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Non-diffusive large time behaviour for
a degenerate viscous Hamilton-Jacobi equation

Philippe Laurençot∗

March 10, 2018

Abstract

The convergence to non-diffusive self-similar solutions is investigated for non-negative
solutions to the Cauchy problem ∂tu = ∆pu + |∇u|q when the initial data converge
to zero at infinity. Sufficient conditions on the exponents p > 2 and q > 1 are given
that guarantee that the diffusion becomes negligible for large times and the L∞-norm
of u(t) converges to a positive value as t → ∞.

1 Introduction

The quasilinear degenerate parabolic equation

(1.1) ∂tu = ∆pu+ |∇u|q , (t, x) ∈ Q∞ := (0,∞)× R
N ,

includes two competing mechanisms acting on the space variable x, a degenerate diffusion
∆pu involving the p-Laplacian operator defined by

∆pu := div
(

|∇u|p−2 ∇u
)

, p > 2 ,

and a source term |∇u|q, q > 1, depending solely on the gradient of u. The aim of this
work is to identify a range of the parameters p and q for which the large time behaviour of
non-negative solutions to (1.1) is dominated by the source term. More precisely, we consider
the Cauchy problem and supplement (1.1) with the initial condition

(1.2) u(0) = u0 ≥ 0 , x ∈ R
N .

∗Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université de Toulouse, F–31062 Toulouse
cedex 9, France. E-mail: Philippe.Laurencot@math.univ-toulouse.fr, Internet: http://www.math.univ-
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Throughout the paper, the initial condition u0 is assumed to fulfill

(1.3) u0 ∈ C0(R
N) ∩W 1,∞(RN) , u0 ≥ 0 , u0 6≡ 0 ,

where

C0(R
N) :=

{

w ∈ BC(RN) : lim
R→∞

sup
{|x|≥R}

{|w(x)|} = 0

}

,

and BC(RN ) := C(RN) ∩ L∞(RN).

For such an initial condition, the Cauchy problem (1.1), (1.2) has a unique non-negative
(viscosity) solution u ∈ BC([0,∞) × R

N) (see Proposition 2.1 below). Moreover, t 7−→
‖u(t)‖∞ is a non-increasing function and has a limit M∞ ∈ [0, ‖u0‖∞] as t→ ∞. Our main
result is then the following:

Theorem 1.1 Assume that p > 2 and q ∈ (1, p). Consider a non-negative function u0
satisfying (1.3) and let u be the corresponding (viscosity) solution to (1.1), (1.2). Assume
further that

(1.4) M∞ := lim
t→∞

‖u(t)‖∞ > 0 .

Then

(1.5) lim
t→∞

‖u(t)− h∞(t)‖∞ = 0 ,

where h∞ is given by

(1.6) h∞(t, x) := H∞

( x

t1/q

)

and H∞(x) :=
(

M∞ − γq |x|q/(q−1)
)

+

for (t, x) ∈ Q∞ and γq := (q − 1) q−q/(q−1).

Here and below, r+ := max {r, 0} denotes the positive part of the real number r.

The convergence (1.5) clearly indicates that the large time behaviour of non-negative so-
lutions to (1.1), (1.2) fulfilling the condition (1.4) is governed by the gradient source term.
Indeed, h∞ is actually a self-similar solution to the Hamilton-Jacobi equation

(1.7) ∂th = |∇h|q , (t, x) ∈ Q∞ ,

and an alternative formula for h∞ reads

(1.8) h∞(t, x) = sup
y∈RN

{

M∞ 1{0}(y)− γq
|x− y|q/(q−1)

t1/(q−1)

}

for (t, x) ∈ [0,∞) × R
N , 1{0} denoting the indicator function of the singleton set {0}.

The formula (1.8) is the well-known Hopf-Lax-Oleinik representation formula for viscosity
solutions to (1.7) (see, e.g., [10, Chapter 3]) and h∞ turns out to be the unique viscosity
solution in BUC(Q∞) to (1.7) with the bounded and upper semicontinuous initial condition
h∞(0, x) = 1{0}(x) for x ∈ R

N [24].
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Remark 1.2 The convergence (1.5) also holds true for the viscosity solution to the Hamilton-
Jacobi equation (1.7) with a non-negative initial condition u0 ∈ C0(R

N) but with ‖u0‖∞ in-
stead of M∞ in the formula (1.6) giving H∞. For (1.1), (1.2), the constant M∞ takes into
account that, though negligible for large times, the diffusion erodes the supremum of u during
the time evolution.

For p = 2, Theorem 1.1 is also valid and is proved in [7], the proof relying on a rescaling
technique: The crucial step is then to identify the possible limits of the rescaled sequence
and this is done by an extensive use of the Hopf-Lax-Oleinik representation formula. The
proof we perform here is of a completely different nature and relies on the relaxed half-
limits method introduced in [3]. A similar approach has been used in [22] and [23] to
investigate the large time behaviour of solutions to first-order Hamilton-Jacobi equations
∂tw +H(x,∇w) = 0 in Q∞. It has also been used in [20] to study the convergence to non-
diffusive localized self-similar patterns for non-negative and compactly supported solutions
to ∂tw −∆pw + |∇w|q = 0 in Q∞ when p > 2 and q ∈ (1, p− 1).

In order to apply Theorem 1.1, one should check whether there are non-negative solutions
to (1.1), (1.2) for which (1.4) holds true. The next result provides sufficient conditions for
(1.4) to be fulfilled.

Theorem 1.3 Assume that p > 2 and q > 1. Consider a non-negative function u0 satisfying
(1.3) and let u be the corresponding solution to (1.1), (1.2). Introducing

(1.9) q⋆ := p−
N

N + 1
,

then u fulfills (1.4) if

(a) either q ∈ (1, q⋆],

(b) or q ∈ (q⋆, p), u0 ∈ W 2,∞(RN), and

(1.10) ‖u0‖∞ > κ0

∣

∣

∣

∣

inf
y∈RN

{∆pu0(y)}

∣

∣

∣

∣

(p−q)/q

.

for some κ0 > 0 which depends only on N , p, and q.

A similar result is already available for p = 2 and has been established in [7, 12]. It is
also shown in [7, 12, 18] that, still for p = 2, ‖u(t)‖∞ → 0 as t → ∞ if either q ≥ p or
q ∈ (q⋆, p) and a suitable norm of u0 is small enough. A similar result is likely to be true also
for p > 2, so that different large time behaviours are only to be found in the intermediate
range q ∈ (q⋆, p) .

The proof of Theorem 1.3 for q ∈ (p − 1, p) and p > 2 borrows some steps from the case
p = 2. However, it relies on semiconvexity estimates for solutions to (1.1), (1.2) which seem
to be new for p > 2 and q ∈ (1, p) and are stated now.
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Proposition 1.4 Assume that p > 2 and q ∈ (1, p]. Let u be the viscosity solution to (1.1),
(1.2) with initial condition u0 ∈ BUC(RN) (that is, u0 ∈ BC(RN) and is uniformly continuous
in R

N). Then ∇u(t) belongs to L∞(RN ) for each t > 0 and there is κ1 > 0 depending only
on N , p, and q such that

(1.11) ∆pu(t, x) ≥ −κ1 ‖u(s)‖(p−q)/q
∞ (t− s)−p/q , t > s ≥ 0 ,

in the sense of distributions. In addition, if u0 ∈ W 1,∞(RN), there holds

(1.12) ∆pu(t, x) ≥ −
N(p− 1)

q(q − 1)

‖∇u0‖
p−q
∞

t

for t > 0 in the sense of distributions.

The proof of Proposition 1.4 relies on the comparison principle combined with a gradient
estimate established in [6].

Similar semiconvexity estimates for solutions to (1.1), (1.2) have already been obtained in
[14] and [21, Lemma 5.1] for p = q = 2, in [7, Proposition 3.2] for p = 2 and q ∈ (1, 2], and in
[9, Theorem 1] for p = q > 2. We extend these results to the range p > 2 and q ∈ (1, p]. As
we shall see below, the estimate (1.11) plays an important role in the proof of Theorem 1.3
and is also helpful to construct a subsolution in the proof of Theorem 1.1.

