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Abstract

This paper studies the properties of ℓ1-analysis regularization for the

resolution of linear inverse problems. Most previous works consider sparse

synthesis priors where the sparsity is measured as the ℓ
1 norm of the co-

efficients that synthesize the signal in a given dictionary. In contrast, the

more general analysis regularization minimizes the ℓ
1 norm of the corre-

lations between the signal and the atoms in the dictionary. The corre-

sponding variational problem includes several well-known regularizations

such as the discrete total variation and the fused lasso.

We first prove that a solution of analysis regularization is a piece-

wise affine function of the observations. Similarly, it is a piecewise affine

function of the regularization parameter. This allows us to compute the

degrees of freedom associated to sparse analysis estimators. Another con-

tribution gives a sufficient condition to ensure that a signal is the unique

solution of the analysis regularization when there is no noise in the obser-

vations. The same criterion ensures the robustness of the sparse analysis

solution to a small noise in the observations. Our last contribution de-

fines a stronger sufficient condition that ensures robustness to an arbitrary

bounded noise. In the special case of synthesis regularization, our contri-

butions recover already known results, that are hence generalized to the

analysis setting. We illustrate these theoritical results on practical ex-

amples to study the robustness of the total variation and the fused lasso

regularizations.
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1 Introduction

1.1 Inverse Problems and Signal Priors

This paper considers the stability of inverse problems regularization using
sparse priors. Many data acquisition systems are modeled using a linear map-
ping of some unknown source perturbed by an additive noise. This reads

y = Φx0 + w, (1)

where y ∈ RQ are the observations, x0 ∈ RN the unknown signal to recover,
w the noise and Φ a linear operator which maps the signal domain RN into
the observation domain RQ where Q 6 N . The mapping Φ is in general ill-
conditioned, which makes the recovery of an approximation of x0 difficult, see
for instance [24] for an introduction to inverse problems.

Regularization through variational analysis is a popular way to compute an
approximation of x0 from the measurements y as defined in (1). The general
framework reads

min
x∈RN

1

2
||y − Φx||22 + λR(x). (2)

This requires to define a prior R to enforce some regularity on the recovered
signal. We restrict our attention in this paper to a ℓ2 fidelity measure ||y−Φx||22
that reflects some Gaussian prior on the noise w. The regularization parameter
λ > 0 should be adapted to match the noise level and the expected regularity
of the data x0.

For noiseless observations, w = 0, one has to take the limit λ → 0 and solve
the constrained problem

min
x∈RN

R(x) subject to Φx = y. (3)

A popular class of priors are quadratic Hilbert norms of the form R(x) =
〈x, Kx〉 where K is some positive definite kernel. The minimizations (2) and
(3) correspond to a Tikhonov regularization which typically enforces some kind
of uniform smoothness in the recovered data. More advanced priors rely on non-
quadratic functionals which enforce sparsity of the signal over some transformed
domain (e.g. its wavelet transform or its gradient). These sparse priors are the
subject of this article, and are described in the following section.

1.2 Notations

Our paper focus on real vector spaces. In all the following, the variable x

will denote a vector in RN , y will be a vector in RP and α a vector in RN .
The sign vector sign(α) of α is

∀k ∈ {1, · · · , P}, sign(α)k =











+1 if αk > 0,

0 if αk = 0,

−1 if αk < 0

.
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The support of α ∈ RP is

supp(α) = {i ∈ {1, · · · , P} \ αi 6= 0} .

In the following we make use of the matrix norms. The p, q-operator norm
of a matrix M is

||M ||p,q = max
x 6=0

||Mx||q
||x||p

.

The matrix MJ for J a subset of {1, . . . , P} is the submatrix whose columns
are indexed by J . Similarly, the vector sJ is the reduced dimensional vector
built upon the components of s indexed by J .

The matrix Id is the identity matrix, where the underlying space is im-
plicited. For any matrix M , M+ is the Moore–Penrose pseudoinverse of M .

1.3 Synthesis and Analysis Sparsity

Synthesis sparsity. Sparse regularization is a popular class of priors to model
natural signals and images, see for instance [26]. In its simplest form, the
sparsity of coefficients α ∈ RP is measured using the ℓ0 pseudo-norm

R0(α) = ||α||0 = | supp(α)|.

Minimizing (2) or (3) with R = R0 is however known to be in some sense
NP-hard, see for instance [29]. Several workarounds have been proposed to
alleviate this difficulty. A first class of methods uses greedy algorithms [30]. The
most popular algortihms are Matching Pursuit [27] and Orthogonal Matching
Pursuit [33, 13]. A second class of methods, which is the focus of this paper,
replaces the ℓ0 pseudo-norm by its ℓ1 convex relaxation [15].

A dictionary D = (di)
P
i=1 is a (possibly redundant) collection of P atoms

di ∈ RN . It can also be viewed as a linear mapping from RP to RN which is
used to synthesize a signal x ∈ Span(D) ⊆ RN as

x = Dα =

P
∑

i=1

αidi.

In the redundant case (P > N) this decomposition is non-unique. The sparsest
set of coefficients, according to the ℓ1 norm, defines a prior

RS(x) = min
α∈RP

||α||1 subject to x = Dα.

Any solution x of (2) using R = RA can be written as x = Dα where α is a
solution of

min
α∈RP

1

2
||y −Ψα||22 + λ||α||1, (4)

where Ψ = ΦD, and x = Dα. It was first introduced in [39] in the statistical
community and coined Lasso. It is also known in the signal processing commu-
nity as Basis Pursuit Denoising [11]. Such problem corresponds to a so-called
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synthesis regularization because one assumes the sparsity of the coefficients α

that synthesize the signal x = Dα. In the noiseless case, w = 0, one uses the
constraint optimization (3), which reads

min
α∈RP

||α||1 subject to y = Ψα, (5)

and is referred to as Basis Pursuit [11]. Taking D = Id to be the identity
imposes sparsity of the signal itself, and is used for instance for sparse spikes
deconvolution in seismic imaging [35]. Sparsity in orthogonal as well as redun-
dant wavelet dictionaries are popular to model natural signals and images that
exhibit sharp transitions [26]. Beside the regularization of inverse problems, a
popular application of sparsity is blind source separation [44].

Analysis sparsity. Analysis regularization corresponds to using R = RA in
(2) where

RA(x) = ||D∗x||1 =

P
∑

i=1

|〈di, x〉|

which leads to the following minimization problem

min
x∈RN

1

2
||y − Φx||22 + λ||D∗x||1. (Pλ(y))

If
KerΦ ∩KerD∗ = {0}, (H0)

holds, this problem has a minimizer, and the set of minimizers is bounded by
coercivity. All throughout this paper, we suppose that this condition holds.
Note that the analysis problem (Pλ(y)) is in some sense more general than the
synthesis one (4) because the last one is recovered by setting D = Id and Ψ = Φ.

