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Abstract—We study the probabilistic coherent spaces — a
denotational semantics interpreting programs by power series
with non negative real coefficients. We prove that this semantics is
adequate for a probabilistic extension of the untyped λ-calculus:
the probability that a term reduces to a head normal form is
equal to its denotation computed on a suitable set of values. The
result gives, in a probabilistic setting, a quantitative refinement
to the adequacy of Scott’s model for untyped λ-calculus.

I. INTRODUCTION

Most denotational models of functional languages and of
the λ-calculus interpret types as domains and programs as
continuous (or stable, strongly stable etc) functions. These
morphisms carry qualitative informations about the programs
they interpret, in the sense that the interpretation of a term
does only say whether a given value is needed for producing
a given result, but not how many times it is used. In [Gir88],
Girard introduced a denotational semantics of typed and
untyped lambda-calculus which is quantitative: in this model
objects are sets, and a morphism from X to Y is similar
to a power series in the sense that it involves monomials
which contain exponents (natural numbers), the elements of X
being considered as formal indeterminates. The model is also
quantitative in another sense: morphisms involve coefficients
applied to such monomials and these coefficients are sets to
be considered as possibly infinite coefficients.

The simplest non trivial object of this model is 1 = {?},
the singleton set which can also be considered as a one-
dimensional space. A point (in the categorical sense) of this
object consists of ? equipped with a coefficient which is
a set. A morphism from 1 to 1 is a power series with
one parameter and sets as coefficients. In other words, it is
a set-valued function defined on pairs ([?, . . . , ?], ?) where
[?, . . . , ?] (a multiset made of a finite number of occurrences
of ?) should be considered as an exponent associated with
the formal indeterminate ?. In accordance with this power
series interpretation, there is a natural way of applying such
a morphism to a point of 1 (a set) to obtain a point of 1
(a set): such morphisms can be seen as “functions” or more
precisely as functors which can be characterized as those
which preserve directed colimits and pullbacks (called normal
functors by Girard). If the interpretation of a program of type
1 → 1 contains the pair ([?, ?, ?], ?), this means that it can
produce ? using ? three times. The coefficient of ([?, ?, ?], ?)

in this interpretation is much harder to interpret, and one of
the purposes of this paper is precisely to shed some light on
this issue, in the untyped case.

Fortunately, it is possible to build quantitative models,
similar to Girard’s quantitative model, but where coefficients
remain finite (see [Ehr05] for instance) and for this purpose,
one can use a probabilistic approach, as in the probabilistic
coherence spaces (PCS), introduced in [Gir04] and further
developed by the first author and Danos in [DE11]. In this
setting, an object X is a pair of a countable set X , called
web (the same set that interpret a type in the quantitative
setting), together with a subset P (X ) of (R+)X which obeys
a closure property defined by means of a probabilistic duality
(see Section III). Morphisms from X to Y can be seen as
Y -indexed families of power series with indeterminates in
X and coefficients in R+. At ground types, PCSs have a
direct probabilistic interpretation which is lost at higher type.
The web of the PCS I interpreting integers is the set of
natural numbers and P (I) is the set of all sub-probability
distributions of natural numbers. In [DE11], a clear operational
meaning is given to the elements of P (I). The authors define
a probabilistic extension of PCF and prove that every closed
term M of integer type is interpreted by a vector JMK ∈ P (I)
so that the coefficient JMKn associated with any natural
number n is equal to the probability that M converges to
the numeral n. This is a probabilistic version of Plotkin’s
Adequacy Theorem for the Scott semantics of PCF head-
reduction [Plo77]. At higher types, this operational intuition
is lost: the interpretations of terms are more complex than
probability distributions and scalars greater than 1 appear. A
model D of the untyped λ-calculus is also built in [DE11],
but no such computational interpretation is given: the goal of
this paper is to fulfill this gap.

The model D is built as the limit of a sequence {D`}`∈N
of PCSs, the first of which, D0, has an empty web. The
web of D1 is a singleton, and our main result (Theorem 22)
proves that, for any closed term M of a natural probabilistic
extension of the untyped λ-calculus, the probability that M
head-reduces to a head normal form is equal to the sum of the
scalars of its interpretation on the elements of the web of D2

(which is infinite but has a very simple structure). This is a
probabilistic refinement of the Adequacy Theorem for Scott’s
model D∞ according to which the semantics of an untyped
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λ-term is different from the bottom element iff its head-
reduction terminates [Hyl76]. Our proof adapts the Plotkin-
Reynolds logical relation approach to this quantitative setting
and follows a method introduced by Pitts [Pit], consisting in
building a relation of formal approximation which satisfies the
same recursive equation as D.

The setting in which D is built is quite different from
the category of Scott domains: our morphisms are power
series with non-negative real coefficients. Nevertheless, the
model D seems as canonical as Scott’s D∞: its construction
is direct and natural, it is obviously a reflexive object and
therefore a model of both β and η and, as we have shown,
it has a nice operational adequacy property. This indicates
that probabilistic lambda-calculi are interesting and expressive
languages whose theory should be further studied and whose
potential applications should be explored.

Related works

The standard approach to the semantics of probabilistic
languages is based on the use of powerdomains. In such
settings, types are interpreted by domains on which acts a
probabilistic powerdomain monad V . A probabilistic program
of type A → B is interpreted as a continuous function
JAK → V (JBK) which maps a value of A to a probability
distribution of values of B. In [Jon89], [JP89], Jones get
computational adequacy results in the typed and untyped cases
for call-by-value reduction. Our approach is different in that
we deal with much more concrete objects. They give rise
to continuous domains natively endowed with the structure
required for interpreting the probabilistic primitives of our
programming language (no powerdomain monad is needed).
Moreover, our morphisms are power series whereas, in the
powerdomain approach, morphisms are arbitrary continuous
maps, and this is another major difference. Finally, our model
is a semantics of classical linear logic.

Notations

We write N for the set of all natural numbers. We identify
multisets of elements of A with functions A → N. If m is
such a multiset, we write Supp (m) for its support set {a ∈
A s.t. m(a) 6= 0}. A finite multiset is a multiset with a finite
support. We writeMfin (A) for the set of all finite multisets of
elements of A. The empty multiset is [ ] and ] is the multiset
union: m ]m′(a) : =m(a) +m′(a).

Let J ⊆ I be sets of indexes. A vector x ∈ (R+)I is given
by its values xa on indexes a ∈ I . We denote by x|J the
restriction of x to J , which is a vector of (R+)J . For every
i ∈ I , let us denote ei ∈ (R+)I the sequence of non negative
real numbers equals to 0 everywhere but on the i-th index
where it is equal to 1.

II. PROBABILISTIC λ-CALCULUS

The set of probabilistic λ-terms is given by the following
grammar (with p ∈ [0, 1]):

Λ+ : M,N ::= ∗ | x | λx.M | (MN) |M +p N .

(λx.M)N 1−→M{N/x}

M +p N
p−→M M +p N

1−p−−→ N

M
p−→M ′

λx.M
p−→ λx.M ′

M
p−→M ′ M not abstraction

MN
p−→M ′N

Fig. 1. The head-reduction of Λ+.

∆M MM (λy.x)M x

(λy.y)M M

λy.x

λy.y

1
1
3 1

2
3

1

1
3

2
3

ΘM M(ΘM) (λy.x)(ΘM) x

(λy.y)(ΘM)

1 1
1
3 1

2
3

1

Fig. 2. Reduction trees of the terms ∆M and ΘM , with M = λy.x+ 1
3

λy.y.

