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We investigate polarization squeezing of ultrashort pulses in optical fiber, over a wide range of input

energies and fiber lengths. Comparisons are made between experimental data and quantum dynamical simu-

lations to find good quantitative agreement. The numerical calculations, performed using both truncated

Wigner and exact +P phase-space methods, include nonlinear and stochastic Raman effects, through coupling

to phonon variables. The simulations reveal that excess phase noise, such as from depolarizing guided acoustic

wave Brillouin scattering, affects squeezing at low input energies, while Raman effects cause a marked

deterioration of squeezing at higher energies and longer fiber lengths. We also calculate the optimum fiber

length for maximum squeezing.
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I. INTRODUCTION

The search for efficient means of quantum squeezing, in

which quantum fluctuations in one observable are reduced

below the standard quantum limit, at the expense of in-

creased fluctuations in the conjugate, has been at the heart of

modern developments in quantum optics �1�. As well as for

the fundamental interest of highly nonclassical light, optical

squeezing is of interest for quantum-information applica-

tions. Possible uses include: generating entanglement for

quantum communication �2�, making measurements below

the standard quantum limit �3�, and for precise engineering

of the quantum states of matter �4�.
The use of optical fiber for quantum squeezing has con-

siderable technological advantages, such as generating

squeezing directly at the communications wavelength and

use of existing transmission technology. There is, however, a

significant disadvantage in the excess phase noise that arises

from acoustic waves, molecular vibrations, and defects in the

amorphous silica.

Here we present an in-depth numerical and experimental

study of polarization squeezing in a single-pass scheme that

successfully reduces the impact of this excess phase noise.

The numerical simulations represent a quantitative, experi-

mentally testable solution of quantum many-body dynamics.

The first proposals for the generation of squeezed light

using the ��3� nonlinearity date back to 1979, with schemes

involving a nonlinear Kerr interferometer �5� or degenerate

four-wave mixing �6�. The first experimental demonstration

used four-wave mixing in atomic samples �7�. The Kerr ef-

fect in optical fibers was also proposed as a mechanism for

squeezing light �8–10�. Squeezing using fibers was first suc-

cessfully implemented using a continuous wave laser, and

was observed by a phase shifting cavity �11�.

However, early experiments �8,9,11� were severely lim-
ited by the phase noise intrinsic to optical fiber. Such noise
occurs in the form of thermally excited refractive index fluc-
tuations in the fiber �12,13�, and arises from guided acoustic
wave Brillouin scattering �GAWBS� and 1 / f noise. A sub-
stantial theoretical breakthrough was the recognition that
short pulses—ideally in the form of solitons—could lead to
much higher peak powers, thus allowing the generation of
nonclassical light in with fiber lengths short enough so that
thermally induced phase noise was not an issue. Such short
pulses required a true multimode theoretical approach �14�,
which led to the first predictions of pulsed squeezing, and to
an understanding of the scaling laws involved �15�.

These predictions were confirmed in a landmark experi-
ment by Rosenbluh and Shelby �16�, which used intense,
subpicosecond pulses and a simpler interferometric setup
�10� in a balanced configuration. All fiber squeezers since
have exploited ultrashort pulses. Observation schemes imple-
mented with standard fibers include: �i� phase-shifting cavi-
ties �11�, �ii� spectral filtering �17–21�, �iii� balanced inter-
ferometers �16,22–25�, �iv� asymmetric interferometers
�26–30�, and �v� a two-pulse, single-pass method generating
squeezed vacuum �31,32� or polarization squeezing �33,34�.

Squeezing the polarization variables of light is a promis-

ing alternative �35� to the squeezing in the amplitude quadra-

ture or the photon number, which the vast majority of fiber

squeezing experiments until now have implemented. Polar-

ization squeezing was first suggested by Chirkin et al. in

1993 �36� and was first achieved by Sørensen et al. in the

context of quantum memory �37�. Such a promising applica-

tion sparked intensified interest, resulting in a number of

theoretical investigations, e.g. �35,38,39�, which in turn led

to experiments in a variety of systems: optical parametric

oscillators �40–42�, optical fibers �29,33,34�, and cold atomic

samples �43�.
In this paper we present a detailed experimental and the-

oretical investigation of the single-pass method for creating

polarization squeezing, building upon our previous work*corney@physics.uq.edu.au
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�33,44�. This efficient squeezing source has a number of ad-

vantages compared with previous experiments producing

bright squeezing. For example, this setup is capable of pro-

ducing squeezing over a wide range of powers, in contrast to

asymmetric Sagnac loop schemes. There is thus a certain

similarity to experiments using a Mach Zehnder interferom-

eter as a flexible asymmetric Sagnac loop �28�. The interfer-

ence of a strong squeezed and a weak “coherent” beam in

asymmetric loops, however, gives rise to a degradation in

squeezing due to the dissimilarity of the pulses as well as

losses from the asymmetric beam splitter.

In the single-pass scheme, the destructive effect arising

from interfering dissimilar pulses �in power, temporal, and

spectral shape� is avoided by interfering two strong Kerr-

squeezed pulses that copropagate on orthogonal polarization

axes. For equal power they have been found to be virtually

identical within measurement uncertainties in, e.g., spectrum,

autocorrelation, and squeezing. This scheme presents the po-

tential to measure greater squeezing and provides a greater

robustness against input power fluctuations. Formally this

interference of equally squeezed pulses is reminiscent of ear-

lier experiments producing vacuum squeezing, for example

�16,22,32�. The advantage here is that no extra local oscilla-

tor is needed in the measurement of polarization squeezing.

These experiments allow a careful experimental test of the

multimode theory of optical squeezing. Here we make use of

the comprehensive model developed by Carter and Drum-

mond �45� that includes the electronic ��3� nonlinear re-

sponses of the material and nonresonant coupling to phonons

in the silica. The phonons provide a non-Markovian reservoir

that generates additional, delayed nonlinearity, as well as

spontaneous and thermal noise. The coupling is based on the

experimentally determined Raman gain �R��� �46�.
The simulation of pulse propagation entails the solution of

time-domain dynamical evolution in a quantum field theory

with large numbers of interacting particles. We achieve this

here primarily with a truncated Wigner technique �47�, which

provides an accurate simulation of the quantum dynamics for

short propagation times and large photon number. The quan-

tum effects enter via initial vacuum noise, which makes the

technique ideally suited to squeezing calculations. We com-

pare simulation and experiments to find excellent agreement

over a wide range of pulse energies and fiber lengths. From

the simulations, we can identify the particular noise sources

that are the limiting factors at high and low input energy.

We begin in Sec. II with an introduction to polarization

squeezing by means of the Kerr effect, from a single-mode

picture, before presenting the detailed model of pulse propa-

gation in fibers in Sec. III. Sections IV and V describe the

numerical simulation methods used, while the experimental

setup is described in Sec. VI. Section VII discusses the re-

sults of both the experiment and simulations.