In the noiseless case, w = 0, one uses the constrained optimization (3), which
reads

min
x∈RN

||D∗x||1 subject to Φx = y. (P0(y))

The most popular analysis sparse regularization is the total variation, which
was first introduced for denoising in [34]. It corresponds to using a derivative
operator D∗. In the case of 1-D discrete signals, one can use forward finite
differences D = DDIF where

DDIF =

















−1 0
+1 −1

+1
. . .

. . . −1
0 +1

















. (6)

The corresponding prior RA favors piecewise constant signals and images. A
review of total variation regularization can be found in [10].
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The theoretical properties of total variation for denoising has been exten-
sively studied. A distinctive feature of this regularization is that it tends to
produces a staircasing effect, where discontinuities not present in the original
data might be created by the regularization. This effect has been studied by
Nikolova in [31] in 2-D. The stability of discontinuities for 2-D total variation
denoising is the core of the work of [7]. Section 4.3 shows how our results also
shed some light on this staircasing effect for 1-D signals.

It is also possible to use a dictionary D of translation invariant wavelets, so
that the corresponding prior RA can be interpreted as a sort of multi-scale total
variation. Such a prior tends to favors piecewise regular signals and images. An
extensive study of these redundant dictionaries highlighting differences between
synthesis and analysis is done in [36].

As a last example of sparse analysis regularization, let us mention the Fused
lasso [40], where D is the concatenation of a discrete derivative and a weighted
identity. The corresponding prior RA encourages both sparsity of the signal and
its derivative, hence grouping block of non-zero coefficients together.

Synthesis versus analysis. In a synthesis prior, the generative vector α is
sparse in the dictionary D whereas in analysis prior, the correlation between
the signal x and the dictionary D is sparse. When D is orthogonal, Pλ(y)
and Lasso define the same regularization. As highlighted in [19] synthesis and
analysis regularizations however differ significantly when D is redundant. Some
connections between total variation regularization and wavelet sparsity have
been drawn in [37].

1.4 Union of Subspaces Model

Analysis regularization favors the sparsity of D∗x. It is thus natural to keep
track of the support of this correlation vector, as done in the following definition.

Definition 1. The D-support I of a vector x ∈ RN is defined as I =
supp(D∗x). Its D-cosupport J is defined as J = Ic.

A signal x such that D∗x is sparse lives in a cospace GJ of small dimension
where GJ is defined as follow.

Definition 2. Given a dictionary D, and J a subset of {1 · · ·P}, the cospace
GJ is defined as

GJ = KerD∗
J ,

where DJ is the subdictionary whose columns are indexed by J .

The signal space can thus be decomposed as a union of subspaces of increas-
ing dimensions

R
N =

⋃

k∈{0,...,N}

Θk where Θk = {GJ \ dim GJ = k} . (7)
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The union of subspaces associated to synthesis regularization (D = Id) de-
fines Θk as the set of axis-aligned subspaces of dimension k. For the 1-D total
variation prior, where D = DDIF as defined in (6), Θk is the set of piecewise
constant signals with k − 1 steps. A detailed analysis of several sparse analysis
subspaces, including translation invariant wavelets, can be found in [28].

More general unions of subspaces (not necessarily corresponding to analy-
sis regularizations) have been introduced in sampling theory to model various
kind of non-linear signal ensembles, see for instance [25]. Union of subspaces
models have been extensively studied for the recovery from pointwise sampling
measurements [25] and random measurements [20, 1, 2, 3].

1.5 Organization of this Paper

Section 2 details our six contributions. Section 3 draws some connexions
with relevant previous works. Section 4 illustrates our results using concrete
examples. Section 5 gives the proofs of the six contributions.

2 Contributions

This paper proves the following six results:

1. Local affine parameterization w.r.t the observations: a solution
of Pλ(y) is a piecewise affine function of y.

2. Local affine parameterization w.r.t the regularization parameter:

the mapping between λ and a solution of Pλ(y) is a piecewise linear path.

3. Degrees of freedom: the degrees of freedom (as defined in [18]) of the
sparse analysis estimator is the dimension of GJ .

4. Robustness to small noise: we give a sufficient condition on x0 en-
suring that the solution of Pλ(y) is close to x0 when w is small enough.

5. Noiseless identifiability: the same condition ensures that x0 is the
unique solution of P0(y) when w = 0.

6. Robustness to bounded noise: we give a sufficient condition on the
D-cosupport of x0 ensuring that the solution of Pλ(y) is close to x0 when
w is an arbitrary bounded noise and λ is large enough.

Each contribution is rigorously described in the following sub-sections.
Note that these contributions extend previously known results in the syn-

thesis case, see for instance [17, 22, 43, 42, 6]. With the notable exception of the
work of [28, 5] that studies analysis identifiability, to the best of our knowledge,
it is the first time these questions are addressed in the analysis case.
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2.1 Local Affine Parameterization w.r.t the Observations

Our first contribution gives a local affine parameterization of solutions of
Pλ(y).

The transition space Yλ defined below corresponds to observations y where
the cospace GJ of the solution of Pλ(y) is not stable with respect to small
perturbations of y.

Definition 3. The transition space Yλ is defined as

Yλ =

{

y ∈ R
Q \ ∃x ∈ R

N : min
σ∈Σy,λ(x)

||σ||∞ = 1

}

,

where

Σy,λ(x) =
{

σ ∈ R
|J| \ Φ∗(Φx− y) + λDIsI + λDJσ = 0 and ||σ||∞ 6 1

}

,

(8)
and s = sign(D∗x).

For some cosuport J , it is important to ensure the invertibility of Φ on GJ .
This is achieved by imposing

KerΦ ∩ GJ = {0}. (HJ )

Note that there is always a solution of Pλ(y) such that (HJ ) holds as shown in
Lemma 4.

Definition 4. Let J be a D-cosupport. Suppose that (HJ) holds. We define
the operator A[J] as

A[J] = U (U∗Φ∗ΦU)
−1

U∗. (9)

where U is a matrix which columns form a basis of GJ .

Except for observations in the transition space, the following theorem shows
that a solution of Pλ(y) is a locally affine mapping of observations.

Theorem 1. Let y 6∈ Yλ and let x⋆ a solution of Pλ(y). Let I be the D-support
and J the D-cosupport of x⋆ and s = sign(D∗x⋆). We suppose that (HJ ) holds.
We define

∀ȳ ∈ R
P , x̂λ(ȳ) = A[J]Φ∗ȳ − λA[J]DIsI .

