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Non-diffusive large time behaviour for a degenerate viscous Hamilton-Jacobi equation

The convergence to non-diffusive self-similar solutions is investigated for non-negative solutions to the Cauchy problem ∂ t u = ∆ p u + |∇u| q when the initial data converge to zero at infinity. Sufficient conditions on the exponents p > 2 and q > 1 are given that guarantee that the diffusion becomes negligible for large times and the L ∞ -norm of u(t) converges to a positive value as t → ∞.

Introduction

The quasilinear degenerate parabolic equation

(1.1) ∂ t u = ∆ p u + |∇u| q , (t, x) ∈ Q ∞ := (0, ∞) × R N ,
includes two competing mechanisms acting on the space variable x, a degenerate diffusion ∆ p u involving the p-Laplacian operator defined by ∆ p u := div |∇u| p-2 ∇u , p > 2 , and a source term |∇u| q , q > 1, depending solely on the gradient of u. The aim of this work is to identify a range of the parameters p and q for which the large time behaviour of non-negative solutions to (1.1) is dominated by the source term. More precisely, we consider the Cauchy problem and supplement (1.1) with the initial condition (1.2) u(0) = u 0 ≥ 0 , x ∈ R N . * Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université de Toulouse, F-31062 Toulouse cedex 9, France. E-mail: Philippe.Laurencot@math.univ-toulouse.fr, Internet: http://www.math.univtoulouse.fr/∼laurenco/ 1 Throughout the paper, the initial condition u 0 is assumed to fulfill For such an initial condition, the Cauchy problem (1.1), (1.2) has a unique non-negative (viscosity) solution u ∈ BC([0, ∞) × R N ) (see Proposition 2.1 below). Moreover, t -→ u(t) ∞ is a non-increasing function and has a limit M ∞ ∈ [0, u 0 ∞ ] as t → ∞. Our main result is then the following: Theorem 1.1 Assume that p > 2 and q ∈ (1, p). Consider a non-negative function u 0 satisfying (1.3) and let u be the corresponding (viscosity) solution to (1.1), (1.2). Assume further that

(1.3) u 0 ∈ C 0 (R N ) ∩ W 1,∞ (R N ) , u 0 ≥ 0 , u 0 ≡ 0 ,
(1.4) M ∞ := lim t→∞ u(t) ∞ > 0 .
Then

(1.5) lim t→∞ u(t) -h ∞ (t) ∞ = 0 ,
where h ∞ is given by

(1.6) h ∞ (t, x) := H ∞ x t 1/q
and H ∞ (x) := M ∞ -γ q |x| q/(q-1) + for (t, x) ∈ Q ∞ and γ q := (q -1) q -q/(q-1) .

Here and below, r + := max {r, 0} denotes the positive part of the real number r.

The convergence (1.5) clearly indicates that the large time behaviour of non-negative solutions to (1.1), (1.2) fulfilling the condition (1.4) is governed by the gradient source term. Indeed, h ∞ is actually a self-similar solution to the Hamilton-Jacobi equation

(1.7) ∂ t h = |∇h| q , (t, x) ∈ Q ∞ ,
and an alternative formula for h ∞ reads

(1.8) h ∞ (t, x) = sup y∈R N
M ∞ 1 {0} (y) -γ q |x -y| q/(q-1) t 1/(q-1) for (t, x) ∈ [0, ∞) × R N , 1 {0} denoting the indicator function of the singleton set {0}.

The formula (1.8) is the well-known Hopf-Lax-Oleinik representation formula for viscosity solutions to (1.7) (see, e.g., [START_REF] Evans | Partial Differential Equations[END_REF]Chapter 3]) and h ∞ turns out to be the unique viscosity solution in BUC(Q ∞ ) to (1.7) with the bounded and upper semicontinuous initial condition h ∞ (0, x) = 1 {0} (x) for x ∈ R N [START_REF] Strömberg | The Hopf-Lax formula gives the unique viscosity solution[END_REF].

Remark 1. [START_REF] Barles | Solutions de Viscosité des Equations d'Hamilton-Jacobi[END_REF] The convergence (1.5) also holds true for the viscosity solution to the Hamilton-Jacobi equation (1.7) with a non-negative initial condition u 0 ∈ C 0 (R N ) but with u 0 ∞ instead of M ∞ in the formula (1.6) giving H ∞ . For (1.1), (1.2), the constant M ∞ takes into account that, though negligible for large times, the diffusion erodes the supremum of u during the time evolution.

For p = 2, Theorem 1.1 is also valid and is proved in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF], the proof relying on a rescaling technique: The crucial step is then to identify the possible limits of the rescaled sequence and this is done by an extensive use of the Hopf-Lax-Oleinik representation formula. The proof we perform here is of a completely different nature and relies on the relaxed halflimits method introduced in [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF]. A similar approach has been used in [START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF] and [START_REF] Roquejoffre | Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations[END_REF] to investigate the large time behaviour of solutions to first-order Hamilton-Jacobi equations

∂ t w + H(x, ∇w) = 0 in Q ∞ .
It has also been used in [START_REF] Laurençot | Localized non-diffusive asymptotic patterns for nonlinear parabolic equations with gradient absorption[END_REF] to study the convergence to nondiffusive localized self-similar patterns for non-negative and compactly supported solutions to ∂ t w -∆ p w + |∇w| q = 0 in Q ∞ when p > 2 and q ∈ (1, p -1).

In order to apply Theorem 1.1, one should check whether there are non-negative solutions to (1.1), (1.2) for which (1.4) holds true. The next result provides sufficient conditions for (1.4) to be fulfilled. Theorem 1.3 Assume that p > 2 and q > 1. Consider a non-negative function u 0 satisfying (1.3) and let u be the corresponding solution to (1.1), (1.2). Introducing (1.9)

q ⋆ := p - N N + 1 , then u fulfills (1.4) if (a) either q ∈ (1, q ⋆ ], (b) or q ∈ (q ⋆ , p), u 0 ∈ W 2,∞ (R N ), and 
(1.10) u 0 ∞ > κ 0 inf y∈R N {∆ p u 0 (y)} (p-q)/q .
for some κ 0 > 0 which depends only on N, p, and q.

A similar result is already available for p = 2 and has been established in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF]. It is also shown in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF][START_REF] Laurençot | On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF] that, still for p = 2, u(t) ∞ → 0 as t → ∞ if either q ≥ p or q ∈ (q ⋆ , p) and a suitable norm of u 0 is small enough. A similar result is likely to be true also for p > 2, so that different large time behaviours are only to be found in the intermediate range q ∈ (q ⋆ , p) .

The proof of Theorem 1.3 for q ∈ (p -1, p) and p > 2 borrows some steps from the case p = 2. However, it relies on semiconvexity estimates for solutions to (1.1), (1.2) which seem to be new for p > 2 and q ∈ (1, p) and are stated now. Proposition 1.4 Assume that p > 2 and q ∈ (1, p]. Let u be the viscosity solution to (1.1), (1.2) with initial condition u 0 ∈ BUC(R N ) (that is, u 0 ∈ BC(R N ) and is uniformly continuous in R N ). Then ∇u(t) belongs to L ∞ (R N ) for each t > 0 and there is κ 1 > 0 depending only on N, p, and q such that

(1.11) ∆ p u(t, x) ≥ -κ 1 u(s) (p-q)/q ∞ (t -s) -p/q , t > s ≥ 0 ,
in the sense of distributions. In addition, if u 0 ∈ W 1,∞ (R N ), there holds

(1.12) ∆ p u(t, x) ≥ - N(p -1) q(q -1) ∇u 0 p-q ∞ t for t > 0 in the sense of distributions.
The proof of Proposition 1.4 relies on the comparison principle combined with a gradient estimate established in [START_REF] Bartier | Gradient estimates for a degenerate parabolic equation with gradient absorption and applications[END_REF].