Let us finally emphasize that the validity of Proposition 1.4 is not restricted to non-negative
solutions and that the solutions to the Hamilton-Jacobi equation (1.7) also enjoy the semi-
convexity estimates (1.11) and (1.12). These two estimates thus stem from the reaction term
|∇u|q and not from the diffusion.

In the next section, we recall the well-posedness of (1.1), (1.2) in BUC(RN), as well as some
properties of the solutions established in [6]. We also show the finite speed of propagation of
the support for non-negative compactly supported initial data. Section 3 is devoted to the
proof of the semiconvexity estimates (Proposition 1.4) and Section 4 to that of Theorem 1.1.
Theorem 1.3 is shown in the last section, its proof combining arguments of [7, 12, 19] used
to established analogous results when p = 2.

Throughout the paper, C and Ci, i ≥ 1, denote positive constants depending only on p, q,
and N . Dependence upon additional parameters will be indicated explicitly. Also, MN(R)
denotes the space of real-valued N × N matrices and δij = 1 if i = j and δij = 0 if i 6= j,
1 ≤ i, j ≤ N . Given a matrix A = (aij) ∈ MN(R), tr(A) denotes its trace and is given by
tr(A) :=

∑

aii.

2 Preliminary results

Let us first recall the well-posedness (in the framework of viscosity solutions) of (1.1), (1.2),
together with some properties of the solutions established in [6].
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Proposition 2.1 Consider a non-negative initial condition u0 ∈ BUC(RN). There is a
unique non-negative viscosity solution u ∈ BC([0,∞)× R

N) to (1.1), (1.2) such that

(2.1) 0 ≤ u(t, x) ≤ ‖u0‖∞ , (t, x) ∈ Q∞ ,

(2.2) ‖∇u(t)‖∞ ≤ min
{

C1 ‖u(s)‖1/q∞ (t− s)−1/q, ‖∇u(s)‖∞
}

,

and

(2.3)

∫

RN

(u(t, x)− u(s, x)) ϑ(x) dx+

∫ t

s

∫

RN

(

|∇u|p−2∇u · ∇ϑ− |∇u|q ϑ
)

dxdτ = 0

for t > s ≥ 0 and ϑ ∈ C∞
0 (RN). In addition, t 7−→ ‖u(t)‖∞ is a non-increasing function.

Proof. We put ũ0 := ‖u0‖∞ − u0. As ũ0 is a non-negative function in BUC(RN), it follows
from [6, Theorem 1.1] that there is a unique non-negative viscosity solution ũ to

(2.4) ∂tũ−∆pũ+ |∇ũ|q = 0 , (t, x) ∈ Q∞ ,

with initial condition ũ(0, x) = ũ0(x) for x ∈ R
N . It also satisfies 0 ≤ ũ(t, x) ≤ ‖u0‖∞ and

∫

RN

(ũ(t, x)− ũ(s, x)) ϑ(x) dx+

∫ t

s

∫

RN

(

|∇ũ|p−2∇ũ · ∇ϑ+ |∇ũ|q ϑ
)

dxdτ = 0

for t > s ≥ 0, x ∈ R
N , and ϑ ∈ C∞

0 (RN). In addition, ∇ũ(t) belongs to L∞(RN ) for each
t > 0 and

‖∇ũ(t)‖∞ ≤ C1 ‖ũ0‖
1/q
∞ t−1/q

by [6, Lemma 4.1]. Setting u := ‖u0‖∞ − ũ, we readily deduce from the properties of ũ that
u is a non-negative viscosity solution to (1.1), (1.2) satisfying (2.1) and (2.3). Also, ∇u(t)
belongs to L∞(RN) for each t > 0. The uniqueness and the time monotonicity of ‖u‖∞ then
both follow from the comparison principle, see [8] or [11, Theorem 2.1]. Finally, given s ≥ 0,
(t, x) 7→ ‖u(s)‖∞ − u(t + s, x) is the unique non-negative viscosity solution to the Cauchy
problem (2.4) with initial condition x 7→ ‖u(s)‖∞−u(s, x) and we infer from [6, Lemma 4.1]
that

‖∇u(t+ s)‖∞ ≤ C1 ‖‖u(s)‖∞ − u(s)‖1/q∞ t−1/q ≤ C1 ‖u(s)‖1/q∞ t−1/q

for t > 0, whence (2.2). �

We next turn to the propagation of the support of non-negative solutions to (1.1), (1.2)
with non-negative compactly supported initial data.

Proposition 2.2 Consider a non-negative solution u to (1.1), (1.2) with an initial condition
u0 satisfying (1.3). Assume further that u0 is compactly supported in a ball B(0, R0) of R

N

for some R0 > 0. Then u(t) is compactly supported for each t ≥ 0.
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Proof. We argue by comparison with travelling wave solutions. By [13, Application 9.4],
there is a travelling wave solution w to the convection-diffusion equation

(2.5) ∂tw − ∂21
(

wp−1
)

+ ∂1 (w
q) = 0 , (t, x1) ∈ (0,∞)× R ,

with wave speed unity. It is given by w(t, x1) = f(x1 − t) for (t, x1) ∈ (0,∞) × R, the
function f being implicitly defined by

(p− 1)

∫ f(y)

0

zp−3

1− zq−1
dz = (−y)+ , y ∈ R .

In particular, f satisfies f(y) = 0 if y > 0 and f(y) → 1 as y → −∞. Introducing

F (y) :=

∫ ∞

y

f(z) dz , y ∈ R ,

the properties of f ensure that F is a decreasing function on (−∞, 0) with F (y) = 0 if y > 0,
F (y) ≤ |y| if y < 0, and F (y) → ∞ as y → −∞. There is therefore a unique µ ∈ (−∞, 0)
such that F (R0 + µ) = ‖u0‖∞. In addition, it readily follows from (2.5) and the invariance
by translation of (1.1) that Wµ(t, x) := F (x1 + µ − t) is a travelling wave solution to (1.1).
Now, u and Wµ are both solutions to (1.1) in (0,∞)×H+, the half-space H+ being defined
by H+ :=

{

x ∈ R
N : x1 > R0

}

. Owing to the monotonicity of F , the bound 0 ≤ f ≤ 1,
and (2.1), we have also

u0(x)−Wµ(0, y) = 0−Wµ(0, y) ≤Wµ(0, x)−Wµ(0, y) ≤ |x− y|

for x ∈ H+ and y ∈ H+,

u(t, x)−Wµ(t, y) ≤ ‖u0‖∞ −Wµ(t, y)

≤ F (R0 + µ− t)−Wµ(t, y) = Wµ(t, x)−Wµ(t, y) ≤ |x− y|

for t > 0, x ∈ ∂H+, y ∈ H+, and

u(t, x)−Wµ(t, y) ≤ ‖u0‖∞ − F (R0 + µ− t) ≤ 0

for t > 0, x ∈ H+, y ∈ ∂H+. We are then in a position to use the comparison principle
stated in [11, Theorem 2.1] to conclude that u(t, x) ≤ Wµ(t, x) for (t, x) ∈ (0,∞) × H+.
Consequently, u(t, x) ≤ F (x1 + µ − t) = 0 if t ≥ 0 and x1 > max {R0, t− µ}, and the
rotational invariance of (1.1) allows us to conclude that u(t, x) = 0 for t ≥ 0 and |x| >
max {R0, t− µ}. �

We finally recall the convergence to self-similar solutions for non-negative and compactly
supported solutions to the p-Laplacian equation [17]

(2.6) ∂tϕ = ∆pϕ , (t, x) ∈ Q∞ .