II. SQUEEZING

A. Kerr squeezing

The generation of squeezed optical beams requires a non-

linear interaction to transform the statistics of the input,

which is typically a coherent state. In the optical Kerr effect,

the ��3� nonlinearity has the effect of introducing an intensity

dependence to the medium’s refractive index, Eq. �1�, which

in turn induces an intensity-dependent phase shift in incident

pulses. This effect dominates the nonlinearity in fibers made

of fused silica, a material with an inversion symmetric mo-

lecular ordering. In a pure Kerr material the refractive index

is an instantaneous function of the optical intensity and the

refractive index n is then given to second order by �48�

n = n0 + n2I with n2 =
3

4

Re��xxxx
�3� �

n0
2�0c

, �1�

where the optical intensity is given by I=
1

2
n0�0c�E�2 and �xxxx

�3�

is the third order susceptibility coefficient for the degenerate

mode x. The instantaneity of fused silica’s nonlinearity is

true only to a first approximation. In reality, it is only the

electronic contribution, which typically comprises 85% of

the total nonlinearity �49�, that is instantaneous on the scale

of the 130 fs pulses used here. The time dependence of the

remainder cannot be neglected and arises primarily from Ra-

man scattering �50�. Nonetheless, the simplification of an

instantaneous response can be useful in gaining physical in-

sight into the Kerr squeezing mechanism.

Figure 1�a� illustrates the effect of an instantaneous non-

linear refraction. Sending an ensemble of identical coherent

states into a perfect Kerr medium causes a distortion of the

initially symmetric phase-space distribution. One can explain

this distortion by considering the input to consist of a super-

position of photon number states, which the Kerr effect ro-

tates relative to one another in phase space. The initially

symmetric phase-space distribution characteristic of coherent

states is thereby distorted into an ellipse or “squeezed” circle.

Generally the squeezed state will be crescent shaped, how-

ever, for the experimental conditions of high intensities and

small nonlinearities our states never become significantly

curved.

The resultant quantum state is quadrature squeezed, where

the squeezed quadrature X̂��sq� is rotated by �sq relative to

the amplitude quadrature or radial direction. The state’s

phase-space uncertainty distribution is altered such that the

statistics in the amplitude quadrature remain constant in

keeping with energy conservation. Thus the squeezed or

�sq

P

Q

Evolution

(a)

X( )�sqˆ X ( )x �sqˆ

X ( )y �sqˆ

(b)

P

Q

âx

ây

�sq

�sq

FIG. 1. �a� Representation in phase space of the evolution of a

coherent beam �bottom right� under effect of the Kerr nonlinearity,

which generates a quadrature �or Kerr� squeezed state �upper left�.
The arrow indicates the direction of state evolution with propaga-

tion. �b� Polarization squeezing generated by overlapping two or-

thogonally �i.e., x- and y-� polarized quadrature-squeezed states.
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noise-reduced optical quadrature cannot be detected directly

in amplitude or intensity measurements. A detection scheme

sensitive to the angle of the squeezed ellipse �sq is required.

B. Single-mode picture of polarization squeezing

The characterization of quantum polarization states relies

on the measurement of the quantum Stokes operators �see

Ref. �35� and references therein�. These Hermitian operators

are defined analogously to their classical counterparts as �51�

Ŝ0 = âx
†
âx + ây

†
ây, Ŝ1 = âx

†
âx − ây

†
ây ,

Ŝ2 = âx
†
ây + ây

†
âx, Ŝ3 = i�ây

†
âx − âx

†
ây� , �2�

where âx and ây are two orthogonally polarized modes �with

temporal, position, and mode dependence implicit�. These

operators obey the SU�2� Lie algebra and thus, within a fac-

tor of
�

2
, coincide with the angular momentum operators. The

commutators of these operators, following from the noncom-

mutation of the photon operators, are given by

�Ŝ0, Ŝi� = 0 and �Ŝi, Ŝ j� = 2i�ijkŜk, �3�

where i , j ,k=1,2 ,3 and where � is the antisymmetric sym-

bol. These commutation relations lead to Heisenberg in-

equalities and therefore to the presence of intrinsic quantum

uncertainties in analog to those of the quadrature variables.

However, the fundamental noise limit depends on the mean

polarization state:

�2Ŝi�
2Ŝ j � �ijk��Ŝk��

2, �4�

where the variance of Ŝi is given by �2Ŝi= �Ŝi
2�− �Ŝi�

2. This

quantum picture of the polarization state of light cannot be

represented as a point on the Poincaré sphere, but rather as a

distribution in the space spanned by the Poincaré parameters,

analogous to the phase-space representation of quantum op-

tical states. This is visualized in Fig. 2, which shows the

variances, i.e., full-width at half-maximum of the marginal

distributions, of a coherent and a polarization squeezed state.

Despite the fact that the Stokes uncertainty relations are

state dependent, it is always possible to find pairs of maxi-

mally conjugate operators. This is equivalent to defining a

Stokes basis in which only one parameter has a nonzero ex-

pectation value. This is justified insomuch that polarization

transformations are unitary. Consider a polarization state de-

scribed by �Ŝi�= �Ŝ j�=0 and �Ŝk�= �Ŝ0��0 where i , j ,k repre-

sent orthogonal Stokes operators. The only nontrivial

Heisenberg inequality then reads

�2Ŝi�
2Ŝ j � ��Ŝk��

2 = ��Ŝ0��2, �5�

which mirrors the quadrature uncertainty relation, and polar-

ization squeezing can then be similarly defined:

�2Ŝi 	 ��Ŝk�� 	 �2Ŝ j . �6�

The definition of the conjugate operators Ŝi , Ŝ j is not unique

and there exists an infinite set of conjugate operators Ŝ����,

Ŝ���+



2
� that are perpendicular to the state’s classical exci-

tation Ŝk, for which �Ŝ�����=0 for all �. All these operator

pairs exist in the Ŝi− Ŝ j “dark plane,” i.e., the plane of zero

mean intensity. A general dark plane operator is described by

Ŝ���� = cos���Ŝi + sin���Ŝ j , �7�

where � is an angle in this plane defined relative to Ŝi. Po-

larization squeezing is then generally given by

�2Ŝ���sq� 	 ��Ŝ0�� 	 �2Ŝ���sq +



2
	 , �8�

where Ŝ���sq� is the maximally squeezed parameter and

Ŝ���sq+



2
� the antisqueezed parameter.

Consider, for example, the specific case of a+ Ŝ3 or

�+-polarized beam as in the experiments presented here. Let

this beam be composed of the two independent modes âx, ây

with a relative



2
phase shift between their mean values. This

is depicted in Fig. 1�b� and described by �ây�= i�âx�= i� /
2

and ��R. The beam is then circularly polarized with â�+
as

the mean field and â�−
is the orthogonal vacuum mode:

â�+
=

− 1


2
�âx − iây� with �â�+

� = − � ,

â�−
=

1


2
�âx + iây� with �â�−

� = 0. �9�

The Stokes operators in the plane spanned by Ŝ1− Ŝ2 cor-

respond to the quadrature operators of the dark

â�−
-polarization mode. Assuming ���â�� ��� and consider-

ing only the noise terms, we find

�Ŝ���� = ���â�−
e−i� + �â�−

†
ei��

= ��X̂�−
��� = ���X̂x��� + �X̂y�� −




2
	� , �10�

where the Stokes operator definitions of Eq. �2� have been

used in a linearized form. The sum signal, a measure of the

total intensity, is given by

S

( +)

3

�

S

(x)

1 S

(+45°)

2

FIG. 2. Representation of the variances of a polarization

squeezed �upper left� and a coherent state �lower right� on the

Poincaré sphere.
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�Ŝ0 = ���â�+
+ �â�+

† � = ��X̂�+
, �11�

and thus exhibits no dependence on the dark mode. This

considering of the physical interpretation of polarization

squeezing shows that polarization squeezing is equivalent to

vacuum squeezing in the orthogonal polarization mode:

�2Ŝ���� 	 �����2 ⇔ �2X̂�−
��� 	 1. �12�

While a particular case is considered here, a straightfor-

ward generalization to all other polarization bases is readily

made as polarization transformations are unitary rotations in

SU�2� space.

