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Penalty Methods for the Hyperbolic
System Modelling the Wall-Plasma
Interaction in a Tokamak

Philippe Angot, Thomas Auphan, Olivier Guès

Abstract The penalization method is used to take account of obstacles in
a tokamak, such as the limiter. We study a non linear hyperbolic system
modelling the plasma transport in the area close to the wall. A penalization
which cuts the transport term of the momentum is studied. We show numer-
ically that this penalization creates a Dirac measure at the plasma-limiter
interface which prevents us from defining the transport term in the usual
sense. Hence, a new penalty method is proposed for this hyperbolic system
and numerical tests reveal an optimal convergence rate without any spurious
boundary layer.

Key words: hyperbolic problem, penalization method, numerical tests
MSC2010: 00B25, 35L04, 65M85

1 Introduction

A tokamak is a machine to study plasmas and the fusion reaction. The plasma
at high temperature (108K) is confined in a toröıdal chamber thanks to a
magnetic field. One of the main goals is to perform controlled fusion with
enough efficiency to be a reliable source of energy. But, since the magnetic
confinement is not perfect, the plasma is in contact with the wall. In order
to preserve the integrity of the wall and to limit the pollution of the plasma,
it is crucial to control these interactions.

We study, using a fluid approximation of the plasma, a simplified system
of equations governing the plasma transport in the scrape-off layer, parallel
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to the magnetic field lines. In this paper, after a numerical study of the pena-
lization introduced by Isoardi et al. [9], we modify the boundary conditions to
ensure the well-posedness of the hyperbolic system and we propose another
penalty method which seems to be free of boundary layer.

2 The model hyperbolic problem

In this paper, we consider a very simple model taking only into account the
transport in the direction parallel to the magnetic field lines, (see for example
[9], [13]). It is a one dimensional 2×2 hyperbolic system of conservation laws
for the particle density N and the particle flux Γ , which reads :















∂tN + ∂xΓ = S

∂tΓ + ∂x

(

Γ 2

N
+N

)

= 0

Initial conditions : N(0, .) = N0 and Γ (0, .) = Γ0

(t, x) ∈ R
+
∗ ×]−L,L[ (1)

Here, the boundaries of the domain x = L and x = −L correspond to the
”limiters”, which are material obstacles for the fluid (see Fig. 1). In the right-
hand side, S is a source term.

There is a difficulty with the choice of the boundary conditions for the
system (1). From physical arguments, it follows that the domain (namely the
scrape-off layer) is basically divided into two regions [13] :

• One region far from the limiter, the pre-sheath, where the plasma is neutral
and the Mach number M = Γ/N of the plasma satisfies |M | ≤ 1.

• One region next to the limiter (in a thin layer called the sheath area, whose
typical thickness is of the order of 10−5m), where the electroneutrality
hypothesis does not hold and we have |M | > 1. More precisely M > 1
close to x = L and M < −1 close to the boundary x = −L.

It could seem natural to prescribe M = 1 (resp. M = −1) as a boundary
condition at x = L (resp. x = −L) for the system, since the physical argu-
ments imply that M = ±1 very close to the obstacle (Bohm criterion). These
are exactly the boundary conditions which are chosen in [9]. However, in that
case, as the eigenvalues of the Jacobian of the flux function are M − 1 and
M +1, it follows that at the plasma limiter interface one eigenvalue is 0 (the
boundary is characteristic) and the other one is outgoing (it is also true at
x = −L), and clearly the problem does not satisfy the usual sufficient condi-
tions for well posedness, see [8], [11], [3] : the number of boundary conditions
(= 1) is not equal to the number of incoming eigenvalues (= 0).

In order to test our penalty approach with a well-defined hyperbolic bound-
ary value problem, in section 3, we slightly modify the boundary conditions
of the paper [9], and impose M = 1− ǫ on x = L and M = −1+ ǫ on x = −L
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with a fixed ǫ > 0, which leads to a well-posed hyperbolic problem. In our
numerical simulations we use ǫ = 0.1.
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Fig. 1 Schematic representation of the scrape-off layer. The x-axis corresponds to the
curvilinear coordinate along a magnetic line close to the wall of the tokamak.