6



Proposition 2.3 Let ϕ0 be a non-negative and compactly supported function in L1(RN) and
ϕ denote the unique weak solution to (2.6) with initial condition ϕ0. Then

(2.7) lim
t→∞

t(N(r−1))/(r(N(p−2)+p))
∥

∥ϕ(t)− B‖ϕ0‖1(t)
∥

∥

r
= 0 for r ∈ [1,∞] ,

where BL denotes the Barenblatt solution to (2.6) given by

BL(t, x) := t−N/(N(p−2)+p) bL
(

xt−1/(N(p−2)+p)
)

,

bL(x) :=
(

C2 L
(p(p−2))/((p−1)(N(p−2)+p)) − C3 |x|p/(p−1)

)(p−1)/(p−2)

+

for (t, x) ∈ Q∞ and L > 0.

The convergence (2.7) is proved in [17, Theorem 2] for r = ∞. As ϕ0 is compactly sup-
ported, so is ϕ(t) for each t > 0 and the support of ϕ(t) is included inB

(

0, C4(ϕ0) t
1/(N(p−2)+p)

)

for t ≥ 1 [17, Proposition 2.2]. Combining this property with [17, Theorem 2] readily provide
the convergence (2.7) for all r ∈ [1,∞).

3 Semiconvexity

In this section, we prove the semiconvexity estimates (1.11) and (1.12). To this end, we
would like to derive an equation for ∆pu to which we could apply the comparison principle.
The poor regularity of u however does not allow to perform directly such a computation and
an approximation procedure is needed. As a first step, we report the following result:

Lemma 3.1 Let a and b be two non-negative function in C∞([0,∞)) satisfying

a(r) > 0 , a′(r) > 0 , a′(r) b′(r)− a(r) b′′(r) > 0 ,(3.1)

c(r) := 2

(

b′

a

)

(r) +
4r (a b′′ − a′ b′)(r)

a2(r) + 2r a(r) a′(r)
≥ 0 .(3.2)

Consider a classical solution v to

(3.3) ∂tv − div
(

a
(

|∇v|2
)

∇v
)

= b
(

|∇v|2
)

, (t, x) ∈ Q∞ ,

and put
w := div

(

a
(

|∇v|2
)

∇v
)

and zi := a
(

|∇v|2
)

∂iv

for i ∈ {1, . . . , N}. Then

(3.4) ∂tw − Lw − V · ∇w −
c (|∇v|2)

N
w2 ≥ 0 in Q∞ ,

where

Lw :=
∑

i,j

∂i
(

a
(

|∇v|2
)

Eij ∂jw
)

, V := 2 b′
(

|∇v|2
)

∇v ,

Eij := δij + 2
a′

a

(

|∇v|2
)

∂iv ∂jv , 1 ≤ i, j ≤ N .
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The proof of Lemma 3.1 borrows some steps from the proof of [9, Theorem 1] for p = q > 2
but requires additional arguments to handle the term coming from the fact that q 6= p. In
particular, we recall the following elementary result which will be helpful to estimate this
term.

Lemma 3.2 Let A and B be two symmetric matrices in MN(R) and put M := ABA. Then
M is a symmetric matrix in MN(R) and

(3.5) |MX|2 ≤ tr
(

M2
)

|X|2 for X ∈ R
N .

Proof of Lemma 3.1. We first note that

∂jzi = a
(

|∇v|2
)

∑

k

Eik ∂k∂jv ,(3.6)

∂tzi = a
(

|∇v|2
)

∑

k

Eik ∂k∂tv ,(3.7)

for 1 ≤ i, j ≤ N . According to the definition of w, we infer from (3.3), (3.6), and (3.7) that

∂tw =
∑

i,k

∂i
(

a
(

|∇v|2
)

Eik ∂k∂tv
)

=
∑

i,k

∂i
(

a
(

|∇v|2
)

Eik ∂k
(

w + b
(

|∇v|2
)))

= Lw + 2
∑

i,k

∂i

(

(ab′)
(

|∇v|2
)

Eik

∑

j

∂jv ∂j∂kv

)

= Lw + 2
∑

i,j

∂i

(

(ab′)
(

|∇v|2
)

∂jv
∑

k

Eik ∂k∂jv

)

= Lw + 2
∑

i,j

∂i

((

b′

a

)

(

|∇v|2
)

zj ∂jzi

)

= Lw + 4
∑

i,j

(

b′

a

)′
(

|∇v|2
)

∑

k

∂kv ∂k∂iv zj ∂jzi

+ 2
∑

i,j

(

b′

a

)

(

|∇v|2
)

∂izj ∂jzi + 2
∑

i,j

(

b′

a

)

(

|∇v|2
)

zj ∂j∂izi .

Since w =
∑

∂izi, the last term of the right-hand side of the above inequality is equal to
V · ∇w and

∂tw = Lw + V · ∇w + 4

[

a

(

b′

a

)′]
(

|∇v|2
)

∑

i,j,k

∂jv ∂kv ∂k∂iv ∂jzi(3.8)

+ 2

(

b′

a

)

(

|∇v|2
)

∑

i,j

∂izj ∂jzi .
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On the one hand, introducing the matrix E := (Eij) and the Hessian matrix D2v = (∂i∂jv)
of v, we infer from (3.6) that

∑

i,j

∂izj ∂jzi = a2
(

|∇v|2
)

∑

i,j,k,l

Eik ∂k∂jv Ejl ∂l∂iv

= a2
(

|∇v|2
)

∑

i,j

(

E D2v
)

ij

(

E D2v
)

ji

∑

i,j

∂izj ∂jzi = a2
(

|∇v|2
)

tr
(

(

E D2v
)2
)

.(3.9)

On the other hand, using once more (3.6), we obtain

∑

i,j,k

∂jv ∂kv ∂k∂iv ∂jzi = a
(

|∇v|2
)

∑

i,j,k,l

∂jv ∂kv ∂k∂iv Eil ∂l∂jv

= a
(

|∇v|2
)

∑

i,l

(

∑

k

∂i∂kv ∂kv

)

Eil

(

∑

j

∂l∂jv ∂jv

)

∑

i,j,k

∂jv ∂kv ∂k∂iv ∂jzi = a
(

|∇v|2
) 〈

D2v ∇v, (E D2v) ∇v
〉

.(3.10)

Inserting (3.9) and (3.10) in (3.8), we end up with

∂tw = Lw + V · ∇w + 2 (ab′)
(

|∇v|2
)

tr
(

(

E D2v
)2
)

(3.11)

+ 4 (a b′′ − a′ b′)
(

|∇v|2
) 〈

D2v ∇v, (E D2v) ∇v
〉

.

We next observe that

(3.12) E ∇v =

(

1 + 2 |∇v|2
(

a′

a

)

(

|∇v|2
)

)

∇v

and that, for X ∈ R
N ,

〈E X,X〉 = |X|2 + 2

(

a′

a

)

(

|∇v|2
)

〈X,∇v〉2 ≥ |X|2

as a and a′ are both positive by (3.1). Consequently, E is a positive definite symmetric
matrix in MN(R) and there exists a positive definite matrix E1/2 such that E2

1/2 = E . We

then infer from the definition of E1/2, (3.12), and Lemma 3.2 (with A = E1/2, B = D2v and
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X = E−1
1/2 ∇v) that

〈

D2v ∇v, (E D2v) ∇v
〉

=
∣

∣(E1/2 D
2v) ∇v

∣

∣

2

=
∣

∣

∣

(

(

E1/2 D
2v E1/2

)

E−1
1/2

)

∇v
∣

∣

∣

2

≤ tr
(

E1/2 D
2v E1/2 E1/2 D

2v E1/2
)

〈

E−1
1/2 ∇v, E−1

1/2 ∇v
〉

≤ tr
(

(

E D2v
)2
)

〈

∇v, E−1 ∇v
〉

≤ tr
(

(

E D2v
)2
)

|∇v|2
(

1 + 2 |∇v|2
(

a′

a

)

(

|∇v|2
)

)−1

.

