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Introduction

Let us introduce the first and the second Chebyshev function θ(x) = p≤x log p (where p ∈ P: the set of prime numbers) and ψ(x) = x n=1 Λ(n), the logarithmic integral li(x), the Möbius function µ(n) and the Von Mangoldt function Λ(n) [START_REF] Edwards | Riemann's zeta function[END_REF][START_REF] Hardy | An introduction to the theory of numbers[END_REF]. The number of primes up to x is denoted π(x). Indeed, θ(x) and ψ(x) are the logarithm of the product of all primes up to x, and the logarithm of the least common multiple of all positive integers up to x, respectively.

It has been known for a long time that θ(x) and ψ(x) are asymptotic to x (see [START_REF] Hardy | An introduction to the theory of numbers[END_REF], p. 341). There also exists an explicit formula, due to Von Mangoldt, relating ψ(x) to the non-trivial zeros ρ of the Riemann zeta function ζ(s) [START_REF] Edwards | Riemann's zeta function[END_REF][START_REF] Davenport | Multiplicative number theory[END_REF]. One defines the normalized Chebyshev function ψ 0 (x) to be ψ(x) when x is not a prime power, and ψ(x) - 1 2 Λ(x) when it is. The explicit Von Mangoldt formula reads

ψ 0 (x) = x - ρ x ρ ρ - ζ ′ (0) ζ(0) - 1 2 log(1 -x -2 ), for x > 1.
The function ǫ(x) = li(x) -π(x) is known to be positive up to the (very large) Skewes' number [START_REF] Skewes | On the difference π(x)li(x)[END_REF]. In this paper we are first interested in the jumps (they occur at primes p) in the function ǫ θ(x) = li[θ(x)] -π(x). Following Robin's work on the relation between ǫ θ(x) and RH (Theorem 1.1), this allows us to derive a new statement (Theorem 1.7) about the jumps of li[θ(p)] and Littlewood's oscillation theorem.

Then, we study the refined function ǫ ψ(x) = li[ψ(x)] -π(x) and we observe that the sign of the jumps of li[ψ(p)] is controlled by an infinite sequence of primes that we call the Chebyshev primes Ch n (see proposition 1.11). The primes Ch n (and the generalized primes Ch (l) n ) are also obtained by using an accurate calculation of the jumps of li[ψ(p)], as in conjecture 1.14 (and of the jumps of the function li[ψ(p l )], as in conjecture 1.17). One conjectures that the function Ch n -p 2n has infinitely many zeros. There exists a potential link between the non-trivial zeros ρ of ζ(s) and the position of the Ch (l) n 's that is made quite explicit in Sec. 2.1 (conjecture 2.2), and in Sec. 2.2 in our definition of the Riemann primes. In this context, we contribute to the Sloane's encyclopedia with integer sequences 1 .

Finally, we introduce a new prime counting function R(x) = n>1 µ(n) n li(x 1/n ), better than the standard Riemann's one, even with three terms in the expansion.

1. Selected results about the functions ǫ, ǫ θ , ǫ ψ Let p n be the n-th prime number and j(p n ) = li(p n ) -li(p n -1) be the jump in the logarithmic integral at p n . For any n > 2 one numerically observes that j pn < 1. This statement is not useful for the rest of the paper. But it is enough to observe that j 5 = 0.667 . . . and that the sequence j pn is strictly decreasing.

The next three subsections deal with the jumps in the function li[θ(x)] and li[ψ(x)].

The jumps in the function li[θ(x)].

Theorem 1.1. (Robin). The statement ǫ θ(x) = li[θ(x)] -π(x) > 0 is equivalent to RH [START_REF] Robin | Sur la difference Li(θ(x))π(x)[END_REF][START_REF] Sándor | Handbook of Number Theory I[END_REF].

Corollary 1.2. (related to Robin [START_REF] Robin | Sur la difference Li(θ(x))π(x)[END_REF]). The statement ǫ ψ(x) = li[ψ(x)] -π(x) > 0 is equivalent to RH.

Proof. If RH is true then, using the fact ψ(x) > θ(x) and that li(x) is a strictly growing function when x > 1, this follows from theorem 1 in Robin [START_REF] Robin | Sur la difference Li(θ(x))π(x)[END_REF]. If RH is false, Lemma 2 in Robin ensures the violation of the inequality.