The term ∗ is a constant, considered as a closed term. Although
it is used in the proofs, the main results (Section IV-B) still
hold without having ∗ in the syntax. Also, the proofs and
results of the sequel do not rely on p being a real and one can
impose that the probability p is rational. We adopt the usual
λ-calculus conventions as in [Bar84]. In particular, FV(M) is
the set of the variables having free occurrences in M , and Λ+

0

is the set of the closed terms. We use the following notation
for terms useful to build examples:

Θ = (λxy.y(xxy))(λxy.y(xxy)), ∆ = λx.xx, Ω = ∆∆.

We will consider only the head-reduction, i.e. the small step
operational semantics defined in Figure 1. The notation M

p→
N means that the term M reduces in one step to the term N
with probability p ∈ [0, 1]. As expected, the normal forms of
this strategy are the head normal forms, i.e. the terms of the
shape λx1 . . . x`.MN1 . . . Nn, with M either a variable or ∗
. The set of head normal forms is denoted by hnf , the letter
H will be ranged over hnf .

Figure 2 gives two examples of reduction tree. The reduction
is non-deterministic since there are two rules associated with
the random constructor. Remark that L +p N intuitively
expresses a superposition between L and N , rather than an
uncertain knowledge whether the term is L or N . Figure 2, for
example, shows that ∆(λy.x+ 1

3
λy.y) reduces to λy.x (with

probability 2
9 ), in which case the random term λy.x+ 1

3
λy.y

behaves once as λy.y and once as λy.x.
We are interested in the probability that a given term reduces

to a given head normal form after an arbitrary large (but finite)
number of reduction steps. Computing such a probability
is not trivial because of the presence of non-normalizing
terms. For example, the probability that Θ(λy.x + 1

3
λy.y)
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reduces to x must be, intuitively, the limit of 1
3

∑∞
n=0

2n

3n

(see Figure 2). In order to make precise such an intuition,
we present the head-reduction as a Markov process over the
set Λ+, following [DE11].

We consider the set Λ+ as a set of states and the transition
matrix Red ∈ [0, 1]Λ

+×Λ+

given by the following:

RedM,N : =



∑
π∈ΠM,N

pπ,

where ΠM,N is the set of
derivations π of M

pπ→ N
according to Figure 1

1
if M = N is a head normal
form,

0 otherwise.

Notice that, fixed M and N , ΠM,N has at most two elements,
as for example in the case M = N +pN . Red is a stochastic
matrix (i.e. for all terms M ,

∑
N∈Λ+ RedM,N = 1), the value

of RedM,N intuitively describes the probability of evolving
from the state M to the state N in one step.

A term M is absorbing whenever RedM,M = 1: the absorb-
ing states are those which are invariant under the transition
matrix. Notice that the head normal forms are all absorbing,
but there are absorbing terms which are not hnf , such as Ω.

The n-th power Redn of the matrix Red is a stochastic
matrix on Λ+ (in case n = 0, we have the identity matrix
on Λ+). Intuitively, the value of RednM,N is the probability of
evolving from the state M to the state N in exactly n steps.

Proposition 1 ([DE11, Lemma 32]). Let M ∈ Λ+ and H
absorbing, the sequence {RednM,H}n∈N is monotonic.

We thus define the following matrix in [0, 1]Λ
+×hnf :

Red∞M,H : =
∞

sup
n=0

(RednM,H) (1)

Intuitively, Red∞M,H defines the probability that M reaches
a head normal form H in an arbitrary number of steps. In
particular, recalling the first example in Figure 2, we have
Redn∆M,x = 1

3 if n ≥ 3, otherwise it is 0, so Red∞∆M,x = 1
3 .

As for the second example, RednΘM,x = 1
3

∑k
i=0

(
2
3

)i
, for

4(k + 1) ≤ n < 4(k + 2), hence Red∞ΘM,x = 1.
In general, notice that we always have Red∞M,H ≤ 1, for

any M,H . The following lemma gathers all the syntactical
properties we need in the sequel.

Lemma 2. For all M,M ′ ∈ Λ+, p ∈ [0, 1],

1) if M
p→M ′, then ∀L ∈ Λ+,M{L/x} p→M ′{L/x};

2) ∀H ∈ hnf , Red∞M,H =
∑
N∈Λ+ RedM,N Red∞N,H ;

3) if M 1→ M ′, then ∀H ∈ hnf,∀L0, . . . , Ln−1 ∈ Λ+,
Red∞ML0...Ln−1,H = Red∞M ′L0...Ln−1,H ;

4)
∑
H∈hnf Red∞M,H =

∑
H∈hnf Red∞M∗,H .

Proof: 1. By induction on a derivation of M
p→M ′.

2. By definition of Red∞, we have Red∞M,H =

sup{Red0
M,H ,

∑
N∈Λ+ RedM,N Red∞N,H}. If M 6= H , the

first quantity is 0 (so the sup is the second quantity); if
M = H , both quantities are 1, since H is absorbing.

3. By induction on n. The base case is when
n = 0 or M is not an abstraction, in this case
ML0 . . . Ln−1

1→ M ′L0 . . . Ln−1, and the claim follows
by item 2. Otherwise, M = λz.N , then M ′ = λz.N ′

with N 1→ N ′. By item 1, N{L0/z} 1→ N ′{L0/z},
hence by induction hypothesis Red∞N{L0/z}L1...Ln−1,H =
Red∞N ′{L0/z}L1...Ln−1,H . We conclude since by item
2, Red∞ML0L1...Ln−1,H = Red∞N{L0/z}L1...Ln−1,H and
Red∞M ′L0L1...Ln−1,H = Red∞N ′{L0/z}L1...Ln−1,H .

4. One splits depending whether or not M is an abstraction.
If M is not an abstraction, then one proves, by induction on n,
that

∑
H∈hnf RednM,H =

∑
H∈hnf RednM∗,H , from which the

claim follows. The base case is a consequence of: M ∈ hnf iff
M∗ ∈ hnf; the induction step is a consequence of: M

p→M ′

iff M∗ p→M ′∗.
If M = λz.N , one proves

∑
H∈hnf Rednλz.N,H =∑

H∈hnf RednN{∗/z},H , by induction on n. This equality en-
tails

∑
H∈hnf Red∞λz.N,H =

∑
H∈hnf Red∞N{∗/z},H , and we

conclude since Red∞(λz.N)∗,H = Red∞N{∗/z},H by item 2. The
base case of the induction is a consequence of: λz.N ∈ hnf iff
N{∗/z} ∈ hnf; the induction step follows from: λz.N

p→M ′

iff M ′ = λz.N ′ and N{∗/z} p→ N ′{∗/z}.

III. PROBABILISTIC COHERENCE SPACES

In order to be self-contained, we shortly recall the notions
and results of [DE11], but omit the proofs. After presenting
the probabilistic coherence spaces, we sketch how they yield
a model of linear logic (Section III-A) and of pure λ-calculus
(Section III-B and III-C).

Let I be a set, for any x, y ∈ (R+)I , the pairing is defined
as usual

〈x, y〉 : =
∑
i∈I

xi yi ∈ R+ ∪ {∞}. (2)

Given a set P ⊆ (R+)I we define P⊥, the orthogonal of
P, as

P⊥ : ={y ∈ (R+)I | ∀x ∈ P 〈x, y〉≤ 1}. (3)

Polar satisfies the following immediate properties: P ⊆
P⊥⊥, if P ⊆ Q then Q⊥ ⊆ P⊥, and then P⊥ = P⊥⊥⊥.