Owing to the non-positivity (3.1) of a b′′ − a′ b′, we deduce from (3.11) and the above
inequality that

∂tw ≥ Lw + V · ∇w +
(

a2 c
) (

|∇v|2
)

tr
(

(

E D2v
)2
)

,

the function c being defined in (3.2). We finally use the inequality

tr
(

A2
)

≥
1

N
tr(A)2 , A ∈ MN(R) ,

the identity

w =
∑

i

∂izi = a
(

|∇v|2
)

tr
(

E D2v
)

,

and the non-negativity (3.2) of c to conclude that

∂tw ≥ Lw + V · ∇w +
1

N

(

a2 c
) (

|∇v|2
)

tr
(

E D2v
)2

≥ Lw + V · ∇w +
c (|∇v|2)

N
w2 ,

and complete the proof. �

Proof of Proposition 1.4. To be able to use Lemma 3.1, we shall first construct a suitable
approximation of (1.1), (1.2). Such a construction has already been performed in [6] for
similar purposes and we recall it now. Given u0 satisfying (1.3), there is a sequence of
functions (u0,k)k≥1 such that, for each integer k ≥ 1, u0,k ∈ BC∞(RN ), u0 ≤ u0,k+1 ≤ u0,k,
and (u0,k,∇u0,k)k converge towards (u0,∇u0) uniformly on every compact subset of RN as
k → ∞. Next, for ε ∈ (0, 1) and r ≥ 0, we set

aε(r) :=
(

r + ε2
)(p−2)/2

and bε(r) :=
(

r + ε2
)q/2

− εq .

Then the Cauchy problem

∂tuk,ε = div
(

aε
(

|∇uk,ε|
2
)

∇uk,ε
)

+ bε
(

|∇uk,ε|
2
)

, (t, x) ∈ Q∞ ,(3.13)

uk,ε(0) = u0,k + εν , x ∈ R
N ,(3.14)
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has a unique classical solution uk,ε, the parameter ν > 0 depending p, q, and N and being
appropriately chosen. Furthermore,

‖∇uk,ε(t)‖∞ ≤ ‖∇u0,k‖∞ , t ≥ 0 ,(3.15)

lim
k→∞

lim
ε→0

uk,ε(t, x) = u(t, x) ,(3.16)

the latter convergence being uniform on every compact subset of [0,∞)×R
N , see [6, Section 3]

(after performing the same change of unknown function as in the proof of Proposition 2.1).

Introducing

cε(r) = 2

(

b′ε
aε

)

(r) +
4r (aε b

′′
ε − a′ε b

′
ε)(r)

a2ε(r) + 2r aε(r) a′ε(r)
, r ≥ 0 ,

let us check that aε and bε fulfill the conditions (3.1) and (3.2). Clearly, aε > 0 and a′ε > 0
as p > 2. Next, since 1 < q ≤ p,

(a′ε b
′
ε − aε b

′′
ε) (r) =

q (p− q)

4

(

r + ε2
)(p+q−6)/2

≥ 0 ,

cε(r) = q
r(q − 1) + ε2

r(p− 1) + ε2
(

r + ε2
)(q−p)/2

≥ 0 .

We may then apply Lemma 3.1 to deduce that wk,ε := div (aε (|∇uk,ε|
2) ∇uk,ε) satisfies

∂twk,ε − Lk,εwk,ε − Vk,ε · ∇wk,ε −
cε (|∇uk,ε|

2)

N
w2

k,ε ≥ 0

in Q∞. Observe next that the condition 1 < q ≤ p implies that cε is a non-increasing
function. It then follows from (3.15) that cε (|∇uk,ε|

2) ≥ cε (‖∇u0,k‖
2
∞) and we end up with

(3.17) ∂twk,ε − Lk,εwk,ε − Vk,ε · ∇wk,ε −
cε (‖∇u0,k‖

2
∞)

N
w2

k,ε ≥ 0

in Q∞. Clearly, t 7−→ −N/ (cε (‖∇u0,k‖
2
∞) t) is a subsolution to (3.17) and the comparison

principle warrants that

(3.18) wk,ε(t, x) ≥ −
N

cε (‖∇u0,k‖2∞) t
, (t, x) ∈ Q∞ .

Letting ε→ 0 and k → ∞ in the previous inequality with the help of (3.16) gives (1.12).

Next, since (1.1) is autonomous, we infer from (2.2) (with s = 0) and (1.12) that

∆pu(t, x) ≥ −
2N(p− 1)

q(q − 1)

‖∇u(t/2)‖p−q
∞

t

≥ −
2p/qN(p− 1)

q(q − 1)
Cp−q

1 ‖u0‖
(p−q)/q
∞ t−p/q ,

whence (1.11) for s = 0. To prove the general case s ∈ (0, t), we use again the fact that (1.1)
is autonomous. �

We have a similar result when u0 is more regular.

11



Corollary 3.3 Assume that p > 2 and q ∈ (1, p]. Let u be the solution to (1.1), (1.2) with
an initial condition u0 satisfying u0 ∈ W 2,∞(RN) in addition to (1.3). Then

(3.19) ∆pu(t, x) ≥ −

∣

∣

∣

∣

inf
y∈RN

∆pu0(y)

∣

∣

∣

∣

in the sense of distributions.

Proof. Keeping the notations introduced in the proof of Proposition 1.4, we readily infer
from (3.17) and the comparison principle that

(3.20) wk,ε(t, x) ≥ −

∣

∣

∣

∣

inf
y∈RN

∆pu0,k(y)

∣

∣

∣

∣

, (t, x) ∈ Q∞ .

Owing to the regularity of u0, it is possible to construct the sequence (u0,k)k such that it
satisfies

lim
k→∞

inf
y∈RN

∆pu0,k(y) = inf
y∈RN

∆pu0(y) .

We may then pass to the limit first as ε → 0 and then as k → ∞ in (3.20) and use (3.16)
and the above convergence to complete the proof. �

Another useful consequence of the semiconvexity estimates derived in Proposition 1.4 is that
the solution u to (1.1), (1.2) is a supersolution to a first-order Hamilton-Jacobi equation.

Corollary 3.4 Consider an initial condition u0 satisfying (1.3). Setting F (t, ξ0, ξ) := ξ0 −

|ξ|q + κ1 ‖u0‖
(p−q)/q
∞ t−p/q for t ∈ (0,∞), ξ0 ∈ R, and ξ ∈ R

N (recall that κ1 is defined in
(1.11)), the solution u to (1.1), (1.2) is a supersolution to F (t, ∂tw,∇w) = 0 in Q∞.

Proof. We still use the notations introduced in the proof of Proposition 1.4. As wk,ε =
div (aε (|∇uk,ε|

2) ∇uk,ε), we infer from (3.13) and (3.18) that

∂tuk,ε − bε
(

|∇uk,ε|
2
)

≥ −
N

cε (‖∇u0,k‖2∞) t

in Q∞. We then use (3.16) and the stability of viscosity solutions [1, 2, 8] to pass to the
limit as ε→ 0 and k → ∞ in the previous inequality and conclude that u is a supersolution
to

∂tw − |∇w|q +
N(p− 1)

q(q − 1)

‖∇u0‖
p−q
∞

t
= 0 in Q∞ .

Now, fix T ≥ 0. As (1.1) is an autonomous equation, the function (t, x) 7−→ u(t + T, x) is
the solution to (1.1) with initial condition u(T ) and the above analysis allows us to conclude
that u is a supersolution to

∂tw − |∇w|q +
N(p− 1)

q(q − 1)

‖∇u(T )‖p−q
∞

t− T
= 0 in (T,∞)× R

N .

We then use (2.2) (with T = t/2) to complete the proof. �
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4 Convergence to self-similarity

We change the variables and the unknown function so that the convergence (1.5) is trans-
formed to the convergence towards a steady state. More precisely, we introduce the self-
similar (or scaling) variables

τ =
1

q
log (1 + t) , y =

x

(1 + t)1/q
,

and the new unknown function v defined by

(4.1) u(t, x) = v

(

log (1 + t)

q
,

x

(1 + t)1/q

)

, (t, x) ∈ [0,∞)× R
N .