Similar semiconvexity estimates for solutions to (1.1), (1.2) have already been obtained in [START_REF] Hamilton | A matrix Harnack estimate for the heat equation[END_REF] and [START_REF] Lin | L 1 -stability and error estimates for approximate Hamilton-Jacobi solutions[END_REF]Lemma 5.1] for p = q = 2, in [7, Proposition 3.2] for p = 2 and q ∈ (1, 2], and in [9, Theorem 1] for p = q > 2. We extend these results to the range p > 2 and q ∈ (1, p]. As we shall see below, the estimate (1.11) plays an important role in the proof of Theorem 1.3 and is also helpful to construct a subsolution in the proof of Theorem 1.1.

Let us finally emphasize that the validity of Proposition 1.4 is not restricted to non-negative solutions and that the solutions to the Hamilton-Jacobi equation (1.7) also enjoy the semiconvexity estimates (1.11) and (1.12). These two estimates thus stem from the reaction term |∇u| q and not from the diffusion.

In the next section, we recall the well-posedness of (1.1), (1.2) in BUC(R N ), as well as some properties of the solutions established in [START_REF] Bartier | Gradient estimates for a degenerate parabolic equation with gradient absorption and applications[END_REF]. We also show the finite speed of propagation of the support for non-negative compactly supported initial data. Section 3 is devoted to the proof of the semiconvexity estimates (Proposition 1.4) and Section 4 to that of Theorem 1.1. Theorem 1.3 is shown in the last section, its proof combining arguments of [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF][START_REF] Laurençot | Optimal growth rates for a viscous Hamilton-Jacobi equation[END_REF] used to established analogous results when p = 2.

Throughout the paper, C and C i , i ≥ 1, denote positive constants depending only on p, q, and N. Dependence upon additional parameters will be indicated explicitly. Also, M N (R) denotes the space of real-valued N × N matrices and

δ ij = 1 if i = j and δ ij = 0 if i = j, 1 ≤ i, j ≤ N. Given a matrix A = (a ij ) ∈ M N (R), tr(A)
denotes its trace and is given by tr(A) := a ii .

Preliminary results

Let us first recall the well-posedness (in the framework of viscosity solutions) of (1.1), (1.2), together with some properties of the solutions established in [START_REF] Bartier | Gradient estimates for a degenerate parabolic equation with gradient absorption and applications[END_REF].

Proposition 2.1 Consider a non-negative initial condition u 0 ∈ BUC(R N ). There is a unique non-negative viscosity solution u ∈ BC([0, ∞) × R N ) to (1.1), (1.2) such that

(2.1) 0 ≤ u(t, x) ≤ u 0 ∞ , (t, x) ∈ Q ∞ , (2.2) ∇u(t) ∞ ≤ min C 1 u(s) 1/q ∞ (t -s) -1/q , ∇u(s) ∞ , and 
(2.3) R N (u(t, x) -u(s, x)) ϑ(x) dx + t s R N |∇u| p-2 ∇u • ∇ϑ -|∇u| q ϑ dxdτ = 0 for t > s ≥ 0 and ϑ ∈ C ∞ 0 (R N ).
In addition, t -→ u(t) ∞ is a non-increasing function.

Proof. We put ũ0 := u 0 ∞ -u 0 . As ũ0 is a non-negative function in BUC(R N ), it follows from [6, Theorem 1.1] that there is a unique non-negative viscosity solution ũ to

(2.4) ∂ t ũ -∆ p ũ + |∇ũ| q = 0 , (t, x) ∈ Q ∞ , with initial condition ũ(0, x) = ũ0 (x) for x ∈ R N . It also satisfies 0 ≤ ũ(t, x) ≤ u 0 ∞ and R N (ũ(t, x) -ũ(s, x)) ϑ(x) dx + t s R N
|∇ũ| p-2 ∇ũ • ∇ϑ + |∇ũ| q ϑ dxdτ = 0 for t > s ≥ 0, x ∈ R N , and ϑ ∈ C ∞ 0 (R N ). In addition, ∇ũ(t) belongs to L ∞ (R N ) for each t > 0 and ∇ũ(t) ∞ ≤ C 1 ũ0

1/q ∞ t -1/q by [6, Lemma 4.1]. Setting u := u 0 ∞ -ũ, we readily deduce from the properties of ũ that u is a non-negative viscosity solution to (1.1), (1.2) satisfying (2.1) and (2.3). Also, ∇u(t) belongs to L ∞ (R N ) for each t > 0. The uniqueness and the time monotonicity of u ∞ then both follow from the comparison principle, see [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF] or [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF]Theorem 2.1]. Finally, given s ≥ 0, (t, x) → u(s) ∞ -u(t + s, x) is the unique non-negative viscosity solution to the Cauchy problem (2.4) with initial condition x → u(s) ∞ -u(s, x) and we infer from [START_REF] Bartier | Gradient estimates for a degenerate parabolic equation with gradient absorption and applications[END_REF]Lemma 4

.1] that ∇u(t + s) ∞ ≤ C 1 u(s) ∞ -u(s) 1/q ∞ t -1/q ≤ C 1 u(s) 1/q ∞ t -1/q for t > 0, whence (2.2).
We next turn to the propagation of the support of non-negative solutions to (1.1), (1.2) with non-negative compactly supported initial data. Proposition 2.2 Consider a non-negative solution u to (1.1), (1.2) with an initial condition u 0 satisfying (1.3). Assume further that u 0 is compactly supported in a ball B(0, R 0 ) of R N for some R 0 > 0. Then u(t) is compactly supported for each t ≥ 0.

Proof. We argue by comparison with travelling wave solutions. By [START_REF] Gilding | Travelling Waves in Nonlinear Diffusion-Convection Reaction[END_REF]Application 9.4], there is a travelling wave solution w to the convection-diffusion equation

(2.5) ∂ t w -∂ 2 1 w p-1 + ∂ 1 (w q ) = 0 , (t, x 1 ) ∈ (0, ∞) × R ,
with wave speed unity. It is given by w(t, x 1 ) = f (x 1 -t) for (t, x 1 ) ∈ (0, ∞) × R, the function f being implicitly defined by (p -1)

f (y) 0 z p-3 1 -z q-1 dz = (-y) + , y ∈ R . In particular, f satisfies f (y) = 0 if y > 0 and f (y) → 1 as y → -∞. Introducing F (y) := ∞ y f (z) dz , y ∈ R , the properties of f ensure that F is a decreasing function on (-∞, 0) with F (y) = 0 if y > 0, F (y) ≤ |y| if y < 0, and F (y) → ∞ as y → -∞. There is therefore a unique µ ∈ (-∞, 0) such that F (R 0 + µ) = u 0 ∞ .
In addition, it readily follows from (2.5) and the invariance by translation of (1.1) that W µ (t, x) := F (x 1 + µ -t) is a travelling wave solution to (1.1). Now, u and W µ are both solutions to (1.1) in (0, ∞) × H + , the half-space H + being defined by

