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We study the radiative heat transfer and the Casimir-Lifshitz force occurring between two bodies in a system
out of thermal equilibrium. We consider bodies of arbitrary shape and dielectric properties, held at two different
temperatures and immersed in environmental radiation at a third different temperature. We derive explicit
closed-form analytic expressions for the correlations of the electromagnetic field and for the heat transfer and
Casimir-Lifshitz force in terms of the bodies’ scattering matrices. We then consider some particular cases which
we investigate in detail: the atom-surface and the slab-slab configurations.
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I. INTRODUCTION

The interaction of an electromagnetic field with bodies
gives rise to several effects, among which are the radiative
heat transfer [1] and the Casimir-Lifshitz force [2–4]. These
two effects are intimately connected and can be described by
a common formalism. If a definite temperature is assigned
to the bodies and radiation, two main situations are possible.
The radiation can be at thermal equilibrium with the matter
everywhere: in this case the heat transfer is identically zero,
whereas the Casimir-Lifshitz force assumes its equilibrium
value. If, instead the radiation is not at thermal equilibrium
with the matter, both the appearance of heat transfer between
the bodies and a variation of the forces acting on them occur.

In considering the phenomena of heat transfer and Casimir-
Lifshitz forces, the bodies’ shapes, geometric configurations,
and dielectric functions are main issues, together with the ther-
mal configuration of the system. A general framework used in
solving such problems is that of macroscopic electrodynamics
[4–6]. The Casimir-Lifshitz interaction for systems at thermal
equilibrium (at T � 0) has been much studied in the last 60
years, a consistent and almost complete theoretical formulation
has been reached, and it has been experimentalally observed
[7]. In particular, much more recently, the thermal component
of the force at thermal equilibrium has been measured [8].
In contrast, systems out of thermal equilibrium have been
much less explored, and mainly simple configurations and
idealized cases (such as infinite bodies) have been considered.
Nonetheless, systems out of thermal equilibrium have shown
remarkable features, already the object of theoretical and
experimental investigations concerning both the force [9–19]
and the heat transfer [20–27]. This is the case of the atom-
surface force, where the absence of particular cancellations
among the different components of the radiation out of
thermal equilibrium leads to large quantitative and qualitative
modifications such as new asymptotic behaviors and the
possibility of repulsive interactions [9]. These new features
have allowed the first experimental observation of thermal
effects [12]. Recently, motivated by the necessity of developing
a more complete theory for systems out of thermal equilibrium,
several studies have been developed [28–33]. In particular,

a general closed-form analytic expression for both the heat
transfer and Casimir-Lifshitz interactions has been derived,
valid for arbitrary body shapes and dielectric functions, and
arbitrary temperatures of the bodies and of the environment
[28]. For this purpose a scattering-matrix approach has been
used. This approach has already been successfully employed
to calculate Casimir-Lifshitz interactions [16,28,34,35]: its
main advantage with respect to the standard Green-function
formulation, where the electromagnetic problem needs to
be solved for the complete system, consists in requir-
ing an independent solution for each body composing the
system.

In this paper we provide a systematic derivation for the
heat transfer and for the Casimir-Lifshitz force out of thermal
equilibrium between two bodies at two different temperatures,
immersed in external environmental radiation characterized by
another temperature [28]. Particular attention is devoted to the
expression for the average values of the electromagnetic field
in terms of the scattering operators. The general expression is
finally analytically and numerically applied to several simple
but already interesting configurations, by calculating the heat
transfer and the force for slab-slab and atom-slab systems in an
out-of-equilibrium scenario. The roles of finite-size effects and
of the environmental temperature are shown to be qualitatively
and quantitatively relevant.

The organization of the paper is the following. In Sec. II we
present the physical system, the hypotheses, and the general
theoretical framework. In Secs. III and IV we evaluate the
analytical expression and the flux of the two main ingredients
of our calculation: the Maxwell stress tensor and the Poynting
vector. Section V is dedicated to the definition of the reflection
and transmission operators associated with each body. Then,
in Sec. VI the correlators of the fields emitted by the bodies
and by the environment are expressed as a function of the
scattering operators. This allows us to calculate, in Sec. VII,
the fluxes of the stress tensor and the Poynting vector in any
region and then the final expressions of the Casimir-Lifshitz
force and the heat transfer. This expression is first applied to
the case of a single body alone out of thermal equilibrium in
Sec. VIII. Then, in Sec. IX, we discuss the case of the force
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acting on a neutral atom in front of a planar slab, as well as
both the force and the heat transfer in a two-slab configuration.
We finally give some concluding remarks.