Equivalently, v(τ, y) = u (eqτ − 1, yeτ) for (τ, y) ∈ [0,∞) × R
N and it follows from (1.1),

(1.2) that v solves

∂τv = y · ∇v + q |∇v|q + q e−(p−q)τ ∆pv , (τ, y) ∈ Q∞ ,(4.2)

v(0) = u0 , y ∈ R
N .(4.3)

We also infer from (2.1) and (2.2) that there is a positive constant C5(u0) depending only
on N , p, q, and u0 such that

(4.4) ‖v(τ)‖∞ + ‖∇v(τ)‖∞ ≤ C5(u0) , τ ≥ 0 ,

while (1.4) reads

(4.5) lim
τ→∞

‖v(τ)‖∞ =M∞ > 0 .

Formally, since p > q, the diffusion term vanishes in the large time limit and we expect the
large time behaviour of the solution v to (4.2), (4.3) to look like that of the solutions to the
first-order Hamilton-Jacobi equation

(4.6) ∂τw − y · ∇w − q |∇w|q = 0 in Q∞ .

Now, to investigate the large time behaviour of first-order Hamilton-Jacobi equations, an
efficient approach has been developed in [22, 23] which relies on the relaxed half-limits
method introduced in [3]. More precisely, for (τ, y) ∈ Q∞, we define the relaxed half-limits
v∗ and v∗ by

(4.7) v∗(y) := lim inf
(σ,z,λ)→(τ,y,∞)

v(σ + λ, z) and v∗(y) := lim sup
(σ,z,λ)→(τ,y,∞)

v(σ + λ, z) .

These relaxed half-limits are well-defined thanks to (4.4) and we first note that the right-hand
sides of the above definitions indeed do not depend on τ > 0. In addition,

(4.8) 0 ≤ v∗(x) ≤ v∗(x) ≤M∞ for y ∈ R
N
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by (4.5), while (4.4) and the Rademacher theorem ensure that v∗ and v∗ both belong to
W 1,∞(RN). Finally, by [2, Théorème 4.1] applied to equation (4.2), v∗ and v∗ are viscosity
subsolution and supersolution, respectively, to the Hamilton-Jacobi equation

(4.9) H(y,∇w) := −y · ∇w − q |∇w|q = 0 in R
N .

We now aim at showing that v∗ and v∗ coincide. However, the equation (4.9) has infinitely
many solutions as y 7−→

(

c− γq |y|q/(q−1)
)

+
solves (4.9) for any c > 0 .The information

obtained so far on v∗ and v∗ are thus not sufficient and are supplemented by the next two
results.

Lemma 4.1 Given ε ∈ (0, 1), there is Rε > 1/ε such that

(4.10) v(τ, y) ≤ ε for τ ≥ 0 and y ∈ R
N \B(0, Rε) ,

and 0 ≤ v∗(y) ≤ v∗(y) ≤ ε for y ∈ R
N \B(0, Rε).

In other words, v(τ) belongs to C0(R
N) for each τ ≥ 0 in a way which is uniform with

respect to τ ≥ 0.

Proof. We first construct a supersolution to (4.2) in (0,∞) ×
(

R
N \B(0, R)

)

for R large

enough. To this end, consider R ≥ Rc := 1 + (q (2 ‖u0‖∞)q−1 + 3pq (2 ‖u0‖∞)p−2)
1/q

and
put ΣR(y) = ‖u0‖∞ R2 |y|−2 for y ∈ R

N \B(0, R). Let L be the parabolic operator defined
by

Lw(τ, y) := ∂τw(τ, y)− y · ∇w(τ, y)− q |∇w(τ, y)|q − q e−(p−q)τ ∆pw(τ, y)

for (τ, y) ∈ Q∞ (so that Lv = 0 by (4.2)). Then, if y ∈ R
N \B(0, R), we have

LΣR(y) = 2 ΣR(y)− q
2q

|y|q
ΣR(y)

q + q 2p−1 N + 2− 3p

|y|p
ΣR(y)

p−1 e−(p−q)τ

≥ 2 ΣR(y)

{

1− q (2 ‖u0‖∞)q−1 R
2(q−1)

|y|3q−2
− 3pq e−(p−q)τ (2 ‖u0‖∞)p−2 R

2(p−2)

|y|3p−4

}

≥ 2 ΣR(y)
{

1− q (2 ‖u0‖∞)q−1 R−q − 3pq e−(p−q)τ (2 ‖u0‖∞)p−2 R−p
}

≥ 0

by the choice of R. Consequently, ΣR is a supersolution to (4.2) in (0,∞)×
(

R
N \B(0, R)

)

for R ≥ Rc.

Now, fix ε ∈ (0, 1). Since u0 ∈ C0(R
N ), there is ρε ≥ max {Rc, ε

−1} such that u0(y) ≤ ε/2
if |y| ≥ ρε. We then infer from the monotonicity of ΣR and (2.1) that

u0(y)−
ε

2
− Σρε(z) ≤ −Σρε(z) ≤ 0

if |y| ≥ ρε and |z| ≥ ρε,

v(τ, y)−
ε

2
− Σρε(z) ≤ ‖u0‖∞ − Σρε(z) = Σρε(y)− Σρε(z) ≤

2 ‖u0‖∞
ρε

|y − z|
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if |y| = ρε, |z| ≥ ρε, and τ ≥ 0, and

v(τ, y)−
ε

2
− Σρε(z) ≤ ‖u0‖∞ − ‖u0‖∞ ≤ 0

if |y| ≥ ρε, |z| = ρε, and τ ≥ 0. As v − ε/2 and Σρε are subsolution and supersolution,
respectively, to (4.2), the comparison principle [11, Theorem 4.1] warrants that v(τ, y)−ε/2 ≤
Σρε(y) for τ ≥ 0 and |y| ≥ ρε. It remains to choose Rε ≥ ρε such that Σρε(y) ≤ ε/2
for |y| ≥ Rε to complete the proof of (4.10). The last assertion of Lemma 4.1 is then a
straightforward consequence of the definition (4.7) and (4.10). �

We next use the semiconvexity estimate (1.11) (and more precisely its consequence stated
in Corollary 3.4) to show that v∗ lies above the profile H∞ defined in (1.6).

Lemma 4.2 For y ∈ R
N , we have

(4.11) H∞(y) ≤ v∗(y) ≤ v∗(y) .

Proof. For τ ≥ 0, y ∈ R
N , ξ0 ∈ R and ξ ∈ R

N , we set F(τ, y, ξ0, ξ) := ξ0 − y · ξ − q |ξ|q +

κ2 e
−(p−q)τ with κ2 := q κ1 ‖u0‖

(p−q)/q
∞ (eq/(eq − 1))p/q, the constant κ1 being defined in

(1.11). It then readily follows from Corollary 3.4 that

(4.12) v is a supersolution to F(τ, y, ∂τw,∇w) = 0 in (1,∞)× R
N .

We next fix τ0 > 1 and denote by V the (viscosity) solution to

∂τV − y · ∇V − q |∇V |q = 0 , (τ, y) ∈ (τ0,∞)× R
N ,

V (τ0) = v(τ0) , y ∈ R
N .

On the one hand, a straightforward computation shows that the function Ṽ defined by

Ṽ (τ, y) := V (τ, y)− κ2

∫ τ

τ0

e−(p−q)s ds , (τ, y) ∈ (τ0,∞)× R
N ,

is the (viscosity) solution to F(τ, y, ∂τ Ṽ ,∇Ṽ ) = 0 in (τ0,∞) × R
N with initial condition

Ṽ (τ0) = v(τ0). Recalling (4.12), we infer from the comparison principle that

(4.13) Ṽ (τ, y) ≤ v(τ, y) for (τ, y) ∈ (τ0,∞)× R
N .

On the other hand, it follows from Proposition A.1 that

lim
τ→∞

sup
y∈RN

∣

∣

∣
V (τ, y)−

(

‖v(τ0)‖∞ − γq |y|
q/(q−1)

)

+

∣

∣

∣
= 0 .