H + := x ∈ R N : x 1 > R 0 .
Owing to the monotonicity of F , the bound 0 ≤ f ≤ 1, and (2.1), we have also

u 0 (x) -W µ (0, y) = 0 -W µ (0, y) ≤ W µ (0, x) -W µ (0, y) ≤ |x -y| for x ∈ H + and y ∈ H + , u(t, x) -W µ (t, y) ≤ u 0 ∞ -W µ (t, y) ≤ F (R 0 + µ -t) -W µ (t, y) = W µ (t, x) -W µ (t, y) ≤ |x -y| for t > 0, x ∈ ∂H + , y ∈ H + , and 
u(t, x) -W µ (t, y) ≤ u 0 ∞ -F (R 0 + µ -t) ≤ 0 for t > 0, x ∈ H + , y ∈ ∂H + . We are then in a position to use the comparison principle stated in [11, Theorem 2.1] to conclude that u(t, x) ≤ W µ (t, x) for (t, x) ∈ (0, ∞) × H + . Consequently, u(t, x) ≤ F (x 1 + µ -t) = 0 if t ≥ 0 and x 1 > max {R 0 , t -µ},
and the rotational invariance of (1.1) allows us to conclude that u(t, x) = 0 for t ≥ 0 and |x| > max {R 0 , t -µ}.

We finally recall the convergence to self-similar solutions for non-negative and compactly supported solutions to the p-Laplacian equation [START_REF] Kamin | Fundamental solutions and asymptotic behaviour for the p-Laplacian equation[END_REF] (2.6)

∂ t ϕ = ∆ p ϕ , (t, x) ∈ Q ∞ .
Proposition 2.3 Let ϕ 0 be a non-negative and compactly supported function in L 1 (R N ) and ϕ denote the unique weak solution to (2.6) with initial condition ϕ 0 . Then

(2.7) lim t→∞ t (N (r-1))/(r(N (p-2)+p)) ϕ(t) -B ϕ 0 1 (t) r = 0 for r ∈ [1, ∞] ,
where B L denotes the Barenblatt solution to (2.6) given by 

B L (t, x) := t -N/(N (p-2)+p) b L xt -1/(N (p-2)+p) , b L (x) := C 2 L (p(p-2))/((p-1)(N (p-2)+p)) -C 3 |x| p/(p-1) (p-1)/(p-2) + for (t, x) ∈ Q ∞ and L > 0. The convergence (2.7) is proved in [17, Theorem 2] for r = ∞. As ϕ 0 is compactly sup- ported, so is ϕ(t) for each t > 0 and the support of ϕ(t) is included in B 0, C 4 (ϕ 0 ) t 1/(N (p-2)+p) for t ≥ 1 [

Semiconvexity

In this section, we prove the semiconvexity estimates (1.11) and (1.12). To this end, we would like to derive an equation for ∆ p u to which we could apply the comparison principle. The poor regularity of u however does not allow to perform directly such a computation and an approximation procedure is needed. As a first step, we report the following result:

Lemma 3.1 Let a and b be two non-negative function in C ∞ ([0, ∞)) satisfying a(r) > 0 , a ′ (r) > 0 , a ′ (r) b ′ (r) -a(r) b ′′ (r) > 0 , (3.1) c(r) := 2 b ′ a (r) + 4r (a b ′′ -a ′ b ′ )(r) a 2 (r) + 2r a(r) a ′ (r) ≥ 0 . (3.2)
Consider a classical solution v to

(3.3) ∂ t v -div a |∇v| 2 ∇v = b |∇v| 2 , (t, x) ∈ Q ∞ ,
and put w := div a |∇v| 2 ∇v and

z i := a |∇v| 2 ∂ i v for i ∈ {1, . . . , N}. Then (3.4) ∂ t w -Lw -V • ∇w - c (|∇v| 2 ) N w 2 ≥ 0 in Q ∞ ,
where

Lw := i,j ∂ i a |∇v| 2 E ij ∂ j w , V := 2 b ′ |∇v| 2 ∇v , E ij := δ ij + 2 a ′ a |∇v| 2 ∂ i v ∂ j v , 1 ≤ i, j ≤ N .
The proof of Lemma 3.1 borrows some steps from the proof of [9, Theorem 1] for p = q > 2 but requires additional arguments to handle the term coming from the fact that q = p. In particular, we recall the following elementary result which will be helpful to estimate this term.

Lemma 3.2 Let A and B be two symmetric matrices in M N (R) and put M := ABA. Then M is a symmetric matrix in M N (R) and

(3.5) |MX| 2 ≤ tr M 2 |X| 2 for X ∈ R N .
Proof of Lemma 3.1. We first note that

∂ j z i = a |∇v| 2 k E ik ∂ k ∂ j v , (3.6) ∂ t z i = a |∇v| 2 k E ik ∂ k ∂ t v , (3.7) for 1 ≤ i, j ≤ N.
According to the definition of w, we infer from (3.3), (3.6), and (3.7) that

∂ t w = i,k ∂ i a |∇v| 2 E ik ∂ k ∂ t v = i,k ∂ i a |∇v| 2 E ik ∂ k w + b |∇v| 2 = Lw + 2 i,k ∂ i (ab ′ ) |∇v| 2 E ik j ∂ j v ∂ j ∂ k v = Lw + 2 i,j ∂ i (ab ′ ) |∇v| 2 ∂ j v k E ik ∂ k ∂ j v = Lw + 2 i,j ∂ i b ′ a |∇v| 2 z j ∂ j z i = Lw + 4 i,j b ′ a ′ |∇v| 2 k ∂ k v ∂ k ∂ i v z j ∂ j z i + 2 i,j b ′ a |∇v| 2 ∂ i z j ∂ j z i + 2 i,j b ′ a |∇v| 2 z j ∂ j ∂ i z i .
Since w = ∂ i z i , the last term of the right-hand side of the above inequality is equal to V • ∇w and

∂ t w = Lw + V • ∇w + 4 a b ′ a ′ |∇v| 2 i,j,k ∂ j v ∂ k v ∂ k ∂ i v ∂ j z i (3.8) + 2 b ′ a |∇v| 2 i,j ∂ i z j ∂ j z i .
On the one hand, introducing the matrix E := (E ij ) and the Hessian matrix

D 2 v = (∂ i ∂ j v) of v, we infer from (3.6) that i,j ∂ i z j ∂ j z i = a 2 |∇v| 2 i,j,k,l E ik ∂ k ∂ j v E jl ∂ l ∂ i v = a 2 |∇v| 2 i,j E D 2 v ij E D 2 v ji i,j ∂ i z j ∂ j z i = a 2 |∇v| 2 tr E D 2 v 2 . (3.9)
On the other hand, using once more (3.6), we obtain i,j,k

∂ j v ∂ k v ∂ k ∂ i v ∂ j z i = a |∇v| 2 i,j,k,l ∂ j v ∂ k v ∂ k ∂ i v E il ∂ l ∂ j v = a |∇v| 2 i,l k ∂ i ∂ k v ∂ k v E il j ∂ l ∂ j v ∂ j v i,j,k ∂ j v ∂ k v ∂ k ∂ i v ∂ j z i = a |∇v| 2 D 2 v ∇v, (E D 2 v) ∇v . (3.10)
Inserting (3.9) and (3.10) in (3.8), we end up with

∂ t w = Lw + V • ∇w + 2 (ab ′ ) |∇v| 2 tr E D 2 v 2 (3.11) + 4 (a b ′′ -a ′ b ′ ) |∇v| 2 D 2 v ∇v, (E D 2 v) ∇v .
We next observe that (3.12)

