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Robust Sparse Analysis Regularization
Samuel Vaiter, Student Member, IEEE, Gabriel Peyré, Member, IEEE,

Charles Dossal, Member, IEEE, and Jalal Fadili, Member, IEEE

Abstract—This paper studies the properties of ℓ
1-analysis

regularization for the resolution of linear inverse problems.

Most previous works consider sparse synthesis priors where the
sparsity is measured as the ℓ

1 norm of the coefficients that
synthesize the signal in a given dictionary. In contrast, the more
general analysis regularization minimizes the ℓ

1 norm of the
correlations between the signal and the atoms in the dictionary.
The corresponding variational problem includes several well-
known regularizations such as the discrete total variation and
the fused lasso.

We give a sufficient condition to ensure that a signal is the
unique solution of the analysis regularization when there is
no noise in the observations. The same criterion ensures the
robustness of the sparse analysis solution to a small noise in the
observations. We also define a stronger sufficient condition that
ensures robustness to an arbitrary bounded noise. In the special
case of synthesis regularization, our contributions recover already
known results, that are hence generalized to the analysis setting.
We illustrate these theoritical results on practical examples to
study the robustness of the total variation and the fused lasso
regularizations.

Index Terms—sparsity, analysis regularization, synthesis regu-
larization, inverse problems, ℓ1 minimization, union of subspaces,
noise robustness, total variation, wavelets, Fused Lasso.

I. INTRODUCTION

A. Inverse Problems and Signal Priors

This paper considers the stability of inverse problems regu-

larization using sparse priors. Many data acquisition systems

are modeled using a linear mapping of some unknown source

perturbed by an additive noise. This reads

y = Φx0 + w, (1)

where y ∈ RQ are the observations, x0 ∈ RN the unknown

signal to recover, w the noise and Φ a linear operator which

maps the signal domain RN into the observation domain RQ

where Q 6 N . The mapping Φ is in general ill-conditioned,

which makes the recovery of an approximation of x0 difficult,

see for instance [1] for an introduction to inverse problems.

Regularization through variational analysis is a popular way

to compute an approximation of x0 from the measurements y
as defined in (1). The general framework reads

min
x∈RN

1

2
||y − Φx||22 + λR(x). (2)

This requires to define a prior R to enforce some regularity on

the recovered signal. We restrict our attention in this paper to a
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ℓ2 fidelity measure ||y−Φx||22 that reflects some Gaussian prior

on the noise w. The regularization parameter λ > 0 should be

adapted to match the noise level and the expected regularity

of the data x0.

For noiseless observations, w = 0, one has to take the limit

λ→ 0 and solve the constrained problem

min
x∈RN

R(x) subject to Φx = y. (3)

A popular class of priors are quadratic Hilbert norms

of the form R(x) = 〈x, Kx〉 where K is some positive

definite kernel. The minimizations (2) and (3) correspond to

a Tikhonov regularization which typically enforces some kind

of uniform smoothness in the recovered data. More advanced

priors rely on non-quadratic functionals which enforce sparsity

of the signal over some transformed domain (e.g. its wavelet

transform or its gradient). These sparse priors are the subject

of this article, and are described in the following section.

B. Notations

Our paper focus on real vector spaces. In all the following,

the variable x will denote a vector in RN , y will be a vector

in RQ and α a vector in RP .

The sign vector sign(α) of α is

∀k ∈ {1, · · · , P}, sign(α)k =







+1 if αk > 0,

0 if αk = 0,

−1 if αk < 0.

The support of α ∈ RP is

supp(α) = {i ∈ {1, · · · , P} \ αi 6= 0} .

For a set I , |I| will denote the cardinal of I .

In the following we make use of the matrix norms. The

p, q-operator norm of a matrix M is

||M ||p,q = max
x 6=0

||Mx||q
||x||p

.

The matrix MJ for J a subset of {1, . . . , P} is the subma-

trix whose columns are indexed by J . Similarly, the vector sJ
is the reduced dimensional vector built upon the components

of s indexed by J .

The matrix Id is the identity matrix, where the underlying

space is implicited. For any matrix M , M+ is the Moore–

Penrose pseudoinverse of M and M∗ is the adjoint matrix of

M .
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C. Synthesis and Analysis Sparsity

a) Synthesis sparsity: Sparse regularization is a popular

class of priors to model natural signals and images, see for

instance [2]. In its simplest form, the sparsity of coefficients

α ∈ RP is measured using the ℓ0 pseudo-norm

R0(α) = ||α||0 = | supp(α)|.

Minimizing (2) or (3) with R = R0 is however known to be in

some sense NP-hard, see for instance [3]. Several workarounds

have been proposed to alleviate this difficulty. A first class

of methods uses greedy algorithms [4]. The most popular

algortihms are Matching Pursuit [5] and Orthogonal Matching

Pursuit [6, 7]. A second class of methods, which is the focus

of this paper, replaces the ℓ0 pseudo-norm by its ℓ1 convex

relaxation [8].

A dictionary D = (di)
P
i=1 is a (possibly redundant) collec-

tion of P atoms di ∈ RN . It can also be viewed as a linear

mapping from RP to RN which is used to synthesize a signal

x ∈ Span(D) ⊆ RN as

x = Dα =

P∑

i=1

αidi.

In the redundant case (P > N ) this decomposition is non-

unique. The sparsest set of coefficients, according to the ℓ1

norm, defines a prior

RS(x) = min
α∈RP

||α||1 subject to x = Dα.

Any solution x of (2) using R = RS can be written as x = Dα
where α is a solution of

min
α∈RP

1

2
||y −Ψα||22 + λ||α||1, (4)

where Ψ = ΦD, and x = Dα. It was first introduced

in [9] in the statistical community and coined Lasso. It is also

known in the signal processing community as Basis Pursuit

Denoising [10]. Such problem corresponds to a so-called

synthesis regularization because one assumes the sparsity of

the coefficients α that synthesize the signal x = Dα. In the

noiseless case, w = 0, one uses the constraint optimization

(3), which reads

min
α∈RP

||α||1 subject to y = Ψα, (5)

and is referred to as Basis Pursuit [10]. Taking D = Id to be

the identity imposes sparsity of the signal itself, and is used

for instance for sparse spikes deconvolution in seismic imag-

ing [11]. Sparsity in orthogonal as well as redundant wavelet

dictionaries are popular to model natural signals and images

that exhibit sharp transitions [2]. Beside the regularization of

inverse problems, a popular application of sparsity is blind

source separation [12].

b) Analysis sparsity: Analysis regularization corresponds

to using R = RA in (2) where

RA(x) = ||D∗x||1 =

P∑

i=1

|〈di, x〉|

which leads to the following minimization problem

min
x∈RN

1

2
||y − Φx||22 + λ||D∗x||1. (Pλ(y))

As the objective in (Pλ(y)) is proper, continuous and convex, it

is a classical existence result that the set of (global) minimizers

is nonempty and compact if and only if

KerΦ ∩KerD∗ = {0}. (H0)

All throughout this paper, we suppose that this condition holds.