The numerical tests presented below, use a finite volume scheme with
a second order extension : MUSCL reconstruction with the minmod slope
limiter and the Heun scheme which is a second order Runge–Kutta TVD
time discretization. The finite volume scheme is the VFRoe using the non
conservative variables for the linearized Riemann solver [7]; here, the non
conservatives variables are N and M . To avoid stability issues, the penalized
terms are treated implicitly for the time discretization.

3 Study of penalty methods

3.1 A first penalty method

The following penalty approach has been proposed by Isoardi et al. [9]. Let’s
χ be the characteristic function of the limiter, i.e. χ(x) = 1 if x is in the
limiter, and χ(x) = 0 elsewhere, and η the penalization parameter. The
penalized system is given by :



















∂tN + ∂xΓ +
χ

η
N = (1− χ)SN in R

+
∗ × R

∂tΓ + (1− χ)∂x

(

Γ 2

N
+N

)

+
χ

η
(Γ −M0N) = (1− χ)SΓ

Initial conditions : N(0, .) = N0 and Γ (0, .) = Γ0

(2)

M0 is a function such that, at the plasma-limiter interface we have |M0| = 1.
Here, the two components of the unknown are penalized although there is
no incoming wave. At least formally, N is forced to converge to 0 inside the
limiter when η tends to 0.
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The flux of the second equation is cut inside of the limiter, and this causes
some troubles from the mathematical point of view. Indeed, this is an hyper-
bolic system with discontinuous coefficients and the meaning of the term

(1− χ)∂x

(

Γ 2

N
+N

)

is not clear because it can involve the product of a measure with a discon-
tinuous function which has no distributional sense. As a consequence and
as a confirmation of this fact, our numerical tests show the existence of a
strong singularity at the interface for the numerical discrete solution. Con-
cerning the interpretation of this numerical singularity, it could happen (but
we don’t have any rigorous proof and this is just an open question) that this
system admits generalized solutions in the spirit of Bouchut–James [4] (see
also Poupaud–Rascle [10], or Fornet–Guès [5]) such as measure-valued solu-
tions, which can for example exhibit a Dirac measure at the interface, and
this generalized solution could be selected by the numerical approximation
process.

For the numerical test, we choose SN and SΓ so that the following functions
define a solution of the boundary value problem :

N(t, x) = exp

(

−x2

0.16(t+ 1)

)

Γ (t, x) = sin
(πx

0.8

)

exp

(

−x2

0.16(t+ 1)

)

These test solutions are regular (at least inside the plasma area) and has no
singularity at the plasma-limiter interface. In the Fig. 2, we observe that a
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Fig. 2 M versus x with η = 10−3, a mesh of J = 1280 cells using the penalization of
Isoardi et al. [9]. The computations are stopped when maxi∈{1,...,J}(|M

n
i |) > 10, which

corresponds to the time : t = 0.008822. The computational domain was [0, 0.5] and L = 0.4
(plasma-limiter interface). At x = 0, we impose a symmetry condition.
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peak appears very quickly, then |Mn
i | become very large (about 108) in a

few points. The same computations are made for two more refined meshes
(respectively for 2560 and 10240 cells) and we observe that the peak is nearer
and nearer to the plasma limiter interface, when the resolution increases.
Besides, when the mesh step decreases, the peak appears earlier and earlier.
We stop the computations when maxi∈{1,...,J}(|M

n
i |) > 10 but similar results

are obtained when the stop criterion is maxi∈{1,...,J}(|M
n
i |) > 100. This leads

one to believe that, if the solution converges to a generalized solution of the
continuous problem, then this generalized solution must have a singularity
supported by the interface (that could be a Dirac measure for example). We
notice that the presence of a Dirac measure at the interface is not only a
theoretical issue since it has been observed numerically and that the Dirac
measure destabilizes numerical schemes. In the following section, we propose
a modification of the boundary value problem to obtain a well-posed version.