We may then pass to the limit as τ → ∞ in (4.13) and use the definition (4.7) to conclude
that

(

‖v(τ0)‖∞ − γq |y|
q/(q−1)

)

+
− κ2

∫ ∞

τ0

e−(p−q)s ds ≤ v∗(y) ≤ v∗(y)
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for y ∈ R
N . Letting τ0 → ∞ in the above inequality with the help of (4.5) completes the

proof of the lemma. �

We are now in a position to complete the proof of Theorem 1.1. To this end, fix ε ∈ (0, 1).
Lemma 4.1 ensures that v∗(y) ≤ ε for |y| ≥ Rε ≥ 1/ε while the continuity of H∞ implies
that there is rε ∈ (0, ε) such that H∞(y) ≥ M∞ − ε for |y| ≤ rε. Recalling (4.8), we realize
that

(4.14)







v∗(y)− ε ≤ 0 ≤ H∞(y) if |y| = Rε ,

v∗(y)− ε ≤M∞ − ε ≤ H∞(y) if |y| = rε .

Moreover, introducing ψ(y) = −γq |y|
q/(q−1)/2, we have

(4.15) H(y,∇ψ(y)) =
qγq

2(q − 1)
|y|q/(q−1)

(

1−
1

2q−1

)

> 0 if rε < |y| < Rε ,

the Hamiltonian H being defined in (4.9). Summarizing, we have shown that H∞ and v∗− ε
are supersolution and subsolution, respectively, to (4.9) in Ωε :=

{

y ∈ R
N : rε < |y| < Rε

}

with v∗ − ε ≤ H∞ on ∂Ωε by (4.14). Owing to (4.15) and the concavity of H with respect
to its second variable, we may apply [15, Theorem 1] to conclude that v∗ − ε ≤ H∞ in Ωε.
This property being valid for each ε ∈ (0, 1), we actually have v∗ ≤ H∞ in R

N by passing
to the limit as ε → 0 thanks to the properties of rε and Rε. Recalling (4.11), we have thus
established that v∗ = v∗ = H∞ in R

N . In particular, the property v∗ = v∗ and the definition
(4.7) provide the uniform convergence of {v(τ)}τ≥0 towards v∗ = H∞ on every compact
subset of RN as τ → ∞, see [2, Lemme 4.1] or [1, Lemma V.1.9]. Combining this local
convergence with Lemma 4.1 actually gives

(4.16) lim
τ→∞

‖v(τ)−H∞‖∞ = 0 .

Theorem 1.1 then readily follows after writing the convergence (4.16) in the original variables
(t, x) for the function u and noticing that ‖h∞(1 + t)− h∞(t)‖∞ −→ 0 as t→ ∞. �

5 Limit value of ‖u(t)‖∞

This section is devoted to the proof of Proposition 1.4, for which three cases are to be
distinguished and handled differently: q ∈ (1, p− 1], q ∈ (p− 1, q⋆], and q ∈ (q⋆, p).

Proof of Proposition 1.4: q ∈ (1, p− 1]. We proceed as in [19, Proposition 1] (where a
similar result is proved for p = 2 and q = 1). For α > N/2, δ > 0, and x ∈ R

N , we set
̺δ(x) := (1 + δ |x|2)

−α
. Clearly, ̺δ ∈ L1(RN) and it follows from (2.3) that

d

dt

∫

RN

̺δ(x) u(t, x) dx =

∫

RN

{

̺δ(x) |∇u(t, x)|
q − |∇u(t, x)|p−2 ∇u(t, x) · ∇̺δ(x)

}

dx

≥

∫

RN

̺δ(x) |∇u(t, x)|
q

(

1− |∇u(t, x)|p−1−q |∇̺δ(x)|

̺δ(x)

)

dx .
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Recalling that ‖∇u(t)‖∞ ≤ ‖∇u0‖∞ by (1.3) and (2.2) and noticing that |∇̺δ| ≤ α δ1/2 ̺δ,
we further obtain

d

dt

∫

RN

̺δ(x) u(t, x) dx ≥

∫

RN

̺δ(x) |∇u(t, x)|
q
(

1− α δ1/2 ‖∇u0‖
p−1−q
∞

)

dx .

Choosing δ = ‖∇u0‖
2(q+1−p)
∞ /α2 and integrating with respect to time give

‖u(t)‖∞ ‖̺δ‖1 ≥

∫

RN

̺δ(x) u(t, x) dx ≥

∫

RN

̺δ(x) u0(x) dx > 0 .

We then pass to the limit as t→ ∞ to conclude that M∞ > 0. �

We next turn to the case q ∈ (p−1, q⋆] which turns out to be more complicated and requires
two preparatory results.

Lemma 5.1 Assume that q ∈ (1, q⋆] and let u be a non-negative solution to (1.1), (1.2) with
a compactly supported initial condition u0 satisfying (1.3). Then u(t) ∈ L1(RN) for each
t ≥ 0, the function t 7−→ ‖u(t)‖1 is non-decreasing and

(5.1) lim
t→∞

‖u(t)‖1 = ∞ .

Proof. For every t ≥ 0, u(t) is bounded and compactly supported by (2.1) and Proposi-
tion 2.2, and is thus in L1(RN). The time monotonicity of the L1-norm of u then readily
follows from (2.3) with ϑ = 1, a valid choice in this particular case as u(t) is compactly
supported. It further follows from (2.3) with ϑ = 1 that

(5.2) ‖u(t)‖1 ≥ ‖u(T )‖1 +

∫ t

T

‖∇u(s)‖qq ds for t > T ≥ 0 .

Consider next T > 0 and t > T . Recalling the Gagliardo-Nirenberg inequality

(5.3) ‖w‖q ≤ C6 ‖∇w‖N(q−1)/(N(q−1)+q)
q ‖w‖

q/(N(q−1)+q)
1 , w ∈ W 1,q(RN ) ∩ L1(RN) ,

we infer from (5.2), (5.3), and the time monotonicity of the L1-norm of u that

‖u(t)‖
1+(q2/N(q−1))
1 ≥ ‖u(t)‖

q2/N(q−1)
1

(

‖u(T )‖1 +

∫ t

T

‖∇u(s)‖qq ds

)

≥

∫ t

T

‖u(s)‖
q2/N(q−1)
1 ‖∇u(s)‖qq ds

≥ C7

∫ t

T

(

‖u(s)‖qq
)(N(q−1)+q)/N(q−1)

ds .

If ϕ denotes the solution to the p-Laplacian equation ∂tϕ − ∆pϕ = 0 in Q∞ with initial
condition ϕ(0) = u0, the comparison principle readily implies that

(5.4) ϕ(t, x) ≤ u(t, x) , (t, x) ∈ Q∞ .
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Inserting this estimate in the previous lower bound for ‖u(t)‖1, we end up with

(5.5) ‖u(t)‖
1+(q2/N(q−1))
1 ≥ C7

∫ t

T

(

‖ϕ(s)‖qq
)(N(q−1)+q)/N(q−1)

ds .

Now, by Proposition 2.3 we have

lim
s→∞

sN(q−1)/(N(p−2)+p)
∥

∥ϕ(s)− B‖u0‖1(s)
∥

∥

q

q
= 0

and
∥

∥B‖u0‖1(s)
∥

∥

q

q
= C8 s

−N(q−1)/(N(p−2)+p) ,

so that

‖ϕ(s)‖qq ≥
(

∥

∥B‖u0‖1(s)
∥

∥

q
−
∥

∥ϕ(s)− B‖u0‖1(s)
∥

∥

q

)q

≥ s−N(q−1)/(N(p−2)+p)
(

C8 −
∥

∥ϕ(s)− B‖u0‖1(s)
∥

∥

q

)q

≥

(

C8

2

)q

s−N(q−1)/(N(p−2)+p)

for s ≥ T , provided T is chosen sufficiently large. Inserting this estimate in (5.5) gives

‖u(t)‖
1+(q2/N(q−1))
1 ≥ C9

∫ t

T

s−(N(q−1)+q)/(N(p−2)+p) ds

≥ C10







t(N+1)(q⋆−q)/(N(p−2)+p) − T (N+1)(q⋆−q)/(N(p−2)+p) if q ∈ (1, q⋆) ,

log(t/T ) if q = q⋆ .