Probabilistic coherence spaces are built around the notion of
the interaction between programs and environments. Roughly
speaking, both of them are interpreted as vectors in (R+)I , for
a suitable index set I , and their pairing gives a quantitative es-
timation of their interaction. The orthogonal operation is there
to express the duality between programs and environments: its
definition is such that the pairing between a vector associated
with a program and a vector associated with an environment
takes value in [0, 1], expressing the probability that the two
succeed in interacting.

Definition 3 ([Gir04], [DE11]). A probabilistic coherence
space, or PCS for short, is a pair X = (|X | ,P (X )) where
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|X | is a countable set called the web of X and P (X ) is a
subset of (R+)|X | such that the following holds:

closedness: P (X )
⊥⊥

= P (X ),
boundedness: ∀a ∈ |X |, ∃µ > 0, ∀x ∈ P (X ), xa ≤ µ,
completeness: ∀a ∈ |X |, ∃λ > 0, λea ∈ P (X ).
The dual of a PCS X is defined by X⊥ : =(|X | ,P (X )

⊥
).

Where recall that ea is the base vector for a: (ea)b : = δa,b,
with δ denoting the Kronecker delta. The boundedness con-
dition requires the projection of P (X ) in any direction to
be bounded, while completeness sets P (X ) to cover every
direction. They have been introduced in [DE11] for keeping
finite all the real numbers involved; they are not explicitly
stated in the definition of PCS in [Gir04].

Notice that we do not require P (X ) ⊆ [0, 1]|X |, we shall
understand why with the exponential construction.

It will be useful to consider (R+ ∪ {∞})|X | as a partially
ordered set, with the pointwise order:

x ≤ y : =∀a ∈ |X | , xa ≤ ya, (4)

with the lub of a set P ⊆ (R+ ∪ {∞})|X | given pointwise:
∀a ∈ |X |, (supP )a : = supx∈P xa.

Proposition 4 ([DE11, Section 1.3]). For any PCS X , P (X )
is downward closed (x ≤ y ∈ P (X ) ⇒ x ∈ P (X )) and
complete (if D ⊆ P (X ) is directed, then supD ∈ P (X )).

A. Pcoh is a Model of Linear Logic

We sketch the category Pcoh, showing that it yields a model
of linear logic [Gir87], and then the cartesian closed category
Pcoh! given by the cokleisly construction associated with the
exponential comonad in Pcoh.

The objects of Pcoh are the PCSs and the set Pcoh(X ,Y)
of morphisms from X to Y is the set of those matrices
u ∈ (R+)|X |×|Y| such that ∀x ∈ P (X ), u · x ∈ P (Y),
where u · x is the usual matricial product: ∀b ∈ |Y|,
(u · x)b : =

∑
a∈|X| ua,bxa.

The identity idX on X is defined as the diagonal matrix
given by (idX )a,a′ = δa,a′ . The composition of morphisms is
the matrix multiplication: (u ◦ v)a,c =

∑
b∈|Y| va,bub,c, where

v ∈ Pcoh(X ,Y), u ∈ Pcoh(Y,Z), and a ∈ |X |, c ∈ |Z|. Such
a sum converges in R+ since u and v are Pcoh morphisms.

1) ∗-autonomous structure: The bifunctor ⊗ : Pcoh ×
Pcoh→ Pcoh is defined by

|X ⊗ Y| : = |X | × |Y| ,
P (X ⊗ Y) : ={x⊗ y s.t. x ∈ P (X ), y ∈ P (Y)}⊥⊥,

where (x⊗ y)a,b : =xayb, for a ∈ |X | and b ∈ |Y|.
The action of ⊗ on morphisms u ∈ Pcoh(X ,Y) and v ∈

Pcoh(X ′,Y ′) is defined by (u⊗v)(a,a′),(b,b′) : =ua,bva′,b′ , for
(a, a′) ∈ |X ⊗ X ′|, (b, b′) ∈ |Y ⊗ Y ′|. The unity of ⊗ is given
by the singleton web PCS 1 : =({?}, [0, 1]{?}).

The object of linear morphisms X ( Y is defined as

|X ( Y| : = |X | × |Y| ,
P (X ( Y) : = Pcoh(X ,Y).

One proves that X ( Y is a PCS by checking X ( Y =
(X⊥⊗Y)⊥. The evaluation morphism ev ∈ Pcoh(X ⊗ (X (
Y),Y) is given by ev(a,(a′,b)),b′ = δa,a′δb,b′ .

Last, the dualizing object ⊥ is defined as the dual of 1
which is indeed equal to 1: ⊥ : = 1⊥ = 1.

2) Cartesian structure: Pcoh admits the cartesian product
of any countable family (Xi)i∈I of PCSs, defined by

|&i∈IXi| : =∪i∈I({i} × |Xi|),

P (&i∈IXi) : =

{
x ∈ (R+)|&i∈IXi| s.t.

∀i ∈ I,
πi(x) ∈ P (Xi)

}
.

where πi(x) is the vector in (R+)|Xi| denoting the i-th
component of x, i.e. πi(x)a : =x(i,a). The j-th projection
prj ∈ Pcoh(&i∈IXi,Xj) is defined by prj(i,a),b : = δi,jδa,b.

Notice that the empty product yields the terminal object
of Pcoh. We may write A1 & A2 for the binary product:
in the sequel, we can present any x ∈ P (A1 &A2) as the
pair (π1(x), π2(x)) ∈ P (A1) × P (A2) of its components.
When Xi is equal to X for each i ∈ I , we may write
the product &i∈IXi by X I . In particular, XN denotes the
product over natural number indexes: it will play a crucial role
in the construction of our model of pure λ-calculus. Given
v ∈ P (X ), u ∈ P

(
XN), we denote by v :: u the vector in

P
(
XN) defined by π0(v :: u) = v and πn+1(v :: u) = πn(u).

3) Exponential structure: The functorial promotion ! :
Pcoh→ Pcoh is defined on objects by

|!X| : =Mfin (|X |) ,
P (!X ) : ={x! s.t. x ∈ P (X )}⊥⊥,

where x! is the vector of (R+)Mfin(|X |) defined by
x!
m : =

∏
a∈Supp(m) x

m(a)
a , for any m ∈Mfin (|X |).

The action of ! on a morphism t ∈ Pcoh(X ,Y) is defined
by, for any m ∈ |!X|, p ∈ |!Y|,

(!t)m,p : =
∑

r∈L(m,p)

[
p

r

]( ∏
(a,b)∈Supp(r)

t
r(a,b)
a,b

)
where L(m, p) is the set of multisets over |X |×|Y| whose first
projection is m and whose second projection is p (occurrences
do matter) and where[

p

r

]
: =

∏
b∈Supp(p)

p(b)!∏
a s.t. (a,b)∈Supp(r) r(a, b)!

is the number1 of ways of associating the elements of p to the
elements of m in order to get r. Let us underline that such a
coefficient introduces scalars greater than 1. As an example,
let B : =(1 & 1)⊥ and call t, f the only two elements of its
web. Notice that P (B) = {x ∈ (R+){t,f} s.t. xt + xf ≤ 1}.
Consider t ∈ (R+)|B|×|1| defined by tt,∗ = tf,∗ = 1. Notice
t ∈ Pcoh(B, 1), hence !t ∈ Pcoh(!B, !1). We have !t[t,f],[∗,∗] =

1On a side note, note the asymmetry between p and m: if m = [a, b],
p = [c, c], then L(m, p) has exactly one element, [(a, c), (b, c)], and the
number of ways of getting it is

[ p
[(a,c),(b,c)]

]
= 2, while, inverting p and m,

we have that L(p,m) has always one element, [(c, a), (c, b)], but the number
of ways of getting it is

[ m
[(c,a),(c,b)]

]
= 1.
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[
[∗,∗]

[(t,∗),(f,∗)]
]
tt,∗tf,∗ = 2. This shows why, in the definition of a

PCS, one should take the scalars in R+ instead of restricting
to [0, 1].