In dark-plane Stokes measurements, the beam’s intensity

is divided equally between two photodetectors. Such mea-

surements are then identical to balanced homodyne detec-

tion: the classical excitation is a local oscillator for the or-

thogonally polarized dark mode. The phase between these

modes is varied by rotating the Stokes measurement through

the dark plane, allowing full characterization of the noise

properties of the dark, y-polarized mode. This is a unique

feature of polarization measurements and has been used to

great advantage in many experiments, for example,

�33,37,52–57�. This has also allowed the first characteriza-

tion of a bright Kerr squeezed state as well as the reconstruc-

tion of the polarization variable Q function using polariza-

tion measurements �58�.

To show how an Ŝ3 polarized state is squeezed by the Kerr

effect, we consider the essential Kerr Hamiltonian:

Ĥ = �âx
†
âx�

2 + �ây
†
ây�

2, �13�

which in terms of the Stokes operators, can be expressed as

Ĥ =
1

2
Ŝ0

2 + Ŝ1
2� . �14�

The first term is a constant of the motion, since Ŝ0 gives the

total number of photons, and has no effect on the dynamics.

The second term is a nonlinear precession around the S1 axis:

the rate of precession is proportional to S1, which is a mani-

festation of the intensity-dependent refractive index of the

Kerr effect. The nonlinear precession will distort an initially

symmetric distribution centered in the S1-S2 plane �e.g., the

S3 circularly polarized state located at a pole of the sphere�
into an ellipse. As for ordinary quadrature squeezing, the

nonlinear precession preserves the width in the S1 direction,

and so the squeezing is not directly observable by a number-

difference observation.

The advantage of the squeezed S3 state, as opposed to

squeezing of a linearly polarized S2 state, is that a simple

rotation around the S3 axis allows the squeezed �or anti-

squeezed� axis of the ellipse to be aligned to the S1 axis and

thus to be detected with a number-difference measurement.

Such a rotation is easily implemented experimentally with a

polarization rotator.

III. PULSE PROPAGATION

A. Multimode description

We have so far described the polarization squeezing as a

single-mode Kerr effect. However, this is accurate only for

cw radiation, corresponding to a single momentum compo-

nent. Ultrashort pulses, on the other hand, correspond to a

superposition of many plane waves and thus require a mul-

timode description. Such a description is crucial for an accu-

rate treatment of dispersive and Raman effects. For a con-

tinuum of momentum modes, we can express the

superposition as

�̂��t,z� =
1


2

� dkâ��t,k�ei�k−k0�z+i�0t, �15�

where instead of annihilation and creation operators for each

polarization mode, we now have field operators �̂�
†�t ,z�,

�̂��t ,z� for the envelopes of each of the polarization modes

�= �x ,y�. The commutation relations of the fields are

��̂��t,z�,�̂��

† �t,z��� = ��z − z������
, �16�

and with this normalization, the total number of � photons in

the fiber is thus N̂��t�=�0
Ldz�̂�

†�t ,z��̂��t ,z�.
The general quantum model for a fiber with a single trans-

verse mode is derived in �59�. The relevant aspects for the

current system include the dispersive pulse propagation, the

electronic polarization response that gives the instantaneous

��3�, and the nonresonant coupling to phonons in the silica.

B. Electromagnetic Hamiltonian

In terms of the field operators for the slowly varying en-

velope defined above, the normally ordered Hamiltonian for

an electromagnetic pulse in a polarization-preserving fiber

under the rotating-wave approximation is

ĤEM = ��
�

/ dzdz����z − z���̂�
†�t,z��̂��t,z��

− ��E�
�

� dz�̂�
†2�t,z��̂�

2�t,z� , �17�

where ���z� is the Fourier transform of the dispersion rela-

tion:

���z� �
1

2

� dk���k�ei�k−k0�z, �18�

and �E is the strength of the third-order polarization re-

sponse. The birefringence of the polarization response means

that there are differences between the dispersion relations �x

and �y. The ��3� term is assumed to be independent of polar-

ization, and cross-Kerr effects are neglected, as the different

group velocities of the pulses mean that the length of time

that the pulses overlap in the fiber is negligible. The fiber is

assumed to be homogeneous, with both ���k� and �E inde-

pendent of the distance z down the fiber.

To simplify the description of the dispersive part, we Tay-

lor expand ��k� around k=k0 up to second order, which in-
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troduces the group velocity v��d� /dk�k=k0
and dispersion

parameter ����d2� /dk2�k=k0
. Subtracting off the free evolu-

tion at the carrier frequency �0=�x�k0�, one obtains the sim-

plified Hamiltonian:

ĤEM� = ��
�

� dz� iv�

2
���̂�

†�̂� − �̂�
†

� �̂��

+
��

2
� �̂�

†
� �̂� − ��E�̂�

†2�̂�
2� . �19�

Here we have not included the difference in phase velocity

between the two polarizations, which just leads to a constant

relative phase shift.

For the methods that we use in this paper, it is convenient

to treat the quantum dynamics in the Heisenberg picture,

with time-evolving field operators. The equation of motion

of the field annihilation operator that arises from the electro-

magnetic Hamiltonian is

d

dt
�̂� =

− i

�
��̂�,ĤEM� � = �− v� � +

i��

2
�

2 + i�E�̂��̂�
†��̂�.

�20�

C. Raman Hamiltonian

As well as the interaction with electrons that produces the

polarization response, the radiation field also interacts with

phonons in the silica. The photons can excite both localized

oscillations of the atoms around their equilibrium positions

�Raman effect� as well as guided acoustic waves �GAWBs�
along the waveguide. The latter can be treated as a low-

frequency component of the Raman spectrum, and produces

random fluctuations in the refractive index. However, the

effect of this is largely removed in this experiment through

common-mode rejection, and any residual phase-noise can

be accounted for by simple scaling laws �see Sec. VII C�.
The Raman interactions produce both excess phase noise

and an additional nonlinearity. The atomic oscillation is

modeled as a set of harmonic oscillators at each point in the

fiber, and is coupled to the radiation field by a simple disper-

sive interaction:

ĤR = ��
�,k

Rk� dz�̂�
†�z��̂��z�b̂�k�z� + b̂�k

† �z��

+ ��
�,k

�kb̂�k
† �z�b̂�k�z� , �21�

where the phonon operators have the commutation relations

�b̂�k�z,t�, b̂��k�

† �z�,t�� = ��z − z���k,k�
��,��

. �22�

The spectral profile of this interaction R��� is well-known

from experimental measurements �50� and is sampled here

by oscillators of equal spectral spacing ��=�k+1−�k, such

that lim��→0 Rk /
��=R��k�. The finite spectral width of

the Raman profile means that the Raman contribution to the

nonlinearity is not instantaneous on the time scale of the

optical pulse, leading to such effects as the soliton frequency

shift �60,61�.