E ∇v = 1 + 2 |∇v| 2 a ′ a |∇v| 2 ∇v and that, for X ∈ R N , E X, X = |X| 2 + 2 a ′ a |∇v| 2 X, ∇v 2 ≥ |X| 2
as a and a ′ are both positive by (3.1). Consequently, E is a positive definite symmetric matrix in M N (R) and there exists a positive definite matrix E 1/2 such that E 2 1/2 = E. We then infer from the definition of E 1/2 , (3.12), and Lemma 3.2 (with A = E 1/2 , B = D 2 v and

X = E -1 1/2 ∇v) that D 2 v ∇v, (E D 2 v) ∇v = (E 1/2 D 2 v) ∇v 2 = E 1/2 D 2 v E 1/2 E -1 1/2 ∇v 2 ≤ tr E 1/2 D 2 v E 1/2 E 1/2 D 2 v E 1/2 E -1 1/2 ∇v, E -1 1/2 ∇v ≤ tr E D 2 v 2 ∇v, E -1 ∇v ≤ tr E D 2 v 2 |∇v| 2 1 + 2 |∇v| 2 a ′ a |∇v| 2 -1
.

Owing to the non-positivity (3.1) of a b ′′ -a ′ b ′ , we deduce from (3.11) and the above inequality that

∂ t w ≥ Lw + V • ∇w + a 2 c |∇v| 2 tr E D 2 v 2 ,
the function c being defined in (3.2). We finally use the inequality

tr A 2 ≥ 1 N tr(A) 2 , A ∈ M N (R) , the identity w = i ∂ i z i = a |∇v| 2 tr E D 2 v ,
and the non-negativity (3.2) of c to conclude that

∂ t w ≥ Lw + V • ∇w + 1 N a 2 c |∇v| 2 tr E D 2 v 2 ≥ Lw + V • ∇w + c (|∇v| 2 ) N w 2 ,
and complete the proof.

Proof of Proposition 1.4. To be able to use Lemma 3.1, we shall first construct a suitable approximation of (1.1), (1.2). Such a construction has already been performed in [START_REF] Bartier | Gradient estimates for a degenerate parabolic equation with gradient absorption and applications[END_REF] for similar purposes and we recall it now. Given u 0 satisfying (1.3), there is a sequence of functions (u 0,k ) k≥1 such that, for each integer k ≥ 1, u 0,k ∈ BC ∞ (R N ), u 0 ≤ u 0,k+1 ≤ u 0,k , and (u 0,k , ∇u 0,k ) k converge towards (u 0 , ∇u 0 ) uniformly on every compact subset of R N as k → ∞. Next, for ε ∈ (0, 1) and r ≥ 0, we set

a ε (r) := r + ε 2 (p-2)/2 and b ε (r) := r + ε 2 q/2 -ε q .
Then the Cauchy problem

∂ t u k,ε = div a ε |∇u k,ε | 2 ∇u k,ε + b ε |∇u k,ε | 2 , (t, x) ∈ Q ∞ , (3.13) u k,ε (0) = u 0,k + ε ν , x ∈ R N , (3.14)
has a unique classical solution u k,ε , the parameter ν > 0 depending p, q, and N and being appropriately chosen. Furthermore,

∇u k,ε (t) ∞ ≤ ∇u 0,k ∞ , t ≥ 0 , (3.15) lim k→∞ lim ε→0 u k,ε (t, x) = u(t, x) , (3.16)
the latter convergence being uniform on every compact subset of [0, ∞)×R N , see [6, Section 3] (after performing the same change of unknown function as in the proof of Proposition 2.1).

Introducing

c ε (r) = 2 b ′ ε a ε (r) + 4r (a ε b ′′ ε -a ′ ε b ′ ε )(r) a 2 ε (r) + 2r a ε (r) a ′ ε (r)
, r ≥ 0 , let us check that a ε and b ε fulfill the conditions (3.1) and (3.2). Clearly, a ε > 0 and a ′ ε > 0 as p > 2. Next, since 1 < q ≤ p,

(a ′ ε b ′ ε -a ε b ′′ ε ) (r) = q (p -q) 4 r + ε 2 (p+q-6)/2 ≥ 0 , c ε (r) = q r(q -1) + ε 2 r(p -1) + ε 2 r + ε 2 (q-p)/2 ≥ 0 .
We may then apply Lemma 3.1 to deduce that

w k,ε := div (a ε (|∇u k,ε | 2 ) ∇u k,ε ) satisfies ∂ t w k,ε -L k,ε w k,ε -V k,ε • ∇w k,ε - c ε (|∇u k,ε | 2 ) N w 2 k,ε ≥ 0 in Q ∞ .
Observe next that the condition 1 < q ≤ p implies that c ε is a non-increasing function. It then follows from (3.15

) that c ε (|∇u k,ε | 2 ) ≥ c ε ( ∇u 0,k 2 
∞
) and we end up with (3.17)

∂ t w k,ε -L k,ε w k,ε -V k,ε • ∇w k,ε - c ε ( ∇u 0,k 2 
∞ ) N w 2 k,ε ≥ 0 in Q ∞ . Clearly, t -→ -N/ (c ε ( ∇u 0,k 2 
∞ ) t
) is a subsolution to (3.17) and the comparison principle warrants that

(3.18) w k,ε (t, x) ≥ - N c ε ( ∇u 0,k 2 ∞ ) t , (t, x) ∈ Q ∞ .
Letting ε → 0 and k → ∞ in the previous inequality with the help of (3.16) gives (1.12).

Next, since (1.1) is autonomous, we infer from (2.2) (with s = 0) and (1.12) that ∆ p u(t, x) ≥ -2N(p -1) q(q -1)

∇u(t/2) p-q ∞ t ≥ - 2 p/q N(p -1) q(q -1) C p-q 1 u 0 (p-q)/q ∞ t -p/q ,
whence (1.11) for s = 0. To prove the general case s ∈ (0, t), we use again the fact that (1.1) is autonomous.

We have a similar result when u 0 is more regular.

Corollary 3.3 Assume that p > 2 and q ∈ (1, p]. Let u be the solution to (1.1), (1.2) with an initial condition u 0 satisfying u 0 ∈ W 2,∞ (R N ) in addition to (1.3). Then

(3.19) ∆ p u(t, x) ≥ -inf y∈R N ∆ p u 0 (y)
in the sense of distributions.

Proof. Keeping the notations introduced in the proof of Proposition 1.4, we readily infer from (3.17) and the comparison principle that

(3.20) w k,ε (t, x) ≥ -inf y∈R N ∆ p u 0,k (y) , (t, x) ∈ Q ∞ .
Owing to the regularity of u 0 , it is possible to construct the sequence (u 0,k ) k such that it satisfies lim

k→∞ inf y∈R N ∆ p u 0,k (y) = inf y∈R N ∆ p u 0 (y) .
We may then pass to the limit first as ε → 0 and then as k → ∞ in (3.20) and use (3.16) and the above convergence to complete the proof.

Another useful consequence of the semiconvexity estimates derived in Proposition 1.4 is that the solution u to (1.1), (1.2) is a supersolution to a first-order Hamilton-Jacobi equation. Corollary 3.4 Consider an initial condition u 0 satisfying (1.3). Setting F (t, ξ 0 , ξ) := ξ 0 -|ξ| q + κ 1 u 0 (p-q)/q ∞ t -p/q for t ∈ (0, ∞), ξ 0 ∈ R, and ξ ∈ R N (recall that κ 1 is defined in (1.11)), the solution u to (1.1), (1.2) is a supersolution to F (t, ∂ t w, ∇w) = 0 in Q ∞ .