Note that the analysis problem (Pλ(y)) is in some sense more

general than the synthesis one (4) because the last one is

recovered by setting D = Id and Ψ = Φ.

In the noiseless case, w = 0, one uses the constrained

optimization (3), which reads

min
x∈RN

||D∗x||1 subject to Φx = y. (P0(y))

The most popular analysis sparse regularization is the total

variation, which was first introduced for denoising in [13]. It

corresponds to using a derivative operator D∗. In the case of

1-D discrete signals, one can use forward finite differences

D = DDIF where

DDIF =











−1 0
+1 −1

+1
. . .

. . . −1
0 +1











. (6)

The corresponding prior RA favors piecewise constant signals

and images. A review of total variation regularization can be

found in [14].

The theoretical properties of total variation for denoising

has been extensively studied. A distinctive feature of this

regularization is that it tends to produces a staircasing effect,

where discontinuities not present in the original data might be

created by the regularization. This effect has been studied by

Nikolova in [15] in 2-D. The stability of discontinuities for

2-D total variation denoising is the core of the work of [16].

Section IV-C shows how our results also shed some light on

this staircasing effect for 1-D signals.

It is also possible to use a dictionary D of translation

invariant wavelets, so that the corresponding prior RA can

be interpreted as a sort of multi-scale total variation. Such a

prior tends to favors piecewise regular signals and images. An

extensive study of these redundant dictionaries highlighting

differences between synthesis and analysis is done in [17].

As a last example of sparse analysis regularization, let us

mention the Fused lasso [18], where D is the concatenation

of a discrete derivative and a weighted identity. The corre-

sponding prior RA encourages both sparsity of the signal and

its derivative, hence grouping block of non-zero coefficients

together.

c) Synthesis versus analysis.: In a synthesis prior, the

generative vector α is sparse in the dictionary D whereas

in analysis prior, the correlation between the signal x and

the dictionary D is sparse. When D is orthogonal, Pλ(y)
and Lasso define the same regularization. As highlighted
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in [19] synthesis and analysis regularizations however differ

significantly when D is redundant. Some connections between

total variation regularization and wavelet sparsity have been

drawn in [20].

D. Union of Subspaces Model

Analysis regularization favors the sparsity of D∗x. It is thus

natural to keep track of the support of this correlation vector,

as done in the following definition.

Definition 1. The D-support I of a vector x ∈ RN is defined

as I = supp(D∗x). Its D-cosupportJ is defined as J = Ic.

A signal x such that D∗x is sparse lives in a cospace GJ

of small dimension where GJ is defined as follow.

Definition 2. Given a dictionary D, and J a subset of

{1 · · ·P}, the cospace GJ is defined as

GJ = KerD∗
J ,

where DJ is the subdictionary whose columns are indexed by

J .

The signal space can thus be decomposed as a union of

subspaces of increasing dimensions

R
N =

⋃

k∈{0,...,N}

Θk,

where

Θk = {GJ \ J ⊆ {1, . . . , P} and dim GJ = k} . (7)

The union of subspaces associated to synthesis regulariza-

tion (D = Id) defines Θk as the set of axis-aligned subspaces

of dimension k. For the 1-D total variation prior, where

D = DDIF as defined in (6), Θk is the set of piecewise constant

signals with k− 1 steps. A detailed analysis of several sparse

analysis subspaces, including translation invariant wavelets,

can be found in [21].

More general unions of subspaces (not necessarily corre-

sponding to analysis regularizations) have been introduced in

sampling theory to model various kind of non-linear signal

ensembles, see for instance [22]. Union of subspaces models

have been extensively studied for the recovery from pointwise

sampling measurements [22] and random measurements [23,

24, 25, 26].

E. Organization of this Paper

Section II details our three contributions. Section III draws

some connexions with relevant previous works. Section IV

illustrates our results using concrete examples. Section V gives

the proofs of the three contributions.

II. CONTRIBUTIONS

This paper proves the following three results:

1) Robustness to small noise: we give a sufficient condi-

tion on x0 ensuring that the solution of Pλ(y) is close

to x0 when w is small enough.

2) Noiseless identifiability: the same condition ensures

that x0 is the unique solution of P0(y) when w = 0.

3) Robustness to bounded noise: we give a sufficient

condition on the D-cosupport of x0 ensuring that the

solution of Pλ(y) is close to x0 when w is an arbitrary

bounded noise and λ is large enough.

Each contribution is rigorously described in the following sub-

sections.

Note that these contributions extend previously known re-

sults in the synthesis case, see for instance [27, 28, 29, 30, 31].

With the notable exception of the work of [21, 32] that studies

analysis identifiability, to the best of our knowledge, it is the

first time these questions are addressed in the analysis case.

For some cosuport J , it is important to ensure the invert-

ibility of Φ on GJ . This is achieved by imposing

KerΦ ∩ GJ = {0}. (HJ )

Definition 3. Let J be a D-cosupport. Suppose that (HJ )

holds. We define the operator A[J] as

A[J] = U (U∗Φ∗ΦU)
−1
U∗. (8)

where U is a matrix which columns form a basis of GJ .

A. Robustness to Small Noise

Our next contribution shows that analysis regularization is

robust to a small noise under a condition on sign(D∗x0).

Definition 4. Let s ∈ {−1, 0,+1}P , I its D-support and

J its D-cosupport. We suppose (HJ ) holds. The analysis

Identifiabiltiy Criterion IC of s is defined as

IC(s) = min
u∈KerDJ

||Ω[J]sI − u||∞

where

Ω[J] = D+
J (Φ

∗ΦA[J] − Id)DI .

We have the following theorem.

Theorem 1. Let x0 ∈ RN be a fixed vector of D-cosupport

J , and of D-support I = Jc. Suppose (HJ ) holds and

IC(sign(D∗x0)) < 1. There exist two constants cJ > 0 and

c̃J > 0, such that if y = Φx0 + w, where

||w||2
T

<
c̃J
cJ

and T = min
i∈{1,··· ,|I|}

|D∗
Ix0|i,

and if λ satisfies

cJ ||w||2 < λ < T c̃J ,

the vector defined by

x̂⋆ = x0 +A[J]Φ∗w − λA[J]DIsI , (9)

is the unique solution of Pλ(y). Moreover,

x̂⋆ ∈ GJ and sign(D∗x0) = sign(D∗x̂⋆).