Using the fact that θ(p n+1 -1) = θ(p n ), define the jump of index n as

J n = j θ(pn) = li[θ(p n+1 )] -li[θ(p n )] = θ(pn+1) θ(pn) dt log t . Proposition 1.3. If p n+1 < 10 11 , then J n = j θ(pn) > 1.
Proof. The integral definition of the jump yields

J n ≥ θ(p n+1 ) -θ(p n ) log θ(p n+1 ) = log p n+1 log θ(p n+1 )
.

The result now follows after observing that by [START_REF] Rosser | Approximate formula for some functions of prime numbers[END_REF]Theorem18], we have θ(x) < x for x < 10 8 , and by using the note added in proof of [START_REF] Schoenfeld | Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II[END_REF] that establishes that θ(x) < x for x < 10 11 .

1 The relevant sequences are A196667 to 196675 (related to the Chebyshev primes), A197185

to A197188 (related to the Riemann primes of the ψ-type and A197297 to A197300 (related to the Riemann primes of the θ-type.

By seeing this result it would be natural to make the Conjecture 1.4. ∀n ≥ 1 we have J n > 1.

However, building on Littlewood's oscillation theorem for θ we can prove that J n oscillates about 1 with a small amplitude. Let us recall the Littlewood's oscillation theorem [START_REF] Ellison | Les nombres premiers[END_REF]Theorem 6.3,p.200], [START_REF] Ingham | The distribution of prime numbers[END_REF]Theorem 34] θ(x) -x = Ω ± (x 1/2 log 3 x), when x → ∞, where log 3 x = log log log x. The omega notations means that there are infinitely many numbers x, and constants C + and C -, satisfying

θ(x) ≤ x -C - √ x log 3 x or θ(x) ≥ x + C + √ x log 3 x.
We now prepare the proof of the invalidity of conjecture (1.4) by writing two lemmas.

Lemma 1.5. For n ≥ 1, we have the bounds

log p n+1 log θ(p n+1 ) ≤ J n ≤ log p n+1 log θ(p n ) .
Proof. This is straightforward from the integral definition of the jump.

Lemma 1.6. For n large, we have

θ(p n+1 ) = p n+1 + Ω ± √ p n+1 log 3 p n+1 .
Proof. We know that by [9, Theorem 6.3, p.200], we have for x > 0 and large

θ(x) -x = Ω ± √ x log 3 x .
The result follows by considering the primes closest to x.

We can now state and prove the main result of this section.

Theorem 1.7. For n large we have

J n = 1 + Ω ± log 3 p n+1 √ p n+1 log p n+1 .
Proof. By lemma 1.6 we know there is a constant C -such that for infinitely many n's we have

θ(p n+1 ) < p n+1 -C - √ p n+1 log 3 p n+1 .
By combining with the first inequality of lemma 1.5 and writing

log p n+1 = log p n + log 1 -C - log 3 p n+1 √ p n+1 ,
the minus part of the statement follows after some standard asymptotics. To prove the plus part write θ(p n ) = θ(p n+1 ) -log p n+1 , and proceed as before. The results for the jumps of the function li[ψ(p)] are quite analogous to the results for the jumps of the function li[θ(p)] ans stated below without proof.

Let us define the n-th jump at a prime as

K n = li[ψ(p n+1 )] -li[ψ(p n+1 -1)] = ψ(pn+1) ψ(pn+1-1) dt log t .
Theorem 1.10. For n large, we have

K n = 1 + Ω ± log 3 p n+1 p n+1 log p n+1 .
Corollary 1.11. There are infinitely many Chebyshev primes Ch n .

One observes that the sequence Ch n oscillates around p 2n and the largest deviations from p 2n seem to be unbounded at large n. This behaviour is illustrated in Conjecture 1.14. The jump at primes p n of the function li[ψ(x)] may be written as

K n-1 = Kn-1 + O(1/p 2 n ). with Kn-1 = log pn log[(ψ(pn)+ψ(pn-1))/2] . In particular, the sign of Kn-1 -1 is that of K n -1. Comment 1.15. The jump of index n -1 (at the prime number p n ) is K n-1 = ψ(pn) ψ(pn-1) dt log t .
2 Our terminology should not be confused with that used in [START_REF] Cusick | Stream ciphers and number theory[END_REF] where the Tchebychev primes are primes of the form 4n2 m + 1, with m > 0 and n an odd prime. We used the Russian spelling Chebyshev to distinguish both meanings. 