II. PHYSICAL SYSTEM AND ELECTROMAGNETIC FIELD

Let us start by describing the geometrical configuration
of our physical system. We are going to deal with two
bodies, labeled with 1 and 2. From a geometrical point of
view we will assume that the two bodies are separated by
a planar surface. This hypothesis is not strictly necessary
in a scattering-matrix approach but it is nonetheless verified
in all the relevant experimental configurations such as, for
example, two parallel planes, a sphere or a cylinder in front
of a plane, two cylinders, and an atom in the proximity of
a planar surface. At the same time, this assumption allows
us to choose a convenient plane-wave decomposition for the
electric and magnetic fields, leading in this way to quite simple
expressions for the Casimir-Lifshitz force and the heat transfer.
To be more specific, the geometry of our system is depicted
in Fig. 1: the bodies 1 and 2 are respectively enclosed in
the strips z1 < z < z2 and z3 < z < z4, where z2 < z3. As a
consequence, any plane z = z̄ with z2 < z̄ < z3 separates the
two bodies, and three regions A, B, and C are defined. Our
geometrical description coherently includes as a limiting case
the possibility of bodies having infinite thickness, taking for
example for body 1 (body 2) the limit z1 → −∞ (z4 → +∞).

As far as the thermodynamical description of our system
is concerned, we will assume that we are able to define
for body 1 (2) a temperature T1 (T2) and that it is in local
thermal equilibrium, i.e., the temperature of each body is
assumed to be constant. Moreover, we assume that the two
bodies are immersed in a vacuum environment (having ε = 1)
characterized by a third temperature T3. We will make the
further important assumption that the composite system is in
a stationary regime, which means that the three temperatures
remain constant in time.

Let us now first describe the general framework of the
calculation. We are interested in calculating the force F acting
on either of the two bodies, as well as the heat transfer H into
it, defined as the energy it absorbs per unit of time. If we focus
for example on body 1, these two quantities can be expressed

FIG. 1. (Color online) The geometry of the system. The bodies
are separated by the strip z2 � z � z3. This defines the three regions
A, B, and C.

in the form of surface integrals through a closed surface �

enclosing the body 1,

F =
∫

�

〈T (R,t)〉sym · d�,

(1)
H = −

∫
�

〈S(R,t)〉sym · d�,

of the quantum symmetrized average of the Maxwell stress
tensor T (having Cartesian components Tij , with i,j = x,y,z)
and the Poynting vector S. These quantities are classically
defined in SI units as

Tij (R,t) = ε0{Ei(R,t)Ej (R,t) + c2Bi(R,t)Bj (R,t)

− 1
2 [E2(R,t) + c2B2(R,t)]δij }, (2)

S(R,t) = ε0c
2E(R,t) × B(R,t),

and the quantum symmetrized average value 〈AB〉sym is
defined as

〈AB〉sym = 1
2 (〈AB〉 + 〈BA〉), (3)

where 〈A〉 is an ordinary quantum average value. Before
working on Eq. (1) it is evident that a complete description
of the electric and magnetic fields in any region is mandatory.

In our coordinate system the z axis clearly represents a
privileged direction, since it is the axis perpendicular to the
plane separating the two bodies. Inspired by this property,
for the mode decomposition of our electromagnetic field in
any region we replace the common plane-wave representation
in which a mode of the field is represented by the three-
dimensional wave vector K = (kx,ky,kz) by a description
in terms of the transverse wave vector k = (kx,ky) and the
frequency ω. The result of this choice is that in this approach
the z component kz of the wave vector becomes a dependent
variable, defined by the relation k2

z = ω2

c2 − k2. Since this
relation is quadratic in kz, we are obliged to introduce explicitly
a variable φ taking the values φ = ±1 (with shorthand notation
φ = ± in the expressions for the polarization vectors and field
amplitudes) corresponding to the sign of kz. As a consequence,
the complete wave vector will be denoted as

Kφ = (k,φkz) = (kx,ky,φkz),
(4)

kz =
√

ω2

c2
− k2.

