biosystems with 20ng of genomic DNA, and using primer sequences previously reported [Ding et al., 2008]. The mixture was then subjected to the PCR reaction for 15 min at 95°C, followed by 35 cycles of denaturation for 30 sec at 95°C, annealing for 1 min at 56°C, and extension for 1 min at 72°C, followed by a final extension of 10 min at 72°C. The fluorescent dye-labelled PCR products were electrophoresed on an Applied Biosystems 3130XL Genetic Analyser. The results were analyzed by Genemapper Analysis software 3.2. **Statistical Analyses** We checked the Hardy-Weinberg equilibrium for each SNP using Arlequin Software v3 [Excoffier et al., 2005]. We used the Haploview software [Barrett et al., 2005] to illustrate the levels of linkage disequilibrium (LD) between each SNP for each gene. Haplotype reconstruction was performed by means of the Bayesian statistical method implemented in Phase (v.2.1.1) [Stephens and Donnelly, 2003]. We applied the algorithm five times, using different randomly generated seeds, and consistent results were obtained across runs. The entire dataset was used to perform a number of sequence-based neutrality-statistics, including Tajima's D, Fu & Li's D*, Fu & Li's F*, Fay & Wu's H, using DnaSP v5.1 [Rozas et al., 2003]. P-values for the various neutrality tests were estimated from 10^4 coalescent simulations, performed using SIMCOAL 2.0 [Laval and Excoffier, 2004], under a finite-site neutral model and considering the recombination rate of the tested region reported in HapMap Phase II [Frazer et al., 2007; International-HapMap-Consortium, 2005]. Each of the 10^4 coalescent simulations was conditional on the observed

Human Mutation

sample size and the number of segregating sites observed in each gene. To correct for the
mimicking effects of demography on the patterns of diversity, we considered two previously
validated demographic models based on resequencing data of noncoding regions in a set of
populations similar to ours (i.e., African, European and Asian) [Laval et al., 2010; Voight et al.,
2005]. The main difference between these two demographic models is that the model of [Laval et
al., 2010] considers inter-continental population migration.

To detect the effects of natural selection considering both inter-species divergence and within-species polymorphism, we used the McDonald-Kreitman Poisson Random Field (MKPRF) test [Bustamante et al., 2005; Sawyer and Hartl, 1992]. We compared these MKPRF results with a genome-wide dataset where 20 European-Americans and 19 African-Americans have been resequenced at 11,624 genes by exon-specific PCR amplification [Bustamante et al., 2005]. We used information on the number of divergent silent sites (d_s), and polymorphic silent sites (p_S) , divergent nonsynonymous sites (d_N) and polymorphic nonsynonymous sites (p_N) for each gene. Divergent sites refer to positions that are different between the human and chimpanzee lineages, whereas polymorphic sites refer to the situation in which the two alleles are segregating in humans. In addition, we used the Gene Ontology database (http://www.geneontology.org/) to extract genes involved in the biological process referred as to "immune system process" (GO:0002376).

19 To detect recent events of positive selection, we used the Derived Intra-allelic Nucleotide 20 Diversity (DIND) test based on the ratio $i\pi_A/i\pi_D$, where $i\pi_A$ and $i\pi_D$ are the levels of nucleotide 21 diversity associated with the haplotypes carrying the ancestral and the derived allele, respectively 22 [Barreiro et al., 2009]. The rationale of this test is that a derived allele under positive selection 23 that is at high population frequencies should present lower levels of nucleotide diversity at linked 24 sites than expected. Singletons and doubletons are excluded from this analysis. We also used tests

based on the levels of haplotype homozygosity, such as the Long Range Haplotype test [Sabeti et al., 2002] and the Cross Population Extended Haplotype Homozygosity (XP-EHH) test [Sabeti et al., 2007]. In addition, we assessed the levels of population differentiation for the entire SNP panel, using the F_{ST} statistics derived from the analysis of variance (ANOVA) [Excoffier et al., 1992]. To identify SNPs presenting extreme levels of population differentiation, we compared the observed F_{ST} values at the level of individual SNPs in *IFNG*, *IFNGR1* and *IFNGR2* against the F_{ST} distribution of 659,000 SNPs genotyped on the same subset of individuals of the HGDP-CEPH, except for 5 individuals who were not genotyped [Li et al., 2008]. F_{ST} comparisons were conditioned to SNPs presenting similar allele frequencies (i.e., similar expected heterozygosity). Empirical *P*-values for each SNP at the 3 genes were estimated as previously described [Barreiro et al., 2009].

The fitness status of all amino-acid-altering mutations (i.e., benign, possibly damaging and probably damaging) was predicted using the Polyphen algorithm v2 HumDiv [Adzhubei et al., 2010]. This method, which considers protein structure and/or sequence conservation information for each gene, has been shown to be the best predictor of the fitness effects of amino-acid substitutions [Williamson et al., 2005]. To independently assess the functional impact of these mutations, we replicated the analyses using the Panther algorithm [Thomas et al., 2003] To compute the *IFNG* gene tree, we used the GENETREE software [Griffiths and Tavare, 1994], under a standard coalescent model. Since this model assumes no recombination, we excluded 3 recombinant haplotypes to perform the analysis. We used the $\theta_{\rm W}$ obtained for the entire *IFNG* sequenced region and the mutation rate per gene per generation ($\mu = 1.98 \times 10^{-8}$) was deduced from Dxy (0.0095), the average number of nucleotide substitutions per site between human and chimpanzee calculated by DnaSP v5.1 [Rozas et al., 2003], with consideration that the two species diverged 240,000 generations ago. Time, scaled in $2N_e$ units, with Ne the

1 2		
3 4	1	effective population size, was converted into years by the use of a 25-year generation time and an
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 5 6 7 8 9 0 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2	effective population size, was converted into years by the use of a 25-year generation time and an N_e value obtained as θ_W divided by 4 μ .
58 59		
60		
		John Wiley & Sons, Inc.

RESULTS

2 SNP Discovery in World Populations and Global Levels of Genetic Diversity

To assess the levels of full sequence-based diversity in the human IFNG and the 2 genes encoding its receptor (*IFNGR1* and *IFNGR2*), we comprehensively resequenced the 3 genes in a panel of 186 healthy individuals originating from 11 different populations from sub-Saharan Africa, from Europe and from East-Asia. Each individual was sequenced for a total of 14.8 kb, 32.5% of which corresponded to exonic regions, the rest comprising intronic and promoter regions (Supp. Table S2). Our population-based resequencing effort allowed us to identify 127 mutations, including 117 single nucleotide polymorphisms (SNPs), 2 insertions, 5 deletions and 3 duplications (Supp. Table S3). Out of the 127 polymorphisms here reported (excluding the IFNG +875 (CA)_n microsatellite), 60 (47.2%) were novel and not previously reported in the dbSNP database, and 105 (82.7%) have not been genotyped by the HapMap Consortium [Altshuler et al., 2010; Frazer et al., 2007] (Supp. Table S3).

The three genes, particularly *IFNG* and *IFNGR1*, displayed generally low levels of nucleotide diversity per site (π): 4 x10⁻⁴, 4.7 x10⁻⁴ and 7.2 x10⁻⁴ for *IFNG*, *IFNGR1* and *IFNGR2*, respectively. To compare these levels of nucleotide diversity with background genic expectations, we used the SeattleSNPs database, which reports the sequence diversity of 327 genes involved in inflammatory responses in similar human populations. IFNG and IFNGR1 were found to fall in the 15th percentile of genes presenting the lowest nucleotide diversity, whereas *IFNGR2* was included in the 46th (Table 1). Population-wise, *IFNG* and *IFNGR2*, genetic diversity was higher in Europeans relative to both Africans and East-Asians (Table 1). At the haplotype level, we observed the expected picture of Africans displaying higher levels of haplotype diversity than non-African samples for the 3 genes (Table 1).

Human Mutation

With respect to SNP density, we observed more SNPs in Africa than in the two Eurasian population groups, an observation that is compatible with public datasets based on genome-wide genotyping data, such as the HapMap Phase II and III datasets [Altshuler et al., 2010; Frazer et al., 2007], or whole genome sequencing data, such as the 1000 Genomes Project [Durbin et al., 2010]. We found 75, 39 and 45 SNPs in Africa, Europe and Asia, including 53, 16 and 24 population-specific SNPs, respectively. Interestingly, even if most of these population-specific SNPs are found as singletons (28, 12 and 15 in Africa, Europe and Asia, respectively), a number of them display minor allele frequencies > 5% (Supp. Table S3). For those SNPs identified in our study that have been genotyped by the HapMap Phase II and/or III, we compared their genotype frequencies in our population panel with those of multiple populations worldwide [Altshuler et al., 2010] (Supp. Table S4). In virtually all cases, population frequencies were highly comparable at the level of the different continental populations.