(p n -1) < c n < ψ(p n ) such that K n-1 = ψ(p n ) -ψ(p n -1) log c n = log p n log c n .
Using the known locations of the Chebyshev primes of low index, it is straightforward to check that the real c n reads

c n ∼ 1 2 [ψ(p n ) + ψ(p n -1)] .
This numerical calculations support our conjecture (1.14) that the Chebyshev primes may be derived from Kn-1 instead of K n-1 .

1.3. The generalized Chebyshev primes. Definition 1.16. Let p ∈ P be a odd prime number and the function j

ψ(p l ) = li[ψ(p l )] -li[ψ(p l -1)], l ≥ 1.
The primes p such that j ψ(p l ) < 1/l are called here generalized Chebyshev primes Ch (l) n (or Chebyshev primes of index l). A short list of Chebyshev primes of index 2 is as follows Conjecture 1.17. The jump at power of primes p l n of the function li[ψ(x)] may be written as

K (l) n-1 = K(l) n-1 + O(1/p 2l n ), with K(l) n-1 = log pn log[(ψ(p l n )+ψ(p l n -1))/2] . In particular the sign of K(l) n-1 -1 is that of K (l)
n-1 -1. Comment 1.18. Our comment is similar to the comment given in the context of proposition (1.14) but refers to the generalized Chebyshev primes Ch (l) n . To 

The Chebyshev and Riemann primes

The next subsection relates the definition of the Chebyshev primes to the explicit Von Mangoldt formula. The following one puts in perspective the link of the Chebyshev primes to RH through the introduction of the so-called Riemann primes.

2.1. The Chebyshev primes and the Von Mangoldt explicit formula. From corollary 1.11, one observes that the oscillations of the function ψ(x) -x around 0 are intimely related to the existence of Chebyshev primes. Proposition 2.1. If p n is a Chebyshev prime (of index 1), then ψ(p n ) > p n . In the other direction, if ψ(p n -1) > p n , then p n is a Chebyshev prime (of index 1).

Proof. The proposition 2.1 follows from the inequalities (analogous to that of lemma 1.5)

log p n+1 log ψ(p n+1 ) ≤ K n ≤ log p n+1 log ψ(p n+1 -1)
.

In what regards the position of the (generalized) Chebyshev primes, our numerical experiments lead to Comment 2.3. It is straigthforward to recover the known sequence of Chebyshev primes (already obtained from the definition 1.8 or the conjecture 1.14), from the new conjecture 2.2. Thus, Chebyshev primes (of index 1) Ch m are those primes p m satisfying ψ 0 (p m ) > p m . Similarly, generalized Chebyshev primes of index l > 1 (obtained from the definition 1.16, or the conjecture 1.17) also follow from the conjecture 2.2.

2.2.

Riemann hypothesis and the Riemann primes. Under RH, one has the inequality [START_REF] Edwards | Riemann's zeta function[END_REF] |ψ(x) -x| = O(x 1 2 +ǫ0 ) for every ǫ 0 > 0, and alternative upper bounds exist in various ranges of values of x [START_REF] Schoenfeld | Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II[END_REF]. In the following, we specialize on bounds for ψ(x) -x at power of primes x = p l n . Definition 2. [START_REF] Hardy | An introduction to the theory of numbers[END_REF] Clearly, the subset of the Riemann primes of the ψ-type such that ψ 0 (p l n ) > p l n belongs to the set of Chebyshev primes of the corresponding index l. Since the Riemann primes of the ψ-type maximize ψ(x) -x, it is useful to plot the ratio r (l) = (ψ(p l n ) -p l n )/ p l n . Fig. 2 illustrates this dependence for the Riemann primes of index 1 to 4. One finds that the absolute ratio |r (l) | decreases with the index l: this corresponds to the points of lowest amplitude in Fig. 2. 

|θ(x) -x| < 1 8π √ x log 2 x
In the following, we specialize on bounds for θ(x) -x at power of primes x = p l n . Definition 2.6. The champions (left to right maxima) of the function |θ(p l n ) -p l n | are called here Riemann primes of the θ-type and index l.