With the Raman and electromagnetic Hamiltonians com-

bined, one can derive complete Heisenberg operator equa-

tions of motion for the optical field operator and the phonon

operators �59�:

� �

�t
+ v

�

�z
	�̂�z,t� = �− i�

k

Rkb̂k + b̂k
†� +

i��

2

�
2

�z2

+ i�E�̂†�̂��̂ ,

�

�t
b̂k�z,t� = − i�kb̂k − iRk�̂

†�̂ , �23�

where we have suppressed the polarization index, since the

equations for each polarization are independent.

The initial state of the phonons is thermal, with

�b̂
k�

† �z�,0�b̂k�z,0�� = nth��k��k,k�
��z − z�� , �24�

where nth���=1 / �exp��� /kT�−1� is the Bose-Einstein dis-

tribution.

IV. SIMULATION METHODS

A. Phase-space methods

Phase-space methods are a means of simulating the dy-

namics of multimode many-body quantum systems. They are

based on �quasi�probabilistic representations of the density

matrix that are defined by means of coherent states. Because

they are based on coherent states, they are ideally suited to

simulating quantum optical experiments, which in so many

cases begin with the coherent output of a laser. The two

representations that give rise to practical numerical methods

are the +P �62–65� and Wigner �66� distributions. In both

methods, the resultant description has the same structure as

the mean-field, or classical, description, which is a form of

nonlinear Schrödinger equation in the case of optical fibers.

However, there are also additional quantum noise terms,

which may appear in the initial conditions or in the dynami-

cal equations.

The +P method provides an exact probabilistic descrip-

tion in which stochastic averages correspond to normally or-

dered correlations. Because of this normal ordering, it is

suited to intensity correlation measurements. Quantum ef-

fects enter by stochastic terms that have the form of sponta-

neous scattering. The +P method has been applied to a vari-

ety of quantum-optical applications, including

superfluorescence �67,68�, parametric amplifiers �69�, and

optical fibers �14,45�. More recently, it has been applied to a

variety of Bose-Einstein condensate �BEC� simulations

�70–75�
The Wigner method, on the other hand, is an approximate

method that is valid for large photon number n̄ and short

fiber length L. Here it is symmetrically ordered correlations

that correspond to stochastic averages. Because of this sym-

metric ordering, the quantum effects enter via vacuum noise

in the initial conditions �76�, making it a simple and efficient

method for squeezing calculations �47�. It is also enjoying

increasing utility in BEC simulations �77�.
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B. Wigner equations

The Wigner representation maps the operator equations of

motion onto �almost� equivalent stochastic phase-space

equations. The mapping is not exact because the “nonlinear”

term leads to higher-order �higher than second� derivatives in

the equation for the Wigner function, which must be ne-

glected in order that the mapping to stochastic equations can

be completed. These neglected terms are the ones, for in-

stance, which would allow the Wigner function to become

negative.

The resultant equations are, up to a constant phase rota-

tion,

�

�t
��z,t� = �− i�

k

Rkbk + b
k
*� − v

�

�z
+

i��

2

�
2

�z2
+ i�E���2�� ,

�

�t
bk�z,t� = − i�kbk − iRk����2 −

1

2�z
	 , �25�

where we have assumed that the fields will be discretized

over a lattice with segment size �z. The initial conditions are

bk�z,0� = �k
b�z� ,

��z,0� = ��̂�z,0�� + ���z� , �26�

where the stochastic terms have correlations

��
k�

b*�z���k
b�z�� = �nth��k� +

1

2
��k,k�

��z − z�� ,

��
�
* �z�����z�� =

��z − z��

2
. �27�

C. +P equations

Phase-space equations that correspond exactly to the op-

erator equations can be defined over a doubled phase space

using the +P representation. Quantum effects enter here

through multiplicative noise terms in the equations, which

generally lead to a larger sampling error than the Wigner

method for squeezing calculations. While the Wigner method

was used for nearly all of the simulations presented here, the

+P method provides important benchmark results, and was

used to check the validity of the Wigner calculations in key

cases.

The resultant +P equations are

�

�t
��z,t� = �− i�

k

Rkbk + bk
+��� − v

�

�z
+

i��

2

�
2

�z2
+ i�E�+�

+ 
i�E + i�R�� ,

�

�t
bk�z,t� = − i�kbk − iRk�

+� + �k
R, �28�

with equations for �+ and bk
+ that have a conjugate form but

with some independent noise terms. The initial conditions

are

bk�z,0� = �k
b�z� ,

��z,0� = ��̂�z,0�� , �29�

where the stochastic terms have correlations

��
k�

b+

�z���k
b�z�� = nth��k��k,k�

��z − z�� ,

��E�z�,t���E�z,t�� = �E��z − z����t − t��

= ��E+�z�,t���E+�z,t�� ,

��R�z�,t���k
R�z,t�� = Rk��z − z����t − t��

= ��R+�z�,t���k
R+�z,t�� , �30�

with all other correlations zero.

In writing down explicit equations for the phonon vari-

ables, we have followed the approach of Carter �76�. In this

approach there is some freedom in how the Raman noise is

distributed between the photon and phonon variables, a fact

which could be exploited to optimize the performance of the

simulations. The alternative approach, as in �59�, analytically

integrates the phonon variables out, to give nonlocal equa-

tions for the photon fields.

D. Scaling

To simplify the numerical calculation, we transform to a

propagating frame of reference with dimensionless variables:

�= �t−z /v� / t0, �=z /z0, and �=�t0, where z0= t0
2
/k�. The

fields are also rescaled: �=�
vt0 / n̄ and �k

=rkbk exp�i���
z0 / t0n̄, where rk=Rk

n̄z0 / t0v

2 is the res-

caled Raman coupling, which is related to the Raman gain

�R��� via rk=
�R�k��� /2
. The quantity n̄=v
2t0 /�z0 gives

the typical number of photons in a soliton of width t0. The

effective nonlinearity that gives rise to solitons has both elec-

tronic and Raman contributions: �=�E+�R, where the Ra-

man contribution is estimated to be a fraction f =� /�R

�0.15 of the total.

For v
2t0

2z0
2, the rescaled Wigner equations are

�

��
���,�� = �− i�

k

�k exp�− i��� + �
k
* exp�i������

+
i

2

�
2

��2
+ i�1 − f����2�� ,

�

��
�k��,�� = − irk

2����2 −
vt0

2n̄z0��
	exp�i��� , �31�

with initial conditions

�k��,� = − �� = �k
���� ,

��� = 0,�� =
vt0

n̄
��̂�0,t0��� + ����� , �32�

where the stochastic terms have correlations

��
k�

�*�����k
����� =

rk
2

n̄
�nk +

1

2
��k,k�

��
��� − ��� ,
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��
�
*���������� �

��� − ���

2n̄
, �33�

where nk=nth�k�� / t0�.
The rescaled +P equations follow similarly from Eqs.