Let us underline that adding the coefficient
[
p
r

]
in the

definition of !t is crucial for ! to be a functor, in fact for having
the commutation with the composition (see [DE11, Sect. 1.6]).

The functorial promotion is equipped with a structure
of comonad. The counit (also called dereliction) is dX ∈
Pcoh(!X ,X ) given by dXm,a = δm,[a]. The comultiplication
(also called digging) is pX ∈ Pcoh(!X , !!X ) given by pXm,M =
δm,

⊎
M , where

⊎
M is the multiset in |!X| obtained as the

multiset union of the multisets in M ∈ |!!X|.
4) The coKleisli category Pcoh!: It is induced by the

comonad associated with the functorial promotion. The objects
of Pcoh! are the PCSs and the set of morphisms Pcoh!(X ,Y)
is equal to Pcoh(!X ,Y).

The identity IdX on X is the dereliction dX , while the
composition u ◦! v of two morphisms v ∈ Pcoh!(X ,Y),
u ∈ Pcoh!(Y,Z) is defined by u ◦! v : =u ◦ !v ◦ pX .

As it is known [Gir87], the monoidal closedness of Pcoh
is lifted to a cartesian closedness in Pcoh! by Girard’s
isomorphism between !(A & B) and !A ⊗ !B. The prod-
uct of a countable family (Xi)i∈I is the PCS &i∈IXi en-
dowed with the projections Prj ∈ Pcoh!(&i∈IXi,Xj) de-
fined by Prj : = prj ◦ d&i∈IXi . The object of the cokliesli
morphisms from X to Y is X ⇒ Y : = !X ( Y , the
evaluation Ev ∈ Pcoh!((X ⇒ Y) & X ,Y) is defined by
Ev(m,p),a : = δm,[(p,a)] and the curryfication of a morphism
v ∈ Pcoh!(X & Z,Y) is Cur(v) ∈ Pcoh!(Z,X ⇒ Y)
defined by Cur(v)m,(p,a) : = v(p,m),a. Notice that in both Ev
and Cur(v) we are using Girard’s isomorphism.

We introduce now entire functions which yield an alternative
description of coKleisli morphisms.

Definition 5. A function f : P (X ) → P (Y) is called entire
whenever there exists a matrix Tr(f) ∈ (R+)Mfin(|X |)×|Y | such
that f(x) = Tr(f) · x!, for every x ∈ P (X ).

The name is justified by the analogy with the entire series:
the explicit definition of Tr(f) · x! is indeed a power series
with coefficients in R+:

∀b ∈ |Y| , f(x)b =
∑

m∈|!X|

Tr(f)m,b
∏

a∈Supp(m)

xm(a)
a .

The notation Tr(f) is due to the analogue with the trace of a
stable function in Girard’s coherence spaces [Gir87]. In fact,
entire functions and coKleisli morphisms coincide: on the one
hand, we have Tr(f) ∈ Pcoh(!X ( Y) [DE11, Lemma 12],
on the other hand, the matrix defining an entire function is
unique [DE11, Lemma 19].

Proposition 6. For any X , Y , Tr is a bijection between the
entire functions from P (X ) to P (Y) and the matrices in
Pcoh(!X ( Y). Moreover, Tr(g ◦ f) = Tr(g) ◦! Tr(f) for
every f : P (X )→ P (Y) and g : P (Y)→ P (Z) entire.

This means that any morphism in Pcoh!(X ,Y) can be
identified with the associated entire function from P (X ) to

P (Y), and this identification is compatible with composition.
Thus, in the sequel we will give a morphism in Pcoh!(X ,Y)
either as a matrix in Pcoh(!X ( Y) or as a composition
of entire maps. As an example, let us describe the eval-
uation and curryfication, above defined by their matrix, as
composition of entire functions. The evaluation morphism
Ev : P ((X ⇒ Y) & X ) → P (Y) is the function such that
Ev(f, x) = f(x) for any (f, x) ∈ P (X ⇒ Y) × P (X ) '
P ((X ⇒ Y) & X ). Given an entire f : P (X & Z) → P (Y),
its curryfication Cur(f) : P (Z) → P (X ⇒ Y) is given by
Cur(f)(z)(x) = f(x, z) for x ∈ P (X ), z ∈ P (Z).

B. A Reflexive Object in Pcoh

We describe a reflexive object (D, λ, app) of Pcoh!, giving
rise to an extensional model of Λ+. This means that D is a
PCS, the pair made of λ ∈ Pcoh!(D ⇒ D,D) and app ∈
Pcoh!(D,D ⇒ D) is an isomorphism, i.e. app ◦! λ = IdD⇒D

and λ ◦! app = IdD.
1) The object D: The PCS D is defined in Figure 3. It

is obtained by iterating the operation X 7→
(
!XN)⊥ starting

from the empty-web PCS D0 : =(∅,0). More precisely, notice
|D`+1| =

∣∣(!DN
`

)∣∣. So 〈v, u!〉 is well-defined for any v ∈
(R+)|D

`+1| and u ∈ P
(
DN
`

)
, as the vector u! is in P

(
!DN
`

)
.

Besides, by definition P (D`+1) =
{
u! s.t. u ∈ P

(
DN
`

)}⊥
={

u! s.t. u ∈ P
(
DN
`

)}⊥⊥⊥
= P

(
(!DN

` )⊥
)
. So we get that

D`+1 =
(
!DN
`

)⊥
, hence D`+1 is a PCS.

In [DE11, Sect. 2], D is shown to be the lub of {D`}`∈N,
an increasing chain with respect to the following order:

X ⊆ Y ⇔
{
|X | ⊆ |Y| ,
P (X ) = {v||X | s.t. v ∈ P (Y)}.

Moreover, the operation X 7→
(
!XN)⊥ is Scott continuous

(i.e. monotone and preserving directed lub), hence D is its
least fixed point by Kleene-Tarski Theorem [Tar55].

2) The isomorphism pair λ and app: Let us introduce a
convenient notation. Let m ∈ |!D`| = Mfin (|D`|) and d ∈
|D`+1| =Mfin (∪n∈N{n} × |D`|), we set:

m :: d : =[(0, c) s.t. c ∈ m] ] [(n+ 1, c) s.t. (n, c) ∈ d] (5)

Notice that m :: d ∈ D`+1. Conversely, for any point in
d ∈ D`+1 there is a unique m ∈ |!D`|, potentially empty, and
d′ ∈ |D`+1| such that d = m :: d′ .

The empty multiset is a remarkable element of |D| that we
denote ?. In particular, we have ? = [ ] :: ?. This notation
underlines an isomorphism2 between the webs of D and D ⇒
D, that is Mfin (|D|)× |D|.