For k � ω
c

, this relation gives a real value of kz, and then
a propagative wave, for which φ represents the direction of
propagation along the z axis. In contrast, for k > ω

c
, kz becomes

imaginary, and we get an evanescent wave whose amplitude
depends on z: in this case φ is the direction along which
the amplitude of the evanescent wave decays. Moreover, we
will as usual need an index p associated with the polarization,
taking the values p = 1,2 corresponding to TE and TM modes,
respectively. Finally, in our approach a mode of the field is
identified by the set of variables (ω,k,p,φ).

The expression for the electric field in any region can be
first given in the form of a frequency decomposition

E(R,t) = 2Re

[∫ +∞

0

dω

2π
exp(−iωt)E(R,ω)

]
, (5)
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where a single-frequency component has the following mode
decomposition:

E(R,ω) =
∑
φ,p

∫
d2k

(2π )2
exp(iKφ · R)ε̂φ

p(k,ω)Eφ
p (k,ω). (6)

From now on the sum on φ runs over the values {+,−} and
the sum on p over the values {1,2}. The quantity E

φ
p (k,ω)

represents the amplitude of the electric field associated
with a given mode (ω,k,p,φ). For the polarization vectors
ε̂φ

p(k,ω) appearing in Eq. (6) we adopt the following standard
definitions:

ε̂
φ

TE(k,ω) = ẑ × k̂ = 1

k
(−ky x̂ + kx ŷ),

(7)
ε̂

φ

TM(k,ω) = c

ω
ε̂

φ

TE(k,ω) × Kφ = c

ω
(−kẑ + φkzk̂),

where x̂, ŷ, and ẑ are the unit vectors along the directions x,
y, and z respectively and k̂ = k/k. The unit vectors defined in
(7) have the following useful properties:

ε̂
φ

TE(−k,ω) = −ε̂
φ

TE(k,ω), ε̂
−φ

TE (k,ω) = ε̂
φ

TE(k,ω),[
ε̂

φ

TE(k,ω)
]∗ = ε̂

φ

TE(k,ω), ε̂
φ

TM(−k,ω) = ε̂
−φ

TM(k,ω),

[
ε̂

φ

TM(k,ω)
]∗ =

{
ε̂

φ

TM(k,ω), kz ∈ R,

ε̂
−φ

TM(k,ω), kz /∈ R.
(8)

The expression for the magnetic field can be easily deduced
from Maxwell’s equations, and is given by

B(R,ω) = 1

c

∑
φ,p

∫
d2k

(2π )2
exp(iKφ · R)β̂

φ

p(k,ω)Eφ
p (k,ω),

(9)

where

β̂
φ

p(k,ω) = (−1)p ε̂
φ

S(p)(k,ω). (10)

S(p) is the function which switches between the two polariza-
tions, acting as S(1) = 2 and S(2) = 1. We are going to gather
the expressions (6) and (9) for the electric and magnetic fields
at a given frequency ω in a column vector and write(

E(R,ω)
cB(R,ω)

)
=
∑
φ,p

∫
d2k

(2π )2
exp(iKφ · R)

× ε̂
φ

A(p)(k,ω)

(
1

(−1)p

)
Eφ

p (k,ω), (11)

where in the right-hand side the 1 and the (−1)p correspond
to the electric and magnetic fields, respectively, and we have
introduced the vectorial index

A(p) =
(

p

S(p)

)
. (12)

Here again the upper (lower) index is associated with the
electric (magnetic) field.

Now that the expressions for the electric and magnetic
fields are explicitly given in terms of a set of field amplitudes
E

φ
p (k,ω), we are ready to work, in the next sections, on the

explicit expressions for the Maxwell stress tensor and Poynting
vector.