14 Putative Functional Consequences of Nonsynonymous Variants

Among the 26 exonic mutations identified, 16 SNPs corresponded to nonsynonymous mutations: 10 in *IFNGR1* and 6 in *IFNGR2* (Table 2). All these nonsynonymous mutations were found at frequencies lower than 5% but one, in *IFNGR2*, that displayed high population frequencies in the three continental population groups, presenting a derived allele frequency ranging from 62% in Asia to 88% in Europe. It is worth noting that no nonsynonymous mutations were observed at *IFNG*. To give some clues on the potential functional effect of the non-synonymous mutations we found, we predicted the functional effects of both nonsynonymous mutations fixed between the human and the chimpanzee lineages and those that are polymorphic within humans, using the Polyphen v2 HumDiv algorithm [Adzhubei et al., 2010]. This method, which considers protein structure and/or sequence conservation for each gene, has been shown to be the best available

predictor of the fitness effects of nonsynonymous variants [Adzhubei et al., 2010; Williamson et al., 2005]. Concerning nonsynonymous mutations that are fixed between the two species, we found one in IFN-y at position p.Val147Ala, two in IFN-yR1 at positions p.Leu198Ile and p.Ala366Val, and three in IFN-yR2 at positions p.Thr76Met, p.Ser205Phe and p.Ala207Val. Five of these fixed, divergent nonsynonymous substitutions were predicted to be benign, and one was predicted to be probably damaging in IFN- γ R2 (p.Ser207Phe). Of the 16 nonsynonymous mutations that are polymorphic in humans (Table 2), 9 were predicted to be benign. The remaining non-synonymous polymorphisms were predicted to be possibly or probably damaging. It is worth noting that the sole nonsynonymous polymorphism with a frequency higher than 5% is predicted to be benign. Measuring the Intensity of Natural Selection in the Human Lineage To assess whether and how natural selection has operated on the human IFNG, IFNGR1 and *IFNGR2*, we first estimated the direction and strength of selection acting in the human lineage as a whole. To this end, we measured d_s and d_N , i.e. the number of silent and nonsynonymous fixed differences between species (humans versus chimpanzee) as well as p_S and p_N , i.e. the number of silent and nonsynonymous polymorphic sites observed within species (within humans). We used the McDonald-Kreitman Poisson Random Field (MKPRF) test [Bustamante et al., 2005; Bustamante et al., 2002; Sawyer and Hartl, 1992] in order to estimate ω (i.e., $\omega \alpha \log[\theta_R/\theta_S]$), which measures the selective pressure acting on amino-acid substitutions. Under neutrality, ω is not significantly different from 1. Lower values are consistent with selection against nonsynonymous variants (strong purifying selection), whereas higher values reflect selection favouring amino-acid changes (positive selection). *IFNG* presented a ω value significantly lower than 1, indicating that this gene has evolved under the effects of strong purifying selection

(Figure 1A). We compared our data with a genome-wide resequencing dataset of 11,624 genes, for which the d_S , d_N , p_S and p_N values are provided [Bustamante et al., 2005]. This study proposed that the set of genes that are informative to detect the effects of selective constraints against nonsynonymous variation are those displaying at least two variable non-synonymous sites (d_N+p_N) ≥ 2). However, because the *IFNG* gene does not fall into this category (i.e., $d_N + p_N = 1$), we relaxed this criterion by comparing the results of the ω parameter for *IFNG* with all genes displaying a $d_N + p_N \ge 1$. Among the 7,557 genes falling into this category, we found that only 7.7% of them exhibit a ω value lower than that observed for *IFNG*. When restricting the analyses to those genes classified as being involved in "immune system process", only 10.3% of them presented ω values lower than that displayed by *IFNG*. We next used the population selection parameter γ [Bustamante et al., 2005; Bustamante et al., 2002; Gilad et al., 2003] to identify whether IFNG, IFNGR1 and/or IFNGR2 were subject to selection operating on nonsynonymous mutations that are polymorphic in humans (i.e., segregating non lethal mutations). The parameter γ is negative if a gene displays an excess of amino-acid polymorphisms within humans with respect to amino-acid divergence between species (weak negative and/or balancing selection). Conversely, positive γ values reflect an excess of amino-acid divergence with respect to amino-acid polymorphism (positive selection in the human lineage) [Bustamante et al., 2005; Bustamante et al., 2002; Gilad et al., 2003]. *IFNGR1* presented a γ value significantly lower than 0 (γ =-1.3) (Figure 1B). This, together with the fact that all nonsynonymous SNPs are found as singletons or doubletons, suggests that weak negative selection maintains mutations causing amino-acid changes in *IFNGR1* at low population frequencies because of their likely weakly deleterious effects on an individual's fitness.

Intra-Species Sequence-Based Neutrality Tests

Intra-species sequence-based neutrality tests (i.e., Taijma's D, Fu and Li's D^* and F^* and Fav and Wu's H) allowed us to evaluate whether the frequency spectrum of the 3 genes deviates from expectations under neutrality and to detect therefore selection within human populations [Nielsen et al., 2007; Sabeti et al., 2006; Wall, 1999]. Because these tests are known to be sensitive to the mimicking effects that demography and selection have on the patterns of genetic diversity, we considered a demographic model previously validated using a set of 50 unlinked noncoding regions sequenced in a set of populations similar to ours (i.e., African, European and Asian) [Voight et al., 2005]. This model considers a bottleneck in non-African populations starting 40,000 years ago in an ancestral population of 9,450 individuals, and an exponential expansion in African populations. In addition, we used an independent demographic model based on the patterns of sequence diversity at 20 unlinked, non-coding regions in a set of populations from Africa, Europe and Asia [Laval et al., 2010]. In contrast with the model of [Voight et al., 2005], the latter does consider the occurrence of inter-continental population migration [Laval et al., 2010]. Most tests indicated that the frequency spectrum of the three genes does not significantly deviate from neutral expectations (Table 1). The exceptions were *IFNG*, for which we detected a significant excess of high-frequency derived variants in Africa as attested by the significantly negative values of Fay and Wu's H, and IFNGR2, for which we detected an excess of singletons in Asia as attested by both Fu and Li's D^* and F^* tests (Table 1). Using the model that considers intercontinental migration [Laval et al., 2010], the significance of the Fay and Wu's H for IFNG disappeared.

Detecting Recent Events of Positive Selection

Page 31 of 73

Human Mutation

To identify recent events of positive selection acting on the three genes involved in the IFN- γ pathway, we used the Derived Intra-allelic Nucleotide Diversity (DIND) test that makes maximum use of resequencing data [Barreiro et al., 2009]. The rationale of this test is that a derived allele under positive selection that is at high population frequencies should present lower levels of nucleotide diversity at linked sites than expected. We applied the DIND test to our entire dataset by plotting for all SNPs identified in the 3 genes, the ratio between the ancestral and the derived internal nucleotide diversity $(i\pi_A/i\pi_D)$ against the frequencies of the derived alleles (Figure 2 and Supp. Figure S2 when considering the models of [Voight et al., 2005] and [Laval et al., 2010], respectively). Our analyses identified a signature of positive selection targeting the IFNG SNPs +874T (c.115-483A>T) and +5173G (c.*910A>G) in Europe (Figure 2B and Supp Figure S2 B). Indeed, although the frequency of these two SNPs — which are found to be in almost perfect linkage disequilibrium (LD) (Supp. Figure S3 A-C) with an r² value of 0.975 — is very high in Europe (54.04%), only 2 internal haplotypes are observed: one defined by a singleton (SNP +1201G [c.115-156A>G]), and the other accounting for the remaining 53.23% of frequency. Our analysis also identified a significant signature of positive selection targeting IFNGR2 at SNP +23133A (c.413-209G>A) in Asia (Figure 2 I and Supp. Figure S2 I). We next explored the extent of haplotype homozygosity surrounding the three genes, to detect more recent events of positive selection. To this end, we used available genotype databases (i.e., HapMap, HGDP-CEPH) [Frazer et al., 2007; Li et al., 2008] that contain a sufficient number of SNPs over much larger physical distances than our resequencing data, a feature that is needed to assess the levels of haplotype homozygosity. We did not detect any signature of recent positive selection when using Long Range Haplotype (LRH)-based methods [Sabeti et al., 2002]. This could be due to the presence of recombination hotspots, which shorten the length of the haplotypes, in the vicinity of the three genes. For example, IFNG is located less than 50kb away

John Wiley¹⁵ Sons, Inc.

from one of the strongest recombination hotspots of chromosome 12 [Myers et al., 2005].
However, when using the XP-EHH test, which detects alleles that have rapidly increased in
frequency in one but not all populations [Sabeti et al., 2007], we detected a significant XP-EHH
for *IFNGR1*, suggesting the action of positive selection in the African population (Supp. Figure S4).

7 Levels of Population Differentiation

An alternative approach to detect population-specific events of positive selection is to calculate genetic distances among populations, using the F_{ST} statistic [Excoffier et al., 1992; Weir, 1984]. Indeed, local positive selection is known to increase the levels of population differentiation with respect to neutrally-evolving loci [Barreiro et al., 2008; Kreitman, 2000; Nielsen et al., 2007; Sabeti et al., 2006; Voight et al., 2005]. We thus estimated the F_{ST} values for the 117 SNPs identified in our study. To obtain a background expectation of genome-wide F_{ST} , we used the genome-wide data of the HGDP-CEPH (~659,000 SNPs from [Li et al., 2008]) from the same set of individuals we sequenced in this study. When plotting the F_{ST} values as a function of expected heterozygosity for our 117 SNPs together with the background genome-wide expectations, 2 SNPs in *IFNGR2* (SNP +23133 [c.413-209G>A] and SNP +23501 [c.561+11G>C]) displayed extreme levels of population differentiation, falling out of the 95th percentile of the global F_{ST} distribution (Figure 3). Indeed, SNP+23133A reaches 37% in East-Asia while is absent in Africa, and SNP+23501C reaches 32% in Europe while is virtually absent in East-Asia.

22 Length variation at the *IFNG* +875(CA)_n microsatellite

Because, based on the DIND results, we suspected that positive selection has targeted the *IFNG*SNPs +874T (c.115-483A>T) and +5173G (c.*910A>G) in Europe, we took profit of existing

John Wiley & Sons, Inc.

Page 33 of 73

Human Mutation

1	functional data on one of these SNPs to better understand the nature of the selective event.
2	Indeed, the +874T allele has already been documented to create an NF- κ B binding site, and to
3	lead to higher production of IFN-γ [Pravica et al., 1999; Pravica et al., 2000]. Moreover, it has
4	been shown that the +874T allele is associated with the 12 CA repeat-allele at the IFNG
5	+875(CA) _n (c.115-482CA11_18) microsatellite. We thus decided to assess the patterns of
6	microsatellite diversity associated with the +874A/T alleles. Among the 372 chromosomes we
7	genotyped at this microsatellite, we found 8 different alleles ranging from 11 to 18 CA repeats. In
8	contrast with previous observations proposing an absolute correlation between the 12 CA repeat-
9	allele at the microsatellite and the T allele at SNP +874 [Ding et al., 2008; Pravica et al., 2000],
10	we found individuals homozygous for the +874T allele, who were heterozygous for the
11	microsatellite. Indeed, at the haplotype level, we found 12 chromosomes, among the 112 carrying
12	the +874T allele, that were non-12 CA repeat (i.e. 13 or 15 CA repeats), and 13 chromosomes,
13	among the 260 carrying the +874A allele, that were 12 CA repeat (Supp. Table S5). It would be
14	now interesting to distinguish which of these two mutational events, i.e. the +874T allele or the
15	12 CA repeat, account for by the previously observed higher production of IFN- γ . More
16	importantly, we observed that the microsatellite diversity associated with the +874T allele was
17	much lower than that associated with the +874A allele (expected global heterozygosity 0.19 vs.
18	0.64, respectively). This observation further supported the notion that positive selection has
19	targeted the <i>IFNG</i> SNP +874T.