2As described in [BEM], Equation (5) defines an isomorphism between
Mfin (∪n∈N{n} × |D`|) and the setMfin (|D`|)(ω) of the infinite sequences
of finite multisets of |D`| almost everywhere empty. In fact, for every d ∈
D`+1 there are a unique number k and multisets m0, . . . ,mk−1 ∈ |!D`|
such that mk−1 6= [ ], and d = m0 :: . . .mk :: [ ]. Then, d is associated with
the sequence having the first k elements respectively equal to m0, . . . ,mk−1

and all the other elements equal to the empty multiset. This isomorphism
justifies the notation of m :: d as an append operation and extends into an
isomorphism between Mfin (∪n∈N{n} × |D|) and Mfin (|D|)(ω).
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|D0| : = ∅ P (D0) : = 0

|D`+1| : =Mfin (∪n∈N{n} × |D`|) P (D`+1) : =
{

v ∈ (R+)|D`+1| s.t. ∀u ∈ P
(
DN
`

)
, 〈v, u!〉≤ 1

}
|D| : =

⋃
`∈N
|D`| P (D) : =

{
v ∈ (R+)|D| s.t. ∀` ∈ N,∀u ∈ P

(
DN
`

)
, 〈v||D`+1|, u

!〉≤ 1
}

Fig. 3. Definition of D as the least fixpoint of the operation X 7→ (!XN)⊥. Recall the notation v||D`+1| ∈ (R+)|D`+1| obtained by restricting v ∈ (R+)|D|

to the indexes |D`+1| ⊆ |D|.

We set λ ∈ Pcoh!(D ⇒ D,D) and app ∈ Pcoh!(D,D ⇒
D) as follows: for any p ∈ Mfin (|D ⇒ D|), m, q ∈
Mfin (|D|), and d ∈ |D|,

λp,m::c : = δp,[(m,d)], appq,(m,d) : = δq,[m::d].

An easy computation shows that app ◦! λ = IdD⇒D and
λ ◦! app = IdD, so that (D, λ, app) yields an extensional
model of pure λ-calculus.

3) Properties of (D, λ, app): It is significant that D satisfies
two different recursive equations: X = (!XN)⊥ and X = X ⇒
X . The first gives the construction of D and, in fact, D is its
minimal solution (with respect to ⊆). The second equation
is needed to interpret the pure λ-calculus, however D is not
its minimal solution, since the empty-web PCS D0 trivially
satisfies D0 = D0 ⇒ D0.

Remark that D is isomorphic to DN ⇒ ⊥. In fact, if
P (D) is meant to contain the denotations of terms, the vectors
in P

(
DN) morally express infinite stacks of terms, whose

promotion play the role of the environments.
Our main result will give a computational meaning to the

values of the vectors in P (D) associated with the indexes
in |D2|. By means of the notations introduced in Subsec-
tion III-B2, we have |D1| = {?} and

|D2| =
{
m0 :: · · · :: mk :: ? s.t. k ∈ N,∀i ≤ k,

mi = [?, . . . , ?] ∈Mfin (|D1|)

}
.

C. Interpretation of the Terms of Λ+

The closed terms of Λ+ are interpreted as vectors in P (D).
In the general case, given a term M and a list Γ of pairwise
different variables containing all the free variables of M , the
interpretation of M is a morphism JMKΓ ∈ Pcoh!(DΓ,D),
which can be seen as an entire function:

JMKΓ : P
(
DΓ
)
→ P (D) .

The definition of JMKΓ is given in Figure 4, by structural
induction on M . Using the notation of that figure, we recall
that πx(v) ∈ P (D) is the x-th component of v ∈ P

(
DΓ
)
,

for x ∈ Γ. Also, recall the writing u :: v denotes the vector
in P

(
Dx,Γ

)
whose x-th component is u ∈ P (D) and whose

components in Γ are given by v ∈ P
(
DΓ
)
. Finally, u 7→

JMKx,Γ(u :: v) denotes the entire function mapping any u ∈
P (D) to JMKx,Γ(u :: v) ∈ P (D). We will simply write JMK
in case M is a closed term.

Notice that ∗ is interpreted by the basis vector e? in the
direction of the empty multiset ? ∈ |D|, and +p is interpreted

J∗KΓ(v) : = e?

JxKΓ(v) : =πx(v)

Jλx.MKΓ(v) : =λ
(
u 7→ JMKx,Γ(u :: v)

)
JMNKΓ(v) : = app

(
JMKΓ(v)

)
(JNKΓ(v))

JM +p NKΓ(v) : = pJMKΓ(v) + (1− p)JNKΓ(v)

Fig. 4. Interpretation of a term in Λ+ as an entire function from P
(
DΓ
)

to P (D).

by the p-weighted sum. Apart from these, the interpretation
follows the one determined by the categorical model of the
pure λ-calculus given by the cartesian closed structure of the
category Pcoh! and the reflexive object (D, λ, app) . More
precisely, JxKΓ is the x-th projection of the product DΓ,

J λx.MKΓ (v) = λ ◦! Cur
(
JMKx,Γ

)
◦! v and JMNKΓ (v) =

Ev ◦!
(
app ◦!

(
JMKΓ ◦! v

)
, JNKΓ ◦! v

)
.

Proposition 7 (Invariance of the intepretation). For every term
M ∈ Λ+, and sequence Γ ⊇ FV(M), we have:

JMKΓ =
∑
N∈Λ+

RedM,N JNKΓ.

Proof: It is a standard structural induction on M . The
case M = (λx.N)L is achieved by means of the substitution
lemma JN [L/x]KΓ(v) = JNKx,Γ(JLKΓ(v), v), inferred by a
straightforward structural induction.

IV. THE ADEQUACY OF D FOR Λ+

Our goal is to achieve Theorem 22: the probability that a
closed term M reaches a head normal form is equal to the
sum of the values of JMK on the points of |D2|. First, we
prove

∑
d∈|D2|JMKd ≥

∑
H∈hnf Red∞M,H (Proposition 11).

This result is an easy consequence of the invariance of the
interpretation under head-reduction (Proposition 7) and of the
fact that

∑
d∈|D2|JMKd = 1 whenever M is a head normal

form (Lemma 10). Then, we turn to the converse inequality,∑
d∈|D2|JMKd ≤

∑
H∈hnf Red∞M,H . Its proof is by far more

delicate. In fact it corresponds to a quantitative version of
the sensibility of Scott’s model with respect to the standard
λ-calculus [Hyl76]: a λ-term with no head normal form is
interpreted by the bottom element of the model. The inequality
will be proved in Section IV-A, using a notion of formal
approximation relating the syntactical behavior of the closed
terms in Λ+ with their denotations in D.
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The next two lemmas are preliminary to the whole section.
Lemma 8 precises the intuition about pairing and orthogonal
we gave in the introduction to probabilistic coherence spaces
(Section III). Recall that the interpretration of a term M is a
vector JMK in P (D) and the interpretration of an environment
intended as an infinite stack of terms is a vector u in P

(
DN).

Then, the interaction of a term and an environment is given
by pairing and promotion: 〈JMK, u!〉. We recall the notation
of Section III-A2: if r ∈ P (D) and u ∈ P

(
DN), r :: u

is the vector in P
(
DN) defined by π0(r :: u) = r and

πn+1(r :: u) = πn(u).

Lemma 8. For every v, r ∈ P (D) and u ∈ P
(
DN),

〈app(v)(r), u!〉=〈v, (r :: u)!〉 .