III. THE MAXWELL STRESS TENSOR

A. General expression for the tensor

From the definition of the stress tensor (2) it is clear that we
need to calculate explicitly the quantities EiEj and BiBj for
i,j = x,y,z and as a further step their symmetrized quantum
average. Using the compact vectorial notation introduced in
Eq. (11), we have

(
EiEj

c2BiBj

)
=
∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2

∫ +∞

0

dω

2π

×
∫ +∞

0

dω′

2π

(
1

(−1)p+p′

)
exp[i(k − k′) · r]

× exp[i(φkz − φ′k
′∗
z )z] exp[−i(ω − ω′)t]

× {Eφ
p (k,ω)Eφ′†

p′ (k′,ω′)
[
ε̂

φ

A(p)(k,ω)
]
i

× [ε̂φ′∗
A(p′)(k

′,ω′)
]
j
+ E

φ′†
p′ (k′,ω′)Eφ

p (k,ω)

× [ε̂φ

A(p)(k,ω)
]
j

[
ε̂

φ′∗
A(p′)(k

′,ω′)
]
i

}+ Z, (13)

where the fields implicitly depend on (R,t), and Z generically
gathers all the terms proportional to EE or E†E† whose
average quantum value is zero. Having in mind the transition
to the quantum symmetrized average values, we now give
the following definition for the commutators Cφφ′

of the field
amplitudes:

〈
Eφ

p (k,ω)Eφ′†
p′ (k′,ω′)

〉
sym = 1

2

〈
E

φ
p (k,ω)Eφ′†

p′ (k′,ω′)

+E
φ′†
p′ (k′,ω′)Eφ

p (k,ω)
〉

= 2πδ(ω − ω′)〈p,k|Cφφ′ |p′,k′〉,
(14)

where we stress the fact that in general two modes of the
field propagating in opposite directions do not necessarily
commute. Moreover, we have explicitly inserted the con-
servation of frequency: since in our system no dynamics
is considered, the field amplitudes at different frequencies
necessarily commute as a consequence of time invariance.
By virtue of this conservation any correlation function of
the electromagnetic field analogous to (14) is a function of a
single frequency ω (and not of both ω and ω′), which will not
be explicitly written from now on. Moreover, in Eq. (14) we
have expressed the correlators as matrix elements of a matrix
Cφφ′

: in our notation, the matrices are defined on the space
(p,k) with p = 1,2 and k ∈ R2, and thus the product of two
matrices A and B is given by

〈p,k|AB|p′,k′〉 =
∑
p′′

∫
d2k′′

(2π )2
〈p,k|A|p′′,k′′〉

× 〈p′′,k′′|B|p′,k′〉, (15)

where the matrices A and B are both calculated at the same
fixed frequency ω.
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Using Eq. (13) and the definition (14) we have

〈(
EiEj

c2BiBj

)〉
sym

=
∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2

∫ +∞

0

dω

2π

×
(

1
(−1)p+p′

)
exp[i(k − k′) · r]

× exp[i(φkz − φ′k∗
z )z]〈p,k|Cφφ′ |p′,k′〉

× {[ε̂φ

A(p)(k,ω)
]
i

[
ε̂

φ′∗
A(p′)(k

′,ω)
]
j

+ [ε̂φ

A(p)(k,ω)
]
j

[
ε̂

φ′∗
A(p′)(k

′,ω)
]
i

}
. (16)

It is important to note that the correlator Cφφ′
defined in (14)

and appearing in (16) depends on the region (A, B, or C) in
which the average is calculated: this information is contained
in the z dependence of the fields in the left-hand side of
Eq. (16), as well as in the z coordinate explicitly present in its
right-hand side. As we will see in Sec. III B, we only need to
evaluate the symmetrized average value of the flux of the iz

components (i = x,y,z) of the electromagnetic stress tensor.
These quantities can be calculated using Eqs. (2) and (16). In
the case of Tzz we have

〈Tzz〉sym = ε0

∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2

∫ +∞

0

dω

2π

× exp[i(k − k′) · r] exp[i(φkz − φ′k
′∗
z )z]

×〈p,k|Cφφ′ |p′,k′〉{[ε̂φ
p (k,ω)

]
z

[
ε̂

φ′∗
p′ (k′,ω)

]
z

− [ε̂φ
p (k,ω)

]
x

[
ε̂

φ′∗
p′ (k′,ω)

]
x

− [ε̂φ
p (k,ω)