�28�–�30�, and are given in the Appendix. Because of the

much larger sampling error that arises in the +P calculations,

we make use of the fact that the Wigner method calculates

the linearized evolution exactly, and use the +P method only

to calculate the difference between the linearized and full

evolution. If �WL is a Wigner solution to the linearized equa-

tions, and �PL and �P are +P solutions to the linearized and

full equations, respectively, calculated with identical noise

sources, then the final solution is �=�P−�PL+�WL. Because

the difference between the full and linearized solutions is

small, �P and �PL have very similar fluctuations in a given

run; taking the difference removes most of the large +P fluc-

tuations, and adds in only the small Wigner fluctuations.

V. OUTPUTS AND MOMENTS

We find that good precision �a few percent of the squeez-

ing in decibels� is obtained when averages are calculated

using 1000 realizations of the Wigner equations. For further

precision, 10 000 trajectories can be used, in which case we

find that the sampling error cannot be distinctly plotted on

the graphs. With the +P method, on the other hand, we find

that at least 10 000 trajectories are needed in some cases to

produce useful results, even when the differencing method is

used.

The observable moments in the polarization squeezing

measurements are integrated intensity measurements and

their variances, which are neither simply normally ordered

nor symmetrically ordered. Thus the results of the phase-

space simulations must be adjusted for reordering, as we

describe below.

In the theoretical description of the system, there are two

optical fields, corresponding to the two polarization modes of

the fiber: �̂x�t ,z� and �̂y�t ,z�. To describe the polarization

squeezing, we define integrated Stokes operators, which are a

generalization of Eq. �2�:

Ŝ0 � N̂xx�T� + N̂yy�T�, Ŝ1 � N̂xx�T� − N̂yy�T� ,

Ŝ2 � N̂xy�T� + N̂yx�T�, Ŝ3 � iN̂yx�T� − iN̂xy�T� , �34�

where T is the propagation time down the length of fiber and

N̂���
�t�=�dz�̂�

†�t ,z��̂��
�t ,z�. After the polarization rotator,

the fields are transformed to

�̂x��t,z� = cos��/2��̂x�t,z� + sin��/2��̂y�t,z� ,

�̂y��t,z� = sin��/2��̂x�t,z� − cos��/2��̂y�t,z� , �35�

which leaves Ŝ0 unchanged but which transforms Ŝ1 to

Ŝ� = cos���Ŝ1 + sin���Ŝ2. �36�

To calculate that squeezing in Ŝ�, we need to calculate the

mean �Ŝ�� and mean-square �Ŝ�
2�.

A. +P moments

For the +P method, stochastic averages of the phase-

space variables give normally ordered moments. Thus the

mean �Ŝ�� can be calculated directly, as it is already normally

ordered. The mean square, however, requires a reordering:

�Ŝ�
2� = �:�cos���Ŝ1 + sin���Ŝ2�2:� + �Ŝ0� . �37�

For convenience, we define corresponding stochastic po-

larization parameters s j, s� in terms of the normalized +P

fields: n���
�����d���

+�� ,�����
�� ,��. The measured vari-

ance can then be written

var�Ŝ�� = n̄2��s�
2�+P − �s��+P

2 +
1

n̄
�s0�+P	 , �38�

where �¯�+P denotes a stochastic average with respect to an

ensemble of +P trajectories. The correction term here corre-

sponds to the shot-noise level of a coherent state �for which

�s�
2�+P= �s��+P

2 �: var�Ŝ��coh= �Ŝ0�= n̄�s0�+P. Thus the amount of

squeezing in decibels is given by

squeezing�dB� = log10

n̄�s�
2�+P − n̄�s��+P

2 + �s0�+P

�s0�+P

. �39�

B. Wigner moments

Stochastic averages in the Wigner method correspond to

symmetrically ordered products, thus making a reordering

necessary for both the mean and variance of the integrated

intensity measurements. First we note the symmetric form of

N̂���
:

�N̂���
�sym =

1

2
� dz�̂�

†�z��̂��
�z� + �̂��

�z��̂�
†�z��

= N̂���
+

1

2
����

M , �40�

where M is the number of Fourier modes used to decompose

the pulse shape. Because Ŝ2 and Ŝ3 contain only cross-

polarization coherences, there is no correction from reorder-

ing. In Ŝ1, the corrections from horizontal and vertically po-

larized terms cancel out. Thus it is only the total intensity

that requires a correction, and this corresponds to the

vacuum-energy contribution: �Ŝ0�sym= Ŝ0+M.

The variance of the Stokes operators contain terms with

products of four operators, each of which correspond to 24

possible orderings. Most of the corrections cancel out, leav-

ing

�Ŝ�
2�sym = Ŝ�

2 +
1

2
M . �41�

Similarly to above, we can define an analogous stochastic

polarization parameter s� in terms of the normalized Wigner

fields: n���
�����d��

�
*�� ,�����

�� ,��. The measured vari-

ance can then be written
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var�Ŝ�� = n̄2��s�
2�W − �s��W

2 −
1

2n̄2
M	 , �42�

where �¯�W denotes a stochastic average with respect to an

ensemble of Wigner trajectories. The shot-noise reference

level is given by var�Ŝ��coh= �Ŝ0�= n̄�s0�W−M. Thus the

amount of squeezing in decibels is

squeezing�dB� = log10

n̄�s�
2�W − n̄�s��W

2 −
1

2n̄
M

�s0�W −
1

n̄
M

. �43�

VI. EXPERIMENT

The laser system used in these experiments is a home-

made solid state laser where Cr4+ :YAG is the active medium

�78�. This system emits pulses with temporal widths of �0

=130–150 fs at a central wavelength �0 between 1495 and

1500 nm. These ultrashort pulses exhibit a bandwidth limited

secant-hyperbolic spatial amplitude envelope and are thus

assumed to be solitons. The laser repetition rate is 163 MHz

and the average output power lies between 60 and 90 mW

corresponding to pulse energies of 370–550 pJ.

In the present configuration, pictured in Fig. 3, laser

pulses are coupled into only one end of the glass fiber. This

produces quadrature squeezing rather than amplitude squeez-

ing which is not directly detectable �see Fig. 1�a��. However,

overlapping two such independently and simultaneously

squeezed pulses after the fiber allows access to this quadra-

ture squeezing by measurement of the Stokes parameters

�Fig. 1�b��. This requires the compensation of the fiber bire-

fringence, which we choose to carry out before the fiber to

avoid unnecessary losses to the squeezed beams. The optical

fiber used was the FS-PM-7811 fiber from 3M, chosen for its

high birefringence, i.e., good polarization maintenance, as

well as its relatively small mode field diameter, i.e., high

effective nonlinearity and thus low soliton energy. The most

relevant fiber parameters are listed in Table I.

For experimental ease, the polarization of the beam after

the fiber was set to be circular, e.g., �+. The orthogonal

Stokes parameters in the dark Ŝ1− Ŝ2 plane, given by Eq. �7�,
are measured by rotating a half-wave plate before a polariz-

ing beam splitter, as in Fig. 3. Equations �10� and �11� pro-

vide an interpretation of the classical excitation in â�+
as a

perfectly matched local oscillator for the orthogonally polar-

ized dark mode â�−
. The phase between â�+

and â�−
varies

with the rotation of the half-wave plate angle, �, to give the

phase-space angle �=4�. This noise level was compared

with the respective Heisenberg limit. The sum photon cur-

rent, Ŝ0, gives the amplitude noise of the input beam, for a

Kerr-squeezed state this equals the shot noise. This reference

level was verified by observation of the balanced homodyne

detection of a coherent state as well the sum of the balanced

homodyne detection of the x- and y-polarized modes.