There exists an open neighborhood B ⊂ RP of y such that x̂λ(ȳ) ∈ B is a solution
of Pλ(ȳ).

2.2 Local Affine Parameterization w.r.t the Regulariza-

tion Parameter

For a given y, the λ-transition space Λy defined below corresponds to pa-
rameters λ where the cospace GJ of a solution of Pλ(y) is not stable with respect
to small perturbations of λ.
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Definition 5. The λ-transition space Λy is defined as

Λy =

{

λ ∈ R
∗
+ \ ∃x ∈ R

N : min
σ∈Σy,λ(x)

||σ||∞ = 1

}

,

where Σy,λ is defined in (8).

The following theorem proves that a solution of Pλ(y) is a piecewise affine
function of λ > 0.

Theorem 2. Let y ∈ RP , and let λ ∈ R∗
+\Λy. We denote x⋆ a solution of

Pλ(y). Let I, J, s and A[J] be defined as in Theorem 1. We suppose that (HJ )
holds. We define

∀λ̄ > 0, x̂λ̄(y) = A[J]Φ∗y − λ̄A[J]DIsI .

There exists an open neighborhood C ⊂ R of λ such that x̂λ̄(y) ∈ C is a solution
of Pλ̄(y).

If Pλ(y) admits a unique solution xλ(y) for each λ, this theorem shows
that λ 7→ xλ(y) is a polygonal path in RN . This results is already known in the
synthesis case, see for instance [16, 32]. It also generalizes the work of [41] which
studies the case of Φ overdetermined and develops an homotopy algorithm.

2.3 Degrees of Freedom

Degrees of freedom df is a familiar phrase in statistics. More generally, de-
grees of freedom is often used to quantify the complexity of a statistical modeling
procedure. However, there is no exact correspondence between the degrees of
freedom df and the number of parameters in the model. The concept of degrees
of freedom plays an important role in model validation and selection, and its
unbiased estimates provide unbiased estimates of the true risk, see e.g. [38].

Let the noise w ∼ N (0, σ2Id), and therefore y ∼ N (µ0 = Φx0, σ
2Id). We

first notice that even if Pλ(y) admits several solutions, all of them share the
same image under Φ, see Section 5.3 for proof of this point. Hence, we denote
without ambiguity µ(y) = Φx⋆ where x⋆ is a solution of Pλ(y).

From the seminal definition of Efron [18], and by the Stein Lemma [38], the
degrees of freedom of a weakly differentiable estimator y 7→ µ(y) is

df(µ0) = Ew (div(µ(y))) =

Q
∑

i=1

Ew

(

∂µ(y)

∂yi

)

.

We have the following result for the analysis regularization.

Theorem 3. The mapping y 7→ µ(y) is of class C∞ on RN \ Yλ. For y 6∈ Yλ,
there exists x⋆ a solution of Pλ(y) such that (HJ ) holds with J the D-cosupport
of x⋆, and the associated degree of freedom is

div(µ(y)) = dim(GJ ). (10)
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This result is known to hold in the special case of synthesis regularization
(D = Id). It is proved in the overdetermined case in [45] and is extended to
the general case in [23]. In the overdetermined case with an analysis regulariza-
tion, [41] also proved a similar expression but with a completely different Yλ.
Our expression handles both over- and underdetermined measurements with a
sharper characterization of the set Yλ.

From (10), it is tempting to use dim(GJ ) as an estimator of degrees of freedom
df(µ0). However, we have no guarantee at this stage that this would be an
unbiased estimator of df(µ0). Indeed, for this to hold true, the set Yλ should
be of (Lebesgue) measure zero, which we have not established yet. This is an
open question that we leave for a future research.

2.4 Robustness to Small Noise

Our next contribution shows that analysis regularization is robust to a small
noise under a condition on sign(D∗x0).

We now define our sign criterion.

Definition 6. Let s ∈ {−1, 0,+1}P , I its D-support and J its D-cosupport.
We suppose (HJ ) holds. The analysis Identifiabiltiy Criterion IC of s is defined
as

IC(s) = min
u∈KerDJ

||ΩsI − u||∞ where Ω = D+
J (Φ

∗ΦA[J] − Id)DI .

We have the following theorem.

Theorem 4. Let x0 ∈ RN be a fixed vector of D-cosupport J , and of D-support
I = Jc. Suppose (HJ) holds and IC(sign(D∗x0)) < 1. It exists two constants
cJ > 0 and c̃J > 0, such that if y = Φx0 + w, where

||w||2 <
c̃J

cJ
,

and if λ satisfies
cJ ||w||2 < λ < c̃J ,

the vector defined by

x̂⋆ = x0 +A[J]Φ∗w − λA[J]DIsI , (11)

is the unique solution of Pλ(y). Moreover,

x̂⋆ ∈ GJ and sign(D∗x0) = sign(D∗x̂⋆).

Note that it is possible to choose λ proportional to the noise level ||w||2.
Hence, for ||w||2 small enough, equation (11) gives

||x̂⋆ − x0|| = O(||w||2).
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2.5 Noiseless Identifiability

In the noiseless case, w = 0, the criterion IC can be used to test identifia-
bility. Recall that

Definition 7. A vector x0 is said to be identifiable if x0 is the unique solution
of P0(Φx0).

We prove the following theorem

Theorem 5. Let x0 ∈ RN be a fixed vector of D-cosupport J . Suppose that
(HJ) holds and IC(sign(D∗x0)) < 1. Then x0 is identifiable.

2.6 Robustness to Bounded Noise

Our last contribution defines a stronger criterion that ensures robustness to
an arbitrary bounded noise.

Definition 8. The analysis Recovery Criterion (RC) of I ⊂ {1 . . . P} is defined
as

RC(I) = max
x∈GJ

IC (sign(D∗x)) .

Note that if I is the D-support of x0, RC(I) < 1 implies IC(sign(D∗x0)) <
1.

The following theorem shows that if the parameter λ is big enough, then
Pλ(y) recovers a unique vector which is close enough in the ℓ2 sense and lives
in the same GJ as the unknown signal x0.

Theorem 6. Let I be a fixed D-support and J its associated D-cosupport J =
Ic. Suppose that (HJ ) holds. If RC(I) < 1 and

λ = ρ||w||2
cJ

1−RC(I)
with ρ > 1,

where cJ is defined as,

cJ = ||D+
J Φ

∗(ΦA[J]Φ∗ − Id)||2,∞,

then for every x0 of D-support I, it exists a unique solution x⋆ of D-support
included in I, verifying ||x0 − x⋆||2 = O(||w||2) . More precisely,

||x0 − x⋆||2 6 ||A[J]||2,2||w||2

(

||Φ||2,2 +
ρcJ

1−RC(I)
||DI ||2,2

√

|I|

)

.