3.2 A new penalty method for the modified boundary

conditions

After the modifications proposed in section 2, the well-posed initial boundary
value problem reads :























∂tN + ∂xΓ = S

∂tΓ + ∂x

(

Γ 2

N
+N

)

= 0

M(.,−L) = −1 + ǫ and M(., L) = 1− ǫ
N(0, .) = N0 and Γ (0, .) = Γ0

(t, x) ∈ R
+
∗ ×]− L,L[ (3)

For this problem, the boundary is not characteristic, and the boundary condi-
tions are maximally dissipative. Hence, for compatible initial data, the prob-
lem has a unique local in time solution, which is regular enough : at least C1

is sufficient to perform the asymptotic analysis; see e.g. [3], [12].
To penalize (3), we use a method developed in the semi-linear case by

Fornet and Guès [6]. In order to have an homogeneous Dirichlet boundary
condition for the theoretical study, the system is reformulated with the un-
knowns ũ = ln(N) and ṽ = Γ/N −M0. Although our system is quasi-linear
(and not semi-linear), the method can be extended to this case. An interesting
feature of the method is that it yields to a convergence result without gener-
ation of a boundary layer inside the limiter. Up to now, we don’t know if this
method can be extended to more general quasi-linear first order hyperbolic
system with maximally dissipative conditions.

We assume that M0 is a constant such that 0 < M0 < 1. We denote by χ
the characteristic function associated to the limiter, i.e. χ(x) = 1 if the point
x is in the limiter.
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The new penalized problem reads :















∂tN + ∂xΓ = SN

∂tΓ + ∂x

(

Γ 2

N
+N

)

+
χ

η

(

Γ

M0

−N

)

= SΓ

N(0, .) = N0 and Γ (0, .) = Γ0

in R
+
∗ × R (4)

The formal asymptotic expansion of a continuous solution to (4) with the
BKW (Brillouin–Kramers–Wentzel) method does not contain any boundary
layer term [1] and this suggests strongly that there is no boundary layer at
all in the solution. Notice that the penalization is incomplete: only one field
is penalized, which is natural since there is only one boundary condition.

For the numerical tests, we use a regular solution:

N(t, x) = exp

(

−x2

0.16(t+ 1)

)

Γ (t, x) = M0 sin
(πx

0.8

)

exp

(

−x2

0.16(t+ 1)

)

and SN , SΓ are well chosen. The spatial domain is [0, 0.5] with a symmetry
condition at x = 0 and the limiter set corresponds to x ∈ [0.4, 0.5].
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Fig. 3 Plot of N , Γ and M as functions of x (at t = 1) with the penalty method free of
boundary layer for η = 0.1. The continuous lines represent the numerical solutions whereas
the dashed lines corresponds to the exact solution of the hyperbolic limit problem (η → 0).
The limiter corresponds to the area x ∈ [0.4, 0.5]. For smaller values of η, for instance for
η = 10−5, the plot is almost the same as the plot of the exact solution (dotted lines).

We analyze the convergence when the penalization parameter η tends to
0 using a uniform spatial mesh of step δx = 10−5. We calculate the error
in L1 norm for N , ∂xN , Γ and ∂xΓ . The goal is to confirm numerically the
absence of boundary layer with an optimal rate of convergence as O(η).
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Fig. 4 Errors for N , ∂xN , Γ and ∂xΓ in L1 norms with the penalization free of boundary

layer. The dashed lines represent the curves η
1

4 , η
1

2 and η.

One of the main difficulties for the implementation of the penalization,
is the choice of a boundary condition at x = 0.5 which is necessary for the
numerical scheme. As only Γ is penalized, we need a transparent boundary
condition for N . For the numerical tests, the boundary condition comes from
the asymptotic expansion up to the first order of the BKW analysis. We
carry out the computations up to t = 1 with an adaptive time step so that
the CFL condition is always satisfied. The results are plotted in Fig. 3. In
Fig. 4, we observe that the optimal rate of convergence O(η) is reached for
the L1 norms, even for the derivatives. This gives a numerical evidence of the
absence of boundary layer. The same numerical results in O(η) are obtained
if the penalty term in (4) is replaced by χ

η

(

Γ
N

−M0

)

, see [2].
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When the parameter ǫ = 0.01, i.e. close to a characteristic boundary, the
computations show that, for η sufficiently small, η ≤ O(ǫ), the convergence
results are similiar; see details in [1].
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