Note that it is possible to choose λ proportional to the noise

level ||w||2. Hence, for ||w||2 small enough, equation (9) gives

||x̂⋆ − x0|| = O(||w||2).
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B. Noiseless Identifiability

In the noiseless case, w = 0, the criterion IC can be used

to test identifiability.

Definition 5. A vector x0 is said to be identifiable if x0 is the

unique solution of P0(Φx0).

We prove the following theorem

Theorem 2. Let x0 ∈ RN be a fixed vector of D-cosupport

J . Suppose that (HJ ) holds and IC(sign(D∗x0)) < 1. Then

x0 is identifiable.

C. Robustness to Bounded Noise

Our last contribution defines a stronger criterion that ensures

robustness to an arbitrary bounded noise.

Definition 6. The analysis Recovery Criterion (RC) of I ⊂
{1 . . . P} is defined as

RC(I) = max
||pI ||∞61

min
u∈KerDJ

||Ω[J]pI − u||∞.

Note that if I is the D-support of x0, RC(I) < 1 implies

IC(sign(D∗x0)) < 1.

The following theorem shows that if the parameter λ is

big enough, then Pλ(y) recovers a unique vector which is

close enough in the ℓ2 sense and lives in the same GJ as the

unknown signal x0.

Theorem 3. Let I be a fixed D-support and J its associated

D-cosupport J = Ic. Suppose that (HJ ) holds. If RC(I) < 1
and

λ = ρ||w||2
cJ

1−RC(I)
with ρ > 1,

where cJ is defined as

cJ = ||D+
J Φ

∗(ΦA[J]Φ∗ − Id)||2,∞,

then for every x0 of D-support I , there exists a unique solution

x⋆ of D-support included in I , such that ||x0−x⋆||2 = O(||w||2)
. More precisely,

||x0−x
⋆||2 6 ||A[J]||2,2||w||2

(

||Φ||2,2 +
ρcJ

1−RC(I)
||DI ||2,∞

)

.

III. RELATED WORKS

A. Previous Works on Synthesis Identifiability and Robustness

Several previous works have studied identifiability and noise

robustness of sparse synthesis regularization. We recall that

synthesis regularization (4) reads

min
α∈RP

1

2
||y −Ψα||2 + λ||α||1,

where Ψ = ΦD, and x = Dα. Fuchs defines [28] a criterion

ICS which is a specialization of our criterion IC introduced

in Definition 4 to the case where D = Id.

Definition 7. Let s ∈ {−1, 0,+1}P , I its support and J its

cosupport. We suppose ΨI has full rank. The Sign Criterion

ICS of a sign vector s associated to a support I is defined as

ICS(s) = ||ΩSsI ||∞ where ΩS = Ψ∗
JΨ

+,∗
I .

Fuchs shows the following result.

Theorem ([28]). Let α0 ∈ RP be a fixed vector of support

I . If ΨI has full rank and ICS(sign(α0)) < 1, then α0 is

identifiable, i.e it is the unique solution of (4) for y = Ψα0.

The work of Tropp [29, 30] developed in the synthesis case

a condition named Exact Recovery Condition (ERC) on the

support.

Definition 8. The Exact Recovery Condition (ERC) of I ⊂
{1 . . . P} is defined as

ERC(I) = ||ΩS ||∞,∞,

Tropp proves that ERC(I) < 1 is a sufficient condition of

identifiability and stability of the synthesis Lasso.

Theorem ([29]). Let I be a fixed support. Suppose that ΨI has

full rank. If ERC(I) < 1 and λ large enough, then for every

α0 of support I , there exists a unique solution α⋆ of (4) for

y = Ψα0+w of support included in I , verifying ||α0−α⋆||2 =
O(||w||2).

Note that ICS(s) depends both on the sign and the support,

while ERC depends only on the support, and we have the

general inequality ICS(s) 6 ERC(I).
In the analysis case where D = Id, the criterion of Tropp

and our are equivalent. This is also true for the criterion of

Fuchs and our.

Proposition 1. If D = Id, then ERC(I) = RC(I) and

IC(sign(D∗x0)) = ICS(sign(D
∗x0)).

Let us mention that there exist several other criteria ensuring

both identifiability and noise robustness in the synthesis cases.

This includes criteria based on coherence (see [33] for a re-

view) and RIP-based compressed sensing theory that requires

that Φ is a realization of certain random matrices ensembles

[31, 34].

B. Previous Works on Analysis Identifiability and Robustness

To the best of our knowledge, the only previous works that

study the performance of sparse analysis regularization are the

papers [32] and [21].

The work [32] proves a strong robustness to noise with

overwhelming probability on the matrix Φ when D is tight

frame and Φ a realization of certain random matrices ensem-

bles satisfying a condition named D-RIP. This setting is thus

quite far from our.

The work of Nam and al. is much closer to our results. It

studies noiseless identifiability using ℓ0 and ℓ1 sparse analysis

regularization. Their main result on ℓ1 analysis identifiability

is the following theorem.

Theorem ([21]). Let M∗ be a basis matrix of KerΦ and I
a fixed D-support such that the matrix D∗

JM
∗ has full rank.

Let x0 ∈ GJ be a fixed vector. If IC0(sign(D
∗x0)) < 1 and

IC0(s) = ||iIsI ||∞ where iI = (MDJ)
+MDI ,

then x0 is identifiable.
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Note that IC0(s) < 1 does not imply IC(s) < 1 neither

the opposite. Numerical results suggest that their criterion is

most of the time sharper than IC. However, the condition

IC0(s) < 1 does not imply in general a robustness to noise,

even for a small one. Moreover, let x0 be a fixed vector, and

denote s = sign(D∗x0) where I is its D-support and y =
Φx0 +w. If IC0(s) < 1 but IC(s) > 1, then any solution x⋆

of Pλ(y), for λ close to zero, is such that the D-support of

xλ(y) is not included in I . One can thus find vectors x0 with

IC0(s) < 1 but where
||x0−x⋆||2

||w||2
is arbitrary large, whatever

the amplitude ||w||2 of the noise.

IV. EXAMPLES

This section details algorithms to compute identifiability

criteria IC and RC, together with a study of total variation,

shift invariant Haar transform and Fused Lasso regularizations.

A. Computing Sparse Analysis Regularization

It is not the focus of this paper to give a full study of

optimization schemes that can be used to solve the analysis

regularization.

In the case where Φ = Id (denoising), Pλ(y) is strictly

convex, and one can compute its unique solution x⋆ by solving

an equivalent dual problem [35]

x⋆ = y +Dα⋆ where α⋆ ∈ argmin
||α||∞6λ

||y +Dα||22.