3 Related Works

3.1 Previous Works on Synthesis Identifiability and Ro-

bustness

Several previous works have studied identifiability and noise robustness of
sparse synthesis regularization. We recall that synthesis regularization (4) reads

min
α∈RP

1

2
||y −Ψα||2 + λ||α||1,

10



where Ψ = ΦD, and x = Dα. Fuchs defines [22] a criterion ICS which is a
specialization of our criterion IC introduced in Definition 6 to the case where
D = Id.

Definition 9. Given some support I and cosupport J . Given some sign vector
s ∈ {−1,+1}P , the Sign Criterion ICS of a sign vector s associated to a support
I is defined as

ICS(s) = ||ΩSsI ||∞ where ΩS = Ψ∗
JΨ

+,∗
I .

Fuchs shows the following result

Theorem ([22]). Let α0 ∈ RP be a fixed vector of support I. If ΨI is of full
rank and ICS(sign(α0)) < 1, then α0 is identifiable, i.e it is the unique solution
of (4) for y = Ψα0.

The work of Tropp [43, 42] developed in the synthesis case a condition named
Exact Recovery Condition (ERC) on the support.

Definition 10. The Exact Recovery Condition (ERC) of I ⊂ {1 . . . P} is de-
fined as

ERC(I) = ||ΩS ||∞,∞,

Tropp proves that ERC(I) < 1 is a sufficient condition of identifiability and
stability of the synthesis Lasso.

Theorem ([43]). Let I be a fixed support. Suppose that ΨI has full rank. If
ERC(I) < 1 and λ large enough, then for every α0 of support I, it exists a
unique solution α⋆ of (4) for y = Ψα0 + w of support included in I, verifying
||α0 − α⋆||2 = O(||w||2).

Note that ICS(s) depends both on the sign and the support, while ERC

depends only on the support, and we have the general inequality ICS(s) 6

ERC(I).
In the analysis case where D = Id, the criterion of Tropp and our are equiv-

alent. This is also true for the criterion of Fuchs and our.

Proposition 1. If D = Id, then ERC(I) = RC(I) and IC(sign(D∗x0)) =
ICS(sign(D

∗x0)).

Let us mention that there exist several other criteria ensuring both identifia-
bility and noise robustness in the synthesis cases. This includes criteria based on
coherence (see [4] for a review) and RIP-based compressed sensing theory that
requires that Φ is a realization of certain random matrices ensembles [6, 14].

3.2 Previous Works on Analysis Identifiability and Ro-

bustness

To the best of our knowledge, the only previous works that study the per-
formance of sparse analysis regularization are the papers [5] and [28].
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The work [5] proves a strong robustness with overwhelming probability to
noise when D is tight frame and Φ a realization of certain random matrices
ensembles satisfying a condition named D-RIP. This setting is thus quite far
from our.

The work of Nam and al. is much closer to our results. It studies noiseless
identifiability using ℓ0 and ℓ1 sparse analysis regularization. Their main result
on ℓ1 analysis identifiability is the following theorem.

Theorem ([28]). Let M∗ be a basis matrix of KerΦ and I a fixed D-support
such that the matrix D∗

JM
∗ has full rank. Let x0 ∈ GJ be a fixed vector. If

IC0(sign(D
∗x0)) < 1 and

IC0(s) = ||iIsI ||∞ where iI = (MDJ)
+MDI ,

then x0 is identifiable.

Note that IC0(s) < 1 does not imply IC(s) < 1 neither the opposite. Nu-
merical results suggest that their criterion is most of the time sharper than RC.
However, the condition IC0(s) < 1 does not imply in general a robustness to
noise, even for a small one. Moreover, let x0 be a fixed vector, and denote
s = sign(D∗x0) where I is its D-support and y = Φx0 + w. If IC0(s) < 1 but
IC(s) > 1, then any solution x⋆ of Pλ(y), for λ close to zero, is such that the
D-support of xλ(y) is not included in I. One can thus find vectors x0 with

IC0(s) < 1 but where ||x0−x⋆||2
||w||2

is arbitrary large, whatever the amplitude ||w||2
of the noise.

4 Examples

This section provides algorithms to compute identifiability criteria IC and
RC, along with an analysis of total variation and Fused Lasso denoising.

4.1 Computing Sparse Analysis Regularization

It is not the focus of this paper to give a full study of optimization schemes
that can be used to solve the analysis regularization.

In the case where Φ = Id (denoising), Pλ(y) is strictly convex, and one can
compute its unique solution x⋆ by solving an equivalent dual problem [8]

x⋆ = y +Dα⋆ where α⋆ ∈ argmin
||α||∞6λ

||y +Dα||22.

In the general case, it is possible to use a primal-dual method such as the
algorithm of Chambolle and Pock [9]. One way is to rewrite the optimization
problem as follow

min
x∈RN

F (K(x)) where

{

F (g, u) = 1
2 ||y − g||22 + λ||u||1

K(x) = (Φx,D∗x)
.
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4.2 Computing the Criteria

In the case where Ker(DJ ) 6= {0}, computing IC(sign(D∗x0)) necessitates
the resolution of a convex problem. This optimization is re-written as

IC(sign(D∗x0)) = min
u∈RN

||Ωsign(D∗x0)I − u||∞ + ιKer(DJ )(u),

where ιKer(DJ ) is characteristic function of Ker(DJ )

ιKer(DJ )(u) =

{

0 if u ∈ Ker(DJ )

+∞ else
.

This requires the optimization of a sum of two simple functions, i.e. function
whose proximal operators is easy to compute. The proximal operator Proxf of
a convex lower semicontinuous function f is defined as

∀x ∈ R
N , Proxf (x) = argmin

z∈RN

1

2
||z − x||22 + f(z).

Such a minimization can hence be achieved using the Douglas-Rachford splitting
algorithm [12]. Indeed, the proximity operator of ιKer(DJ ) is the orthogonal
projector on Ker(DJ), and the proximal operator of || · ||∞ can be computed as

Proxγ||·||∞(x) = x− P||·||1

(

x

γ

)

,

where P||·||1 is the projection of the ℓ1 ball
{

x ∈ RN \ ||x||1 6 1
}

. This projection
is computed as explained for instance in [21].

Unfortunately, computing RC necessitates to solve a combinatorial opti-
mization problem which is non convex. Recall that

RC(I) = max
x∈GJ

IC (sign(D∗x)) .