We then let t→ ∞ to obtain the claimed result. �

We next argue as in [12, Lemma 14] (for p = 2) to show that, if q ∈ (p− 1, p) and M∞ = 0,
then the L∞-norm of u(t) decays faster than an explicit rate.

Lemma 5.2 Assume that q ∈ (p− 1, p) and let u be a non-negative solution to (1.1), (1.2)
with an initial condition u0 satisfying (1.3). If M∞ = 0 in (1.4), then

(5.6) ‖u(t)‖∞ ≤ C11 t
−(p−q)/(2q−p) for t > 0 .

Observe that the assumptions p > 2 and q ∈ (p− 1, p) imply that 2q > p and (p− q)/(2q−
p) > 0.

Proof. Consider a non-negative function η ∈ C∞(RN) with compact support in B(0, 1) and
‖η‖1 = 1. We then define a sequence of mollifiers (ηδ)δ by ηδ(x) := η(x/δ)/δN for x ∈ R

N
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and δ ∈ (0, 1). For (t, x0) ∈ Q∞ and T > t, we take ϑ(x) = ηδ(x − x0) in (2.3) and infer
from (1.11) (with s = t/2) that

‖u(T )‖∞ ≥

∫

RN

u(T, x) ηδ(x− x0) dx

≥

∫

RN

u(t, x) ηδ(x− x0) dx−

∫ T

t

∫

RN

|∇u(s, x)|p−2 ∇u(s, x) · ∇ηδ(t, x− x0) dxds

≥

∫

RN

u(t, x) ηδ(x− x0) dx− 2p/q κ1

∥

∥

∥

∥

u

(

t

2

)
∥

∥

∥

∥

(p−q)/q

∞

∫ T

t

(2s− t)−p/q ds

≥

∫

RN

u(t, x) ηδ(x− x0) dx− C12

∥

∥

∥

∥

u

(

t

2

)
∥

∥

∥

∥

(p−q)/q

∞

(

t(q−p)/q − T (q−p)/q
)

.

Owing to the continuity of u, we may pass to the limit as δ → 0 in the above inequality and
deduce that

‖u(T )‖∞ ≥ u(t, x0)− C12

∥

∥

∥

∥

u

(

t

2

)
∥

∥

∥

∥

(p−q)/q

∞

(

t(q−p)/q − T (q−p)/q
)

.

But the above inequality is valid for all x0 ∈ R
N and we thus end up with

‖u(T )‖∞ ≥ ‖u(t)‖∞ − C12

∥

∥

∥

∥

u

(

t

2

)
∥

∥

∥

∥

(p−q)/q

∞

(

t(q−p)/q − T (q−p)/q
)

.

Finally, as q < p, we may let T → ∞ in the previous inequality and use the assumption
M∞ = 0 to conclude that

‖u(t)‖∞ ≤ C12

∥

∥

∥

∥

u

(

t

2

)
∥

∥

∥

∥

(p−q)/q

∞

t(q−p)/q ,

or, equivalently, as 2q > p,

t(p−q)/(2q−p) ‖u(t)‖∞ ≤ C13

{

(

t

2

)(p−q)/(2q−p) ∥
∥

∥

∥

u

(

t

2

)
∥

∥

∥

∥

∞

}(p−q)/q

for t ≥ 0. Introducing

A(t) := sup
s∈(0,t)

{

s(p−q)/(2q−p) ‖u(s)‖∞
}

∈ [0,∞) , t ≥ 0 ,

we deduce from the previous inequality that A(t) ≤ C13 A(t)
(p−q)/q, whence A(t) ≤ C

q/(2q−p)
13

for t ≥ 0. This bound being valid for each t > 0, the proof of (5.6) is complete. �

Proof of Proposition 1.4: q ∈ (p− 1, q⋆].
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Step 1: We first consider a compactly supported initial condition u0 satisfying (1.3) and
assume for contradiction that M∞ = 0. On the one hand, according to Lemma 5.2 and the
assumption q ≤ q⋆, there holds

(5.7) lim sup
t→∞

tN/(N(p−2)+p) ‖u(t)‖∞ ≤ C11 t
(p(N+1)(q−q⋆))/((2q−p)(N(p−2)+p)) ≤ C11 .

On the other hand, fix t0 > 0 and let ϕ be the solution to the p-Laplacian equation ∂tϕ −
∆pϕ = 0 in Q∞ with initial condition ϕ(0) = u(t0). As u0 is compactly supported, so is u(t0)
by Proposition 2.2 and u(t0) thus belongs to L1(RN). Moreover, the comparison principle
warrants that u(t, x) ≥ ϕ(t− t0, x) for (t, x) ∈ [t0,∞)× R

N . We then infer from the above
properties and Proposition 2.3 that, for t > t0,

tN/(N(p−2)+p) ‖u(t)‖∞ ≥ (t− t0)
N/(N(p−2)+p) ‖u(t)‖∞

≥ (t− t0)
N/(N(p−2)+p) ‖ϕ(t− t0)‖∞

≥ (t− t0)
N/(N(p−2)+p)

∥

∥B‖u(t0)‖1(t− t0)
∥

∥

∞

− (t− t0)
N/(N(p−2)+p)

∥

∥B‖u(t0)‖1(t− t0)− ϕ(t− t0)
∥

∥

∞

≥ C14 ‖u(t0)‖
p/(N(p−2)+p)
1

− (t− t0)
N/(N(p−2)+p)

∥

∥B‖u(t0)‖1(t− t0)− ϕ(t− t0)
∥

∥

∞
.

Using once more Proposition 2.3, we may pass to the limit as t → ∞ in the previous
inequality to obtain

(5.8) lim inf
t→∞

tN/(N(p−2)+p) ‖u(t)‖∞ ≥ C14 ‖u(t0)‖
p/(N(p−2)+p)
1 .

Combining (5.7) and (5.8) yields ‖u(t0)‖1 ≤ C15 for all t0 > 0 which contradicts Lemma 5.1.
Therefore, M∞ > 0.

Step 2: Now, if u0 is an arbitrary initial condition satisfying (1.3), there clearly exists a
compactly supported initial condition ũ0 satisfying (1.3) and such that u0 ≥ ũ0 in R

N .
Introducing the solution ũ to (1.1) with initial condition ũ0, the comparison principle entails
that u ≥ ũ in Q∞, hence

M∞ ≥ lim
t→∞

‖ũ(t)‖∞ .

The first step of the proof ensures that the right-hand side of the above inequality is positive
which completes the proof. �

It remains to investigate the case q ∈ (q⋆, p), for which we adapt the proof of [7, Theo-
rem 2.4(b)].

Proof of Proposition 1.4: q ∈ (q⋆, p). We put

m0 :=

∣

∣

∣

∣

inf
y∈RN

∆pu0(y)

∣

∣

∣

∣

.
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As in the proof of Lemma 5.1, let η ∈ C∞(RN) be a non-negative function with compact
support in B(0, 1) and ‖η‖1 = 1, and define a sequence of mollifiers (ηδ)δ by ηδ(x) :=
η(x/δ)/δN for x ∈ R

N and δ ∈ (0, 1). For (t, x0) ∈ Q∞ and T ∈ (0, t), we take ϑ(x) =
ηδ(x− x0) in (2.3) and infer from (1.11) (with s = 0) and Corollary 3.3 that

‖u(t)‖∞ ≥

∫

RN

u(t, x) ηδ(x− x0) dx

≥

∫

RN

u0(x) ηδ(x− x0) dx−

∫ t

0

∫

RN

|∇u(s, x)|p−2 ∇u(s, x) · ∇ηδ(t, x− x0) dxds

≥

∫

RN

u0(x) ηδ(x− x0) dx−

∫ T

0

m0 ds− κ1 ‖u0‖
(p−q)/q
∞

∫ t

T

s−p/q ds

≥

∫

RN

u0(x) ηδ(x− x0) dx− T m0 − C16 ‖u0‖
(p−q)/q
∞

(

T (q−p)/q − t(q−p)/q
)

.