Comment 2.7. One numerically gets the Riemann primes of the θ-type and index 1 [10, Sequence A197297] {2, [START_REF] Robin | Sur la difference Li(θ(x))π(x)[END_REF][START_REF] Cusick | Stream ciphers and number theory[END_REF][START_REF] Rosser | Approximate formula for some functions of prime numbers[END_REF]17,29,37,41,53,59,97,127,137,149,191,223,307,331,337,347,419 The Riemann primes of the θ-type maximize θ(x)-x. In Fig. 3, we plot the ratio

s (l) = (θ(p l n ) -p l n )/( 1 8π
p l n log 2 p l n ) at the Riemann primes of index 1 to 4. Again one finds that the absolute ratio |s (l) | decreases with the index l: this corresponds to the points of lowest amplitude in Fig. 3.

In the future, it will be useful to approach the proof of RH thanks to the Riemann primes.

An efficient prime counting function

In this section, one finds that the Riemann prime counting function [START_REF] Weinstein | Prime counting function, from Mathworld[END_REF] By definition, the negative jumps in the function η N (x) may only occur at x+1 ∈ P. For N = 1, they occur at primes p ∈ Ch (the Chebyshev primes: see definition 1.8). For N > 1, negative jumps are numerically found to occur at all x + 1 ∈ P with an amplitude decreasing to zero. We are led to the conjecture

R(x) = ∞ n=1 µ(n) n li(x 1/n ) ∼ π(x) may be much improved by replacing it by R[ψ(x)]. One denotes η N (x) = N n=1 µ(n) n li[ψ(x) 1/n ] -π(x), N ≥ 1, the offset in the new prime counting function. Indeed, η 1 (x) = ǫ ψ(x) .
Conjecture 3.1. Let η N (x) = N n=1 µ(n) n li[ψ(x) 1/n ] -π(x), N > 1.
Negative jumps of the function η N (x) occur at all primes x + 1 ∈ P and lim p→∞ [η N (p)η N (p -1)] = 0. More generally, the jumps of η N (x) at power of primes are described by the following Conjecture 3.2. Let η N (x) be as in conjecture 3.1. Positive jumps of the function η N (x) occur at all power of primes x+1 = p l , p ∈ P and l > 1. Moreover, the jumps are such that η N (p l )-η N (p l -1)-1/l > 0 and lim p→∞ η N (p l )-η N (p l -1)-1/l = 0 A sketch of the function η 3 (n) (for 2 < n < 1500) is given in Fig. 2. One easily detects the large positive jumps at n = p 2 (p ∈ P), the intermediate positive jumps at n = p l (l > 2), and the (very small) negative jumps at primes p. This plot can be compared to that of the function R(n) -π(n) displayed in [START_REF] Weinstein | Prime counting function, from Mathworld[END_REF].

Comment 3.3. The arithmetical structure of η N (x) just described leads to |η N (x)| < η max when N ≥ 3. Table 1 represents the maximum value η max that is reached and the position x max of the extremum, for several small values of N and x < 10 5 . Thus, the function

N n=1 µ(n) n li[ψ(x) 1/n ]
is a good prime counting function with only a few terms in the summation. This is about a fivefold improvement of the accuracy obtained with the standard Riemann prime counting function R(x) (in the range x < 10 4 ) and an even better improvement when x > 10 4 , already with three terms in the expansion. Another illustration of the efficiency of the calculation based on li[ψ(x)] is given in Table 2, that displays values of η 3 (x) at multiples of 10 6 .

It is known that R(x) converges for any x and may also be written as the Gram series [START_REF] Weinstein | Prime counting function, from Mathworld[END_REF] 

R(x) = 1 + k=1 ∞ (log x) k k!kζ(k+1)
. A similar formula is not established here.