It is possible to define a stronger criterion by extending the maximum to the
set of all possible sign vectors.

sRC(I) = max
s∈{−1,0,+1}P ,

supp(s)=I

IC(s).

This criterion however still necessitates the resolution of a combinatorial op-
timization problem. An even stronger criterion, which is easy to compute, is
obtained by using u = 0 in KerDJ for the computation of each IC(s).

wRC(I) = ||Ω||∞,∞.

Note that for every vector x0 with D-support I = supp(D∗x), we have the
following inequalities

IC(sign(D∗x0)) 6 RC(I) 6 sRC(I) 6 wRC(I).
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4.3 Total Variation Denoising

Discrete total variation uses D = DDIF defined in (6). We recall that total
variation model is formed by

⋃

k Θk where Θk is the set of piecewise constant
signals with k − 1 steps. We define the following object

Definition 11. A signal is said to contain a staircase subsignal if it exists
i ∈ {1 . . . |I| − 1} such that

sign(D∗
Ix)i = sign(D∗

Ix)i+1 = ±1.

Figure 1 shows examples of signals with and without staircase sub-signals
with their dual vectors.

Figure 1: Top line: Signals x with 2 discontinuities. Bottom line: Associated
dual vector m.

The following proposition studies the robustness of total variation denoising

Proposition 2. We consider the denoising case, Φ = Id. If x does not contain
a staircase subsignal, then IC(sign(D∗x)) < 1. Otherwise, IC(sign(D∗x)) = 1.

Proof. Let x⋆ be a solution of Pλ(y) with D-cosupport J and I = Jc. Using
Lemma 1, there exists σ ∈ Σy,λ(x

⋆) such that ||σ||∞ 6 1. Since D+
J A

[J] = 0, we
have Ω = −D+

J DI . We denote the vector m defined as

m :

{

mI = sI = sign(D∗x)I
mJ = σ = ΩsI

.

The vector σ satisfies (D∗
JDJ)σ = (D∗

JDI)sI . One can shows that this implies
that m is the solution of a discrete Poisson equation

∀ j ∈ J, (∆m)j = 0 and

{

∀ i ∈ I, mi = si,

m0 = mN = 0.

14



where ∆ = DD∗ is a discrete Laplacian operator. This implies that for i1 <

k < i2 where i1, i2 are consecutive indexes of I, m is obtained by linearly
interpolating (see Figure 1) the values mi1 and mi2 , i.e

mk = ρmi1 + (1− ρ)mi2 where ρ =
k − i1

i2 − i1
.

Hence, if x does not contain a staircase subsignal, one has ||ΩsI ||∞ < 1. On the
contrary, if there is i1 such that si1 = si2 , where i1, i2 are consecutive indexes
of I, then for every i1 < j < i2,mj = si1 = ±1 which implies IC(sign(D∗x)) =
1.

This proposition together with Theorem 4 shows that if a signal does not
have a staircase sub-signal, TV denoising is robust to a small noise. This means
that if w is small enough, for λ small, the TV denoising of x0 +w has the same
discontinuities as x0. However, the presence of a staircase in a signal implies
that no robustness, even for a small one can be ensured.

Corollary 1. If |I| > 2 such that i ∈ I implies i+ 1 6∈ I, and D = DDIF, then
RC(I) = 1.

Proof. If |I| > 2, it exists a signal x̃ which contain a staircase subsignal, hence
1 = IC(sign(D∗x̃)) 6 RC(I). Since no signal is such that IC(sign(D∗x)) > 1,
we conclude.

This corollary shows that in the case of total variation regularization, one
cannot expect cospace robustness, i.e discontinuities conservation, for any class
of bounded noise.

4.4 Fused Lasso

Fused Lasso is introduced in [40] as the following minimization problem

min
x∈RN

||y − Φx||22 subject to ||x||1 6 s1 and ||D∗
DIFx||1 6 s2, (12)

where s1, s2 are two positive constants. The problem (12) is equivalent to Pλ(y)
for

D =
[

DDIF εId
]

,

where ε is a function of s1 and s2. The associated union of subspaces (7) is
⋃

k Θk where Θk is the set of k-sum of interval indicator signals, i.e a signal
x ∈ Θk can be written as

x =

k
∑

i=1

γi1[ai,bi],

where γi ∈ R and ai < bi < ai+1.

Definition 12. The minimum separation distance of x is defined as

d(x) = min
16i<k

|ai+1 − bi|
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Empirical observation. Suppose Φ = Id. Let x0 ∈ Θk. If d(x0) > ξ(ε)
where ξ is a decreasing real function with limε→0 ξ(ε) = 0, then RC(I) =
IC(sign(D∗x0)) < 1, where J is the D-support.

This suggests that the Fused Lasso enables a stable recovery of sums of
indicators of disjoint sets if these sets are separated enough.

5 Proofs

This section is dedicated to proofs of theorems 1 – 6. The objective function
Ly,λ minimized in Pλ(y) is

Ly,λ(x) =
1

2
||y − Φx||22 + λ||D∗x||1.

The following lemma, which is at the heart of the proofs of our contributions,
details the first order optimality conditions for the analysis variational problem
Pλ(y).

Lemma 1. A vector x⋆ is a solution of Pλ(y) if, and only if, there exists
σ ∈ R|J|, where J is the D-cosupport of x⋆, such that

σ ∈ Σy,λ(x
⋆) (13)

where Σy,λ is defined in (8). Moreover, if ||σ||∞ < 1 and (HJ) holds, then x⋆ is
the unique solution of Pλ(y).

Proof. The subdifferential ∂F of a real valued convex lower semicontinuous
function F : RN → R is the multifunction defined by

∂F (x0) =
{

g ∈ R
N \ ∀x ∈ R

N , f(x) > f(x0) + 〈g, x− x0〉
}

Note that x0 is a minimum of F if, and only if, 0 ∈ ∂F (x0). The subdifferential
of Ly,λ(x) is

∂Ly,λ(x) =
{

Φ∗(Φx− y) + λDu \ u ∈ R
N : uI = sign(D∗x)I and ||uJ ||∞ 6 1

}

.

Hence 0 ∈ ∂Ly,λ(x) is equivalent to the existence of u ∈ RN such that uI =
sign(D∗x)I and ||uJ ||∞ 6 1 satisfiyng

Φ∗(Φx − y) + λDu = 0.

Decomposing on the D-cosupport J , it is equivalent to the existence of σ ∈
Σy,λ(x) with ||σ||∞ 6 1.