In the general case, it is possible to use a primal-dual method

such as the algorithm of Chambolle and Pock [36]. One way

is to rewrite the optimization problem as follow

min
x∈RN

F (K(x)) where

{
F (g, u) = 1

2 ||y − g||22 + λ||u||1
K(x) = (Φx,D∗x).

B. Computing the Criteria

In the case where Ker(DJ) 6= {0}, computing

IC(sign(D∗x0)) necessitates the resolution of a convex prob-

lem. This optimization is re-written as

IC(sign(D∗x0)) = min
u∈RN

||Ω[J]sign(D∗x0)I − u||∞

+ ιKer(DJ )(u),

where ιKer(DJ ) is characteristic function of Ker(DJ )

ιKer(DJ )(u) =

{

0 if u ∈ Ker(DJ)

+∞ else.

This requires the optimization of a sum of two simple

functions, i.e. function whose proximal operators is easy to

compute. The proximal operator Proxf of a convex lower

semicontinuous function f is defined as

∀x ∈ R
N , Proxf (x) = argmin

z∈RN

1

2
||z − x||22 + f(z).

Such a minimization can hence be achieved using the Douglas-

Rachford splitting algorithm [37]. Indeed, the proximity oper-

ator of ιKer(DJ ) is the orthogonal projector on Ker(DJ), and

the proximal operator of || · ||∞ can be computed as

Proxγ||·||∞(x) = x− P||·||1

(
x

γ

)

,

where P||·||1 is the projection of the ℓ1 ball
{
x ∈ RN \ ||x||1 6 1

}
. This projection is computed as

explained for instance in [38].

Unfortunately, computing RC necessitates to solve a com-

binatorial optimization problem which is not convex. Recall

that

RC(I) = max
||pI ||∞61

min
u∈KerDJ

||Ω[J]pI − u||∞.

A stronger criterion, which is easy to compute, is obtained by

selecting u = 0 in KerDJ

wRC(I) = ||Ω[J]||∞,∞.

Note that for every vector x0 with D-support I = supp(D∗x),
we have the following inequalities

IC(sign(D∗x0)) 6 RC(I) 6 wRC(I).

C. Total Variation Denoising

Discrete total variation uses D = DDIF defined in (6).

We recall that the total variation union of subspace model is

formed by
⋃

k Θk where Θk is the set of piecewise constant

signals with k−1 steps. We now define a subclass of piecewise

constant signals.

Definition 9. A signal is said to contain a staircase sub-signal

if there exists i ∈ {1 . . . |I| − 1} such that

sign(D∗
Ix)i = sign(D∗

Ix)i+1 = ±1.

Figure 1 shows examples of signals with and without

staircase sub-signals.

Fig. 1: Top line: Signals x with 2 discontinuities. Bottom line:

Associated dual vector m.

The following proposition studies the robustness of total

variation denoising.

Proposition 2. We consider the denoising case, Φ =
Id. If x does not contain a staircase sub-signal, then

IC(sign(D∗x)) < 1. Otherwise, IC(sign(D∗x)) = 1.

Proof: Let x⋆ be a solution of Pλ(y) with D-cosupport J
and I = Jc. Using Lemma 1, there exists σ ∈ Σy,λ(x

⋆) such

that ||σ||∞ 6 1. Since D+
J A

[J] = 0, we have Ω[J] = −D+
JDI .

We denote the vector m defined as

m :

{
mI = sI = sign(D∗x)I
mJ = σ = Ω[J]sI .
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The vector σ satisfies (D∗
JDJ)σ = (D∗

JDI)sI . One can show

that this implies that m is the solution of a discrete Poisson

equation

∀ j ∈ J, (∆m)j = 0 and

{
∀ i ∈ I, mi = si,
m0 = mN = 0.

where ∆ = DD∗ is a discrete Laplacian operator. This implies

that for i1 < k < i2 where i1, i2 are consecutive indexes of

I , m is obtained by linearly interpolating (see Figure 1) the

values mi1 and mi2 , i.e

mk = ρmi1 + (1− ρ)mi2 where ρ =
k − i1
i2 − i1

.

Hence, if x does not contain a staircase sub-signal, one has

||Ω[J]sI ||∞ < 1. On the contrary, if there is i1 such that si1 =
si2 , where i1, i2 are consecutive indexes of I , then for every

i1 < j < i2,mj = si1 = ±1 which implies IC(sign(D∗x)) =
1.

This proposition together with Theorem 1 shows that if

a signal does not have a staircase sub-signal, TV denoising

is robust to a small noise. This means that if w is small

enough, for λ small, the TV denoising of x0+w has the same

discontinuities as x0. However, the presence of a staircase in

a signal implies that no robustness, even for a small one, can

be ensured.

Corollary 1. If |I| > 2 such that i ∈ I implies i+1 6∈ I , and

D = DDIF, then RC(I) = 1.

Proof: If |I| > 2, there exists a signal x̃ which contain

a staircase sub-signal, hence 1 = IC(sign(D∗x̃)) 6 RC(I).
Since there is no signal x ∈ RN such that IC(sign(D∗x)) >
1, we conclude.

This corollary shows that in the case of total variation

regularization, one cannot expect cospace robustness, i.e dis-

continuities conservation, even for a small noise.

D. Invariant Haar Transform

Sparse analysis regularization using a shift invariant Haar

dictionary is efficient to recover piecewise constant signals.

This dictionary is defined using a set of dilated Haar filters

ψ
(j)
i =

1

2j+1







+1 if 0 6 i < 2j

−1 if − 2j 6 i < 0

0 else.

We define the translation invariant Haar dictionary as

D∗
Hx =

(

ψ(j) ⋆ x
)

06j<log
2
(N)

.

The analysis regularization ||D∗
Hx||1 is a sum of the TV norm

of filtered versions of the signal, it can thus be understood

as some kind of multi-scale total variation. We consider the

case where Φ is a realization of the Gaussian matrix ensemble,

which has i.i.d. entries distributed according to the normal law

N (0, 1). Figure 2 shows the evolution of IC as a function

of the redundancy Q/N of the operator Φ for different box

signals. More precisely, we consider the collection of box

signals

xη[i] =

{

1 if |i− n
2 | 6 ηN

0 elsewhere.

Figure 2 displays the average and standard deviation of IC for

three different values of η as a function of Q/N ∈ [0.4, 1].
They are estimated numerically using Monte-Carlo simulation,

using 1000 samples for each redundancy. Remark that IC

increases when the signal converges to a single spike signal

and the redundancy Q/N diminishes.

Fig. 2: Evolution of IC for a compressed sensing matrix with

a invariant Haar dictionary. On the left side, a box signal.