The polarizing beam splitter outputs were detected by two

balanced photodetectors based on pin photodiodes. The de-

tectors had a dc output �	1 kHz� to monitor the optical

power as well as an ac output �5–40 MHz�. This frequency

window was chosen to avoid low frequency technical noise

and the high frequency laser repetition rate. The sum and

difference of the detectors’ ac photocurrents, representing the

noise of different Stokes variables, were fed into a spectrum

analyzer �Hewlett-Packard 8595E� to measure the spectral

power density at 17.5 MHz with a resolution bandwidth of

300 kHz and a video bandwidth of 30 Hz.

VII. RESULTS—EXPERIMENT AND SIMULATION

A. Characterizing the single-pass method

The single-pass squeezing method allows the measure-

ment of greater squeezing as well as the direct and full char-

acterization of the bright Kerr-squeezed beams �33,58�. Both

of these traits are visible in Fig. 4. Here the measured ac

noise as a function of the rotation of a half-wave plate �by

the angle �� in the dark Stokes plane is seen. A progression

between very large noise and squeezing is observed, as ex-

pected from the rotation of a fiber squeezed state. Plotted on

the x axis is the projection angle �, i.e., the angle by which

�/4

�/4

�/2
Delay

PBS

Piezo

Birefringence compensator

Cr :YAG laser4+

Fiber

�/2 �/2

y

x

� �/2,

�
/2

, 2
2.

5°

Stokes
measurements

PI
controller

~0.1%

FIG. 3. Schematic of the single-pass method for the efficient

production of polarization squeezed states. The Stokes measure-

ment after the fiber scans the dark Ŝ1− Ŝ2 plane of the circularly

�Ŝ3��0 polarized output.

TABLE I. Values for the material parameters for the 3M FS-

PM-7811 fiber. Fibers I and II refer to two different production

runs. All values �when not otherwise stated� are for �0=1500 nm

and �0=130 fs.

Parameter Symbol Fiber I Fiber II Units

Mode field diameter d 5.42 5.69 �m

Nonlinear refractive

index ��10−20�
n2 2.9 2.9 m2

/W

Effective nonlinearity

��10−3�
� 5.3 4.8 1 / �m W�

Soliton energy ESol 56 60 pJ

Dispersion k��=�2� −10.5 −11.1 fs2
/mm

Attenuation at 1550 nm � 1.82 2.03 dB/km

Beat length Lb 1.67 1.67 mm

Polarization crosstalk

per 100 m

�P 	−23 	−23 dB
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the state has been rotated in phase space, inferred from the

wave plate angle ��=4��. Here pulses of 83.7 pJ were trans-

mitted through 13.3 m of optical fiber and the electronic sig-

nals were corrected for the −86.1�0.1 dBm dark noise.

For �=0, an Ŝ1 measurement gives a noise value equal to

the shot noise. This corresponds to the amplitude quadrature

of the Kerr-squeezed states emerging from the fiber. Rotation

of the state by �sq makes the state’s squeezing observable by

projection onto the minor axis of the noise ellipse. Further

rotation brings a rapid increase in noise as the excess phase

noise, composed of the antisqueezing and the classical ther-

mal noise arising from GAWBS, becomes visible. The maxi-

mum noise is observed for �=�sq+



2
. Under the assumption

of statistically identical but uncorrelated Kerr-squeezed

states, this measurement is equivalent to the characterization

of the individual squeezed states using standard local oscil-

lator and homodyne detection methods. However, here no

stabilization is needed after production of the polarization

squeezed state. This is advantageous for experiments with

long acquisition times, i.e., state tomography, and has indeed

allowed the reconstruction of the Wigner function of the dark

Stokes plane or Kerr-squeezed states �58�.
It is crucial to ensure that the measured squeezing did not

arise from detector saturation or any other spurious effect.

This was accomplished observing the noise of a variably

attenuated squeezed beam, where a plot of the linear relative

noise against the transmission should be linear for true

squeezing. A representative plot for a 81 pJ pulse in a 3.9 m

fiber exhibiting −3.9�0.3 dB of squeezing is shown in Fig.

5; the linear result is indicative of genuine squeezing.

The single-pass polarization squeezer exhibits a good

temporal stability, highlighted by the results in Fig. 6. Here

the sum �shot noise� and difference �polarization squeezing�
channels have been plotted. An average of −4.0 dB of

squeezing corrected for −85.8�0.1 dBm of dark noise was

measured over 100 min. The squeezer used 30 m of optical

fiber into which two orthogonally polarized pulses of 40 pJ

each were coupled. The most sensitive factor in this setup is

the locking of the birefringence compensator. Further impor-

tant parameters are the coupling of light into the fiber and the

laser power stability. All of these parameters are easily held

stable by exploiting commercially available components.

B. Squeezing results

The squeezing angle �sq and the squeezed and anti-

squeezed quadratures were experimentally investigated as a

function of pulse energy from 3.5 to 178.8 pJ, as plotted in

�a�, �b�, and �c�, respectively, of Fig. 7 �diamonds�. The x

axis shows the total pulse energy, i.e., the sum of the two

orthogonally polarized pulses comprising the polarization

squeezed pulse. We observe maximum squeezing

−6.8�0.3 dB at an energy of 98.6 pJ. The corresponding

antisqueezing of this state is 29.6�0.3 dB and the squeezing

angle is 1.71°. As the optical energy goes beyond 98.6 pJ,

the squeezing is reduced, eventually reaching the shot noise

limit �SNL�, and the increment of antisqueezing slows down

to a plateau area.

The loss of the setup was found to be 13%: 5% from the

fiber end, 4.6% from optical elements and from the fiber

attenuation �2.03 dB /km at 1550 nm�, 2% from incomplete

interference between the two polarization modes �99% vis-

ibility was measured�, and 2% from the photodiodes. Thus

we infer a maximum polarization squeezing of
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FIG. 4. �Color online� Noise power against phase-space rotation

angle for the rotation of the measurement half-wave plate for a

pulse energy of 83.7 pJ using 13.3 m of fiber I. Inset: Schematic of

the projection principle for angle �.
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FIG. 5. �Color online� Linear noise reduction against optical

transmission for the polarization squeezing generated by pulses of

an energy of 81 pJ in 3.9 m of fiber I.
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FIG. 6. �Color online� Plot showing a stable squeezing of

−4.0�0.3 dB over 100 min. A 30 m optical fiber with a pulse en-

ergy of 80 pJ was used.
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−10.4�0.8 dB. The improvement in squeezing over previ-

ous implementations �33,44� of the single-pass scheme is

largely due to the low loss achieved here.

The theoretical simulations for the squeezing, antisqueez-

ing, and squeezing angle at different input energies are also

given in Fig. 7 by solid and dashed lines. As described in

further detail below, the effect of excess phase noise, such as

GAWBS �44�, is included by a single-parameter fit between

the simulation and experimental data for squeezing angle

�shown by the solid line in Fig. 7�a��. The theoretical results

for squeezing and antisqueezing then show very good agree-

ment with the experimental data, and are consistent with the

measured linear losses of 13%. From the simulations, the

effect of the GAWBS is seen to be a reduction in squeezing

for lower energy pulses; above about 100 pJ, it has virtually

no effect on the squeezing. Although some deviations appear

at very high input energy, the simulations also show the same

deterioration of squeezing for higher pulse energies as is

seen in the experimental results; this effect does not occur in

the simulations if Raman terms are neglected, as we discuss

below.