Let x⋆ be a solution of Pλ(y). There exists σ ∈ Σy,λ(x
⋆) with ||σ||∞ 6 1

Suppose also that ||σ||∞ < 1. We decompose Ly,λ in two functions :

Ly,λ(x) = q(x) + λ||D∗x||1 where q(x) =
1

2
||y − Φx||22.
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Since ||σ||∞ < 1, one can prove there exists ε > 0 such that

ImDJ ∩B(0, ε) ⊆ ∂Ly,λ(x
⋆).

Hence ∂Ly,λ(x
⋆) ⊆ ImDJ . Indeed it cannot be in the affine plane, otherwise

0 6∈ ∂Ly,λ(x) which is a contradiction with x⋆ minimizer of Pλ(y). Hence, its
normal cone, defined by

N∂Ly,λ(x⋆) =
{

z ∈ R
N \ 〈z, d〉 6 0 for every d ∈ ∂Ly,λ(x

⋆)
}

,

is (ImDJ)
⊥ = GJ . Let h ∈ RN \ {0}. Two different cases occur

1. If h 6∈ GJ , then there exists d ∈ ∂Ly,λ(x) such that 〈d, h〉 > 0.

Ly,λ(x
⋆ + h) > Ly,λ(x

⋆) + 〈d, h〉 > Ly,λ(x
⋆)

2. If h ∈ GJ , observe that q is coercive on GJ since (HJ ) holds. Hence,

Ly,λ(x
⋆ + h) > q(x⋆) + 〈∇q(x⋆), h〉+ λ||x⋆||1 + λ〈v, h〉.

where v ∈ ∂||D∗·||∞(x⋆) such that λv +∇q(x⋆) = 0. Then,

Ly,λ(x
⋆ + h) > Ly,λ(x

⋆).

In summary, for every h ∈ RN \ {0}, Ly,λ(x
⋆ + h) > Ly,λ(x

⋆), and x⋆ is the
unique minimizer of Pλ(y).

We recall that we suppose condition (H0) holds in every statements.

5.1 Proof of Theorem 1

The proof of Theorem 1 is done in two steps. First, we proves Temma 2
which gives an implicit solution of Pλ(y). Then, we proves Theorem 1.

The following lemma gives an implicit expression for a solution x⋆ of the
problem Pλ(y). Note that Pλ(y) may have other solutions.

Lemma 2. Let x⋆ a solution of Pλ(y). Let I be the D-support and J the D-
cosupport of x⋆ and s = sign(D∗x⋆). We suppose that (HJ ) holds. Then, x⋆

satisfies
x⋆ = A[J]Φ∗y − λA[J]DIsI , (14)

Proof. Using the first order condition (Lemma 1) there exists σ ∈ Σy,λ(x
⋆)

satisfying
Φ∗(Φx⋆ − y) + λDIsI + λDJσ = 0. (15)

By definition, one has x⋆ ∈ GJ so x⋆ ∈ ImDJ . Hence, we can write x⋆ = Uz.
Since U∗DJ = 0, multiplying equation (15) on the left by U∗, we get

U∗Φ∗(ΦUz − y) + λU∗DIsI = 0.

Since U∗Φ∗ΦU is invertible, we conclude.
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We can now prove theorem 1.

Proof of Theorem 1. Let y 6∈ Yλ and let σ ∈ Σy,λ(xλ(y)) such that ||σ||∞ < 1.
By construction of x̂λ(ȳ) one has D∗

J x̂λ(ȳ) = 0. So for ȳ close enough from y,
one has

sign(D∗x̂λ(ȳ)) = sign(D∗x⋆).

One has that x̂λ(ȳ) is the solution of Pλ(ȳ) if and only if there exists σ̄ ∈
Σy,λ(x̂λ(ȳ)). Using the property σ ∈ Σy,λ(xλ(y)) and the expression (14), this
is equivalent to requiring that

Φ∗(ΦA[J]Φ∗ − Id)(ȳ − y) = −λDJ(σ − σ̄). (16)

Since one has
U∗Φ∗(ΦA[J]Φ∗ − Id) = 0,

and since U is an orthogonal basis of Im(DJ )
⊥, there exists a matrix B such

that
Φ∗(ΦA[J]Φ∗ − Id) = DJB.

Using the particular choice

σ̄ = σ +B(ȳ − y)

ensures that (16) is satisfied. Since ||σ||∞ < 1 and since σ 7→ σ + B(ȳ − y) is
continuous, imposing ȳ close enough to y ensures that ||σ̄|| 6 1.

5.2 Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 1.

Proof of Theorem 2. Let y ∈ RP and λ ∈ R∗
+ \∆y. Note that x⋆ is well defined

according to Lemma 2. Since λ 6∈ ∆y, there exists σ ∈ Σy,λ(x
⋆) such that

||σ||∞ < 1. By construction of x̂λ̄(y) one has D∗
J x̂λ̄(y) = 0. So for λ̄ close

enough from λ, one has

sign(D∗x̂λ̄(y)) = sign(D∗x⋆)
def.

= s.

Similarly to the proof of Theorem 1, x̂λ̄(y) is thus solution if and only if there
exists σ̄ with

λDIsI + λDJσ = λ̄DIsI + λ̄DJ σ̄ and ||σ̄||∞ 6 1.

This is achievied for

σ̄ =
λ

λ̄
σ −

λ− λ̄

λ̄
D+

J DIsI .
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5.3 Proof of Theorem 3

The proof is done in four steps. First, we prove that µ(y) is well-defined.
Then, we prove that there exists a solution of Pλ(y) such that (HJ ) holds.
Finally, we prove that df(µ(y)) = dimGJ .

We first proves that even if Pλ(y) admits several solutions, all of them share
the same image under Φ.

Lemma 3. If x1 and x2 are two solutions of Pλ(y), then Φx1 = Φx2.

Proof. Let x1, x2 be two solutions of Pλ(y) and Φx1 6= Φx2. We define x3 =
1
2 (x1 + x2). Since the function u 7→ ||y − u||2 is strictly convex, one has the
following inequality

1

2
||y − Φx3||

2 <
1

2

(

1

2
||y − Φx1||

2 +
1

2
||y − Φx2||

2

)

.

Applying triangle inequality for the ℓ1 norm gives

||D∗x3||1 6 ||D∗x1||1 + ||D∗x2||1.

Hence, Ly,λ(x3) < Ly,λ(x1) which is a contradiction with x1 being a solution of
the problem Pλ(y).

Lemma 4. There exists x⋆ a solution of Pλ(y) such that (HJ ) holds, where J

is the D-cosupport of x⋆.