Proof: Just by definition, we have
〈app(v)(r), u!〉=

∑
d∈|D|(app(v)(r))d(u

!)d =∑
d∈|D|

(∑
m∈|!D| vm::dr

!
m

)
(u!)d. This last is equal to∑

m::d∈|D| vm::d(r :: u)!
m::d =〈v, (r :: u)!〉 because of the

isomorphism between |D ⇒ D| and |D|.
Lemma 9 states that

∑
d∈|D2|JMKd estimates the behavior

of M when applied to an infinite stack made of ∗ terms. We
will denote e~? the vector of P

(
DN) that embodied this stack.

It is defined by, for every i ∈ N, πi(e~?) = e? ∈ P (D). Notice
e~? = e? :: e~?.

Lemma 9. The vector (e~?)
! is in P

(
D⊥
)
. Besides, for any

v ∈ P (D),
∑
d∈|D2| vd =〈v, (e~?)!〉≤ 1.

Proof: Since e~? ∈ P
(
DN), (e~?)

! ∈ P
(
!(DN)

)
= P

(
D⊥
)
.

From the description of |D2| (Subsection III-B3), we get
(e~?)

!
d = 1 if d ∈ |D2|, otherwise it is equal to 0. Then we

have,
∑
d∈|D2| vd =

∑
d∈|D| vd(e~?)

!
d =〈v, (e~?)!〉≤ 1, since

v ∈ P (D) and (e~?)
! ∈ P

(
D⊥
)
.

Lemma 10. Let M ∈ Λ+
0 . If M is a head normal form, then∑

d∈|D2|JMKd = 1.

Proof: By Lemma 9, the claim is equivalent to
〈JMK, (e~?)!〉= 1, for a closed head normal form M . By
definition, M is of the shape λx1 . . . λx`.HM1 . . .Mm,
where H is either ∗ or a variable in {x1, . . . , x`}.
Since e~? = e? :: e~?, we can apply the equation of
Lemma 8 from right-to-left, using the interpretation of
Figure 4 and the retraction property app ◦! λ = Id,
we have 〈JMK, (e~?)!〉=〈JHM1 . . .MmKΓ(e`?), (e~?)

!〉,
where Γ = (x1, . . . , x`) and e`? denotes the sequence
of ` vectors e?. Then, by unfolding the interpretation
of applications, we get JHM1 . . .MmKΓ(e`?) =

app
(
. . . app(e?)

(
JM1KΓ(e`?)

)
. . .
)(

JMmKΓ(e`?)
)
. Finally,

a computation gives app(e?)(u) = e? for any u ∈ D, hence
〈JMK, (e~?)!〉=〈e?, (e~?)!〉= 1.

Proposition 11. Let M ∈ Λ+
0 , we have

∑
d∈|D2|JMKd ≥∑

H∈hnf Red∞M,H .

Proof: The proof is made in two steps: first, we prove by
induction on n that

∑
d∈|D2|JMKd ≥

∑
H∈hnf RednM,H ,

then, the result follows from
∑
H∈hnf Red∞M,H =∑

H∈hnf

(
sup∞n=0 RednM,H

)
= sup∞n=0

(∑
H∈hnf RednM,H

)
that holds since RednM,H is an increasing positive sequence
by Proposition 1.

For the base case, recall that
∑
H∈hnf RednM,H ≤ 1 always

holds, since Redn is a stochastic matrix for every n ∈ N.
Now,

∑
H∈hnf Red0

M,H is different from zero only when M
is in head normal form. But then, thanks to Lemma 10,∑
d∈|D2|JMKd = 1 and we are done.
For the induction step, Proposition 7 restricted to |D2| yields

to
∑
d∈|D2|JMKd =

∑
N∈Λ+

0
RedM,N

(∑
d∈|D2|JNKd

)
. By

induction hypothesis,
∑
d∈|D2|JNKd ≥

∑
H∈hnf RednN,H

for every N ∈ Λ+
0 . Hence

∑
d∈|D2|JMKd ≥∑

H∈hnf

∑
N∈Λ+

0
RedM,N RednN,H , and we conclude

since by definition Redn+1
M,H : =

∑
N∈Λ+ RedM,N RednN,H .

A. Formal Approximation

The goal is to prove the converse of Proposition 11. This
follows easily from Lemma 21. We adapt the technique of
logical relations (see e.g. [Plo77], [Rey]) to our quantitive
framework. The idea is to find a relation C between vectors
and terms relating the values of the firsts to the computational
behavior of the seconds. Basically, one extends the operation
on PCSs defining D to an operation Φ acting on the relations
in P (D) × Λ+

0 (Definition 12). Then, C is the result of the
closure by Φ of the relation between v and M defined by∑
d∈|D2| vd ≤

∑
H∈hnf Red∞M,H . However, the operation Φ

is not monotonic, hence finding its closure is not trivial. We
then use a technique due to Pitts [Pit], consisting in deriving
C from a fixed point of a monotonic operation Ψ (Definition
13, Proposition 16) associated with Φ.

Definition 12. For any relation R ⊆ P (D) × Λ+
0 , we define

the relation Φ(R) ⊆ P (D)× Λ+
0 as follows:

(v,M) s.t. ∀u ∈ P
(
DN) ,∀n ∈ N,

∀N0, . . . , Nn−1 ∈ Λ+
0

if ∀i < n, (πi(u), Ni) ∈ R and
if ∀i ≥ n, πi(u) = e?, then
〈v, u!〉≤

∑
H∈hnf Red∞(MN0...Nn−1),H


Let us underline the analogy3 between Φ and the opera-

tion X 7→ (!XN)⊥ defining our reflexive object D. Indeed,
P
(
(!XN)⊥

)
is the set of those vectors v ∈ (R+)|!X

N| such
that for all u ∈ (R+)|X

N|, if for every i ∈ N, πi(u) ∈ P (X ),
then 〈v, u!〉≤ 1.

By e~? ∈ P
(
DN) and Lemma 9, (v,M) ∈ Φ(R) entails∑

d∈|D2| vd 〈v, (e~?)
!〉≤

∑
H∈hnf Red∞M,H . Indeed, we will

3The only slight difference between the action of Φ and that of X 7→
(!XN)⊥ is that the former asks to test the pairs (πi(u), Ni) only for
a finite set of indexes, then requiring πi(u) = e?. This difference is a
technical convenience: one could define Φ by testing an infinite family of
pairs (πi(u), Ni) and then studying a kind of abstract machine implementing
the head-reduction of the application of M to the infinite stack of terms
N0, N1, . . . . Then, it turns out that

∑
H∈hnf Red∞(MN0...Nn−1),H is equal

to the probability of the termination of such a machine when run on the stack
N0, . . . , Nn−1, ∗, ∗, ∗, . . . .
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define a relation C such that (JMK,M) ∈ Φ(R) for any
M ∈ Λ+

0 . The relation C is in fact a fixed point for Φ.

Definition 13. Given a pair (R+, R−) ∈
(
P(D × Λ+

0 )
)2

,
let Ψ(R+, R−) : =(Φ(R−),Φ(R+)) ∈

(
P(D × Λ+

0 )
)2

. The
order v on

(
P(D × Λ+

0 )
)2

is (R1, R2) v (R3, R4) iff
R1 ⊆ R3 and R2 ⊇ R4. Clearly, v defines a complete
lattice on

(
P(D × Λ+

0 )
)2

. We denote by
d

its glb and we
consider the glb of the set of the pre-fixed points of Ψ:
(C+,C−) : =

d
{(R+, R−) s.t. Ψ(R+, R−) v (R+, R−)}

Lemma 14. We have Ψ(C+,C−) = (C+,C−). In particular,
C+ = Φ(C−) and C− = Φ(C+).