On the right, the dotted line represents the average IC as a

function of Q/N . The vertical lines represents the interval

[mean(IC)− std(IC),mean(IC)+ std(IC)]. The horizontal

line indicates the saturation level IC = 1.

E. Fused Lasso

Fused Lasso is introduced in [18]. It is equivalent to Pλ(y)
when using

D =
[
DDIF εId

]
,

where ε is a positive real number. The associated union of

subspaces (7) is
⋃

k Θk where Θk is the set of sum of k
interval indicators, i.e a signal x ∈ Θk can be written as

x =
k∑

i=1

γi1[ai,bi],

where γi ∈ R and ai 6 bi < ai+1.

We consider the case where Φ is a realization of the

Gaussian matrix ensemble, which has i.i.d. entries distributed

according to the normal law N (0, 1). We consider the collec-

tion of sum of two indicators

xη,ρ = 1[( 1

2
−η−ρ)N,( 1

2
−ρ)N ] + 1[( 1

2
+ρ)N,( 1

2
+η+ρ)N ]. (10)

We fixed ρ = 1
4N , ε = 50/N . Figure 3 shows the evolution

of the mean and standard deviation of IC as a function of
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the redundancy Q/N ∈ [0.5, 1] of Φ for different box signals.

They are estimated numerically using Monte-Carlo simulation,

using 1000 samples for each redundancy. Remark that IC

diminished when the signal converges to two spikes and when

the redundancyQ/N increases. An other choice of ε may lead

to different results depending if D favors the ℓ1-sparsity or the

total variation sparsity.

Fig. 3: Evolution of IC for a compressed sensing matrix with a

Fused Lasso dictionary. On the left side, a signal with a fixed

interval size η = 0.025N, 0.1250N, 0.2N . On the right, the

average and the standard deviation of IC as a function of the

redundancy Q/N of the random matrix.

V. PROOFS

This section details the proofs of Theorems 1 – 3. The

objective function Ly,λ minimized in Pλ(y) is

Ly,λ(x) =
1

2
||y − Φx||22 + λ||D∗x||1.

We recall that we suppose that condition (H0) holds in every

statements. The following lemma, which is at the heart of the

proofs of our contributions, details the first order optimality

conditions for the analysis variational problem Pλ(y).

Lemma 1. A vector x⋆ is a solution of Pλ(y) if, and only if,

there exists σ ∈ R|J|, where J is the D-cosupport of x⋆, such

that

σ ∈ Σy,λ(x
⋆) (11)

where I = Jc the D-support,

Σy,λ(x
⋆) =

{

σ ∈ R
|J| \ Φ∗(Φx⋆ − y)

+ λDIsI + λDJσ = 0

and ||σ||∞ 6 1
}

(12)

and s = sign(D∗x⋆).

Proof: The subdifferential ∂F of a real valued convex

lower semicontinuous function F : RN → R is the multifunc-

tion defined by

∂F (x0) =
{
g ∈ R

N \∀x ∈ R
N, f(x)>f(x0)+〈g, x− x0〉

}
.

Note that x0 is a minimum of F if, and only if, 0 ∈ ∂F (x0).
Indeed, if 0 ∈ ∂F (x0), then for every x ∈ RN , F (x) > F (x0),
meaning that x0 is a minimum of F over RN . The subdiffer-

ential of Ly,λ(x) is

∂Ly,λ(x) = {Φ∗(Φx− y) + λDu \ u ∈ U(x)} ,

where

U(x) =
{
u ∈ R

N \ uI = sign(D∗x)I and ||uJ ||∞ 6 1
}
.

Hence 0 ∈ ∂Ly,λ(x) is equivalent to the existence of u ∈ RN

such that uI = sign(D∗x)I and ||uJ ||∞ 6 1 satisfiyng

Φ∗(Φx − y) + λDu = 0.

Defining σ = uJ , it is equivalent to the existence of σ ∈
Σy,λ(x) with ||σ||∞ 6 1.

The following lemma characterizes the normal cone at zero

of the subdifferential of Ly,λ at a minimizer.

Lemma 2. Let x⋆ a solution of Pλ(y) of D-support I⋆.

Suppose there exist J ⊆ (I⋆)c and σ ∈ Σy,λ(x
⋆) with

||σJ ||∞ < 1. Then,

N∂Ly,λ(x⋆)(0) ⊆ (ImDJ)
⊥ = GJ .

where N∂Ly,λ(x⋆)(0) is the normal cone at zero of the subd-

ifferential of Ly,λ in x⋆ defined by

N∂Ly,λ(x⋆)(0) =
{
z ∈ R

N \ ∀d ∈ ∂Ly,λ(x
⋆), 〈z, d〉 6 0

}
.

Moreover, if J is the D-cosupport of x⋆, then

N∂Ly,λ(x⋆)(0) = GJ .

Proof: Let I = Jc. We decompose I such that I = I⋆ ∪
J⋆. Since ||σJ ||∞ < 1, one remarks that ū defined by

ū :







ūI⋆ = sign(D∗
I⋆x)I⋆

ūJ⋆ = σJ⋆

ūJ = σJ

is such that ||ūJ ||∞ < 1 and

Φ∗(Φx⋆ − y) + λDū = 0.

We introduce ε > 0 such that ||σJ ||∞ = 1− ε. Consider the

set

U =
{
u ∈ R

P \ ||uJ − ūJ ||∞ 6 ε and uI = ūI
}
.

For every u ∈ U , we define

du = Φ∗(Φx− y) + λDu,

and we denote

D = {du}u∈U .

Remark that

du = λD(u− ū) = λDI(uI − ūI) + λDJ(uJ − ūJ).

Since uI = ūI , one has

du = λDJ (uJ − ūJ).

Let z ∈ N∂Ly,λ(x⋆)(0) and let u ∈ U . Note that

||uJ ||∞ 6 ||uJ − ūJ ||∞ + ||ūJ ||∞ 6 1,
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and

uI⋆ = sign(D∗
I⋆x)I⋆ and ||uJ⋆ ||∞ 6 1.

Hence, du ∈ ∂Ly,λ(x
⋆). By definition,

∀d ∈ ∂Ly,λ(x
⋆), 〈z, d〉 6 0.

Particulary,

∀u ∈ U , 〈z, du〉 6 0.

Remark that for every u ∈ U , one has 2ū − u ∈ U and also

d2ū−u = −du. Indeed,

d2ū−u = Φ∗(Φx− y) + λD(2ū− u)

= Φ∗(Φx− y) + λDū
︸ ︷︷ ︸

=0

−λD(u− ū)

= −du.