Proof. Let x⋆ be a solution of Pλ(y). Suppose (HJ ) does not hold. Then, there
exists z ∈ KerΦ with z 6= 0 and D∗

Jz = 0. We define vt = x⋆ + tz. For t small
enough, let’s say t 6 t0

sign(D∗vt) = sign(D∗x⋆).

Hence, the mapping t 7→ ||D∗vt||1 is locally affine until at least one of the com-
ponent of D∗vt vanishes.

Two cases occur :

1. If for every 0 6 t 6 t0, no component of D∗vt vanishes, then

∀t 6 t0, ||D∗vt||1 = t||D∗z||1 + ||D∗x⋆||1 where a > 0.

Applying Minkowski inequality equality case, there exists some ρ ∈ R

∀t 6 t0, t||D∗z||1 = ρ||D∗x⋆||1

Thus, D∗z = 0. Then z ∈ KerΦ ∩ KerD∗ and z 6= 0, which is a contra-
diction of condition (H0) .

2. Else, for some 0 < t1 6 t0, a component of D∗vt vanishes. Then, the
D-cosupport of vt1 is strictly included in J and Ly,λ(vt1) is minimum. It-
erating this argument shows that there exists a solution with D-cosupport
strictly included in J such that (HJ ) holds.
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Next, we prove the theorem 3.

Proof of Theorem 3. Using Lemma 4, there exists a solution x⋆ of Pλ(y) such
that (HJ ) holds. We consider this solution. Since µ(ȳ) = Φxλ(ȳ), using Lemma
2 for ȳ close enough from y, one has

µ(ȳ) = ΦA[J]Φ∗ȳ − λΦA[J]DIsI .

where J is the D-cosupport of x⋆. Remark that µ(ȳ) can we written as µ(ȳ) =
V ȳ + r where V = ΦA[J]Φ∗ and r ∈ RP is a constant vector. Hence,

div(µ(y)) = tr(V )

Remark V is the orthogonal projector on Im(V ) = ker(V )⊥, so that div(µ(y)) =
dim(Im(V )). Since Φ is injective on GJ , one has dim(Im(V )) = dim(GJ ).

5.4 Proof of Theorem 4

To prove Theorem 4, we start with the following lemma which gives a nec-
essary and sufficient condition on x̂⋆ to be the unique solution of Pλ(y).

Lemma 5. Let y ∈ RP and let J a D-cosupport such that (HJ ) holds, and
I = Jc. Suppose x̂⋆ satisfies

x̂⋆ = A[J]Φ∗y − λA[J]DIsI .

where s = sign(D∗x̂⋆). If there exists σ satisfying

σ − Ωs+
1

λ
B̃y ∈ KerDJ and ||σ||∞ < 1, (17)

where B̃ = D+
J Φ

∗(ΦA[J]Φ∗ − Id), then x̂⋆ is the unique solution of Pλ(y)

Proof. According to Lemma 1, x̂⋆ is the unique solution of Pλ(y) if there exists
σ ∈ Σy,λ(x̂

⋆) such that

Φ∗(Φx̂⋆ − y) + λDIsI + λDJσ = 0 and ||σ||∞ < 1.

Hence, with few algebraic manipulations, one has

By − λCDIsI + λDJσ = 0 and ||σ||∞ < 1, (18)

where C = Φ∗ΦA[J] − Id. One has U∗C = 0 and thus one can find C̃ such that
C = DJ C̃. For instance we select C̃ = D+

J C = Ω. Similarly, we define B̃ such

that B̃ = D+
J B. Hence, the existence of σ ∈ Σy,λ(x̂

⋆) such that ||σ||∞ < 1 is
equivalent to

DJσ = DJΩsI −
1

λ
DJ B̃y where ||σ||∞ < 1,
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which in turn is equivalent to

σ − ΩsI +
1

λ
B̃y ∈ KerDJ where ||σ||∞ < 1,

We recall that, according to Definition 6, given some D-support I and D-
cosupport J = Ic, we suppose that condition (HJ ) holds. Given some sign
vector s ∈ {−1,+1}P , the analysis Identifiabiltiy Criterion IC of a sign vector
s associated to a D-support I is defined as

IC(s) = min
u∈KerDJ

||ΩsI − u||∞ where Ω = D+
J (Φ

∗ΦA[J] − Id)DI .

Proof of Theorem 4. The proof is done in three steps. First, we give a condition
on λ to have signs equality between the proposed solution and x0. Then, we

give an other condition on ||w||2
λ

to ensure first-order condition on x̂⋆ assuming
IC < 1. Finally, we prove that both condition are compatible.

We first give a condition on λ to ensure signs equality

sign(D∗x̂⋆) = sign(D∗x0)
def.

= s.

Since A[J]Φ∗y = x0 +A[J]Φ∗w, signs equality is achieved if

∀i ∈ I, |D∗
Ix0|i > |D∗

I (x̂
⋆ − x0)|i = |D∗

IA
[J]Φ∗w − λD∗

IA
[J]DIsI |i. (19)

We bound the term ||D∗
I (x̂

⋆ − x0)||∞

||D∗
I (x̂

⋆ − x0)||∞ 6 λ||D∗
IA

[J]||∞,∞

(

||Φ∗w

λ
||∞ + ||DIsI ||∞

)

.

Using operator norm inequalities, one has

||D∗
I (x̂

⋆ − x0)||∞ 6 λ||D∗
IA

[J]||∞,∞

(

||Φ∗||2,∞
||w||2
λ

+ ||DI ||∞,∞

)

.

Introducing
T = min

i∈{1,··· ,|I|}
|D∗

Ix0|i > 0,

the following condition

λ <
||D∗

IA
[J]||∞,∞||Φ∗||2,∞

T

||w||2
λ

+
||D∗

IA
[J]||∞,∞||DI ||∞,∞

T
, (20)

ensures (19), and so signs equality.

We give now a condition on ||w||2
λ

to ensure first-order condition assuming

IC(sign(D∗x0)) < 1. Remark that B̃y = B̃w since x0 ∈ GJ . Using Lemma 5,
the vector x̂⋆ is the unique solution of Pλ(y) if there exists σ satisfying

σ̂ = −u+ΩsI −
1

λ
B̃w and ||σ||∞ < 1,
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for some u ∈ ker(DJ). Hence, under condition IC(sign(D∗x0)) < 1, one has

||B̃||2,∞
||w||2
λ

< 1− IC(sign(D∗x0)). (21)

implies that there exists σ̂ ∈ Σy,λ(x̂
⋆) with ||σ̂||∞ < 1.