Conclusion

This work sheds light on the structure and the distribution of the generalized Chebyshev primes Ch l n arising from the jumps of the function li[ψ(x)]. It is inspired by Robin's work [START_REF] Robin | Sur la difference Li(θ(x))π(x)[END_REF] relating the sign of the functions ǫ θ(x) and ǫ ψ(x) to RH [START_REF] Robin | Sur la difference Li(θ(x))π(x)[END_REF]. Our most puzzling observation is that the non-trivial zeros ρ of the Riemann zeta function are mirrored in the (generalized) Chebyshev primes, whose existence at infinity crucially depends on the Littlewood's oscillation theorem. In addition, a new accurate prime counting function, based on li[ψ(x)] has been proposed. Future work should concentrate on an effective analytic map between the the zeros ρ and the sequence Ch n , in the spirit of our conjecture 2.2, and of our approach of RH through the Riemann primes. 86423,86441,86453,86461,86467,86477,86491,86501,86509,86531,86533,86539,86561,86573,86579,86587,86599,86627,86629,87641,87643,87649,87671,87679,87683,87691,87697,87701,87719,87721,87739,87743,87751,87767,87793,87797,87803,87811,87833,87853,87869,87877,87881,87887,87911,87917,87931,87943,87959,87961,87973,87977,87991,88001,88003,88007,88019,88037,88069,88079,88093,88117,88129,90023,90031,90067,90071,90073,90089,90107,90121,90127,90191,90197,90199,90203,90217,90227,90239,90247,90263,90271,90281,90289,90313,90373,90379,90397,90401,90403,90407,90437,90439,90473,90481,90499,90511,90523,90527,90529,90533,90547,90647,90659,90679,90703,90709,91459,91463,92419,92431,92467,92489,92507,92671,92681,92683,92693,92699,92707,92717,92723,92737,92753,92761,92767 

Fig 1 .

 1 Based on this numerical results, we are led to the conjecture Conjecture 1.12. The function Ch n -p 2n possesses infinitely many zeros. Comment 1.13. The first eleven zeros of Ch n -p 2n occur at the indices {510, 10271, 11259, 11987, 14730, 18772, 18884, 21845, 24083, 33723, 46789} [10, Sequence A1966674] where the corresponding Chebyshev primes are [10, Sequence A1966675] {164051, 231299, 255919, 274177, 343517, 447827, 450451, 528167, 587519, 847607, 1209469}.

Figure 1 .

 1 Figure 1. A plot of the function Ch n -p 2n up to the 10 5 -th prime There exists a real c n depending of the index n, with ψ(p n -1) < c n < ψ(p n ) such that

Figure 2 .

 2 Figure 2. The function (ψ(x) -x)/ √ x at the Riemann primes of the ψ-type and index 1 to 4. Points of index 1 are joined.

Conjecture 2 . 2 . 1 Figure 3 .

 2213 Figure 3. The function (θ(x) -x)/( 1 8π√x log 2 x) at the Riemann primes of the θ-type and index 1 to 4. Points of index 1 are joined.

Figure 4 .

 4 Figure 4. A plot of the function η 3 (x).

  The number of Chebyshev primes less than 10 n , (n = 1, 2, . . .) is the sequence {0, 0, 42, 516, 4498, 41423 . . .} [10, Sequence A196671]. This sequence suggests the density 1 2 π(x) for the Chebyshev primes. The largest gaps between the Chebyshev primes are {4, 26, 42, 126, 146, 162, 176, 470, 542, 1370, 1516, 4412, 8196, 14928, 27542, 30974, 51588, 62906 . . .}, [10, Sequence A196672] and the Chebyshev primes that begin a record gap to the next Chebyshev prime are {109, 113, 139, 317, 887, 1327, 1913, 3089, 8297, 11177, 29761, 45707, 113383, 164893, 291377, 401417, 638371, 1045841 . . .} [10, Sequence A196673].

	1.2. The jumps in the function li[ψ(x)] and the Chebyshev primes.
	Definition 1.8. Let p ∈ P be a odd prime number and the function j ψ(p) = li[ψ(p)] -li[ψ(p -1)]. The primes p such that j ψ(p) < 1 are called here Chebyshev primes Ch n 2 . In increasing order, they are [10, Sequence A196667]
	{109, 113, 139, 181, 197, 199, 241, 271, 281, 283, 293, 313, 317, 443, 449, 461, 463, . . .}.
	Comment 1.9.

  . The champions (left to right maxima) of the function |ψ(p l n ) -p l n | are called here Riemann primes of the ψ-type and index l.