Moreover,

||(2ū− u)J − ūJ ||∞ = ||ū− uJ ||∞ 6 ε,

and (2ū− u)I = 2ūI − uI = ūI . Hence

∀u ∈ U , 〈z, du〉 6 0 and 〈z, −du〉 = 〈z, d2ū−u〉 6 0.

Therefore,

∀u ∈ U , 〈z, du〉 = 0.

Let v ∈ ImDJ \ {0}. Remark there exists µv ∈ R∗ such

that

µvv = DJσv and ||σv||∞ 6 ε,

We define then the vector u as

u :

{

uI = ūI

uJ = ūJ + σv.

Note that u is an element of U since ||uJ−ūJ ||∞ = ||σv||∞ 6 ε.
Therefore,

du = λDJ (uJ − ūJ) = λDJσv =
λ

µv

v,

is such that 〈z, du〉 = 0 and du ∈ D, i.e ImDJ = Span(D).
Finally,

〈z, v〉 =
µv

λ
〈z, du〉 = 0.

We conclude that N∂Ly,λ(x⋆)(0) is included in (ImDJ)
⊥ =

GJ .

Suppose now that J is the D-cosupport of x⋆. We prove

that

N∂Ly,λ(x⋆)(0) = GJ .

Remark that ∂Ly,λ(x
⋆) ⊆ ImDJ . Indeed, let d ∈ ∂Ly,λ(x

⋆).
We write d = Φ∗(Φx⋆ − y) + λDJu with uI = sign(D∗

Ix)I
and ||uJ ||∞ 6 1. Since 0 ∈ ∂Ly,λ(x

⋆), one has

d = λD(u − ū),

and since uI = ūI , one has

d = λDJ(uJ − ūJ).

Hence, (ImDJ )
⊥ is included in the normal cone

N∂Ly,λ(x⋆)(0).

The following lemma gives a sufficient condition to guar-

antee the uniqueness of the solution of Pλ(y).

Lemma 3. Let x⋆ be a vector of D-support I⋆. Suppose there

exist σ ∈ R|(I⋆)c| and J ⊆ (I⋆)c such that (HJ ) holds,

σ ∈ Σy,λ(x
⋆) and ||σJ ||∞ < 1.

Then, x⋆ is the unique solution of Pλ(y).

Proof: We decompose Ly,λ in two functions:

Ly,λ(x) = q(x) + λ||D∗x||1 where q(x) =
1

2
||y − Φx||22.

Let h ∈ RN \ {0}. Two different cases occur:

1) If h 6∈ GJ , then using Lemma 2, h 6∈ N∂Ly,λ(x⋆)(0) and

there exists d ∈ ∂Ly,λ(x
⋆) such that 〈d, h〉 > 0 and

Ly,λ(x
⋆ + h) > Ly,λ(x

⋆) + 〈d, h〉 > Ly,λ(x
⋆).

2) If h ∈ GJ , observe that q is strongly convex on GJ since

(HJ ) holds. Hence,

Ly,λ(x
⋆+h)>q(x⋆)+〈∇q(x⋆), h〉+λ||D∗x⋆||1+λ〈v, h〉.

where v ∈ ∂||D∗·||1(x
⋆) such that λv + ∇q(x⋆) = 0.

Then,

Ly,λ(x
⋆ + h) > Ly,λ(x

⋆).

In summary, for every h ∈ RN\{0}, Ly,λ(x
⋆+h) > Ly,λ(x

⋆),
and x⋆ is the unique minimizer of Pλ(y).

The following lemma gives an implicit equation satisfied

by a solution x⋆ of the problem Pλ(y). Note that Pλ(y) may

have other solutions.

Lemma 4. Let x⋆ a solution of Pλ(y). Let I be the D-

support and J the D-cosupport of x⋆ and s = sign(D∗x⋆).
We suppose that (HJ ) holds. Then, x⋆ satisfies

x⋆ = A[J]Φ∗y − λA[J]DIsI . (13)

Proof: Using the first order condition (Lemma 1) there

exists σ ∈ Σy,λ(x
⋆) satisfying

Φ∗(Φx⋆ − y) + λDIsI + λDJσ = 0. (14)

By definition, one has x⋆ ∈ GJ so x⋆ ∈ (ImDJ )
⊥. Hence, we

can write x⋆ = Uα. Since U∗DJ = 0, multiplying equation

(14) on the left by U∗, we get

U∗Φ∗(ΦUα− y) + λU∗DIsI = 0.

Since U∗Φ∗ΦU is invertible, we conclude.

Lemma 5. Let y ∈ RP and let J a D-cosupport such that

(HJ ) holds, and I = Jc. Suppose x̂⋆ satisfies

x̂⋆ = A[J]Φ∗y − λA[J]DIsI .

where s = sign(D∗x̂⋆). Then, x̂⋆ is a solution of Pλ(y) if, and

only if, there exists σ satisfying one of the following conditions

σ − Ω[J]sI +
1

λ
Π[J]y ∈ KerDJ and ||σ||∞ 6 1, (15)

or equivalently,

Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ||σ||∞ 6 1, (16)
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where Ω̃[J] = (Φ∗ΦA[J] − Id)DI , Π̃[J] = Φ∗(ΦA[J]Φ∗ − Id),
Ω[J] = D+

J Ω̃
[J] and Π[J] = D+

J Π̃
[J]. Moreover, if ||σ||∞ < 1

then x̂⋆ is the unique solution of Pλ(y).

Proof: Remark that x̂⋆ is an element of GJ . According

to Lemma 1, x̂⋆ is a solution of Pλ(y) if, and only if, there

exists σ ∈ Σy,λ(x̂
⋆) such that

Φ∗(Φx̂⋆ − y) + λDIsI + λDJσ = 0 and ||σ||∞ 6 1.

Since (HJ ) holds, one can define A[J]. We use the implicit

equation (13),

Φ∗(ΦA[J]Φ∗y − λΦA[J]DIsI − y) + λDIsI + λDJσ = 0.

Factorizing the term in front of y and sI , one has

Φ∗(ΦA[J]Φ∗ − Id)y − λ(Φ∗ΦA[J] − Id)DIsI + λDJσ = 0.

which proves that

Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ||σ||∞ 6 1,

One has U∗Ω̃ = 0 and thus one remarks that Ω[J] = D+
J Ω̃

[J].

Similarly, we define Π̃[J] such that Π[J] = D+
J Π̃

[J]. Hence, the

existence of σ ∈ Σy,λ(x̂
⋆) such that ||σ||∞ 6 1 is equivalent

to

DJσ = DJΩ
[J]sI −

1

λ
DJΠ

[J]y where ||σ||∞ 6 1,

which in turn is equivalent to

σ − Ω[J]sI +
1

λ
Π[J]y ∈ KerDJ where ||σ||∞ 6 1.