DISCUSSION

In this study, we sought to describe the levels of naturally-occurring variation in the three specific genes controlling the IFN-y pathway (IFNG, IFNGR1, and IFNGR2) and to assess whether and how natural selection has acted on them. The first objective, the discovery of new polymorphisms, is optimal when sampled individuals come from many different ethnic origins, while the second objective, the identification of signatures of natural selection, requires many individuals per continental region. Our sample was designed to achieve both objectives, by including 186 individuals originating from multiple ethnic groups living in sub-Saharan Africa, Europe and Asia. However, a possible limitation of this population scheme is the potential presence of genetic structure among populations from the same continent, which are merged in our analyses, a situation that can lead to significant deviations of the allele frequency spectrum [Przeworski et al., 2005] and therefore create spurious signals of selection. To test this possibility, we performed an AMOVA [Excoffier et al., 1992] to estimate the fraction of the genetic variance of our dataset that is explained by genetic differences within a given population, among populations of a given continent, and among continental groups, and obtained values of 89.27%, 0.45% and 10.28%, respectively. The negligible, non-significant differentiation observed among populations from the same continent in our dataset (0.45%) is consistent with a genome-wide study conducted in the same individuals and populations, where population structure within continental regions was found to be limited [Li et al., 2008]. In addition, this is true for other genome-wide datasets from similar populations, e.g. the HapMap samples of Han Chinese and Japanese have been merged in all analyses due to their high genetic resemblance [Frazer et al., 2007]. Altogether, our analyses, fuelled by the results of genome-wide datasets, indicate that the genetic differentiation observed among subpopulations from the same continent is weak enough not to influence any of our conclusions regarding the action of natural selection.
Page 35 of 73

Human Mutation

1	The first interesting observation that can be made from this study is the absence of non-
2	synonymous mutations in IFNG. The strong selective constraint acting on IFNG is supported by
3	our inter-species analyses that clearly indicated that IFNG has been subject to intense purifying
4	selection. In addition, when considering a genome-wide resequencing dataset of genes showing
5	similar features than IFNG [Bustamante et al., 2005], this gene falls into the ~10% of genes
6	involved in immune system processes that display the strongest selective constraints on amino-
7	acid variation. Interestingly, the intensity of purifying selection on IFNG estimated from our
8	dataset ($\omega = 0.0189$) is extremely similar to that obtained using another population panel ($\omega =$
9	0.0184 from [Bustamante et al., 2005]), indicating that the detection of strong purifying selection
10	is not sensitive to the population considered. The fact that nonsynonymous mutations are not
11	tolerated suggests that amino-acid replacements at IFNG may have fatal consequences and be
12	quickly removed from the population. Such extreme protein conservation makes this gene an
13	excellent candidate to be involved in severe, rather lethal, diseases. A similar situation has been
14	observed for toll-like receptor 3 (TLR3); this gene is under purifying selection [Barreiro et al.,
15	2009] and TLR3 defects confer predisposition to childhood herpes simplex encephalitis [Zhang et
16	al., 2007]. Altogether, our data indicate that IFN-γ plays an essential, non-redundant role in host
17	survival. Because it has been proposed that IFN- γ plays a key role against mycobacterial
18	infections, but has a smaller impact on viral clearance [Dorman et al., 2004; Filipe-Santos et al.,
19	2006; Zhang et al., 2008], it is likely that IFN- γ is essential and non-redundant for protective
20	immunity against mycobacterial diseases.

Leaving aside the strong selective constraint maintaining intact the IFN-γ protein
sequence at the species-wide level, our analyses unmasked more subtle evolutionary events
acting at the population-specific level. For example, we identified an excess of high-frequency
derived alleles in *IFNG* in Africa, as attested by the significance of the Fay and Wu's *H* test using

2
3
4
5
0
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
20
24
25
26
27
28
20
29
30
31
32
33
31
34
35
36
37
38
30
40
40
41
42
43
44
45
40
40
47
48
49
50
51
51
52
53
54
55
56
50
э/
58
59
60

1

1	the [Voight et al., 2005] model. This pattern was accounted for by the presence of 3 African
2	chromosomes each carrying 3 SNPs at the ancestral state, i.e. +3610A>G, +4802G>A, and
3	+5164C>T (c.[367-519A>G; *539G>A; *901C>T]), while the remaining chromosomes, in both
4	Africans and Eurasians, harbor the derived state at these three positions (Supp. Figure S5). Two
5	plausible explanations can be put forward to explain this pattern. First, it may testify the
6	occurrence of an almost-complete selective sweep worldwide, attesting for a selective advantage
7	associated with the derived states at the 3 SNPs. Although none of these SNPs corresponds to
8	mutations changing the amino-acid sequence, they could themselves have functional
9	consequences or be associated with mutations located further away in regulatory regions.
10	Alternatively, this pattern could also result from past population demographic events, such as
11	population structure within Africa [Wall and Hammer, 2006] and intercontinental migration
12	[Zeng et al., 2006]. Indeed, when using the model of [Laval et al., 2010], which assumes
13	intercontinental gene flow, the Fay and Wu's <i>H</i> at <i>IFNG</i> lost its significance in Africa (Table 1).
14	Because the differences in significance at IFNG could result from other parameter estimates that
15	differ between the two demographic models (e.g. intensity of the out-of-Africa bottleneck), we
16	estimated the <i>P</i> -value of Fay & Wu's <i>H</i> at <i>IFNG</i> using the model of [Laval et al., 2010] but
17	assuming no intercontinental migration. In this case, similarly to [Voight et al., 2005], we
18	obtained a significant Fay and Wu's H in Africa (P ≤ 0.05), indicating that non-negligible
19	intercontinental migration could explain the patterns observed. Even if the ancestral alleles of
20	these 3 SNPs are absent from European and Asian individuals of our panel, the intercontinental
21	migration scenario is likely, since 2 of these 3 alleles do segregate in some European and/or
22	Asian individuals from the HapMap Phase III data (Supp. Table S4).
23	Our DIND analyses identified a population-specific signature of positive selection

targeting *IFNG* among Europeans, specifically at the SNPs +874T (c.115-483A>T) and +5173G

John Wiley 20 Sons, Inc.

Human Mutation

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
21
24
25
26
27
28
20
29
30
31
33
32
33
34
35
36
00
37
38
39
40
44
41
42
43
44
15
40
46
47
48
<u>10</u>
73
50
51
52
53
55 E 4
54
55
56
57
57
58
59
60

1	(c.*910A>G) (Figure 2B). We failed in detecting departures from neutrality based on classical
2	neutrality tests, most likely because of their inadequate power under a scenario of positive
3	selection acting on standing variation [Pritchard et al., 2010; Przeworski et al., 2005]. Indeed,
4	both SNPs +874T and +5173G were already present before the out-of-Africa exodus, as attested
5	by their appreciable frequencies among African populations, a situation that explains the low F_{ST}
6	values of these two SNPs between Europeans and the other populations. However, the fact that
7	the SNP +874A>T is well known to have functional consequences further reinforces our
8	population genetics prediction. Indeed, the +874T allele has been shown to provide a binding site
9	for the transcription factor NF- κ B, and to be associated with both higher production of IFN- γ
10	[Pravica et al., 2000] and higher resistance against intracellular pathogens such as
11	Mycobacterium tuberculosis [Ding et al., 2008; Etokebe et al., 2006; Lopez-Maderuelo et al.,
12	2003; Rossouw et al., 2003; Sallakci et al., 2007; Tso et al., 2005]. Further support to the action
13	of positive selection targeting the +874T allele comes from our survey of associated
14	microsatellite variation. Indeed, despite the chromosomes harboring the +874T allele are very
15	frequent in Europe (54%), they present a lower microsatellite diversity than those harboring the
16	+874A allele (expected heterozygosities in Europe of 0.17 vs. 0.26, respectively). Our results are
17	collectively consistent with a selective advantage for a higher production of IFN- γ in Europeans,
18	suggesting the existence of different, or stronger, selective pressures in Europe associated with
19	IFN- γ production. Taken together, although a strong selective constraint prevents qualitative
20	changes of the IFN- γ protein, there is a fine-tuned regulation of IFN- γ expression that seems to
21	evolve adaptively.

In contrast to *IFNG*, where nonsynonymous mutations are not tolerated, our results unmasked more relaxed selective constraints at *IFNGR1* and *IFNGR2*, where we observed 10 and 6 nonsynonymous mutations, respectively (Table 2). However, several lines of evidence support

John Wiley²¹ Sons, Inc.

the notion that these two genes are not entirely free to accumulate functional variation. IFNGR1 appears to evolve under the action of weak negative selection, indicating that nonsynonymous mutations, although tolerated, are kept at low population frequencies because they may have weakly deleterious effects. In turn, amino-acid variation at *IFNGR2* seems to be somehow constrained, as attested by the value of ω that is lower than 1. In addition, the only nonsynonymous mutation observed at *IFNGR2* that is found at a high population frequency is predicted to be benign (i.e., mutation likely not to impact protein function or weakly deleterious), an observation that indicates that mutations leading to major changes in protein function are not allowed to increase in frequency in the population. From the clinical genetics angle, several other mutations in *IFNGR1* and *IFNGR2* have been shown to be associated with impaired cellular responses to IFN- γ and to result in Mendelian susceptibility to mycobacterial disease (see [Zhang et al., 2008] for an extensive review). The level of cellular responsiveness to IFN- γ seems to strongly correlate with the clinical severity of mycobacterial disease; e.g., patients with complete IFN-γR1 or IFN-γR2 deficiency display mycobacterial diseases early in life and have a poor prognosis. Altogether, population and clinical data clearly show that no variation having a significant impact on protein function is tolerated at *IFNGR1* and *IFNGR2*, highlighting more generally that the entire IFN- γ pathway is essential in host survival. Then, we have also observed population-specific signatures of positive selection in both