]
y

[
ε̂

φ′∗
p′ (k′,ω)

]
y

+ (−1)p+p′[[
ε̂

φ

S(p)(k,ω)
]
z

[
ε̂

φ′∗
S(p′)(k

′,ω)
]
z

− [ε̂φ

S(p)(k,ω)
]
x

[
ε̂

φ′∗
S(p′)(k

′,ω)
]
x

−[ε̂φ

S(p)(k,ω)
]
y

[
ε̂

φ′∗
S(p′)(k

′,ω)
]
y

]}
, (17)

whereas for Tmz (m = x,y) a straightforward calculation gives

〈Tmz〉sym = ε0

∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2

∫ +∞

0

dω

2π

× exp[i(k − k′) · r] exp[i(φkz − φ′k
′∗
z )z]

×〈p,k|Cφφ′ |p′,k′〉{[[ε̂φ
p (k,ω)

]
m

[
ε̂

φ′∗
p′ (k′,ω)

]
z

+ (−1)p+p′[
ε̂

φ

S(p)(k,ω)
]
m

[
ε̂

φ′∗
S(p′)(k

′,ω)
]
z

]
+ [m � z]

}
, (18)

where the symbol m � z represents two more terms obtained
by interchanging in the first two m with z. Let us make some
comments on these expressions. First we note that, even if the
stress tensor is in general a function of time, this is not true for
its quantum average value. In addition, this is a function of the
correlators of the electric-field amplitudes (propagating either
in the same or in opposite directions) and of the components
of the polarization unit vectors. As we will see in the next
section, the components (17) and (18) are the only ones we

need to calculate all the components of the force acting on the
two bodies.

B. Flux of the stress tensor in terms of field correlators

As anticipated, the electromagnetic force acting on a given
body inside a volume region can be calculated by taking the
flux of the stress tensor through a closed surface enclosing this
volume. As a consequence, the m component of the force on
a given body is given by the flux

Fm =
∫

�

〈Tmj 〉sym d�j , (19)

where summation over repeated indices is assumed and �

represents any closed box entirely enclosing the body. Let
us choose for example the box depicted in Fig. 2, i.e., a
parallelepiped having one side of length D and as a base
orthogonal to the z axis a square of side L. According to the
definition of Tij , the m component of the force (m = x,y,z) is
given in this case by the flux of Tmz through the two surfaces
orthogonal to the z axis, plus the fluxes of Tmx and Tmy through
the surfaces of the parallelepiped orthogonal to the x and y

axes, respectively. Taking now the limit L → +∞, we see
that the surface of the two bases orthogonal to the z axis
diverges more rapidly (as L2) than the other four surfaces (as
L). As a consequence, we deduce that in order to calculate
Fm one simply needs to calculate the flux of Tmz on the
surface (which has now become a plane) in region A and
subtract this result from the flux of Tmz through the plane
in region B. Moreover, due to the arbitrariness of the box,
these two fluxes must not depend on the z coordinates of the
respective planes, even if in general the stress tensor depends
on z.

From this discussion we conclude that we need the flux
of Tmz through a plane z = z̄. We will then have z̄ < z1 for
region A, z2 < z̄ < z3 for region B, and z̄ > z4 for region C.
Integrating Eq. (17) on the plane z = z̄ and noticing that this

(A) (B) (C)

FIG. 2. (Color online) The box chosen for the calculation of the
force acting on body 1.
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gives a Dirac delta (2π )2δ(k − k′), we get the flux of Tzz

expressed as a function of the field correlators:

	z(z̄) =
∫

z=z̄

d2r 〈Tzz〉sym

= ε0

∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫ +∞

0

dω

2π
exp[i(φkz − φ′k∗

z )z̄]

× {(ε̂φ
p

)
z

(
ε̂

φ′∗
p′
)
z
− (ε̂φ

p

)
x

(
ε̂

φ′∗
p′
)
x
− (ε̂φ

p

)
y

(
ε̂

φ′∗
p′
)
y

+ (−1)p+p′[(
ε̂

φ

S(p)

)
z

(
ε̂

φ′∗
S(p′)
)
z
− (ε̂φ

S(p)