Let show that (20) and (21) are compatible. We introduce constants cJ and
c̃J :

cJ = ||D+
J Φ

∗(ΦA[J]Φ∗ − Id)||2,∞,

and

c̃J =
||D∗

IA
[J]||∞,∞

(

||Φ∗||2,∞
1−IC(s)

cJ
+ ||DI ||∞,∞

)

T
.

Suppose that

||w||2 <
c̃J

cJ
,

and
cJ ||w||2 < λ < c̃J ,

Then (20) and (21) are satisfied.

5.5 Proof of Theorem 5

The proof of Theorem 5 is done in three steps. First, we specializes Theorem
4 when w = 0. Then, we show that under the condition IC(sign(D∗x0)), the
vector x0 is a solution of P0(y). Finally, we prove Theorem 5 by considering an
other potential solution of P0(y).

Corollary 2. Let x0 ∈ RN be a fixed vector, I be its D-support, and y = Φx0.
Suppose (HJ ) holds and IC(sign(D∗x0)) < 1. Then for λ < c̃J ,

x̂⋆ = A[J]Φ∗y − λA[J]DIsI where s = sign(D∗x0)I .

is the unique solution of Pλ(y).

Proof. Take w = 0 in theorem 4.

Lemma 6. Let x0 ∈ RN be a fixed vector, I be its D-support, and y = Φx0.
Suppose (HJ ) holds and IC(sign(D∗x0)) < 1. Then x0 is a solution of P0(y).

Proof. According to Corollary 2, Pλ(y) has a unique solution for λ < c̃J ,

x⋆ = x̂⋆ = x0 − λA[J]DIsI

Let x1 6= x0 such that Φx1 = y. For every λ strictly positive, one has Ly,λ(x
⋆) <

Ly,λ(x1) by definition of xλ. Then,

||D∗xλ||1 < ||D∗x1||1.

Using continuity of norms, taking the limit λ → 0 in this equation gives

||D∗x0||1 6 ||D∗x1||1,

which proves that x0 is a solution of P0(y).
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Proof of Theorem 5. Using Lemma 6, x0 is a solution of P0(y). We shall prove
that x0 is the unique solution. Let denote

x1 = x0 + λA[J]DIsI .

Note that for λ small enough and IC(sign(D∗x0)) < 1, one has sign(D∗x1) =
sign(D∗x0). Hence, since Corrolary 2 holds, x0 is the unique solution of Pλ(y1)
where y1 = Φx1.

Let x2 ∈ RN such that Φx2 = y with x2 6= x0. Then Φx0 = Φx2 and since
x0 is the unique solution of Pλ(y1), one has

1

2
||y − Φx0||

2
2 + λ||D∗x0||1 <

1

2
||y − Φx2||

2
2 + λ||D∗x2||1.

Then,
||D∗x0||1 < ||D∗x2||1,

which gives uniqueness of the solution.

5.6 Proof of Theorem 6

We split the proof in two parts. First, we show that a solution of the re-
stricted minimization problem PJ

λ (y) over GJ has an implicit form as in (14).

Lemma 7. Let x⋆ be a solution of

argmin
x∈GJ

1

2
||y − Φx||22 + λ||D∗x||1. (PJ

λ (y))

Let J the D-cosupport of x⋆ and s = sign(D∗x⋆)I . If (HJ) holds, then

x⋆ = A[J]Φ∗y − λA[J]DIsI .

Proof. Let U be a basis of GJ . We rewrite PJ
λ (y) without constraints

argmin
α∈RP

1

2
||y − ΦUα||22 + λ||D∗Uα||1.

Hence using Lemma 1 with ΦU and D∗U in place of Φ and D∗, αλ is a solution
of PJ

λ (y) if, and only if, there exists σ such that

U∗Φ∗(ΦUαλ − y) + λ(U∗D)Is+ λ(U∗D)Jσ = 0 and ||σ||∞ < 1.

We conclude as in Lemma 2. By definition one has Uα ∈ GJ . Hence, we can
write

U∗Φ∗(ΦUαλ − y) + λ(U∗D)Is = 0

Since (HJ) holds, the operator U∗Φ∗ΦU is invertible, we conclude.

We recall that the Recovery Criterion RC of I ⊂ {1 . . . P} is defined as

RC(I) = max
x∈GJ

IC (sign(D∗x)) .
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Proof of Theorem 6. Let x⋆ be a solution of PJ
λ (y). Our strategy is to prove

that x⋆ is the unique solution of Pλ(y). By definition, x⋆ ∈ GJ , hence J is the
D-cosupport of x⋆. Using Lemma 7, one has

x⋆ = A[J]Φ∗y − λA[J]DIsI , (22)

where s = sign(D∗x⋆)I .
Remark that B̃y = B̃w since x⋆ ∈ GJ . Using Lemma 5, the vector x⋆ is the

unique solution of Pλ(y) if there exists σ satisfying

σ = −u+ΩsI −
1

λ
B̃w where ||σ||∞ 6 1,

for some u ∈ ker(DJ). If RC(I) < 1, then

||σ||∞ < RC(I) +
1

λ
||B̃||2,∞||w||2.

Hence, for

λ > ||w||2
cJ

1−RC(I)
where cJ = ||D+

J Φ
∗(ΦA[J]Φ∗ − Id)||2,∞,

one has ||σ||∞ < 1. Hence, x⋆ is the unique solution of Pλ(y).
We now bound the distance between x0 and x⋆.

||x⋆ − x0|| = ||A[J]Φ∗y − λA[J]DIsI − x0||.

We remark that A[J]Φ∗y = x0 +A[J]Φ∗w. Hence,

||x⋆ − x0|| = ||A[J](Φ∗w − λDIsI)||.

Using operator norm inequality, one has

||x⋆ − x0|| 6 ||A[J]||2,2||w||2

(

||Φ∗||2,2 +
ρ||B̃||2,∞

1−RC(I)
||DI ||2,2

√

|I|

)

.

Conclusion

This paper has provided a theoretical analysis of the robustness of sparse
analysis regularizations. We have studied both the local affine behavior of the
solution, and the robustness to small and large noise. These contributions enable
a better understanding of the behavior of this class of regularization.

Concrete examples illustrate our results. For discrete total variation, we
show that staircasing induces an instability of the support, i.e discontinuties are
not preserved. For Fused Lasso, our analysis shows that the support is stable
and robust to an arbitrary bounded noise.
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A distinctive feature of our approach is that we look for the robustness of the
cospace associated to the original data. This approach often has a meaningful
interpretation (such as the conservation of discontinuities for TV-like models)
it also leads to quite restrictive conditions. A fascinating area for future work is
to understand how to lift these restrictions to obtain sharper noise robustness
of analysis methods
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