Then, we have also observed population-specific signatures of positive selection in both genes encoding the IFN- γ receptor. *IFNGR1* displays signatures of positive selection in Africa as attested by the results of XP-EHH [Sabeti et al., 2007] (Supp. Figure S4). The observation that the SNP +130G>A (c.85+45G>A) presents the highest levels of population differentiation between African and non-African populations (e.g., F_{ST} =0.45, African versus Asian) suggests that this SNP, or another in LD, could be the target of positive selection. If the SNP +130G>A (c.85+45G>A) was the genuine selected allele, it is interesting to note that natural selection

Page 39 of 73

Human Mutation

1	would have increased the frequency of the ancestral allele [Di Rienzo, 2006] up to 95.2% in
2	contemporary African populations. We have also observed a population-specific signature of
3	positive selection in the gene encoding the second subunit of the IFN- γ receptor. Indeed, we
4	identified a strong signature of positive selection in Asian populations. This signature is most
5	likely explained by the intronic SNP +23133G>A (c.413-209G>A), as attested by the significant
6	values obtained for both the DIND test as well as the levels of population differentiation (Figs. 2
7	and 3). The derived allele at the SNP +23133 is absent in Africa but reaches 37% in Asia,
8	therefore indicating that this mutation likely appeared after the Out-of-Africa exodus. The
9	functional characterization of these two variants is now needed.
10	Taken together, the integration of our population genetics data into a clinical framework
11	clearly demonstrates that the IFN- γ pathway is essential and non-redundant in host defense, most
12	likely in protective immunity against mycobacteria. Future population genetics data will shed
13	light on how redundant or essential in host defense are the other multiple members of the human
14	IFN family, including type-I and type-III IFNs.

ACKNOWLEDGEMENTS

2 We thank Jean-Laurent Casanova, Eileen Hoal, Roberto Toro and Sandra Pellegrini for helpful

- 3 suggestions and for critical reading of the manuscript. This work has been supported by the
- 4 Institut Pasteur, the ANR (ANR-08-MIEN-009-01), the Fondation pour la Recherche Médicale,
- 5 the CNRS, Merck-Serono, and a EPFL-Debiopharm Life Sciences Award to L.Q.-M.

1	
2	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
13	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
31	
25	
35	
36	
37	
38	
39	
40	
41	
12	
42 40	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
51	
50	
59	
60	

1	REFERENCES
2	Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS,
3	Sunyaev SR. 2010. A method and server for predicting damaging missense mutations.
4	Nat Methods 7(4):248-249.
5	Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Bonnen PE, de Bakker
6	PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M,
7	Whittaker P, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Muzny DM, Barnes C,
8	Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Keinan
9	A, Montgomery SB, Pollack S, Price AL, Soranzo N, Gonzaga-Jauregui C, Anttila V,
10	Brodeur W, Daly MJ, Leslie S, McVean G, Moutsianas L, Nguyen H, Zhang Q, Ghori
11	MJ, McGinnis R, McLaren W, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB,
12	Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall
13	PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C,
14	Brooks LD, McEwen JE. 2010. Integrating common and rare genetic variation in diverse
15	human populations. Nature 467(7311):52-58.
16	Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M,
17	Neyrolles O, Gicquel B, Kidd JR, Kidd KK, Alcais A, Ragimbeau J, Pellegrini S, Abel L,
18	Casanova JL, Quintana-Murci L. 2009. Evolutionary dynamics of human Toll-like
19	receptors and their different contributions to host defense. PLoS Genet 5(7):e1000562.
20	Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L. 2008. Natural selection has driven
21	population differentiation in modern humans. Nat Genet 40(3):340-345.
22	Barrett JC, Fry B, Maller J, Daly MJ. 2005. Haploview: analysis and visualization of LD and
23	haplotype maps. Bioinformatics 21(2):263-265.

John Wiley²⁵ Sons, Inc.

2		
3 4	1	Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum
5 6 7	2	DM, White TJ, Sninsky JJ, Hernandez RD, Civello D, Adams MD, Cargill M, Clark AG.
7 8 9	3	2005. Natural selection on protein-coding genes in the human genome. Nature
10 11	4	437(7062):1153-1157.
12 13	5	Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, Hartl DL. 2002. The cost
14 15 16	6	of inbreeding in Arabidopsis. Nature 416(6880):531-534.
17 18	7	Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L, Bodmer J, Bodmer WF,
19 20 21	8	Bonne-Tamir B, Cambon-Thomsen A, Chen Z, Chu J, Carcassi C, Contu L, Du R,
21 22 23	9	Excoffier L, Ferrara GB, Friedlaender JS, Groot H, Gurwitz D, Jenkins T, Herrera RJ,
24 25	10	Huang X, Kidd J, Kidd KK, Langaney A, Lin AA, Mehdi SQ, Parham P, Piazza A,
26 27 28	11	Pistillo MP, Qian Y, Shu Q, Xu J, Zhu S, Weber JL, Greely HT, Feldman MW, Thomas
29 30	12	G, Dausset J, Cavalli-Sforza LL. 2002. A human genome diversity cell line panel. Science
31 32	13	296(5566):261-262.
33 34 35	14	den Dunnen JT, Antonarakis SE. 2000. Mutation nomenclature extensions and suggestions to
36 37	15	describe complex mutations: a discussion. Hum Mutat 15(1):7-12.
38 39 40	16	Di Rienzo A. 2006. Population genetics models of common diseases. Curr Opin Genet Dev
40 41 42	17	16(6):630-636.
43 44	18	Ding S, Li L, Zhu X. 2008. Polymorphism of the interferon-gamma gene and risk of tuberculosis
45 46 47	19	in a southeastern Chinese population. Hum Immunol 69(2):129-133.
48 49	20	Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R, Rosenzweig SD, Newport
50 51	21	M, Levin M, Roesler J, Kumararatne D, Casanova JL, Holland SM. 2004. Clinical
52 53 54	22	features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet
55 56 57	23	364(9451):2113-2121.
58 59		

Page 43 of 73

Human Mutation

1		
2 3 4	1	Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean
5 6 7	2	GA. 2010. A map of human genome variation from population-scale sequencing. Nature
8 9	3	467(7319):1061-1073.
10 11	4	Etokebe GE, Bulat-Kardum L, Johansen MS, Knezevic J, Balen S, Matakovic-Mileusnic N,
12 13 14	5	Matanic D, Flego V, Pavelic J, Beg-Zec Z, Dembic Z. 2006. Interferon-gamma gene
15 16	6	(T874A and G2109A) polymorphisms are associated with microscopy-positive
17 18 10	7	tuberculosis. Scand J Immunol 63(2):136-141.
20 21	8	Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): An integrated software package
22 23	9	for population genetics data analysis. Evol Bioinform Online 1:47-50.
24 25 26	10	Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric
27 28	11	distances among DNA haplotypes: application to human mitochondrial DNA restriction
29 30	12	data. Genetics 131(2):479-491.
31 32 33	13	Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, Jouanguy E,
34 35	14	Boisson-Dupuis S, Fieschi C, Picard C, Casanova JL. 2006. Inborn errors of IL-12/23-
36 37 38	15	and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin
39 40	16	Immunol 18(6):347-361.
41 42	17	Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A,
43 44 45	18	Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao
46 47	19	Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B,
48 49 50	20	Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A,
51 52	21	Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M,
53 54	22	Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X,
55 56 57	23	He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye
58 59 60	24	MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant

1

2		
3 4	1	AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS,
5 6	2	Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD,
/ 8 0	3	Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK,
10 11	4	Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine
12 13	5	A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R,
14 15 16	6	Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de
17 18	7	Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A,
19 20	8	Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D,
21 22 23	9	Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen
23 24 25	10	PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS,
26 27	11	Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C,
28 29 30	12	Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans
31 32	13	DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang
33 34	14	H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN,
35 36 37	15	Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert
38 39	16	MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM,
40 41 42	17	Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L,
42 43 44	18	Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter
45 46	19	DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J,
47 48 49	20	Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT,
50 51	21	Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC,
52 53	22	L'Archeveque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R,
54 55 56	23	Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel
57 58		
59 60		

John Wiley $^{28}_{8}$ Sons, Inc.

Human Mutation

2		
3 4	1	J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J. 2007. A second
5 6	2	generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851-861.
7 8 0	3	Gilad Y, Bustamante CD, Lancet D, Paabo S. 2003. Natural selection on the olfactory receptor
10 11	4	gene family in humans and chimpanzees. Am J Hum Genet 73(3):489-501.
12 13	5	Griffiths RC, Tavare S. 1994. Sampling theory for neutral alleles in a varying environment.
14 15	6	Philos Trans R Soc Lond B Biol Sci 344(1310):403-410.
16 17 18	7	International-HapMap-Consortium. 2005. A haplotype map of the human genome. Nature
19 20	8	437(7063):1299-1320.
21 22 23	9	Key LL, Jr., Ries WL, Rodriguiz RM, Hatcher HC. 1992. Recombinant human interferon gamma
23 24 25	10	therapy for osteopetrosis. J Pediatr 121(1):119-124.
26 27	11	Kreitman M. 2000. Methods to detect selection in populations with applications to the human.
28 29 30	12	Annu Rev Genomics Hum Genet 1:539-559.
31 32	13	Laval G, Excoffier L. 2004. SIMCOAL 2.0: a program to simulate genomic diversity over large
33 34	14	recombining regions in a subdivided population with a complex history. Bioinformatics
35 36 37	15	20(15):2485-2487.
38 39	16	Laval G, Patin E, Barreiro LB, Quintana-Murci L. 2010. Formulating a historical and
40 41 42	17	demographic model of recent human evolution based on resequencing data from
42 43 44	18	noncoding regions. PLoS One 5(4):e10284.
45 46	19	Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS,
47 48 40	20	Feldman M, Cavalli-Sforza LL, Myers RM. 2008. Worldwide human relationships
50 51	21	inferred from genome-wide patterns of variation. Science 319(5866):1100-1104.
52 53	22	Lopez-Maderuelo D, Arnalich F, Serantes R, Gonzalez A, Codoceo R, Madero R, Vazquez JJ,
54 55 56	23	Montiel C. 2003. Interferon-gamma and interleukin-10 gene polymorphisms in
57 58	24	pulmonary tuberculosis. Am J Respir Crit Care Med 167(7):970-975.
59 60		

John Wiley²⁹ Sons, Inc.