)
x

(
ε̂

φ′∗
S(p′)
)
x

− (ε̂φ

S(p)

)
y

(
ε̂

φ′∗
S(p′)
)
y

]}〈p,k|Cφφ′ |p′,k〉, (20)

where all the polarization unit vectors are calculated in (k,ω).
For the other two components of the stress tensor (m = x,y)
we have, integrating Eq. (18),

	m(z̄) =
∫

z=z̄

d2r 〈Tmz〉sym

= ε0

∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫ +∞

0

dω

2π
exp[i(φkz − φ′k∗

z )z̄]

× {[(ε̂φ
p

)
m

(
ε̂

φ′∗
p′
)
z
+ (−1)p+p′(

ε̂
φ

S(p)

)
m

(
ε̂

φ′∗
S(p′)
)
z

]
+ [m � z]

}〈p,k|Cφφ′ |p′,k〉. (21)

From the definitions (7) of the polarization unit vectors we
deduce that

(
ε̂φ
p

)
z

(
ε̂

φ′∗
p′
)
z
− (ε̂φ

p

)
x

(
ε̂

φ′∗
p′
)
x
− (ε̂φ

p

)
y

(
ε̂

φ′∗
p′
)
y

+ (−1)p+p′[(
ε̂

φ

S(p)

)
z

(
ε̂

φ′∗
S(p′)
)
z
− (ε̂φ

S(p)

)
x

(
ε̂

φ′∗
S(p′)
)
x

− (ε̂φ

S(p)

)
y

(
ε̂

φ′∗
S(p′)
)
y

] = −δpp′
c2

ω2

(
k2
z + φφ′|kz|2

)
(22)

and

[(
ε̂φ
p

)
m

(
ε̂

φ′∗
p′
)
z
+ (−1)p+p′(

ε̂
φ

S(p)

)
m

(
ε̂

φ′∗
S(p′)
)
z

]+ [m � z]

= −δpp′
c2km

ω2
(φkz + φ′k∗

z ). (23)

We now observe that

k2
z + φφ′|kz|2 =

{
k2
z + |kz|2, φ = φ′,

k2
z − |kz|2, φ 	= φ′,

(24)

φkz + φ′k∗
z =

{
2φ Re kz, φ = φ′,

2iφ Im kz, φ 	= φ′.

For both expressions, in the former case (φ = φ′) only the
contribution coming from propagative waves plays a role,
while in the latter only evanescent waves are relevant. At
the same time, for both expressions (20) and (21), and for
both φ = φ′ and φ 	= φ′, the exponential term containing z̄

disappears, as expected: whereas the stress tensor depends on
z, this is not the case for its flux calculated on a plane having
an arbitrary position z = z̄, provided that z = z̄ remains in a

given region (A, B, or C). Finally, the flux of Tmz on the plane
z = z̄ can be cast for any m = x,y,z in the form

	m(z̄) = −
∑

p

∫
d2k

(2π )2

⎛
⎝∑

φ=φ′

∫ +∞

ck

dω

2π
+
∑
φ 	=φ′

∫ ck

0

dω

2π

⎞
⎠

× 2ε0c
2kz

ω2
〈p,k|Cφφ′ |p,k〉 ×

{
φkm, m = x,y,

kz, m = z.

(25)

This equation represents the main result of this section,
describing the flux of the component Tmz of the stress tensor
as a function of the field correlators. As we have shown
before, this quantity, together with the explicit knowledge of
the correlators in any region of our system which will be
discussed in Sec. VI, is sufficient to deduce any component
of the force acting on the two bodies. From Eq. (25) we
deduce that the flux is written as the sum of two separate
contributions, coming from the propagative and evanescent
sectors, respectively: the former depends on the correlators
between the field propagating in a direction φ and itself, whilst
the latter implies the correlators of counterpropagating fields.
We also remark that the quantity Cφφ′

is the only term in
Eq. (25) depending on the region in which the flux is calculated,
which means on the position of z̄. Finally, we observe that the
result deduced for the flux of Tzz [m = z in Eq. (25)] coincides
with the expression obtained in [16].