Proof. We still use the notations introduced in the proof of Proposition 1.4. As w k,ε = div (a ε (|∇u k,ε | 2 ) ∇u k,ε ), we infer from (3.13) and (3.18) that

∂ t u k,ε -b ε |∇u k,ε | 2 ≥ - N c ε ( ∇u 0,k 2 ∞ ) t in Q ∞ .
We then use (3.16) and the stability of viscosity solutions [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF][START_REF] Barles | Solutions de Viscosité des Equations d'Hamilton-Jacobi[END_REF][START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF] to pass to the limit as ε → 0 and k → ∞ in the previous inequality and conclude that u is a supersolution to

∂ t w -|∇w| q + N(p -1) q(q -1) ∇u 0 p-q ∞ t = 0 in Q ∞ .
Now, fix T ≥ 0. As (1.1) is an autonomous equation, the function (t, x) -→ u(t + T, x) is the solution to (1.1) with initial condition u(T ) and the above analysis allows us to conclude that u is a supersolution to

∂ t w -|∇w| q + N(p -1) q(q -1) ∇u(T ) p-q ∞ t -T = 0 in (T, ∞) × R N .
We then use (2.2) (with T = t/2) to complete the proof.

Convergence to self-similarity

We change the variables and the unknown function so that the convergence (1.5) is transformed to the convergence towards a steady state. More precisely, we introduce the selfsimilar (or scaling) variables

τ = 1 q log (1 + t) , y = x (1 + t) 1/q ,
and the new unknown function v defined by

(4.1) u(t, x) = v log (1 + t) q , x (1 + t) 1/q , (t, x) ∈ [0, ∞) × R N .
Equivalently, v(τ, y) = u (e qτ -1, ye τ ) for (τ, y) ∈ [0, ∞) × R N and it follows from (1.1), (1.2) that v solves

∂ τ v = y • ∇v + q |∇v| q + q e -(p-q)τ ∆ p v , (τ, y) ∈ Q ∞ , (4.2) v(0) = u 0 , y ∈ R N . (4.3)
We also infer from (2.1) and (2.2) that there is a positive constant C 5 (u 0 ) depending only on N, p, q, and u 0 such that

(4.4) v(τ ) ∞ + ∇v(τ ) ∞ ≤ C 5 (u 0 ) , τ ≥ 0 , while (1.4) reads (4.5) lim τ →∞ v(τ ) ∞ = M ∞ > 0 .
Formally, since p > q, the diffusion term vanishes in the large time limit and we expect the large time behaviour of the solution v to (4.2), (4.3) to look like that of the solutions to the first-order Hamilton-Jacobi equation

(4.6) ∂ τ w -y • ∇w -q |∇w| q = 0 in Q ∞ .
Now, to investigate the large time behaviour of first-order Hamilton-Jacobi equations, an efficient approach has been developed in [START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF][START_REF] Roquejoffre | Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations[END_REF] which relies on the relaxed half-limits method introduced in [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF]. More precisely, for (τ, y) ∈ Q ∞ , we define the relaxed half-limits v * and v * by v(σ + λ, z) .

These relaxed half-limits are well-defined thanks to (4.4) and we first note that the right-hand sides of the above definitions indeed do not depend on τ > 0. In addition,

(4.8) 0 ≤ v * (x) ≤ v * (x) ≤ M ∞ for y ∈ R N
by (4.5), while (4.4) and the Rademacher theorem ensure that v * and v * both belong to W 1,∞ (R N ). Finally, by [2, Théorème 4.1] applied to equation (4.2), v * and v * are viscosity subsolution and supersolution, respectively, to the Hamilton-Jacobi equation (4.9) H(y, ∇w) := -y • ∇w -q |∇w| q = 0 in R N .

We now aim at showing that v * and v * coincide. However, the equation (4.9) has infinitely many solutions as y -→ c -γ q |y| q/(q-1) + solves (4.9) for any c > 0 .The information obtained so far on v * and v * are thus not sufficient and are supplemented by the next two results.

Lemma 4.1 Given ε ∈ (0, 1), there is R ε > 1/ε such that (4.10) v(τ, y) ≤ ε for τ ≥ 0 and y ∈ R N \ B(0, R ε ) , and 0 ≤ v * (y) ≤ v * (y) ≤ ε for y ∈ R N \ B(0, R ε ).
In other words, v(τ ) belongs to C 0 (R N ) for each τ ≥ 0 in a way which is uniform with respect to τ ≥ 0.

Proof. We first construct a supersolution to ( 4

.2) in (0, ∞) × R N \ B(0, R) for R large enough. To this end, consider R ≥ R c := 1 + (q (2 u 0 ∞ ) q-1 + 3pq (2 u 0 ∞ ) p-2 ) 1/q and put Σ R (y) = u 0 ∞ R 2 |y| -2 for y ∈ R N \ B(0, R).
Let L be the parabolic operator defined by Lw(τ, y) := ∂ τ w(τ, y) -y • ∇w(τ, y) -q |∇w(τ, y)| q -q e -(p-q)τ ∆ p w(τ, y)

for (τ, y) ∈ Q ∞ (so that Lv = 0 by (4.2)). Then, if y ∈ R N \ B(0, R), we have

LΣ R (y) = 2 Σ R (y) -q 2 q |y| q Σ R (y) q + q 2 p-1 N + 2 -3p |y| p Σ R (y) p-1 e -(p-q)τ ≥ 2 Σ R (y) 1 -q (2 u 0 ∞ ) q-1 R 2(q-1) |y| 3q-2 -3pq e -(p-q)τ (2 u 0 ∞ ) p-2 R 2(p-2) |y| 3p-4 ≥ 2 Σ R (y) 1 -q (2 u 0 ∞ ) q-1 R -q -3pq e -(p-q)τ (2 u 0 ∞ ) p-2 R -p ≥ 0 by the choice of R. Consequently, Σ R is a supersolution to (4.2) in (0, ∞) × R N \ B(0, R) for R ≥ R c . Now, fix ε ∈ (0, 1). Since u 0 ∈ C 0 (R N ), there is ρ ε ≥ max {R c , ε -1 } such that u 0 (y) ≤ ε/2 if |y| ≥ ρ ε .
We then infer from the monotonicity of Σ R and (2.1) that

u 0 (y) - ε 2 -Σ ρε (z) ≤ -Σ ρε (z) ≤ 0 if |y| ≥ ρ ε and |z| ≥ ρ ε , v(τ, y) - ε 2 -Σ ρε (z) ≤ u 0 ∞ -Σ ρε (z) = Σ ρε (y) -Σ ρε (z) ≤ 2 u 0 ∞ ρ ε |y -z| if |y| = ρ ε , |z| ≥ ρ ε ,
and τ ≥ 0, and We next use the semiconvexity estimate (1.11) (and more precisely its consequence stated in Corollary 3.4) to show that v * lies above the profile H ∞ defined in (1.6). Lemma 4.2 For y ∈ R N , we have

v(τ, y) - ε 2 -Σ ρε (z) ≤ u 0 ∞ -u 0 ∞ ≤ 0 if |y| ≥ ρ ε , |z| = ρ ε ,
(4.11) H ∞ (y) ≤ v * (y) ≤ v * (y) . Proof. For τ ≥ 0, y ∈ R N , ξ 0 ∈ R and ξ ∈ R N , we set F (τ, y, ξ 0 , ξ) := ξ 0 -y • ξ -q |ξ| q + κ 2 e -(p-q)τ with κ 2 := q κ 1 u 0 (p-q)/q ∞
(e q /(e q -1)) p/q , the constant κ 1 being defined in (1.11). It then readily follows from Corollary 3.4 that