	Comment 2.5. One numerically gets the Riemann primes of the ψ-type and index
	1 [10, Sequence A197185]
	{2, 59, 73, 97, 109, 113, 199, 283, 463, 467, 661, 1103, 1109, 1123, 1129, 1321, 1327, . . .}, the Riemann primes of the ψ-type and index 2 [10, Sequence A197186]
	{2, 17, 31, 41, 53, 101, 109, 127, 139, 179, 397, 419, 547, 787, 997, 1031 . . .}, the Riemann primes of the ψ-type and index 3 [10, Sequence A197187]
	{2, 3, 5, 7, 11, 13, 17, 29, 59, 67, 97, 103, . . .} and the Riemann primes of the ψ-type and index 4 [10, Sequence A197188]
	{2, 5, 7, 11, 13, 17, 31, . . .}.

  , . . .}, the Riemann primes of the θ-type and index 2 [10, Sequence A197298] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47, 59, 73, 97, 107, 109, 139, 179, 233, 263, . . .}, the Riemann primes of the θ-type and index 3 [10, Sequence A197299] {2, 3, 5, 7, 13, 17, 23, 31, 37, 41, 43, 47, 53, 59, 67, 73, 83, 89, 101, 103, . . .} and the Riemann primes of the θ-type and index 4 [10, Sequence A197300] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .}.

Table 1 .

 1 Upper part of the table: maximum error η max in the new prime counting function for x < 10 4 (left hand part) in comparison to the maximum error using the Riemann prime counting function (right hand part). Lower part of the table: as above in the range x < 10 5 .

	N x max	η max x max (R -π) max
	3 6889	1.118 7450	6.174
	4 6889	1.118 7450	6.174
	5 1330 -1.061	9859	-5.506
	6	7 -0.862 7450	5.879
	7 1330 -0.936 9949	-5.609
	10	7 -0.884 7450	5.661
	50 1330 -0.885 9949	-5.557
	3 80090	1.840 87888	15.304
	10 49727 -1.158 59797	-15.729

Table 2 .

 2 Gauss's and Riemann's approximation and the approximation η 3 (x). Compare table III, p. 35 in[START_REF] Edwards | Riemann's zeta function[END_REF].

	x Planat & Solé error Riemann's error Gauss's error
	1, 000, 000	0.79	30	130
	2, 000, 000	-0.13	-8.0	121
	3, 000, 000	1.83	1.8	121
	4, 000, 000	1.28	35	130
	5, 000, 000	0.36	-62	121
	6, 000, 000	2.91	25	121
	7, 000, 000	0.03	-36	130
	8, 000, 000	2.99	-4.7	121
	9, 000, 000	1.73	-51	121
	10, 000, 000	-0.37	90	339

  , 96059, 96079, 96097, 96137, 96149, 96157, 96167, 96179, 96181, 96199, 96211, 96221, 96223, 96233, 96259, 96263, 96269, 96281, 96289, 96293, 96323, 96329, 96331, 96337, 96353, 96377, 96401, 96419, 96431, 96443, 96451, 96457, 96461, 96469, 96479, 96487, 96493, 96497, 96517, 96527, 96553, 96557, 96581, 96587, 96589, 96601, 96643, 96661, 96667, 96671, 96697, 96703, 96731, 96737, 96739, 96749, 96757, 96763, 96769, 96779, 96787, 96797, 96799, 96821, 96823, 96827, 96847, 96851, 96857, 96893, 96907, 96911, 96931, 96953, 96959, 96973, 96979, 96989, 96997, 97001, 97003, 97007, 97021, 97039, 97073, 97081, 97103, 97117, 97127, 97151, 97157, 97159, 97169, 97171, 97177, 97187, 97213, 97231, 97241, 97259, 97283, 97301, 97303, 97327, 97367, 97369, 97373, 97379, 97381, 97387, 97397, 97423, 97429, 97441, 97453, 97459, 97463, 97499, 97501, 97511, 97523, 97547, 97549, 97553, 97561, 97571, 97577, 97579, 97583, 97607, 97609, 97613, 97649, 97651, 97673, 97687, 97711, 97729, 97771, 97777, 97787, 97789, 97813, 97829, 97841, 97843, 97847, 97849, 97859, 97861, 97871, 97879, 97883, 97919, 97927, 97931, 97943, 97961, 97967, 97973, 97987, 98009, 98011, 98017, 98041, 98047, 98057, 98081, 98101, 98123, 98129, 98143, 98179, 98227, 98327, 98389, 98411, 98419, 98429, 98443, 98453, 98459, 98467, 98473, 98479, 98491, 98507, 98519, 98533, 98543, 98561, 98563, 98573, 98597, 98627, 98639, 98641, 98663, 98669, 98717, 98729, 98731, 98737, 98779, 98809, 98893, 98897, 98899, 98909, 98911, 98927, 98929, 98939, 98947, 98953, 98963, 98981, 98993, 98999, 99013, 99017, 99023, 99041, 99053, 99079, 99083, 99089, 99103, 99109, 99119, 99131, 99133, 99137, 99139, 99149, 99173, 99181, 99191, 99223, 99233, 99241, 99251, 99257, 99259, 99277, 99289, 99317, 99347, 99349, 99367, 99371, 99377, 99391, 99397, 99401, 99409, 99431, 99439, 99469, 99487, 99497, 99523, 99527, 99529, 99551, 99559, 99563, 99571, 99577, 99581, 99607, 99611, 99623, 99643, 99661, 99667, 99679, 99689, 99707, 99709, 99713, 99719, 99721, 99733, 99761, 99767, 99787, 99793, 99809, 99817, 99823, 99829, 99833, 99839, 99859, 99871, 99877, 99881, 99901, 99907, 99923, 99929, 99961, 99971, 99989, 99991 ]