3 4	1	Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. 2005. A fine-scale map of
5 6	2	recombination rates and hotspots across the human genome. Science 310(5746):321-324.
/ 8 0	3	Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG. 2007. Recent and ongoing selection
9 10 11	4	in the human genome. Nat Rev Genet 8(11):857-868.
12 13	5	Pestka S, Krause CD, Walter MR. 2004. Interferons, interferon-like cytokines, and their
14 15 16	6	receptors. Immunol Rev 202:8-32.
17 17 18	7	Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV. 1999. In vitro production
19 20	8	of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene.
21 22 22	9	Eur J Immunogenet 26(1):1-3.
23 24 25	10	Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV. 2000. A single nucleotide
26 27	11	polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with
28 29 30	12	a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol
31 32	13	61(9):863-866.
33 34	14	Pritchard JK, Pickrell JK, Coop G. 2010. The genetics of human adaptation: hard sweeps, soft
35 36 37	15	sweeps, and polygenic adaptation. Curr Biol 20(4):R208-215.
38 39	16	Przeworski M, Coop G, Wall JD. 2005. The signature of positive selection on standing genetic
40 41 42	17	variation. Evolution 59(11):2312-2323.
42 43 44	18	Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG. 2003. Association between
45 46	19	tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene.
47 48	20	Lancet 361(9372):1871-1872.
49 50 51	21	Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism
52 53	22	analyses by the coalescent and other methods. Bioinformatics 19(18):2496-2497.
54 55	23	Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV,
วง 57 58	24	Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R,
59 60		
		20

Page 47 of 73

Human Mutation

1		
2 3 4	1	Kwiatkowski D, Ward R, Lander ES. 2002. Detecting recent positive selection in the
5 6 7	2	human genome from haplotype structure. Nature 419(6909):832-837.
7 8 9	3	Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS,
10 11	4	Altshuler D, Lander ES. 2006. Positive natural selection in the human lineage. Science
12 13	5	312(5780):1614-1620.
14 15 16	6	Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll
17 18	7	SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA,
19 20 21	8	Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S,
21 22 23	9	Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu
24 25	10	S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J,
26 27 28	11	Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M,
29 30	12	Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E,
31 32	13	Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y,
33 34 35	14	Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong
36 37	15	JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A,
38 39 40	16	Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner
40 41 42	17	A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller
43 44	18	P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto
45 46 47	19	T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P,
48 49	20	Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D,
50 51	21	Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR,
52 53 54	22	Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P,
55 56	23	Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith
57 58 59 60	24	AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin

John Wiley³¹ Sons, Inc.

1 2

3 4	1	S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A,
5 6	2	Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C,
7 8 9	3	Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS,
10 11	4	Tsunoda T, Johnson TA, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C,
12 13	5	Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA,
14 15 16	6	Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M,
17 18	7	Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW,
19 20 21	8	Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E,
22 23	9	Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L,
24 25	10	Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP,
26 27 28	11	Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL,
29 30	12	Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archeveque P, Bellemare G,
31 32	13	Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD,
33 34 35	14	McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia
36 37	15	LF, Collins FS, Kennedy K, Jamieson R, Stewart J. 2007. Genome-wide detection and
38 39 40	16	characterization of positive selection in human populations. Nature 449(7164):913-918.
40 41 42	17	Sallakci N, Coskun M, Berber Z, Gurkan F, Kocamaz H, Uysal G, Bhuju S, Yavuzer U, Singh M,
43 44	18	Yegin O. 2007. Interferon-gamma gene+874T-A polymorphism is associated with
45 46 47	19	tuberculosis and gamma interferon response. Tuberculosis (Edinb) 87(3):225-230.
48 49	20	Sawyer SA, Hartl DL. 1992. Population genetics of polymorphism and divergence. Genetics
50 51	21	132(4):1161-1176.
52 53 54	22	Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals,
55 56	23	mechanisms and functions. J Leukoc Biol 75(2):163-189.
57 58 59		

Page 49 of 73

Human Mutation

2 3	1	Stephens M, Donnelly P. 2003. A comparison of bayesian methods for haplotype reconstruction
4 5 6	2	from population genotype data. Am J Hum Genet 73(5):1162-1169.
7 8	3	Takahashi M. Matsuda F. Margetic N. Lathrop M. 2003. Automated identification of single
9 10	4	nucleotide polymorphisms from sequencing data. J Bioinform Comput Biol 1(2):253-265
11 12	5	Thomas PD Campbell MI Kejariwal A Mi H Karlak B Daverman R Diemer K Muruganujan
13 14 15	6	A Narechania A 2003 PANTHER: a library of protein families and subfamilies indexed
16 17	0	hy function. Genome Pes 13(0):2120-2141
18 19	1	by function. Genome Res 15(9).2129-2141.
20 21	8	Todd PA, Goa KL. 1992. Interferon gamma-1b. A review of its pharmacology and therapeutic
22 23	9	potential in chronic granulomatous disease. Drugs 43(1):111-122.
24 25	10	Tso HW, Ip WK, Chong WP, Tam CM, Chiang AK, Lau YL. 2005. Association of interferon
26 27 28	11	gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes Immun
20 29 30 31 32	12	6(4):358-363.
	13	Voight BF, Adams AM, Frisse LA, Qian Y, Hudson RR, Di Rienzo A. 2005. Interrogating
33 34 35	14	multiple aspects of variation in a full resequencing data set to infer human population size
36 37	15	changes. Proc Natl Acad Sci U S A 102(51):18508-18513.
38 39 40	16	Wall JD. 1999. Recombination and the power of statistical tests of neutrality. Genetical Research
40 41 42	17	74(1):65-79.
43 44	18	Wall JD, Hammer MF. 2006. Archaic admixture in the human genome. Curr Opin Genet Dev
45 46 47	19	16(6):606-610.
48 49	20	Weir BS. 1984. Estimating F-statistics for the analysis of population structure. Evolution
50 51	21	38(6):1358-1370.
52 53 54	22	Williamson SH, Hernandez R, Fledel-Alon A, Zhu L, Nielsen R, Bustamante CD. 2005.
55 56	23	Simultaneous inference of selection and population growth from patterns of variation in
57 58 59	24	the human genome. Proc Natl Acad Sci U S A 102(22):7882-7887.
60		John Wiley ³³ Sons, Inc.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
10	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
34 25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 54	
51	
52 52	
53 54	
55	
56	
57	
58	
59	
60	

1 Zeng K Fu YX Shi S Wu CL 2006 Statistical tests for detecting positive selection by util
2015 I, I u II, Sin S, T u CI. 2000. Studsteur tests for detecting positive selection by util
2 high-frequency variants. Genetics 174(3):1431-1439.
3 Zhang SY, Boisson-Dupuis S, Chapgier A, Yang K, Bustamante J, Puel A, Picard C, Abel J
4 Jouanguy E, Casanova JL. 2008. Inborn errors of interferon (IFN)-mediated immun
5 humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-
6 lambda in host defense. Immunol Rev 226:29-40.
7 Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu
8 Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von
9 Bernuth H, Ku CL, Casrouge A, Zhang XX, Barreiro L, Leonard J, Hamilton C, Lel
10 Heron B, Vallee L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissi
11 F, Tardieu M, Abel L, Casanova JL. 2007. TLR3 deficiency in patients with herpes
12 simplex encephalitis. Science 317(5844):1522-1527.
13

FIGURE LEGENDS

Figure 1. Estimation of the intensity of natural selection acting on *IFNG*, *IFNGR1* and *IFNGR2*. (A) Strength of interspecies purifying selection, as measured by estimated ω values. (B) Strength of intraspecies negative selection, as measured by the population selection coefficient γ. Bars indicate 95% confidence intervals, and filled circles indicate genes with ω and γ estimates significantly lower than 1 and 0, respectively.

Figure 2. Signature of positive selection at *IFNG*, *IFNGR1*, and *IFNGR2*. DIND test in Africans (A,D,G), Europeans (B,E,H) and East-Asians (C,F,I). We plotted the $i\pi_A/i\pi_D$ values against the Derived Allele Frequencies (DAFs). *P*-values were obtained by comparing the $i\pi_A/i\pi_D$ values for the 3 genes against the expected $i\pi_A/i\pi_D$ values obtained from 10⁴ simulations considering a previously validated demographic model [Voight et al., 2005]. The higher dashed line of each graph corresponds to the 99th percentile, and the lower to the 95th percentile.

Figure 3. Levels of population differentiation, measured by F_{ST} . Population pair-wise comparisons of *IFNG*, *IFNGR1* and *IFNGR2* SNPs for (A) Africans vs. Europeans, (B) Africans vs. Asians and (C) Europeans vs. Asians. F_{ST} values are plotted against expected heterozygosity. The dashed lines represent the 95th and 99th percentiles of the HGDP-CEPH genotyping dataset using the same individuals (represented by the density area in blue) [Li et al., 2008]. Black dots correspond to silent polymorphisms and red dots correspond to nonsynonymous polymorphisms.