C. Phase-noise and GAWBS

Excess phase noise, caused, for example, by depolarizing

GAWBS in the fiber, is determined for each fiber length by a

single-parameter fit of the experimental and simulation

squeezing angles. We model this by independent random

fluctuations in the refractive index at each point along the

fiber length. The cumulative effect on each pulse at a given

propagation length is a random phase shift whose variance is

proportional to the time width of the pulse:

���,�� = �0��,��ei�, �44�

where ��2�� t0.

Such phase fluctuations do not affect the number differ-

ence measurement Ŝ1, but they do lead to fluctuations in Ŝ2,

Ŝ2 − �Ŝ2� � 2�n̄� ��0��,���2d� � �E , �45�

where � is now taken to describe the relative �depolarizing�
relative phase shifts. Thus the variance relative to shot noise

of Ŝ2 caused by phase fluctuations scales linearly with the

energy of the pulse:

� �
var�Ŝ2�

�Ŝ0�
�

��2�E2

E
= cE , �46�

where the constant of proportionality c is to be determined

by the fit. Here we have assumed that the pulse width is a

constant, independent of input energy. This assumption is not

entirely accurate because unless the energy is the soliton en-

ergy for that pulse width, the pulse will reshape to form a

soliton, thereby altering the pulse width. However, for short

fiber lengths, this effect should be small, and so we neglect it

in our calculations.

The effect of the phase noise will be to stretch the squeez-

ing ellipse in the S2 direction, according to the formula

var�Ŝ��

�Ŝ0�
= a cos2�� − �K� + b sin2�� − �K� + cE sin2��� ,

�47�

where �K is the predicted angle from the Kerr-only squeez-

ing, a is the relative Kerr squeezing, and b is the relative

Kerr antisqueezing. These parameters are calculated by the
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FIG. 7. �Color online� Measurement results and theoretical

simulations for 13.2 m 3M FS-PM-7811 fiber �run II� as a function

of pulse energy: �a� the squeezing angle, �b� the squeezing and �c�
antisqueezing noise. Solid and dashed lines show the simulation

results with and without additional phase noise, with linear losses

taken to be 13%. The shading indicates simulation uncertainty. The

simulation result without third-order dispersion is given by the dots

in �b�. Diamonds represent the experimental results, with experi-

mental uncertainty indicated by the error bars in the squeezing.

Both the simulation and the experimental errors were too small to

be plotted distinctly for the squeezing angle and antisqueezing. The

measured noises are corrected for −85.1�0.1 dBm electronic

noise.
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simulation, and are a function of the input energy E. The

value of c is determined by fitting the predicted angle of

maximum squeezing as a function of E against the observed

values. The predicted angle is obtained from the extrema of

the expression in Eq. �47� and the fit is performed with a

nonlinear least-squares method. Once the value of c is deter-

mined, new values of squeezing and antisqueezing are cal-

culated from Eq. �47�.
As Fig. 8 illustrates, the excess phase noise has a substan-

tial effect on both the squeezing angle and the amount of

squeezing, only at low levels of squeezing. For highly

squeezed light, the Kerr-squeezed ellipse is more closely

aligned to the phase quadrature, and thus the phase-noise

merely has the effect of increasing the antisqueezing. This

view is confirmed by the results in Fig. 7, where the differ-

ence between the curves with and without the phase-noise-

fitting is discernible only at lower input energies.

D. Third-order dispersion

The comparison between theory and experiment confirms

the deterioration of squeezing at large pulse energy caused

by Raman effects in the fiber. However, there is still some

residual discrepancy between theory and experiments, which

could be caused by various higher-order effects not included

in the theoretical model. We here explore the effect of third-

order dispersion and find that it accounts for some of the

unexplained difference at high energies.

Third-order dispersion �79� arises from the rate of change

of curvature of the dispersion. It becomes more important for

shorter pulses or when operating near the zero-dispersion

wavelength �80�. In the propagation equation, it appears as

an extra term in the scaled equations:

�

��
���,�� = −

B3

6

�
3

��3
� , �48�

where B3=k�z0 / t0
3 is a dimensionless third-order dispersion

parameter. For the fiber used in the experiment, the third-

order dispersion at �=1499 nm is k�=8.38�10−41 s3
/m,

giving B3=0.097. The effect of third-order dispersion on the

pulse spectrum for various energies is shown in Fig. 9, where

significant differences appear only above the soliton energy.

Third-order dispersion does not have an observable effect

on the squeezing angles or the amount of antisqueezing, but

its effect can be seen on the squeezing, as shown in Fig. 7�b�

by the difference between the solid and dot-dashed lines.

Below the soliton energy, the third-order dispersion has no

observable effect. It diminishes the amount of squeezing at

around the soliton energy, and at higher energies it changes

the rate at which squeezing deteriorates as a function of en-

ergy. Far above the soliton energy, there remains some dif-

ference between simulation and experiment, which indicates

that other higher-order processes may be playing a role at

these energies. Because, in any case, the effect of third-order

dispersion is rather small, we do not include it in the other

simulation results shown in this paper

E. Raman noise effects

The Raman effect has a significant effect on the pulse

shape and spectrum for the more intense pulses at these sub-

picosecond pulse widths. For a soliton pulse, the effect of the

Raman interactions is to induce a frequency shift in the soli-

FIG. 8. Illustration of the effect of excess phase noise on differ-

ent squeezing ellipses. Dashed line gives the Kerr-squeezed ellipse

and the solid line gives the ellipse with added phase noise. The

effect on the squeezing and the angle is less for the ellipse with

larger Kerr squeezing �lower ellipse�.
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ton and hence a delay in its arrival time �60,61�. For pulses

above the soliton energy, the Raman interaction affects the

way the pulse reshapes. With a purely electronic �instanta-

neous� nonlinearity, the pulse reshapes into a narrower soli-

ton, at the same time shedding radiation that forms a low

pedestal underneath the soliton. In the frequency domain,

this results in a modulation of the pulse spectrum. As Fig. 10

shows, with the Raman terms included, the reformed soliton

separates from the pedestal, which distorts the spectrum into

an asymmetric shape.

For a pure Kerr effect, the squeezing is proportional to the

intensity of the light, which in our case corresponds to the

input energy of the pulse. However, the experimental and

simulation results clearly show that while the squeezing in-

creases with input energy over a range of energies, there is a

point beyond which the squeezing deteriorates. This deterio-

ration is largely due to Raman effects, as Fig. 11 reveals,

which compares the simulations with and without Raman

effects. In the latter case the nonlinearity is taken to be of the

same magnitude as the former but is instantaneous. Without

Raman effects, the squeezing does not suffer the same cata-

strophic reduction at high energies, but it does appear to

saturate at around the soliton energy �2�54 pJ�, demonstrat-

ing that pulse-reshaping effects are also in play.

For L=13.35 m, the optimum energy is around 80% of

the soliton energy.