(4.12) v is a supersolution to F (τ, y, ∂ τ w, ∇w) = 0 in (1, ∞) × R N .
We next fix τ 0 > 1 and denote by V the (viscosity) solution to

∂ τ V -y • ∇V -q |∇V | q = 0 , (τ, y) ∈ (τ 0 , ∞) × R N , V (τ 0 ) = v(τ 0 ) , y ∈ R N .
On the one hand, a straightforward computation shows that the function Ṽ defined by

Ṽ (τ, y) := V (τ, y) -κ 2 τ τ 0 e -(p-q)s ds , (τ, y) ∈ (τ 0 , ∞) × R N , is the (viscosity) solution to F (τ, y, ∂ τ Ṽ , ∇ Ṽ ) = 0 in (τ 0 , ∞) × R N with initial condition Ṽ (τ 0 ) = v(τ 0 )
. Recalling (4.12), we infer from the comparison principle that

(4.13) Ṽ (τ, y) ≤ v(τ, y) for (τ, y) ∈ (τ 0 , ∞) × R N .
On the other hand, it follows from Proposition A.1 that

lim τ →∞ sup y∈R N V (τ, y) -v(τ 0 ) ∞ -γ q |y| q/(q-1) + = 0 .
We may then pass to the limit as τ → ∞ in (4.13) and use the definition (4.7) to conclude that v(τ 0 ) ∞ -γ q |y| q/(q-1)

+ -κ 2 ∞ τ 0 e -(p-q)s ds ≤ v * (y) ≤ v * (y)
for y ∈ R N . Letting τ 0 → ∞ in the above inequality with the help of (4.5) completes the proof of the lemma.

We are now in a position to complete the proof of Theorem 1.1. To this end, fix ε ∈ (0, 1). Lemma 4.1 ensures that v * (y) ≤ ε for |y| ≥ R ε ≥ 1/ε while the continuity of H ∞ implies that there is r ε ∈ (0, ε) such that H ∞ (y) ≥ M ∞ -ε for |y| ≤ r ε . Recalling (4.8), we realize that (4.14)

   v * (y) -ε ≤ 0 ≤ H ∞ (y) if |y| = R ε , v * (y) -ε ≤ M ∞ -ε ≤ H ∞ (y) if |y| = r ε .
Moreover, introducing ψ(y) = -γ q |y| q/(q-1) /2, we have (4.15) H(y, ∇ψ(y)) = qγ q 2(q -1)

|y| q/(q-1) 1 -

1 2 q-1 > 0 if r ε < |y| < R ε ,
the Hamiltonian H being defined in (4.9). Summarizing, we have shown that H ∞ and v * -ε are supersolution and subsolution, respectively, to (4.9) in Ω (4.14). Owing to (4.15) and the concavity of H with respect to its second variable, we may apply [START_REF] Ishii | A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type[END_REF]Theorem 1] 

ε := y ∈ R N : r ε < |y| < R ε with v * -ε ≤ H ∞ on ∂Ω ε by
to conclude that v * -ε ≤ H ∞ in Ω ε .
This property being valid for each ε ∈ (0, 1), we actually have v * ≤ H ∞ in R N by passing to the limit as ε → 0 thanks to the properties of r ε and R ε . Recalling Theorem 1.1 then readily follows after writing the convergence (4.16) in the original variables (t, x) for the function u and noticing that h ∞ (1 + t) -h ∞ (t) ∞ -→ 0 as t → ∞.

Limit value of u(t) ∞

This section is devoted to the proof of Proposition 1.4, for which three cases are to be distinguished and handled differently: q ∈ (1, p -1], q ∈ (p -1, q ⋆ ], and q ∈ (q ⋆ , p).

Proof of Proposition 1.4: q ∈ (1, p -1]. We proceed as in [19, Proposition 1] (where a similar result is proved for p = 2 and q = 1). For α > N/2, δ > 0, and x ∈ R N , we set

̺ δ (x) := (1 + δ |x| 2 ) -α . Clearly, ̺ δ ∈ L 1 (R N ) and it follows from (2.3) that d dt R N ̺ δ (x) u(t, x) dx = R N ̺ δ (x) |∇u(t, x)| q -|∇u(t, x)| p-2 ∇u(t, x) • ∇̺ δ (x) dx ≥ R N ̺ δ (x) |∇u(t, x)| q 1 -|∇u(t, x)| p-1-q |∇̺ δ (x)| ̺ δ (x) dx .
Recalling that ∇u(t) ∞ ≤ ∇u 0 ∞ by (1.3) and (2.2) and noticing that |∇̺ δ | ≤ α δ 1/2 ̺ δ , we further obtain

d dt R N ̺ δ (x) u(t, x) dx ≥ R N ̺ δ (x) |∇u(t, x)| q 1 -α δ 1/2 ∇u 0 p-1-q ∞ dx .
Choosing δ = ∇u 0 2(q+1-p) ∞ /α 2 and integrating with respect to time give

u(t) ∞ ̺ δ 1 ≥ R N ̺ δ (x) u(t, x) dx ≥ R N ̺ δ (x) u 0 (x) dx > 0 .
We then pass to the limit as t → ∞ to conclude that M ∞ > 0.

We next turn to the case q ∈ (p-1, q ⋆ ] which turns out to be more complicated and requires two preparatory results.

Lemma 5.1 Assume that q ∈ (1, q ⋆ ] and let u be a non-negative solution to (1.1), (1.2) with a compactly supported initial condition u 0 satisfying (1.3). Then u(t) ∈ L 1 (R N ) for each t ≥ 0, the function t -→ u(t) 1 is non-decreasing and

(5.1) lim t→∞ u(t) 1 = ∞ .
Proof. For every t ≥ 0, u(t) is bounded and compactly supported by (2.1) and Proposition 2.2, and is thus in L 1 (R N ). The time monotonicity of the L 1 -norm of u then readily follows from (2.3) with ϑ = 1, a valid choice in this particular case as u(t) is compactly supported. It further follows from (2.3) with ϑ = 1 that (5.2) u(t) 1 ≥ u(T ) 1 + t T ∇u(s) q q ds for t > T ≥ 0 .

Consider next T > 0 and t > T . Recalling the Gagliardo-Nirenberg inequality (5.3) w q ≤ C 6 ∇w N (q-1)/(N (q-1)+q) q w q/(N (q-1)+q) 1

, w ∈ W 1,q (R N ) ∩ L 1 (R N ) ,
we infer from (5.2), (5.3), and the time monotonicity of the L 1 -norm of u that u(t)

1+(q 2 /N (q-1)) 1

≥ u(t)

q 2 /N (q-1) 1 u(T ) 1 + t T ∇u(s) q q ds ≥ t T u(s)
q 2 /N (q-1) 1 ∇u(s) q q ds ≥ C 7 t T u(s) q q (N (q-1)+q)/N (q-1) ds .