Replacing the inequality by a strict inequality condition gives

the uniqueness of x⋆ using Lemma 3.

A. Proof of Theorem 1

We recall that, according to Definition 4, given some D-

support I and D-cosupport J = Ic, we suppose that condition

(HJ ) holds. Given some sign vector s ∈ {−1,+1}P , the anal-

ysis Identifiabiltiy Criterion IC of a sign vector s associated

to a D-support I is defined as

IC(s) = min
u∈KerDJ

||Ω[J]sI − u||∞,

where

Ω[J] = D+
J (Φ

∗ΦA[J] − Id)DI .

Proof of Theorem 1: The proof is done in three steps.

1) We give a condition on λ to have sign(D∗x̂⋆) =
sign(D∗x0).

2) We give an other condition on
||w||2
λ

to ensure first-order

condition on x̂⋆ assuming IC < 1.

3) We prove that the two conditions are compatible.

We consider the vector defined by

x̂⋆ = x0 +A[J]Φ∗w − λA[J]DIsI ,

1. We first give a condition on λ to ensure signs equality

sign(D∗x̂⋆) = sign(D∗x0)
def.
= s.

Since A[J]Φ∗y = x0 +A[J]Φ∗w, signs equality is achieved if

∀i ∈ I, |D∗
Ix0|i > |D∗

I (x̂
⋆ − x0)|i

= |D∗
IA

[J]Φ∗w − λD∗
IA

[J]DIsI |i. (17)

We bound ||D∗
I (x̂

⋆ − x0)||∞

||D∗
I (x̂

⋆ − x0)||∞ 6 ||D∗
IA

[J]||∞,∞ (||Φ∗w||∞ + λ||DIsI ||∞) .

Using operator norm inequalities, one has

||D∗
I (x̂

⋆ − x0)||∞ 6||D∗
IA

[J]||∞,∞||Φ∗||2,∞||w||2

+ λ||D∗
IA

[J]||∞,∞||DI ||∞,∞.

Introducing

T = min
i∈{1,··· ,|I|}

|D∗
Ix0|i > 0,

the following condition

T > ||D∗
IA

[J]||∞,∞ (||Φ∗||2,∞||w||2 + λ||DI ||∞,∞) , (18)

ensures (17).

2. We now give a condition on
||w||2
λ

to ensure first-order

condition (16) assuming IC(sign(D∗x0)) < 1. Remark that

Π̃y = Π̃w since x0 ∈ GJ . The minimum over KerDJ of

||Ω[J]sI−u||∞ is reached for a given ū ∈ KerDJ . We consider

the following σ defined by

σ = −ū+Ω[J]sI −
1

λ
Πw.

Using operator norm inequality, one has

||σ||∞ 6 ||Ω[J]sI − u||∞ +
1

λ
||Π̃||2,∞||w||2.

By definition of ū,

||σ||∞ 6 IC(s) +
1

λ
||Π̃[J]||2,∞||w||2.

Hence, under condition IC(sign(D∗x0)) < 1 and

||Π̃[J]||2,∞
||w||2
λ

< 1− IC(sign(D∗x0)), (19)

one has ||σ||∞ < 1 and using Lemma 5, the vector x⋆ is the

unique solution of Pλ(y).
3. Let show that (18) and (19) are compatible. We introduce

constants cJ and c̃J :

cJ =
||Π̃[J]||2,∞

1− IC(sign(D∗x0))
,

and

c̃J =

[

||D∗
IA

[J]||∞,∞

(
||Φ∗||2,∞
cJ

+ ||DI ||∞,∞

)]−1

.

Suppose that
||w||2
T

<
c̃J
cJ
,

and

cJ ||w||2 < λ < T c̃J ,

Then (18) and (19) are satisfied.
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B. Proof of Theorem 2

The proof of Theorem 2 is done in three steps. First, we

specialize Theorem 1 when w = 0. Then, we show that under

the condition IC(sign(D∗x0)), the vector x0 is a solution of

P0(y). Finally, we prove Theorem 2 by considering an other

potential solution of P0(y).

Corollary 2. Let x0 ∈ RN be a fixed vector, I be

its D-support, and y = Φx0. Suppose (HJ ) holds and

IC(sign(D∗x0)) < 1. Then for λ < c̃J ,

x̂⋆ = A[J]Φ∗y − λA[J]DIsI where s = sign(D∗x0)I .

is the unique solution of Pλ(y).

Proof: Take w = 0 in theorem 1.

Lemma 6. Let x0 ∈ RN be a fixed vector, I be its D-support,

and y = Φx0. Suppose (HJ ) holds and IC(sign(D∗x0)) < 1.

Then x0 is a solution of P0(y).

Proof: According to Corollary 2, Pλ(y) has a unique

solution for λ < c̃J ,

x⋆ = x̂⋆ = x0 − λA[J]DIsI

Let x(1) 6= x0 such that Φx(1) = y. For every λ strictly

positive, one has Ly,λ(x
⋆) < Ly,λ(x(1)) by definition of xλ.

Then,

||D∗xλ||1 < ||D∗x(1)||1.

Using continuity of norms, taking the limit λ → 0 in this

equation gives

||D∗x0||1 6 ||D∗x(1)||1,

which proves that x0 is a solution of P0(y).
Proof of Theorem 2: Using Lemma 6, x0 is a solution

of P0(y). We shall prove that x0 is the unique solution. Let

denote

x(1) = x0 + λA[J]DIsI .

Note that for λ small enough, one has sign(D∗x(1)) =
sign(D∗x0). Hence, if IC(sign(D∗x0)) < 1, then Corrolary

2 holds and x0 is the unique solution of Pλ(y1) where

y1 = Φx(1).
Let x(2) ∈ RN such that Φx(2) = y with x(2) 6= x0. Then

Φx0 = Φx(2) and since x0 is the unique solution of Pλ(y1),
one has

1

2
||y − Φx0||

2
2 + λ||D∗x0||1 <

1

2
||y − Φx(2)||

2
2 + λ||D∗x(2)||1.

Then,

||D∗x0||1 < ||D∗x(2)||1,

which gives uniqueness of the solution.

C. Proof of Theorem 3

We recall that the Recovery Criterion RC of I ⊂ {1 . . . P}
is defined as

RC(I) = max
||pI ||∞61

min
u∈KerDJ

||Ω[J]pI − u||∞.

Proof of Theorem 3: Consider the following restricted

problem

argmin
x∈GJ

1

2
||y − Φx||22 + λ||D∗x||1. (PJ

λ (y))

Our strategy is to consider a solution of PJ
λ (y), and showing

that it is the unique solution of Pλ(y). To achieve this goal,

we use four steps:

1) We exhibit p⋆I ∈ R|I| such that

U∗ [Φ∗(Φx⋆ − y) + λDIp
⋆
I ] = 0.