F. Comparison with exact +P results

Nearly all of the simulation results presented in this paper

were calculated with the truncated Wigner phase-space

method because results can be obtained quickly and with low

sampling error. However, the Wigner technique only pro-

vides an approximation to the true quantum dynamics. While

the approximation is usually a good one for intense optical

pulses, some deviations from the exact result could in prin-

ciple occur for long simulation times, or when highly

squeezed states are being produced. To test the Wigner

method, we compared selected points with +P calculations

and found agreement within the statistical uncertainty. One

example is shown in Fig. 11, where the +P results are shown

as the squares. As the error-bar indicates, the sampling error

for the +P is much larger than that of the Wigner for the

more intense pulses, even though ten times as many trajec-

tories were used for the +P calculation. Even for the same

number of trajectories, +P calculation is more computation-

ally exacting. This combination of greater computational cost

per trajectory and the larger number of trajectories required

for a meaningful +P result is why the Wigner technique has

been our method of choice for squeezing calculations. The

+P method comes into its own when more exotic quantum

states or fewer photons are involved, i.e., when the Wigner
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that these results were obtained in an experimental setup with

higher losses than that of Fig. 7, giving a reduced magnitude of raw

squeezing. The simulations here assume 19.9% loss.
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technique is not expected to be reliable. It is also possible

that appropriate diffusion �81� or drift �82� gauges may im-

prove the performance of the +P calculations.

G. Comparison for different fiber lengths

The squeezed and antisqueezed quadratures as well as the

squeezing angle �sq of such polarization states were investi-

gated as a function of pulse energy for different lengths of

3M FS-PM-7811 fiber, as shown in Figs. 12–14. The figures

are organized into pairs of lengths: Fig. 12 shows 3.9 and

13.3 m, Fig. 13 shows 20 and 30 m, and Fig. 14 shows 50

and 166 m. For each length the squeezing angle ��0.3° �,
squeezing ��0.3 dB�, and antisqueezing ��0.3 dB� form a

column. Due to the technical limitations of the photodetec-
tors it was not possible to measure above 125 pJ or 20 mW

in this particular experimental run. The losses in this particu-

lar setup were also larger than in that which gave the results

in Fig. 7.

Even though the simulations and experiment agree very

well for the angle and the antisqueezing, some small discrep-

ancies appear in the squeezing at longer fiber lengths. This

could be caused by variation of the material parameters

along the fiber length, or inaccuracies in the Raman model,

which would become more prominent for longer fibers.

Ideal Kerr squeezing should increase with propagation

distance. However, the experimental data and simulations

show that, above 13.4 m, the squeezing at a given input en-
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FIG. 12. Experiments �corrected for dark noise� and simulations �with and without fitted phase noise� of the polarization squeezing,

antisqueezing, and squeezing angle for 3.9 ��a�, �c�, and �e�� and 13.3 m ��b�, �d�, and �f�� of fiber I.
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ergy is largely insensitive to the length of fiber. The excep-

tion here is that the deterioration of squeezing due to Raman

effects starts to occur at slightly lower energies. Thus the

maximum squeezing available at a given fiber length actually

decreases for longer lengths. Meanwhile the antisqueezing

increases with propagation distance, as expected.

H. Optimal squeezing as a function of power/length

Some insight can be gained from further simulations of

squeezing as a function of fiber length, for various input

energies, as shown in Fig. 15. This figure reveals that for a

given input energy there is an optimum length for the best
squeezing, reflecting the length-dependence of the Raman-
induced deterioration revealed in the previous plots. The best
squeezing overall is obtained for a pulse at the soliton energy
�54 pJ in each pulse�, which indicates that the reduced opti-
mal squeezing at other energies is due to pulse-reshaping
effects. Thus for the t0=130 fs used here, the optimum fibre
length would be L�7 m, �although the improvement over
13 m would only be a fraction of a dB�. Alternatively, for a
fixed fiber length, one could optimize the maximum squeez-

ing by changing the pulse-width to yield a soliton at that

point. Furthermore, as Fig. 15 plots the simulation results
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FIG. 13. Experiments �corrected for dark noise� and simulations �with and without fitted phase noise� of the polarization squeezing,

antisqueezing, and squeezing angle for 20 ��a�, �c�, and �e�� and 30 m ��b�, �d�, and �f�� of fiber II. The lighter data points in �c� are from a

corrected experimental run.
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without adjustment for linear loss, it shows that inferred

squeezing of over −12 dB is possible.

VIII. CONCLUSION AND OUTLOOK

An excellent −6.8�0.3 dB of polarization squeezing, the

greatest measured in fibers to date, has been demonstrated

with the novel single-pass setup �34�. From this value it is

possible to infer that −10.4�0.8 dB of squeezing was gen-

erated in the fiber. To further improve the measured noise

reduction, losses after the fiber must be minimized by, for

example, employing more efficient photodiodes in a minimal

detection setup using the highest quality optics. We speculate

that net losses of as little as 5% should be possible, thereby

allowing the measurement of squeezing in excess of −8 dB.

By exclusion of the Raman and/or the GAWBS effects in

the simulations, it is clear that the former is a limiting factor

for high pulse energies, whereas the latter is detrimental at

low energies. Investigation of a range of fiber lengths re-

vealed that greater squeezing is not achieved going beyond

13.2 m. Indeed, simulations indicate that slightly greater

squeezing may be achievable at a lower fiber length of

around 7 m.

Further improvement may be possible through the use of

photonic crystal fibers �PCF�, which are novel fibers manu-

factured with specially designed light-guiding air-silica
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FIG. 14. Experiments �corrected for dark noise� and simulations �with and without fitted phase noise� of the polarization squeezing,

antisqueezing, and squeezing angle for 50 ��a�, �c�, and �e�� and 166 m ��b�, �d�, and �f�� of fiber II. The amount of dispersion over 166 m

makes the simulations impractical for this case.
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structures along their length �83�. These have already been
used in several squeezing experiments �84–87�, and with
fewer low-frequency acoustic vibrations, are also expected to
improve squeezing results by minimizing destructive
GAWBS noise �88�. Such an advance would bring fiber-

produced squeezed states closer to minimum uncertainty

states, a desirable feature for quantum-information applica-

tions.
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APPENDIX: RESCALED +P EQUATIONS

The rescaled +P equations, corresponding to the Wigner

equations of Eq. �33�, are

�

��
� = �− i�

k

�ke
−i�� + �k

+
ei����� +

i

2

�
2

��2
+ i�1 − f��+�

+ 
i�E��,�� + i�R��,���� ,

�

��
�k = rk

2�− i�+� + �k
R��,���ei��, �A1�

with equations of conjugate form for �+ and �k
+. The initial

conditions are

�k��,� = − �� = �k
���� ,

��� = 0,�� =
vt0

n̄
��̂�0,t0��� , �A2�

where the stochastic terms have correlations

��
k�

�+�����k
����� =

rk
2
nk�k,k�

n̄��
��� − ��� ,

��E���,����E��,��� =
1 − f

n̄
��� − ������ − ���

= ��E+���,����E+��,��� ,

��R���,����k
R��,��� =

1

n̄
��� − ������ − ���

= ��R+���,����k
R+��,��� . �A3�

Preliminary investigation of other �physically equivalent�
ways to numerically implement the Raman noise did not find

any improvement over the simple choice given here.
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