Proof: As R ⊆ R′ entails Φ(R′) ⊆ Φ(R), Ψ is monotone
increasing with respect to v. Hence, by Tarski’s Theorem on
fixed points [Tar55] the glb of the set of the pre-fixed points
of Ψ is the least fixed point of Ψ. In particular, by definition
of Ψ, Φ(C+) = C− and Φ(C−) = C+.

Proposition 16 shows that actually C+ = C−, so this is a
fixed point for Φ. The inclusion C+ ⊆ C− follows easily from
the previous lemma, while the proof of the converse C− ⊆ C+

uses the approximations of the vectors in P (D) given by the
chain {D`}`∈N of which D is the limit. The following lemma
is needed in the proof of Proposition 16.

Lemma 15. For any relation R ⊆ P (D)×Λ+
0 and any term

M ∈ Λ+
0 , the set Φ(R)M : ={v s.t. (v,M) ∈ Φ(R)} contains

0, is downward and chain closed, i.e. if v′ ≤ v ∈ Φ(R)M ,
then v′ ∈ Φ(R)M and if (vj)j∈N ⊆ φ(R)M is an increasing
family, then supj∈N vj ∈ φ(R)M .

Proof: First, 0 ∈ Φ(R)M : by the linearity of the pairing,
〈0, u!〉= 0 ≤

∑
H∈hnf Red∞(MN0...Nn−1),H . Then, (v,M) ∈

Φ(R) gives (v′,M) ∈ Φ(R): indeed, being coefficients
positive reals, for any v′ ≤ v, 〈v′, u!〉≤〈v, u!〉.

As for the sup-closedness, suppose (vj)j∈N ⊆ Φ(R)M
is increasing, then, by Proposition 4, we have supj∈N vj ∈
P (D). By Definition 12, we must also prove that ∀u ∈
P
(
DN), ∀n ∈ N, ∀N0, . . . , Nn−1, such that ∀i < n,

(πi(u), Ni) ∈ R and ∀i ≥ n, πi(u) = e?, we have
〈supj∈N vj , u

!〉≤
∑
H∈hnf Red∞(MN0...Nn−1),H . By hypothe-

sis, 〈vj , u!〉≤
∑
H∈hnf Red∞(MN0...Nn−1),H , for every j. Since

(vj)j∈N is increasing and all coefficients are positive re-
als, its lub is also its limit, hence we get 〈supj∈N vj , u

!〉=
supj∈N 〈vj , u!〉≤

∑
H∈hnf Red∞(MN0...Nn−1),H .

Proposition 16. We have C+ = C−, which is then a fixed
point of Φ. From now on, we denote it simply by C.

Proof: We prove C+ ⊆ C−. Remark that (C−,C+) is
a pre-fixed point of Ψ, i.e. Ψ(C−,C+) v (C−,C+): indeed,
this is equivalent to Φ(C+) ⊆ C− and Φ(C−) ⊇ C+, which
holds by Lemma 14. Then we have (C+,C−) v (C−,C+)
since (C+,C−) is the glb of the set of the pre-fixed points of
Ψ. We get C+ ⊆ C−, by definition of v.

We prove the converse, C− ⊆ C+. For any ` ∈ N and
v ∈ P (D), we define the vector v|` ∈ P (D) as follows:
(v|`)d : = vd, if d ∈ |D`|, otherwise (v|`)d : = 0. Notice v|` is

the canonical extension to D of the approximation v||D`| in
P (D`) (Figure 3). Also, (v|`)`∈N is an increasing sequence
converging to its lub v. We will prove:

(∗) ∀` ∈ N, ∀v ∈ P (D) , (v,M) ∈ C− ⇒ (v|`,M) ∈ C+ .

In fact, (∗) implies C− ⊆ C+: if (v,M) ∈ C−, then by (∗)
for every `, (v|`,M) ∈ C+ = Φ(C−). Now, by Lemma 15
applied to C−, (sup` v|`,M) = (v,M) ∈ C+.

The proof of (∗) is by induction on `. For any v,
v|0 = 0, so the claim follows by C+ = Φ(C−) and
Lemma 15. Otherwise, let (v,M) ∈ C−, we prove that
(v|`+1,M) ∈ C+ = Φ(C−), that is, by Definition 12, for
any u ∈ P

(
DN), any number n and N0, . . . , Nn−1 such

that ∀i < n, (πi(u), Ni) ∈ C− and ∀i ≥ n, πi(u) = e?,
we prove 〈v|`+1, u

!〉≤
∑
H∈hnf Red∞(MN0...Nn−1),H . First,

since (v,M) ∈ C− = Φ(C+), by the downward closedness
of Φ(C+)M (Lemma 15), (v|`+1,M) ∈ Φ(C+). Then by
induction hypothesis, for all i < n, since (πi(u), Ni) ∈ C−,
we have (πi(u)|`, Ni) ∈ C+. Let u ∈ P

(
DN) be the

stack of the first n-terms of u restricted to D`, defined as
πi(u) = πi(u)|` for i < n, and πi(u) = e? for i ≥ n. Finally,
notice that v|`+1 is non-zero only on those d that are in the
web of D`+1, and for such d, u!

d = u!
d. We infer: 〈v|`+1, u

!〉=∑
d∈|D|(v|`+1)d(u

!)d =
∑
d∈|D`+1|(v|`+1)d(u

!)d =∑
d∈|D|(v|`+1)d(u

!)d =〈v|`+1, u〉. Finally, we conclude
since 〈v|`+1, u〉≤

∑
H∈hnf Red∞(MN0...Nn−1),H , by the

hypothesis that (v|`+1,M) ∈ C− = Φ(C+) and for every
i < n, (πi(u), Ni) ∈ C+.

We now prove (JMK,M) ∈ C = Φ(C) for every closed
term M . After some preliminary lemmas, Lemma 21 achieves
the result by structural induction on M . Lemma 19 is note-
worthy, stating that C is a fixed point also for the operation
on relations corresponding with the X 7→ X ⇒ X operation
on PCS, having so a further analogy with D.

Lemma 17. For any relation R, and vector v ∈ P (D),
(v, ∗) ∈ Φ(R). In particular (e?, ∗) ∈ C.

Proof: Notice that
∑
H∈hnf Red∞∗N0...Nn−1,H = 1 for any

terms N0, . . . , Nn−1. Then (v, ∗) ∈ Φ(R), since 〈v, u!〉≤ 1
for any u ∈ DN, by definition of orthogonality. The last part
of the lemma is an immediate consequence of C = Φ(C) and
the remark that e? ∈ P (D).

Lemma 18. If M 1→M ′, then (v,M) ∈ C iff (v,M ′) ∈ C.

Proof: By Lemma 2, item 3 and by C = Φ(C).

Lemma 19. Let (v,M), (r, L) ∈ C, then (pv+(1−p)r,M+p

L) ∈ C.