If ϕ denotes the solution to the p-Laplacian equation ∂ t ϕ -∆ p ϕ = 0 in Q ∞ with initial condition ϕ(0) = u 0 , the comparison principle readily implies that

(5.4) ϕ(t, x) ≤ u(t, x) , (t, x) ∈ Q ∞ .
Inserting this estimate in the previous lower bound for u(t) 1 , we end up with (5.5) u(t)

1+(q 2 /N (q-1)) 1

≥ C 7 t T ϕ(s) q q (N (q-1)+q)/N (q-1) ds . Now, by Proposition 2.3 we have lim s→∞ s N (q-1)/(N (p-2)+p) ϕ(s) -B u 0 1 (s) q q = 0 and B u 0 1 (s) q q = C 8 s -N (q-1)/(N (p-2)+p) , so that

ϕ(s) q q ≥ B u 0 1 (s) q -ϕ(s) -B u 0 1 (s) q q ≥ s -N (q-1)/(N (p-2)+p) C 8 -ϕ(s) -B u 0 1 (s) q q ≥ C 8 2 q s -N (q-1)/(N (p-2)+p)
for s ≥ T , provided T is chosen sufficiently large. Inserting this estimate in (5.5) gives u(t)

1+(q 2 /N (q-1)) 1

≥ C 9 t T s -(N (q-1)+q)/(N (p-2)+p) ds ≥ C 10    t (N +1)(q⋆-q)/(N (p-2)+p) -T (N +1)(q⋆-q)/(N (p-2)+p) if q ∈ (1, q ⋆ ) , log(t/T ) if q = q ⋆ .

We then let t → ∞ to obtain the claimed result.

We next argue as in [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF]Lemma 14] (for p = 2) to show that, if q ∈ (p -1, p) and M ∞ = 0, then the L ∞ -norm of u(t) decays faster than an explicit rate. Lemma 5.2 Assume that q ∈ (p -1, p) and let u be a non-negative solution to (1.1), (1.2) with an initial condition u 0 satisfying

(1.3). If M ∞ = 0 in (1.4), then (5.6) u(t) ∞ ≤ C 11 t -(p-q)/(2q-p) for t > 0 .
Observe that the assumptions p > 2 and q ∈ (p -1, p) imply that 2q > p and (p -q)/(2qp) > 0.

Proof. Consider a non-negative function η ∈ C ∞ (R N ) with compact support in B(0, 1) and η 1 = 1. We then define a sequence of mollifiers (η δ ) δ by η δ (x) := η(x/δ)/δ N for x ∈ R N and δ ∈ (0, 1). For (t, x 0 ) ∈ Q ∞ and T > t, we take ϑ(x) = η δ (x -x 0 ) in (2.3) and infer from (1.11) (with

s = t/2) that u(T ) ∞ ≥ R N u(T, x) η δ (x -x 0 ) dx ≥ R N u(t, x) η δ (x -x 0 ) dx - T t R N |∇u(s, x)| p-2 ∇u(s, x) • ∇η δ (t, x -x 0 ) dxds ≥ R N u(t, x) η δ (x -x 0 ) dx -2 p/q κ 1 u t 2 (p-q)/q ∞ T t (2s -t) -p/q ds ≥ R N u(t, x) η δ (x -x 0 ) dx -C 12 u t 2 
(p-q)/q ∞ t (q-p)/q -T (q-p)/q .

Owing to the continuity of u, we may pass to the limit as δ → 0 in the above inequality and deduce that

u(T ) ∞ ≥ u(t, x 0 ) -C 12 u t 2 
(p-q)/q ∞ t (q-p)/q -T (q-p)/q .

But the above inequality is valid for all x 0 ∈ R N and we thus end up with

u(T ) ∞ ≥ u(t) ∞ -C 12 u t 2 
(p-q)/q ∞ t (q-p)/q -T (q-p)/q .

Finally, as q < p, we may let T → ∞ in the previous inequality and use the assumption

M ∞ = 0 to conclude that u(t) ∞ ≤ C 12 u t 2 
(p-q)/q ∞ t (q-p)/q , or, equivalently, as 2q > p,

t (p-q)/(2q-p) u(t) ∞ ≤ C 13 t 2 (p-q)/(2q-p) u t 2 ∞ (p-q)/q for t ≥ 0. Introducing A(t) := sup s∈(0,t) s (p-q)/(2q-p) u(s) ∞ ∈ [0, ∞) , t ≥ 0 ,
we deduce from the previous inequality that A(t) ≤ C 13 A(t) (p-q)/q , whence A(t) ≤ C q/(2q-p) 13

for t ≥ 0. This bound being valid for each t > 0, the proof of (5.6) is complete.

Proof of Proposition 1.4: q ∈ (p -1, q ⋆ ].

As in the proof of Lemma 5.1, let η ∈ C ∞ (R N ) be a non-negative function with compact support in B(0, 1) and η 1 = 1, and define a sequence of mollifiers (η δ ) δ by η δ (x) := η(x/δ)/δ N for x ∈ R N and δ ∈ (0, 1). For (t, x 0 ) ∈ Q ∞ and T ∈ (0, t), we take ϑ(x) = η δ (x -x 0 ) in (2. (p-q)/q ∞ t T s -p/q ds ≥ R N u 0 (x) η δ (x -x 0 ) dx -T m 0 -C 16 u 0 (p-q)/q ∞ T (q-p)/q -t (q-p)/q .

Owing to the continuity of u 0 , we may pass to the limit as δ → 0 in the above inequality and deduce that u(t) ∞ ≥ u 0 (x 0 ) -T m 0 -C 16 u 0 (p-q)/q ∞ T (q-p)/q -t (q-p)/q .

Since q < p, we may let t → ∞ in the above inequality and take the supremum with respect to x 0 to conclude that M ∞ ≥ u 0 ∞ -T m 0 -C 16 u 0 (p-q)/q ∞ T (q-p)/q .

Next, for β ∈ (0, 1), the choice T = u 0 (p-q)/p ∞ (β + m 0 ) -q/p in the previous inequality yields M ∞ ≥ u 0 (p-q)/p ∞ u 0 q/p ∞ -(1 + C 16 ) (β + m 0 ) (p-q)/p . This inequality being valid for every β ∈ (0, 1), we conclude that M ∞ ≥ u 0 (p-q)/p ∞ u 0 q/p ∞ -(1 + C 16 ) m (p-q)/p 0 > 0 as soon as (1.10) is fulfilled with κ 0 = (1 + C 16 ) p/q . Acknowledgments. I thank the referee for carefully reading the manuscript.