		IF	'NG			IFN	IGR1		IFNGR2				
	Africa (N=124)	Europe (N=124)	Asia (N=124)	Global (N=372)	Africa (N=124)	Europe (N=124)	Asia (N=124)	Global (N=372)	Africa (N=124)	Europe (N=124)	Asia (N=124)	Global (N=372)	
Η	17	8	7	26	25	12	16	43	25	17	18	49	
Hd	0.71	0.64	0.64	0.72	0.82	0.69	0.81	0.81	0.90	0.79	0.74	0.87	
Syn	0	0	0	0	1	1	2	2	4	0	3	7	
Non-syn	0	0	0	0	8	1	3	10	5	3	1	6	
S	21	9	6	28	25	11	17	42	29	16	19	47	
Singletons	7	3	1	11	10	5	5	17	14	6	12	28	
INDELS	2	1	1	2	3	1	1	5	4	1	1	4	
π (10 ⁻⁴)	3.7	4.2	3.2	4	4.3	4.1	5	4.7	6.9	7.1	5.5	7.2	
θ_{W} (10 ⁻⁴)	8.5	3.6	2.4	9.4	8.5	3.7	5.8	11.8	11.3	6.2	7.4	15.1	
TD	-1.60	0.34	0.70		-1.44	0.27	-0.37		-1.13	0.39	-0.73		
D	-1.39	-1.02	0.12		-2.13	-2.02	-0.95		-3.09	-1.63	-4.08**/††		
F	-1.76	-0.65	0.37		-2.23	-1.43	-0.88		-2.77	-1.05	-3.36**/††		
Н	-5.76*	-0.42	-0.10		-0.82	0.71	1.26		-1.27	-1.18	-2.33		

Table 1. Mean diversity indices and neutrality tests across IFNG, IFNGR1 and IFNGR2 genomic regions

N, number of chromosomes sequenced in the corresponding population; H, number of haplotypes; Hd, haplotype diversity; Syn, number of synonymous mutations; Non-syn, number of nonsynonymous mutations; S, number of segregating sites; INDELS, number of INDELS including the IFNG +875(CA)_n microsatellite; π , nucleotide diversity per site from average pairwise differences; θ_W , nucleotide diversity per site from number of segregating sites; TD, Tajima's *D*; D, Fu & Li's *D**; F, Fu & Li's *F**; H, Fay & Wu's *H*. **/**P*-values ≤ 0.01 and ≤ 0.05 , respectively, according to the model of [Voight, et al., 2005]; $\dagger\dagger/\dagger$ *P*-values ≤ 0.01 and ≤ 0.05 , respectively, according to the model of [Laval, et al., 2010]. *P*-values were obtained from coalescent simulations, according to the models proposed by [Voight, et al., 2005], which considers each continental population separately, and [Laval, et al., 2010], which considers inter-continental population migration.

Table 2. Nonsynonymous changes in the *IFNGR1* and *IFNGR2* genes identified in this study.

Cono	o SND	ATC position	Aminopoid shanga	Chromosomal	Gana Logation	Protain domain	Dolumbon	Donthor	dhenid	Africa	Europa	Acio
Gelle	C.SNP	ATG position	Ammoacid change	location	Gene Location	Protein domain	Polyphen	Panuler	UDSINP	Affica	Europe	Asia
IFNGR1	c.5C>T	+5	p.Ala2Val	chr6:137,540,460	exon 1	signal	po damaging	NA				0.8
IFNGR1	c.40G>A	+40	p.Val14Met	chr6:137,540,425	exon 1	signal	po damaging	0.55613	rs11575936			1.6
IFNGR1	c.181G>A	+12346	p.Val61Ile	chr6:137,528,119	exon 2	extracellular	pr damaging	0.81834	rs17175322	0.8		
IFNGR1	c.538G>A	+14988	p.Gly180Arg	chr6:137,525,477	exon 4	extracellular	benign	0.67155		1.6		
IFNGR1	c.864C>G	+20691	p.Ile288Met	chr6:137,519,774	exon 7	cytoplasmic	benign	0.77695		1.6		
IFNGR1	c.1004A>C	+20831	p.His335Pro	chr6:137,519,634	exon 7	cytoplasmic	benign	0.69608	rs17175350	1.6		
IFNGR1	c.1027G>A	+20854	p.Val343Met	chr6:137,519,611	exon 7	cytoplasmic	benign	0.4295		0.8		
IFNGR1	c.1034A>G	+20861	p.His345Arg	chr6:137,519,604	exon 7	cytoplasmic	pr damaging	0.48851		0.8		
IFNGR1	c.1268G>A	+21095	p.Ser423Asn	chr6:137,519,370	exon 7	cytoplasmic	benign	0.85071		0.8	0.8	
IFNGR1	c.1400T>C	+21227	p.Leu467Pro	chr6:137,519,238	exon 7	cytoplasmic	benign	NA	rs1887415	0.8		4.8
IFNGR2	c.173C>G	+11445	p.Thr58Arg	chr21:34,787,294	exon 3	extracellular	po damaging	0.49217	rs4986958	12.9	0.8	
IFNGR2	c.191G>A	+11463	p.Arg64Gln	chr21:34,787,312	exon 3	extracellular	benign	0.68807	rs9808753	79.0	87.9	62.1
IFNGR2	c.466A>C	+23395	p.Ile156Leu	chr21:34,799,244	exon 5	extracellular	benign	0.57445			1.6	
IFNGR2	c.544A>G	+23473	p.Lys182Glu	chr21:34,799,322	exon 5	extracellular	benign	0.5363	rs17878711	4.0		
IFNGR2	c.708A>T	+28781	p.Glu236Asp	chr21:34,804,630	exon 6	transmembrane	po damaging	0.69961		0.8		
IFNGR2	c.889G>A	+33295	p.Asp297Asn	chr21:34,809,144	exon 8	cytoplasmic	pr damaging	0.76231		0.8		

A full description of all SNPs identified in this study (coding and non-coding) is available in Supp. Table S3. The position of each SNP was determined using the reference sequence listed in Supp. Table S2. The first amino-acid corresponds to the ancestral state, as defined considering the sequences of human, chimpanzee, gorilla, orangutan and rhesus. Chromosome location of each SNP is given according to the hg19 (GRCh37) human assembly. Protein domains are given by the UniProt Database. For the *IFNGR2* SNPs c.708A>T and c.889G>A, the domain is predicted by the UniProt Database as a potential domain. For the Polyphen analyses, "pr" stands for probably and "po" for possibly. For the Panther analyses, the P-deleterious values are shown. The frequencies, given in %, of each SNP in the different continental populations refer to the Derived Allele Frequency.

Estimation of the intensity of natural selection acting on IFNG, IFNGR1 and IFNGR2. 140x70mm (300 x 300 DPI)

Page 55 of 73

Human Mutation

Signature of positive selection at IFNG, IFNGR1, and IFNGR2. 160x160mm (300 x 300 DPI)

Levels of population differentiation, measured by FST. 160x53mm (300 x 300 DPI)

SUPPORTING MATERIAL FOR

Evolutionary genetics evidence of an essential, non-redundant role of the IFN- γ pathway in protective immunity

Jérémy Manry ^{1,2}, Guillaume Laval ^{1,2}, Etienne Patin ^{1,2}, Simona Fornarino ^{1,2}, Magali Tichit ³, Christiane Bouchier ³, Luis B. Barreiro ⁴, Lluis Quintana-Murci ^{1,2}

¹ Institut Pasteur, Human Evolutionary Genetics, Department of Genomes and Genetics, F-75015 Paris, France;² Centre National de la Recherche Scientifique, URA3012, F-75015 Paris, France ;³ Institut Pasteur, Plate-forme Génomique, Pasteur Genopole, Paris, France ;⁴ Department of Human Genetics, University of Chicago, Chicago, USA

*Correspondence to Dr. Lluis Quintana-Murci, CNRS URA3012, UP Génétique Evolutive Humaine, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France ; Phone : +33.1.40.61.34.43 ; Fax :+33.1.45.68.86.39 ; E-mail : quintana@pasteur.fr

Short Title: Natural Selection acting on IFN-y pathway

Black boxes correspond to coding exons, empty boxes to non-coding exons. Introns are

represented by a line. The violet arrows indicate the orientation of the genes.

IFNGR1, and IFNGR2 when considering the demographic model of [Laval et al., 2010]

DIND test in Africans (A,D,G), Europeans (B,E,H) and East-Asians (C,F,I). We plotted the $i\pi_A/i\pi_D$ values against the Derived Allele Frequencies (DAFs). *P*-values were obtained by comparing the $i\pi_A/i\pi_D$ values for the 3 genes against the expected $i\pi_A/i\pi_D$ values obtained from 10⁴ simulations considering a previously validated demographic model [Laval et al., 2010]. The higher dashed line of each graph corresponds to the 99th percentile, and the lower to the 95th percentile.

LD map in African (A, D, G), European (B, E, H), and East-Asian (C, F, I) populations. LD was estimated for SNPs with MAF>0.01. In each square, r² values are presented. Red squares without any value correspond to r²=1.

Supp. Figure S4: Detection of positive selection acting on *IFNGR1* in Africa, using the XP-EHH test.

The region is centered on IFNGR1. This graph was obtained using the HGDP selection browser

(http://hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP/).

Supp. Figure S5. *IFNG* gene tree

Time is scaled in millions of years. Mutations are named for their physical positions along the *IFNG* genic region, using the "ATG position" annotation (see Materials and Methods for details). Absolute frequencies, in numbers of chromosomes observed, of each haplotype lineage in Africa, Europe and East-Asia are reported. For each SNP, the first allele corresponds to the most parsimonious ancestral allele.

Population	Geographical origin	Region	Number of individuals			
Bantu	South Africa	sub-Saharan Africa	8			
Bantu	Kenya	sub-Saharan Africa	11			
Yoruba	Nigeria	sub-Saharan Africa	22			
Mandenka	Senegal	sub-Saharan Africa	21			
sub-Saharan African		sub-Saharan Africa	62			
Adygei	Russia Caucasus	Europe	7			
Russian	Russia	Europe	15			
French	France	Europe	8			
French Basque	France	Europe	12			
Orcadian	Orkney Islands	Europe	6			
North Italian	Italy (Bergamo)	Europe	3			
Sardinian	Italy	Europe	11			
European		Europe	62			
Han	China	Asia	15			
Dai	China	Asia	2			
Lahu	China	Asia	2			
Naxi	China	Asia	3			
She	China	Asia	3			
Yizu	China	Asia	2			
Miaozu	China	Asia	4			
Tujia	China	Asia	1			
Tu	China	Asia	2			
Xibo	China	Asia	4			
Hezhen	China	Asia	3			
Mongola	China	Asia	4			
Daur	China	Asia	2			
Oroqen	China	Asia	1			
Cambodian	Cambodia	Asia	4			
Japanese	Japan	Asia	10			
Asian		Asia	62			

Supp. Table S1	. Populations	belonging to th	e HGDP-CEPH	resequencing sub-panel
A A	L	0 0		

Gene	Chromosomal location	Sequenced fragments	Sequenced lenght	Exonic	Non-exonic
IFNG		-596 : 900			
NM_000619.2	chr12:68,548,550-68,553,521	988 : 2,305	4,576	1,210	3,366
NG_015840.1		3,586 : 5,347			
		-261 : 333			
		12,159 : 13,533		2,059	
IFNGR1	1. (. 127.518 (21.127.540.5(7	14,726 : 16,051	5 470		2 420
NG_007394.1	cnro:137,518,021-137,540,507	17,435 : 17,637	5,479		3,420
		17,898 : 18,639			
		20,618 : 21,856			
		7,146 : 7,709			
		10,950 : 11,667			
IFNGR2		17,221 : 18,260			
NM_005534.3	chr21:34,775,202-34,809,827	22,990 : 23,613	4,777	1,555	3,222
NG_007570.1		28,502 : 29,361			
		33,038 : 33,192			
		33,275 : 34,090			

Supp. Table S2. Details on resequenced regions and fragments for the IFNG, IFNGR1 and IFNGR2 genes.