Owing to the continuity of u0, we may pass to the limit as δ → 0 in the above inequality
and deduce that

‖u(t)‖∞ ≥ u0(x0)− T m0 − C16 ‖u0‖
(p−q)/q
∞

(

T (q−p)/q − t(q−p)/q
)

.

Since q < p, we may let t→ ∞ in the above inequality and take the supremum with respect
to x0 to conclude that

M∞ ≥ ‖u0‖∞ − T m0 − C16 ‖u0‖
(p−q)/q
∞ T (q−p)/q .

Next, for β ∈ (0, 1), the choice T = ‖u0‖
(p−q)/p
∞ (β+m0)

−q/p in the previous inequality yields

M∞ ≥ ‖u0‖
(p−q)/p
∞

(

‖u0‖
q/p
∞ − (1 + C16) (β +m0)

(p−q)/p
)

.

This inequality being valid for every β ∈ (0, 1), we conclude that

M∞ ≥ ‖u0‖
(p−q)/p
∞

(

‖u0‖
q/p
∞ − (1 + C16) m

(p−q)/p
0

)

> 0

as soon as (1.10) is fulfilled with κ0 = (1 + C16)
p/q. �

Acknowledgments. I thank the referee for carefully reading the manuscript.

A Convergence for the Hamilton-Jacobi equation (4.6)

In this section, we study the large behaviour of non-negative solutions to the Hamilton-Jacobi
equation (4.6) with initial data in C0(R

N) and show their convergence to a steady state
uniquely determined by the L∞-norm of the initial data. Though the large time behaviour
of solutions to first-order Hamilton-Jacobi equations has received considerable attention in
recent years (see [4, 5, 16, 22, 23] and the references therein), the particular case of (4.6)
does not seem to have been investigated in the literature. We thus provide a simple proof
relying on the Hopf-Lax-Oleinik formula.
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Proposition A.1 Let q > 1 and consider a non-negative function h0 ∈ C0(R
N). Let h be

the unique viscosity solution to the Cauchy problem

∂τh− y · ∇h− q |∇h|q = 0 , (τ, y) ∈ (0,∞)× R
N ,(A.1)

h(0) = h0 , y ∈ R
N .(A.2)

Then

(A.3) lim
τ→∞

‖h(τ)− hs‖∞ = 0

with
hs(y) :=

(

‖h0‖∞ − γq |y|q/(q−1)
)

+
, y ∈ R

N ,

the constant γq = (q − 1) q−q/(q−1) being defined in Theorem 1.1.

Thanks to the concavity of the Hamiltonian H(y, ξ) = −y · ξ − q |ξ|q, (y, ξ) ∈ R
N × R

N ,
with respect to its second variable, the Hopf-Lax-Oleinik formula provides a representation
formula for the solution h to (A.1), (A.2) which can be used to prove (A.3).

Proof. We first recall that h is given by the Hopf-Lax-Oleinik formula

h(τ, y) = sup
z∈RN

{

h0(z)− γq
∣

∣y − z e−τ
∣

∣

q/(q−1) (
1− e−qτ

)−1/(q−1)
}

for (τ, y) ∈ [0,∞)× R
N , see, e.g., [10, Chapter 3]. Since h(τ, y) ≥ h0(ye

τ ) ≥ 0, we have in
fact

h(τ, y) = sup
z∈RN

{

(

h0(z)− γq
∣

∣y − z e−τ
∣

∣

q/(q−1) (
1− e−qτ

)−1/(q−1)
)

+

}

for (τ, y) ∈ [0,∞)× R
N .

Consider now β ∈ (0, 1). As h0 ∈ C0(R
N), there is Rβ > (‖h0‖∞/γq)

(q−1)/q such that

(A.4) h0(z) ≤ β for |z| ≥ Rβ .

On the one hand, if (τ, y) ∈ [logRβ,∞)× R
N and z ∈ R

N , we have either |z| ≥ Rβ and

∣

∣

∣

∣

(

h0(z)− γq
∣

∣y − z e−τ
∣

∣

q/(q−1) (
1− e−qτ

)−1/(q−1)
)

+
−
(

h0(z)− γq |y|q/(q−1)
)

+

∣

∣

∣

∣

≤
(

h0(z)− γq
∣

∣y − z e−τ
∣

∣

q/(q−1) (
1− e−qτ

)−1/(q−1)
)

+
+
(

h0(z)− γq |y|q/(q−1)
)

+

≤ 2 β
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by (A.4) or z ∈ B(0, Rβ) and

∣

∣

∣

∣

(

h0(z)− γq
∣

∣y − z e−τ
∣

∣

q/(q−1) (
1− e−qτ

)−1/(q−1)
)

+
−
(

h0(z)− γq |y|q/(q−1)
)

+

∣

∣

∣

∣

≤ γq
∣

∣y − z e−τ
∣

∣

q/(q−1)
{

(

1− e−qτ
)−1/(q−1)

− 1
}

+ γq

∣

∣

∣

∣

∣y − z e−τ
∣

∣

q/(q−1)
− |y|q/(q−1)

∣

∣

∣

≤ γq
(

|y|+Rβ e
−τ
)q/(q−1)

{

(

1− e−qτ
)−1/(q−1)

− 1
}

+
q γq
q − 1

(

|y|+ |z| e−τ
)1/(q−1)

|z| e−τ

≤ γq (|y|+ 1)1/(q−1)

{

q

q − 1
+ |y|+ 1

}

{

(

1− e−qτ
)−1/(q−1)

− 1 +Rβ e
−τ
}

as τ ≥ logRβ. Combining the above two estimates gives

∣

∣

∣

∣

h(τ, y)− sup
z∈RN

{

(

h0(z)− γq |y|
q/(q−1)

)

+

}

∣

∣

∣

∣

≤ C(q) (|y|+ 1)q/(q−1)
{

(

1− e−qτ
)−1/(q−1)

− 1 +Rβ e
−τ
}

+ 2 β ,

whence

(A.5) |h(τ, y)− hs(y)| ≤ C(q) (|y|+ 1)q/(q−1)
{

(

1− e−qτ
)−1/(q−1)

− 1 +Rβ e
−τ
}

+ 2 β

for (τ, y) ∈ [logRβ,∞) × R
N . On the other hand, if τ ≥ log(Rβ), |y| ≥ Y := 1 +

(‖h0‖∞/γq)
(q−1)/q and z ∈ R

N , we have either |y − z e−τ | ≥ Y − 1 and

h0(z)− γq
∣

∣y − z e−τ
∣

∣

q/(q−1) (
1− e−qτ

)−1/(q−1)

≤
(

1− e−qτ
)−1/(q−1)

{

‖h0‖∞
(

1− e−qτ
)1/(q−1)

− γq
∣

∣y − z e−τ
∣

∣

q/(q−1)
}

≤
(

1− e−qτ
)−1/(q−1) {

‖h0‖∞ − γq (Y − 1)q/(q−1)
}

≤ 0 ,

or |y − z e−τ | < Y − 1 and

|z| ≥ |y eτ | − |z − y eτ | ≥ Y eτ − (Y − 1) eτ = eτ ≥ Rβ ,

so that
h0(z)− γq

∣

∣y − z e−τ
∣

∣

q/(q−1) (
1− e−qτ

)−1/(q−1)
≤ β

by (A.4). Therefore,

(A.6) h(τ, y) ≤ β for (τ, y) ∈ [logRβ,∞)×
(

R
N \B(0, Y )

)

.

The claim (A.3) then easily follows from (A.5) and (A.6). �
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