A Convergence for the Hamilton-Jacobi equation (4.6) In this section, we study the large behaviour of non-negative solutions to the Hamilton-Jacobi equation (4.6) with initial data in C 0 (R N ) and show their convergence to a steady state uniquely determined by the L ∞ -norm of the initial data. Though the large time behaviour of solutions to first-order Hamilton-Jacobi equations has received considerable attention in recent years (see [START_REF] Barles | Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi equations[END_REF][START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF][START_REF] Ishii | Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space[END_REF][START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF][START_REF] Roquejoffre | Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations[END_REF] and the references therein), the particular case of (4.6) does not seem to have been investigated in the literature. We thus provide a simple proof relying on the Hopf-Lax-Oleinik formula. by (A.4) or z ∈ B(0, R β ) and h 0 (z) -γ q y -z e -τ q/(q-1) 1 -e -qτ -1/(q-1) + -h 0 (z) -γ q |y| q/(q-1) + ≤ γ q y -z e -τ q/(q-1)

1 -e -qτ -1/(q-1) -1 + γ q y -z e -τ q/(q-1) -|y| q/(q-1)

≤ γ q |y| + R β e -τ q/(q-1)

1 -e -qτ -1/(q-1) -1 + q γ q q -1 |y| + |z| e -τ 1/(q-1) |z| e -τ ≤ γ q (|y| + 1) 1/(q-1) q q -1 + |y| + 1 1 -e -qτ -1/(q-1) -1 + R β e -τ as τ ≥ log R β . Combining the above two estimates gives h(τ, y) -sup z∈R N h 0 (z) -γ q |y| q/(q-1) + ≤ C(q) (|y| + 1) q/(q-1)

1 -e -qτ -1/(q-1) -1 + R β e -τ + 2 β , whence (A.5) |h(τ, y) -h s (y)| ≤ C(q) (|y| + 1) q/(q-1)

1 -e -qτ -1/(q-1) -1 + R β e -τ + 2 β for (τ, y) ∈ [log R β , ∞) × R N . On the other hand, if τ ≥ log(R β ), |y| ≥ Y := 1 + ( h 0 ∞ /γ q ) (q-1)/q and z ∈ R N , we have either |y -z e -τ | ≥ Y -1 and h 0 (z) -γ q y -z e -τ q/(q-1) 1 -e -qτ -1/(q-1)

≤ 1 -e -qτ -1/(q-1) h 0 ∞ 1 -e -qτ 1/(q-1) -γ q y -z e -τ q/(q-1)

≤ 1 -e -qτ -1/(q-1) h 0 ∞ -γ q (Y -1) q/(q-1) ≤ 0 , h 0 (z) -γ q y -z e -τ q/(q-1) 1 -e -qτ -1/(q-1) ≤ β by (A.4). Therefore, (A.6) h(τ, y) ≤ β for (τ, y) ∈ [log R β , ∞) × R N \ B(0, Y ) .

The claim (A.3) then easily follows from (A.5) and (A.6).

where C 0

 0 (R N ) := w ∈ BC(R N ) : lim R→∞ sup {|x|≥R} {|w(x)|} = 0 , and BC(R N ) := C(R N ) ∩ L ∞ (R N ).

  z,λ)→(τ,y,∞) v(σ + λ, z) and v * (y) := lim sup (σ,z,λ)→(τ,y,∞)

  and τ ≥ 0. As v -ε/2 and Σ ρε are subsolution and supersolution, respectively, to (4.2), the comparison principle[START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF] Theorem 4.1] warrants that v(τ, y)-ε/2 ≤ Σ ρε (y) for τ ≥ 0 and |y| ≥ ρ ε . It remains to choose R ε ≥ ρ ε such that Σ ρε (y) ≤ ε/2 for |y| ≥ R ε to complete the proof of (4.10). The last assertion of Lemma 4.1 is then a straightforward consequence of the definition (4.7) and (4.10).

  (4.11), we have thus established that v * = v * = H ∞ in R N . In particular, the property v * = v * and the definition (4.7) provide the uniform convergence of {v(τ )} τ ≥0 towards v * = H ∞ on every compact subset of R N as τ → ∞, see [2, Lemme 4.1] or [1, Lemma V.1.9]. Combining this local convergence with Lemma 4.1 actually gives (4.16) lim τ →∞ v(τ ) -H ∞ ∞ = 0 .

3 ) 0 m 0

 300 and infer from (1.11) (with s = 0) and Corollary 3.3 thatu(t) ∞ ≥ R N u(t, x) η δ (x -x 0 ) dx ≥ R N u 0 (x) η δ (x -x 0 ) dx -t 0 R N |∇u(s, x)| p-2 ∇u(s, x) • ∇η δ (t, x -x 0 ) dxds ≥ R N u 0 (x) η δ (x -x 0 ) dx -T ds -κ 1 u 0

  or |y -z e -τ | < Y -1 and |z| ≥ |y e τ | -|z -y e τ | ≥ Y e τ -(Y -1) e τ = e τ ≥ R β , so that

  17, Proposition 2.2]. Combining this property with [17, Theorem 2] readily provide the convergence (2.7) for all r ∈ [1, ∞).

Step 1: We first consider a compactly supported initial condition u 0 satisfying (1.3) and assume for contradiction that M ∞ = 0. On the one hand, according to Lemma 5.2 and the assumption q ≤ q ⋆ , there holds (5.7) lim sup t→∞ t N/(N (p-2)+p) u(t) ∞ ≤ C 11 t (p(N +1)(q-q⋆))/((2q-p)(N (p-2)+p)) ≤ C 11 .

On the other hand, fix t 0 > 0 and let ϕ be the solution to the p-Laplacian equation

. As u 0 is compactly supported, so is u(t 0 ) by Proposition 2.2 and u(t 0 ) thus belongs to L 1 (R N ). Moreover, the comparison principle warrants that u(t, x) ≥ ϕ(t -t 0 , x) for (t, x) ∈ [t 0 , ∞) × R N . We then infer from the above properties and Proposition 2.3 that, for t > t 0 ,

Using once more Proposition 2.3, we may pass to the limit as t → ∞ in the previous inequality to obtain

.

Combining (5.7) and (5.8) yields u(t 0 ) 1 ≤ C 15 for all t 0 > 0 which contradicts Lemma 5.1. Therefore, M ∞ > 0.

Step 2: Now, if u 0 is an arbitrary initial condition satisfying (1.3), there clearly exists a compactly supported initial condition ũ0 satisfying (1.3) and such that u 0 ≥ ũ0 in R N .

Introducing the solution ũ to (1.1) with initial condition ũ0 , the comparison principle entails

The first step of the proof ensures that the right-hand side of the above inequality is positive which completes the proof.

It remains to investigate the case q ∈ (q ⋆ , p), for which we adapt the proof of [7, Theorem 2.4(b)].

Proof of Proposition 1.4: q ∈ (q ⋆ , p). We put

Proposition A.1 Let q > 1 and consider a non-negative function h 0 ∈ C 0 (R N ). Let h be the unique viscosity solution to the Cauchy problem

the constant γ q = (q -1) q -q/(q-1) being defined in Theorem 1.1.

Thanks to the concavity of the Hamiltonian H(y, ξ) = -y • ξ -q |ξ| q , (y, ξ) ∈ R N × R N , with respect to its second variable, the Hopf-Lax-Oleinik formula provides a representation formula for the solution h to (A.1), (A.2) which can be used to prove (A.3).

Proof. We first recall that h is given by the Hopf-Lax-Oleinik formula h(τ, y) = sup z∈R N h 0 (z) -γ q y -z e -τ q/(q-1) 1 -e -qτ -1/(q-1) for (τ, y) ∈ [0, ∞) × R N , see, e.g., [START_REF] Evans | Partial Differential Equations[END_REF]Chapter 3]. Since h(τ, y) ≥ h 0 (ye τ ) ≥ 0, we have in fact h(τ, y) = sup z∈R N h 0 (z) -γ q y -z e -τ q/(q-1) 1 -e -qτ -1/(q-1)

On the one hand, if (τ, y) ∈ [log R β , ∞) × R N and z ∈ R N , we have either |z| ≥ R β and h 0 (z) -γ q y -z e -τ q/(q-1) 1 -e -qτ -1/(q-1) + -h 0 (z) -γ q |y| q/(q-1) + ≤ h 0 (z) -γ q y -z e -τ q/(q-1) 1 -e -qτ -1/(q-1) + + h 0 (z) -γ q |y| q/(q-1)