Chromosome location is given according to the hg19 (GRCh37) human assembly coordinates. Positions are relative to the start coding

site of the corresponding gene. Lengths are given in base pairs.

Supp. Table S3. Full list of polymorphisms found at *IFNG*, *IFNGR1* and *IFNGR2* genes.

6

7																
8		Chromosomal				Protein	Amino-acid				Hap	Hap				
9 -	Gene	position	c.SNP	ATG position	Location	domain	change	Polyphen	Panther	dbSNP	MapII	MapIII	AF	EU	AS	Singleton
10	IFNG	chr12:68553766- 68553766	c371T>A	-371	5'					rs3814242					1.6	
11 12	IFNG	chr12:68553703- 68553703	c308G>T	-308	5'					rs2069709	x	x	5.6			
13	IFNG	chr12:68552522- 68552522	c.115-483A>T	+874	intron					rs2430561			18.5	54.0	17.7	
14 15	IFNG	chr12:68552208- 68552208	c.115-169C>T	+1188	intron					rs117641733				0.8		Fre
16	IFNG	chr12:68552195- 68552195	c.115-156A>G	+1201	intron									0.8		Fre
17	IFNG	chr12:68551931- 68551931	c.183+40T>C	+1465	intron					rs74099944			2.4			
19 20	IFNG	chr12:68551554- 68551554	c.366+139T>C	+1842	intron								0.8			Ban
20 21	IFNG	chr12:68551409- 68551409	c.366+284G>A	+1987	intron					rs1861494	x		87.1	73.4	71.8	
22 23	IFNG	chr12:68551343- 68551343	c.366+350A>T	+2053	intron								0.8			Ban
24	IFNG	chr12:68551333- 68551333	c.366+360G>C	+2063	intron								0.8			Ban
25 26	IFNG	chr12:68551196- 68551196	c.366+497T>C	+2200	intron					rs1861493	х		8.9	26.6	29.0	
27	IFNG	chr12:68549786- 68549786	c.367-519A>G	+3610	intron					rs2069719	х	х	97.6	100	100	
28 29	IFNG	chr12:68549767- 68549767	c.367-500C>T	+3629	intron					rs116174811			0.8			Man
30 31	IFNG	chr12:68549710- 68549710	c.367-443G>A	+3686	intron					rs2069720	х		4.0			
32	IFNG	chr12:68549686- 68549686	c.367-419T>C	+3710	intron										0.8	Oro
33 34	IFNG	chr12:68549549- 68549549	c.367-282T>A	+3847	intron									0.8		Sar
35	IFNG	chr12:68549494- 68549494	c.367-227G>C	+3902	intron								0.8			Man
36 37	IFNG	chr12:68549377- 68549377	c.367-110G>T	+4019	intron					rs55662249				1.6		
38 30	IFNG	chr12:68549033- 68549036	c.*97_*100delTCAA	+4360	3'UTR								1.6			
39 40	IFNG	chr12:68548953- 68548953	c.*180C>T	+4443	3'UTR					rs2069722	х	х	5.6			
41 42	IFNG	chr12:68548770- 68548770	c.*363G>A	+4626	3'UTR					rs55991209			1.6			
43	IFNG	chr12:68548680- 68548680	c.*453G>C	+4716	3'UTR					rs7957366			0.8			Ban
44 45						_										
46 47					Jo	hn Wiley &	Sons, Inc.									

Human Mutation

1 2																
3	IFNG	chr12:68548594- 68548594	c.*539G>A	+4802	3'UTR					rs2069723	X	x	97.6	100	100	
5	IFNG	chr12:68548515- 68548515	c.*618C>T	+4881	3'					rs2069724	x	х	2.4			
6 7	IFNG	chr12:68548386- 68548386	c.*747G>A	+5010	3'					rs2069725	х		1.6			
8 9	IFNG	chr12:68548356- 68548356	c.*777C>T	+5040	3'					rs115027181			0.8			Yor
10	IFNG	chr12:68548232- 68548232	c.*901C>T	+5164	3'					rs2069726			97.6	100	100	
11 12	IFNG	chr12:68548223- 68548223	c.*910A>G	+5173	3'					rs2069727	х	х	17.7	54.0	18.5	
13	IFNG	chr12:68548066- 68548066	c.*1067A>T	+5330	3'					rs2069736				1.6		
14 15	IFNGR1	chr6:137540719- 137540719	c255C>T	-255	5'										4.8	
16 17	IFNGR1	chr6:137540645- 137540645	c181T>G	-181	5'					rs7753590	х		11.3			
18	IFNGR1	chr6:137540633- 137540633	c169C>A	-169	5'					rs17175078				0.8		Ady
19 20	IFNGR1	chr6:137540536- 137540536	c72C>T	-72	5'					rs17181457				11.3		
21	IFNGR1	chr6:137540520- 137540520	c56C>T	-56	5'					rs2234711	х		51.6	55.6	40.3	
22 23	IFNGR1	chr6:137540460- 137540460	c.5C>T	+5	exon 1	signal	p.Ala2Val	possibly damaging	NA						0.8	Jap
24	IFNGR1	chr6:137540425- 137540425	c.40G>A	+40	exon 1	signal	p.Val14Met	possibly damaging	0.55613	rs11575936					1.6	
25 26	IFNGR1	chr6:137540417- 137540417	c.48G>A	+48	exon 1					rs11575931					4.8	
27 28	IFNGR1	chr6:137540370- 137540370	c.85+10C>T	+95	intron 1					rs7749390	х		51.6	55.6	40.3	
29	IFNGR1	chr6:137540362- 137540362	c.85+18A>C	+103	intron 1									0.8		Orc
30 31	IFNGR1	chr6:137540335- 137540335	c.85+45G>A	+130	intron 1					rs11754268	х		4.8	27.4	54.0	
32	IFNGR1	chr6:137540133- 137540133	c.85+247T>G	+332	intron 1					rs76168031			11.3			
33 34	IFNGR1	chr6:137528290- 137528290	c.86-76C>T	+12175	intron 1								0.8			Yor
35 26	IFNGR1	chr6:137528259- 137528259	c.86-21T>G	+12206	intron 1					rs41477052			1.6			
30 37	IFNGR1	chr6:137528119- 137528119	c.181G>A	+12346	exon 2	extracellular	p.Val61Ile	probably damaging	0.81834	rs17175322			0.8			Yor
38 30	IFNGR1	chr6:137528085- 137528085	c.200+15T>G	+12380	intron 2					rs17175329			0.8			Yor
40	IFNGR1	chr6:137528082- 137528082	c.200+18A>G	+12383	intron 2					rs41505745			3.2			
41 42	IFNGR1	chr6:137527627- 137527628	c.201-183_201-182delAG	+12837	intron 2					rs3839520					0.8	Jap
43	IFNGR1	chr6:137527578- 137527578	c.201-133G>A	+12887	intron 2					rs76198934			4.0			
44 45						10										
46 47					J	ohn Wiley &	Sons, Inc.									
47																

Page	68	of	73
------	----	----	----

1																
2																
3 4	IFNGR1	chr6:137527157- 137527157	c.373+116T>C	+13308	intron 3								0.8			Ban
5	IFNGR1	chr6:137527020- 137527020	c.373+253G>A	+13445	intron 3					rs115970011			1.6			
ю 7	IFNGR1	chr6:137526967- 137526968	c.373+297dupA	+13498	intron 4								0.8			Ban
8 0	IFNGR1	chr6:137525477- 137525477	c.538G>A	+14988	exon 4	extracellular	p.Gly180Arg	benign	0.67155				1.6			
10	IFNGR1	chr6:137524953- 137524953	c.547-131C>T	+15512	intron 4										2.4	
11 12	IFNGR1	chr6:137524926- 137524926	c.547-104A>G	+15539	intron 4								0.8			Man
13	IFNGR1	chr6:137524553- 137524553	c.733+83C>T	+15912	intron 5					rs74822325			1.6			
14 15	IFNGR1	chr6:137524475- 137524475	c.733+161G>T	+15990	intron 5										0.8	Dai
16 17	IFNGR1	chr6:137522951- 137522951	c.734-806C>T	+17514	intron 5					rs17181751			13.7			
18	IFNGR1	chr6:137522488- 137522488	c.734-343C>A	+17977	intron 5										0.8	Cam
19 20	IFNGR1	chr6:137522217- 137522217	c.734-72T>G	+18248	intron 5										0.8	Mon
21	IFNGR1	chr6:137521976- 137521976	c.861+42T>G	+18489	intron 6										0.8	Tu
22 23	IFNGR1	chr6:137519780- 137519780	c.862-4A>G	+20685	intron 6					rs3799488	х	x		16.1	29.0	
24 25	IFNGR1	chr6:13/519//4- 137519774	c.864C>G	+20691	exon 7	cytoplasmic	p.Ile288Met	benign	0.77695				1.6			
26 26	IFNGR1	137519634	c.1004A>C	+20831	exon 7	cytoplasmic	p.His335Pro	benign	0.69608	rs17175350			1.6			
27 28	IFNGR1	137519611 137519611	c.1027G>A	+20854	exon 7	cytoplasmic	p.Val343Met	benign	0.4295				0.8			Ban
29	IFNGR1	137519604	c.1034A>G	+20861	exon 7	cytoplasmic	p.His345Arg	damaging	0.48851				0.8			Man
30 31	IFNGR1	137519588 137519588	c.1050T>G	+20877	exon 7					rs11914			5.6	18.5	12.1	
32 33	IFNGR1	137519408- 137519434	GTGATCACTCCAGAAAT	+21058	exon 7		p.Cys402_Asn410 dup						0.8			Man
34	IFNGR1	137519370 137519370	c.1268G>A	+21095	exon 7	cytoplasmic	p.Ser423Asn	benign	0.85071				0.8	0.8		
35 36	IFNGR1	137519238	c.1400T>C	+21227	exon 7	cytoplasmic	p.Leu467Pro	benign	NA	rs1887415	Х	х	0.8		4.8	
37	IFNGR1	137519097 abre 127510028	c.*71G>T	+21368	3' UTR					rs55665036				0.8		Fre
38 39	IFNGR1	137519028	c.*140G>A	+21437	3' UTR								0.8			Yor
40	IFNGR1	137518962 137518962	c.*206A>G	+21503	3' UTR					rs1887416					4.8	
41 42	IFNGR1	cnro:13/518951- 137518951	c.*217T>A	+21514	3' UTR					rs1887417					4.8	
43 44	IFNGR1	137518855	c.*313delC	+21610	3' UTR									0.8		Orc
44																
46						ohn Wilev	1 & Sons Inc									
47					0	c.iii thioy										
48																