	, 92779, 92789,
	92791, 92801, 92809, 92821, 92831, 92849, 92857, 92861, 92863, 92867, 92893, 92899, 92921, 92927, 92941, 92951,
	92957, 92959, 92987, 92993, 93001, 93047, 93053, 93059, 93077, 93083, 93089, 93097, 93103, 93113, 93131, 93133,
	93139, 93151, 93169, 93179, 93187, 93199, 93229, 93239, 93241, 93251, 93253, 93257, 93263, 93281, 93283, 93287,
	93307, 93319, 93323, 93329, 93337, 93371, 93377, 93383, 93407, 93419, 93427, 93463, 93479, 93481, 93487, 93491,
	93493, 93497, 93503, 93523, 93529, 93553, 93557, 93559, 93563, 93581, 93601, 93607, 93629, 93637, 93683, 93701,
	93703, 93719, 93739, 93761, 93763, 93787, 93809, 93811, 93827, 93851, 93893, 93901, 93911, 93913, 93923, 93937,
	93941, 93949, 93967, 93971, 93979, 93983, 93997, 94007, 94009, 94033, 94049, 94057, 94063, 94079, 94099, 94109,
	94111, 94117, 94121, 94151, 94153, 94169, 94201, 94207, 94219, 94229, 94253, 94261, 94273, 94291, 94307, 94309,
	94321, 94327, 94331, 94343, 94349, 94351, 94379, 94397, 94399, 94421, 94427, 94433, 94439, 94441, 94447, 94463,
	94477, 94483, 94513, 94529, 94531, 94541, 94543, 94547, 94559, 94561, 94573, 94583, 94597, 94603, 94613, 94621,
	94649, 94651, 94687, 94693, 94709, 94723, 94727, 94747, 94771, 94777, 94781, 94789, 94793, 94811, 94819, 94823,
	94837, 94841, 94847, 94849, 94873, 94889, 94903, 94907, 94933, 94949, 94951, 94961, 94993, 94999, 95003, 95009,
	95021, 95027, 95063, 95071, 95083, 95087, 95089, 95093, 95101, 95107, 95111, 95131, 95143, 95153, 95177, 95189,
	95191, 95203, 95213, 95219, 95231, 95233, 95239, 95257, 95261, 95267, 95273, 95279, 95287, 95311, 95317, 95327,
	95339, 95369, 95383, 95393, 95401, 95413, 95419, 95429, 95441, 95443, 95461, 95467, 95471, 95479, 95483, 95507,
	95527, 95531, 95539, 95549, 95561, 95569, 95581, 95597, 95603, 95617, 95621, 95629, 95633, 95651, 95701, 95707,
	95713, 95717, 95723, 95731, 95737, 95747, 95773, 95783, 95789, 95791, 95801, 95803, 95813, 95819, 95857, 95869,
	95873, 95881, 95891, 95911, 95917, 95923, 95929, 95947, 95957, 95959, 95971, 95987, 95989, 96001, 96013, 96017,
	96043, 96053