Proof: Take u ∈ P
(
DN), n ∈ N, N0, . . . , Nn−1 ∈

Λ+
0 such that ∀i < n, (πi(u), Ni) ∈ R and ∀i ≥

n, πi(u) = e?. By linearity, 〈pv + (1− p)r, u!〉= p 〈v, u!〉
+(1 − p) 〈r, u!〉. By the hypothesis (v,M), (r, L) ∈ C =
φ(C), we have 〈v, u!〉≤

∑
H∈hnf Red∞MN0...Nn−1,H and

〈r, u!〉≤
∑
H∈hnf Red∞LN0...Nn−1,H . We conclude, since for

every H , pRed∞MN0...Nn−1,H +(1 − p) Red∞LN0...Nn−1,H =
Red∞(M+pL)N0...Nn−1,H (Lemma 2, item 2).
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Lemma 20. (v,M) ∈ C if, and only if, ∀(r, L) ∈ C,
(app(v)(r),ML) ∈ C.

Proof: Suppose that (v,M) ∈ C and (r, L) ∈
C, we prove (app(v)(r),ML) ∈ Φ(C) = C. Take
u ∈ P

(
DN), n ∈ N, N0, . . . , Nn−1 s.t. ∀i <

n, (πi(u), Ni) ∈ C and ∀i ≥ n, πi(u) = e?. By
Lemma 8, 〈app(v)(r), u!〉=〈v, (r :: u)!〉. By (v,M) ∈ C =
φ(C), 〈v, (r :: u)!〉≤

∑
H∈hnf Red∞MLN0...Nn−1,H . We con-

clude (app(v)(r),ML) ∈ Φ(C).
Conversely, suppose that for every (r, L) ∈ C we have

(app(v)(r),ML) ∈ C, we prove that (v,M) ∈ Φ(C) =
C. Take u ∈ P

(
DN), n ∈ N, N0, . . . , Nn−1 s.t. ∀i <

n, (πi(u), Ni) ∈ C and ∀i ≥ n, πi(u) = e?. We split in two
cases.

If n = 0, then u = e~? = e? :: e~?. So Lemma 8 gives
〈v, (e~?)!〉=〈app(v)(e?), (e~?)

!〉. By Lemma 17, (e?, ∗) ∈ C,
hence by hypothesis, (app(v)(e?),M∗) ∈ C = Φ(C). Ap-
plying Definition 12 to n = 0 and e~? ∈ P

(
DN), we get

〈app(v)(e?), (e~?)
!〉≤

∑
H∈hnf Red∞M∗,H =

∑
H∈hnf Red∞M,H

by Lemma 2, item 4.
If n > 0, then let u ∈ P

(
DN) such that u =

π0(u) :: u (set πi(u) = πi+1(u)). Lemma 8 gives
〈v, u!〉=〈app(v)(π0(u)), u!〉. As (app(v)(π0(u)),MN0) ∈ C,
we get 〈app(v)(π0(u)), u!〉≤

∑
H∈hnf Red∞(MN0)N1...Nn−1,H .

Lemma 21. Let M ∈ Λ+, Γ = (y0, . . . , yn−1) ⊇ FV(M),
(u0, N0), . . . , (un−1, Nn−1) ∈ C. We have:

JMKΓ(u0, . . . , un−1) CM{N0/y0, . . . , Nn−1/yn−1}.

Proof: By structural induction on M . In the
sequel, we will denote by JMKΓ~u the vector
JMKΓ(u0, . . . , un−1) in P (D), and by M{ ~N/~y} the
closed term M{N0/y0, . . . , Nn−1/yn−1}.

If M = yi, the claim follows by the hypothesis ui CNi.
If M = ∗, the claim follows by Lemma 17.
If M = λz.L, by induction hypothesis, for every (r,R) ∈

C, JLKz,Γ(r, u0, . . . , un−1) C L{R/z, ~N/~y}. By definition
of J K, JLKz,Γ(r, u0, . . . , un−1) = app(JMKΓ~u)(r), and by
Lemma 2, item 1, M{ ~N/~y}R 1→ L{R/z, ~N/~y}, then by
Lemma 18, app(JMKΓ~u)(r) C M{ ~N/~y}R. Since this is
true for any (r,R) ∈ C, Lemma 20 allows to conclude
JMKΓ(~u) CM{ ~N/~y}.

If M = L1L2, by induction hypothesis we have
JLiKΓ~u C Li{ ~N/~y}, for i = 1, 2. By definition of J K,
JMKΓ~u = app(JL1KΓ~u)(JL2KΓ~u), and by Lemma 20,
app(JL1KΓ~u)(JL2KΓ~u) C L1{ ~N/~y}L2{ ~N/~y} = M{ ~N/~y}.

If M = L1 +p L2, by induction hypothesis JLiKΓ(~u) C
Li{ ~N/~y}, for i = 1, 2. By definition of J K, JMKΓ(~u) =
pJL1KΓ(~u) + (1 − p)JL2KΓ(~u), we conclude by Lemma 19.

B. Main Results
Theorem 22. For any M ∈ Λ+

0 , we have∑
d∈|D2|

JMKd =
∑
H∈hnf

Red∞M,H .

Proof: Proposition 11 gives one inequality. For the con-
verse, Lemma 21 gives (JMK,M) ∈ C, so by Proposi-
tion 16, (JMK,M) ∈ Φ(C). Hence, by definition of Φ,
〈JMK, e!

~?〉≤
∑
H∈hnf Red∞M,H . We conclude since by Lemma

9, 〈JMK, e!
~?〉=

∑
d∈|D2|JMKd.

A corollary of the adequacy theorem is the soundness of the
order ≤ on vectors (Equation (4)) with respect to a suitable
operational pre-order � on terms.

Definition 23. For any terms M,N , we define M � N
whenever for every context C[·],

∑
H∈hnf Red∞C[M ],H ≤∑

H∈hnf Red∞C[N ],H .

Lemma 24. The interpretation J·K is context closed: if
JMKΓ ≤ JNKΓ, then ∀C[·], JC[M ]KΓ ≤ JC[N ]KΓ.

Proof: Easy structural induction on C[·].

Corollary 25. Let M,N ∈ Λ+ and Γ ⊇ FV(M) ∪ FV(N),
then JMKΓ ≤ JNKΓ entails M � N .

Proof: By Lemma 24 and Theorem 22.

V. CONCLUSION

We studied a reflexive object D in the category Pcoh! of
probabilistic coherence spaces and entire functions. The object
D has been introduced by the first author and Danos as the
limit of a chain {D`}`∈N of PCSs [DE11]. We proved the
adequacy of D with respect to a probabilistic extension Λ+ of
the pure λ-calculus: the probability that a closed term of Λ+

reaches a head normal form is equal to the sum of the values
of its interpretation when projected to D2.

An obvious issue arising from our results is whether the
converse of Corollary 25 holds, i.e. whether probabilistic
coherence spaces are fully abstract with respect to the ob-
servational pre-order given in Definition 23. Indeed, a slight
modification of the above proofs gives that projecting the
interpretations of the terms to D1 gives the probability that
these terms reduce to closed head normal forms having ∗ in
head position. We wonder whether one can state a general
result precisely relating each PCS in the chain {D`}`∈N with
a suitable hierarchy of observational pre-orders.

Also, we plan to investigate the expressive power of Λ+

(hence of PCSs), namely with respect to the stochastic pro-
cesses. The fact that Λ+ extends pure λ-calculus suggests that
it can model a wide class of computational phenomena, also in
a probabilistic setting. For example, we conjecture that every
finite stochastic chain can be expressed by a closed term of
Λ+. This deserves further work.
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