1 2																
2 3 4	IFNGR1	chr6:137518718- 137518718	c.*450C>T	+21747	3' UTR									0.8		Orc
5	IFNGR1	chr6:137518669- 137518669	c.*499delT	+21796	3' UTR					rs17181758			5.6			
6 7	IFNGR2	chr21:34783257- 34783257	c.74-3938C>T	+7408	intron 1										0.8	Mon
8 9	IFNGR2	chr21:34783522- 34783522	c.74-3673C>T	+7673	intron 1								0.8	2.4		
10	IFNGR2	chr21:34786861- 34786861	c.74-334G>A	+11012	Intron 1					rs75444035			5.6			
11 12	IFNGR2	chr21:34787155- 34787155	c.74-40C>T	+11306	intron 1					rs114703465			0.8			Man
13	IFNGR2	chr21:34787294- 34787294	c.173C>G	+11445	exon 2	extracellular	p.Thr58Arg	possibly damaging	0.49217	rs4986958	х		12.9	0.8		
14 15	IFNGR2	chr21:34787312- 34787312	c.191G>A	+11463	exon 2	extracellular	p.Arg64Gln	benign	0.68807	rs9808753	x	x	79.0	87.9	62.1	
16	IFNGR2	chr21:34787401- 34787401	c.206+74A>T	+11552	intron 2					rs78607908			3.2			
17	IFNGR2	chr21:34793151- 34793151	c.207-636C>T	+17302	intron 2								0.8			Man
19 20	IFNGR2	chr21:34793241- 34793241	c.207-546C>T	+17392	intron 2					rs17885013			2.4			
20 21	IFNGR2	chr21:34793380- 34793381	c.207-407_207-406insATT	+17532	intron 2								0.8			Yor
22 23	IFNGR2	chr21:34793564- 34793564	c.207-223A>G	+17715	intron 2										0.8	Cam
24	IFNGR2	chr21:34793588- 34793588	c.207-199A>G	+17739	intron 2					rs13051491			26.6	58.1	17.7	
25 26	IFNGR2	chr21:34793664- 34793664	c.207-123G>T	+17815	intron 2								0.8			Yor
27	IFNGR2	chr21:34793678- 34793678	c.207-109A>G	+17829	intron 2										0.8	Han
28 29	IFNGR2	chr21:34793706- 34793706	c.207-81T>C	+17857	intron 2					rs2834214	x	х	73.4	41.9	82.3	
30 31	IFNGR2	chr21:34793707- 34793707	c.207-80G>A	+17858	intron 2									0.8		Fre
32	IFNGR2	chr21:34793917- 34793917	c.337C>T	+18068	exon 3								0.8			Ban
33 34	IFNGR2	chr21:34798839- 34798839	c.413-352C>G	+22990	intron 3					rs118015414					6.5	
35	IFNGR2	chr21:34798881- 34798881	c.413-310A>C	+23032	intron 3								0.8			Ban
36 37	IFNGR2	chr21:34798982- 34798982	c.413-209G>A	+23133	intron 3					rs78407108				12.1	37.1	
38	IFNGR2	chr21:34798994- 34798994	c.413-197T>C	+23145	intron 3										0.8	Dau
39 40	IFNGR2	chr21:34799023- 34799023	c.413-168T>C	+23174	intron 3					rs112107702			0.8			Man
41 42	IFNGR2	chr21:34799099- 34799099	c.413-92T>C	+23250	intron 3								0.8			Man
43	IFNGR2	chr21:34799111- 34799112	c.413-80_413-79dupTA	+23263	intron 3								34.7	10.5	18.5	
44 45																
46					J	ohn Wiley ¹²	Sons, Inc.									
47 ⊿∘																
4ð 40																

Page	70	of	73
------	----	----	----

1 2																
∠ 3 ₄	IFNGR2	chr21:34799132-	c.413-59A>G	+23283	intron 3									0.8		Sar
4 5	IFNGR2	chr21:34799138-	c.413-53_413-48delTCTATA	+23290	intron 3								12.8			
6 7	IFNGR2	chr21:34799166-	c.413-25T>C	+23317	intron 3										0.8	Nax
8	IFNGR2	chr21:34799244-	c.466A>C	+23395	exon 4	extracellular	p.Ile156Leu	benign	0.57445					1.6		
9 10	IFNGR2	chr21:34799288-	c.510G>A	+23439	exon 4								0.8			Ban
11	IFNGR2	chr21:34799306-	c.528T>C	+23457	exon 4										0.8	She
12 13	IFNGR2	chr21:34799322-	c.544A>G	+23473	exon 4	extracellular	p.Lys182Glu	benign	0.5363	rs17878711			4.0			
14	IFNGR2	chr21:34799350-	c.561+11G>C	+23501	intron 4					rs11910627	х		12.1	32.3	0.8	
15 16	IFNGR2	chr21:34804391-	c.562-93C>T	+28542	intron 4										0.8	Hez
17 18	IFNGR2	chr21:34804630-	c.708A>T	+28781	exon 5	transmembra	p.Glu236Asp	possibly	0.69961				0.8			Ban
19	IFNGR2	chr21:34804650-	c.721+7T>C	+28801	intron 5	ne		uamagnig		rs41351148			5.6			
20 21	IFNGR2	chr21:34804732- 34804732	c.721+89T>C	+28883	intron 5										0.8	Jap
22	IFNGR2	chr21:34804816- 34804816	c.721+173A>C	+28967	intron 5								0.8			Ban
23 24	IFNGR2	chr21:34804930- 34804930	c.722-91A>T	+29081	intron 5									0.8		Rus
25 26	IFNGR2	chr21:34804966- 34804966	c.722-55T>C	+29117	intron 5					rs1532	x	x	86.3	67.7	99.2	
27	IFNGR2	chr21:34804979- 34804979	c.722-42C>T	+29130	intron 5									0.8		Fre
28 29	IFNGR2	chr21:34805079- 34805079	c.780G>T	+29230	exon 6										0.8	Han
30 31	IFNGR2	chr21:34805197- 34805197	c.879+19C>T	+29348	intron 6					rs17883129			41.9	30.6	45.2	
32 33	IFNGR2	chr21:34809000- 34809022	c.880-135_880- 113dupGCCTAGGCAAGAGTA AGACTCCA	+33174	intron 6								0.8			Ban
34 35	IFNGR2	chr21:34809144- 34809144	c.889G>A	+33295	exon 7	cytoplasmic ^p	p.Asp297Asn	probably damaging	0.76231				0.8			Yor
36	IFNGR2	chr21:34809200- 34809200	c.945C>T	+33351	exon 7					rs1802585					0.8	Dai
37 38	IFNGR2	chr21:34809239- 34809239	c.984G>A	+33390	exon 7								0.8			Yor
39	IFNGR2	chr21:34809263- 34809263	c.1008G>A	+33414	exon 7								0.8			Ban
40 41	IFNGR2	chr21:34809271- 34809271	c.*2C>T	+33422	3' UTR					rs41356148			5.6			
42 43	IFNGR2	chr21:34809621- 34809621	c.*352C>T	+33772	3' UTR									0.8		Rus
44 45																
46					J	ohn Wiley 8	Sons, Inc.									
47 48																
Human Mutation

IFNGR2	chr21:34809686- 34809686	c.*417G>A	+33837	3' UTR	rs12655 3	3.2		
IFNGR2	chr21:34809693- 34809693	c.*424T>C	+33844	3' UTR	rs1059293 x 12	2.9	55.6	15.3

The position of each SNP was determined using the reference sequence listed in Supp. Table S2. The first amino-acid corresponds to the ancestral state, as defined considering the sequences of human, chimpanzee, gorilla, orangutan and rhesus. Chromosome location of each SNP is given according to the hg19 (GRCh37) human assembly. Protein domains are given by the UniProt Database. For the *IFNGR2* SNPs c.708A>T and c.889G>A, the domain is predicted by the UniProt Database as a potential domain. For the Panther analyses, the P-deleterious values are shown. The "x" means that the SNP is genotyped in HapMap Phase III and/or Phase II. The frequencies, given in %, of each SNP in the different merged continental populations refer to the Derived Allele Frequency in Africans (AF), Europeans (EU) and Asians (AS) of our study. Singletons observed are reported per individual population in our population sample; Ady: Adygei. Ban: Bantu. Dau: Daur. Cam: Cambodian. Fre: French. Hez: Hezhen. Jap: Japanese. Man: Mandenka. Nax: Naxi. Orc: Orcadian. Rus: Russian. Sar: Sardinian. Yor: Yoruba. Supp. Table S4: Genotype frequencies of each SNP in our population panel (HGDP-CEPH sub-panel) as well as in the HapMap Phase II and III populations. This table can be found as Supp. Table S4.xls file.

Human Mutation