2) We prove that x⋆ satisfies an equation of the form

x⋆ = A[J]Φ∗y − λA[J]DIp
⋆
I .

3) We prove that x⋆ satisfies the first-order condition of

Lemma 1 using the construction of p⋆I .

4) Finally, using operator norm inequalities we provide the

bound announced in the statement.

We rewrite PJ
λ (y) without constraints

argmin
α∈R

dim GJ

1

2
||y − ΦUα||22 + λ||D∗

IUα||1.

1. Using Lemma 1 with ΦU and D∗
IU in place of Φ and

D∗, if α⋆ is a solution of PJ
λ (y), then there exists σ⋆ with

||σ⋆||∞ 6 1 such that

U∗Φ∗(ΦUα⋆ − y) + λ(U∗DI)I⋆sI⋆ + λ(U∗DI)J⋆σ⋆ = 0.

where I⋆ ⊆ I is the D-support of Uα⋆ and J⋆ = (I⋆)c ∩ I .

We introduce p⋆I ∈ R|I| defined as

∀i ∈ I, (p⋆I)i =

{

si if i ∈ I⋆

σ⋆
i if i ∈ J⋆,

which satisfies

DIp
⋆
I = DI⋆sI⋆ +DJ⋆σ⋆.

First order conditions become

U∗ [Φ∗(ΦUα⋆ − y) + λDIp
⋆
I ] = 0. (20)

2. Moreover, the condition (HJ ) holds, so the matrix

U∗Φ∗ΦU is invertible, so one has

α⋆ = (U∗Φ∗ΦU)−1U∗Φ∗y − λ(U∗Φ∗ΦU)−1U∗DIp
⋆
I .

Denoting x⋆ = Uα⋆ and multiplying both side by U gives

x⋆ = A[J]Φ∗y − λA[J]DIp
⋆
I . (21)

3. We now prove that x⋆ is a solution of Pλ(y), i.e there

exists σ such that

Φ∗(Φx⋆ − y) + λDI⋆s⋆I + λDJ∪J⋆σ = 0 and ||σ||∞ 6 1.

Consider ū such that

ū ∈ argmin
u∈KerDJ

||Ω[J]p⋆I − u||∞,

and

σ̄ = Ω[J]p⋆I − ū−
1

λ
Π[J]w.
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We recall that

Ω̃[J] = (Φ∗ΦA[J] − Id)DI , Π̃[J] = Φ∗(ΦA[J]Φ∗ − Id),

Ω[J] = D+
J Ω̃

[J], Π[J] = D+
J Π̃

[J].

Remark that using equation (21), one has

Φ∗(Φx⋆ − y) + λDIp
⋆
I + λDJ σ̄

= Φ∗(Φ(A[J]Φ∗y − λA[J]DIpI)− y)

+ λDIp
⋆
I + λDJD

+
J Ω̃

[J]p⋆I

− λDJ ū
︸ ︷︷ ︸

=0

−DJD
+
J Π̃

[J]y

= (Id−DJD
+
J )(Π̃

[J]y − λΩ̃[J]p⋆I)

= (Id−DJD
+
J ) [Φ

∗(Φx⋆ − y) + λDIp
⋆
I ] .

Let denote v = Φ∗(Φx⋆ − y) + λDIp
⋆
I . On one hand,

multiplying the last expression by the pseudo-inverse D+
J and

using the fact that D+
JDJD

+
J = D+

J , one has

(Id−DJD
+
J )v ∈ KerD+

J = GJ .

On another hand, using equation (20), we remark that v ∈
KerU∗. Since KerU∗ = (ImU)⊥ = G⊥

J , one has

v ∈ G⊥
J and (Id−DJD

+
J )v ∈ GJ .

However, DJD
+
J v ∈ G⊥

J . Hence,

(Id−DJD
+
J ) [Φ

∗(Φx⋆ − y) + λDIp
⋆
I ] ∈ GJ ∩ G⊥

J = {0}.

Hence,

Φ∗(Φx⋆ − y) + λDIp
⋆
I + λDJ σ̄ = 0.

Using operator norm inequality, one has

||σ̄||∞ 6 ||Ω[J]p⋆I − ū||∞ +
1

λ
||Π[J]||2,∞||w||2.

By definition of ū,

||σ̄||∞ 6 min
u∈KerDJ

||Ω[J]p⋆I − u||∞ +
1

λ
||Π[J]||2,∞||w||2.

Hence,

||σ̄||∞ 6 RC(I) +
1

λ
||Π[J]||2,∞||w||2.

Hence, for RC(I) < 1, σ defined by

∀j ∈ {1, . . . , P} \ I, σj =

{

σ⋆
j if j ∈ J⋆

σ̄j if j ∈ J,

and

λ > ||w||2
cJ

1−RC(I)
where cJ = ||Π[J]||2,∞,

one has ||σ̄||∞ < 1 and ||σ||∞ = max(||σ̄||∞, ||σ⋆||∞) 6 1.

Using Lemma 1, the vector x⋆ is a solution of Pλ(y).
Moreover, since ||σ̄||∞ < 1 and (HJ ) holds, x⋆ is the unique

solution of Pλ(y) according to Lemma 3.

4. We now bound the distance between x0 and x⋆.

||x⋆ − x0|| = ||A[J]Φ∗y − λA[J]DIp
⋆
I − x0||.

We remark that A[J]Φ∗y = x0 +A[J]Φ∗w. Hence,

||x⋆ − x0|| = ||A[J](Φ∗w − λDIp
⋆
I)||.

Using operator norm inequality, one has

||x⋆−x0|| 6 ||A[J]||2,2||w||2

(

||Φ∗||2,2 +
ρcJ

1−RC(I)
||DI ||2,∞

)

.

CONCLUSION

This paper has provided a theoretical analysis of the ro-

bustness of sparse analysis regularizations. We have studied

the robustness to small and large noise. These contributions

enable a better understanding of the behavior of this class of

regularizations.

Concrete examples illustrate our results. For discrete total

variation, we show that staircasing induces an instability of the

support, i.e discontinuties are not preserved. For Fused Lasso,

our analysis shows that the support is stable and robust to an

arbitrary bounded noise.

A distinctive feature of our approach is that we look for the

robustness of the cospace associated to the original data. This

approach often has a meaningful interpretation (such as the

conservation of discontinuities for TV-like models), however

it also leads to quite restrictive conditions. A fascinating area

for future work is to understand how to lift these restrictions

to obtain sharper noise robustness of analysis regularization.
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