IV. THE POYNTING VECTOR

A. General expression for the vector

Let us now focus our attention on the Poynting vector de-
fined in Eq. (2). In order to evaluate its quantum symmetrized
average we first need to work out the generic field product
EiBj . Using the same conventions as in the last section we
obtain(

cEiBj

cBjEi

)
=
∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2

∫ +∞

0

dω

2π

∫ +∞

0

dω′

2π

×
{

exp[i(Kφ − K
′φ′∗) · R] exp[−i(ω − ω′)t]

× (−1)p
′
(

E
φ
p (k,ω)Eφ′†

p′ (k′,ω′)
E

φ′†
p′ (k′,ω′)Eφ

p (k,ω)

)[
ε̂φ
p (k,ω)

]
i

× [ε̂φ′∗
S(p′)(k

′,ω′)
]
j
+ exp[i(−Kφ∗ + K

′φ′
) · R]

× exp[i(ω − ω′)t](−1)p
′
(

E
φ†
p (k,ω)Eφ′

p′ (k′,ω′)
E

φ′
p′ (k′,ω′)Eφ†

p (k,ω)

)

× [ε̂φ∗
p (k,ω)

]
i

[
ε̂

φ′
S(p′)(k

′,ω′)
]
j

}
+ Z, (26)

from which we immediately get

〈cEiBj 〉sym =
∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2

∫ +∞

0

dω

2π

× exp[i(k − k′) · r] exp[i(φkz − φ′k∗
z )z]

×〈p,k|Cφφ′ |p′,k′〉{(−1)p
′[
ε̂φ
p (k,ω)

]
i
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× [ε̂φ′∗
S(p′)(k

′,ω)
]
j
+ (−1)p

[
ε̂

φ

S(p)(k,ω)
]
j

× [ε̂φ′∗
p′ (k′,ω)

]
i

}
(27)

with the same conventions as in Eq. (13).

B. Flux of the Poynting vector in terms of field correlators

We now observe that, by virtue of the same discussion about
the closed surface � given in the last section, we only need
the flux of the z component of the Poynting vector in order to
evaluate the heat flux on one of the two bodies. For the flux of
Sz on the plane z = z̄ we have

ϕ(z̄) =
∫

z=z̄

d2r 〈Sz〉sym

= ε0c
∑
φφ′

∑
pp′

∫
d2k

(2π )2

∫ +∞

0

dω

2π
exp[i(φkz − φ′k∗

z )z̄]

× {[(−1)p
′(
ε̂φ
p

)
x

(
ε̂

φ′∗
S(p′)
)
y
+ (−1)p

(
ε̂

φ

S(p)

)
y

(
ε̂

φ′∗
p′
)
x

]
− [x � y]

}〈p,k|Cφφ′ |p′,k〉, (28)

where we stress the fact that the two terms obtained by
interchanging x and y must in this case be changed in sign.
We then obtain[

(−1)p
′(
ε̂φ
p

)
x

(
ε̂

φ′∗
S(p′)
)
y
+ (−1)p

(
ε̂

φ

S(p)

)
y

(
ε̂

φ′∗
p′
)
x

]− [x � y]

= δpp′
c

ω
(φkz + φ′k∗

z ) (29)

and finally cast the expression of the flux of the z component
of the Poynting vector in the form

ϕ(z̄) =
∑

p

∫
d2k

(2π )2

⎛
⎝∑

φ=φ′

∫ +∞

ck

dω

2π
+
∑
φ 	=φ′

∫ ck

0

dω

2π

⎞
⎠

× 2ε0c
2φkz

ω
〈p,k|Cφφ′ |p,k〉. (30)

This expression is the analog for the Poynting vector of
Eq. (25). It constitutes, together with the expression of the
matrix elements of Cφφ′

at any frequency, the main ingredient
in the calculation of the heat transfer onto the two bodies.

V. SCATTERING FORMALISM: REFLECTION AND
TRANSMISSION OPERATORS

The quantities Cφφ′
appearing in Eqs. (25) and (30) and

defined in Eq. (14) are the correlators of the total fields in
each region. In our problem these fields result from the ones
emitted by the two bodies and the environmental field, as
well as from all the possible scattering processes undergone
in the presence of the two bodies 1 and 2. We then need to
introduce a set of operators describing the scattering produced
in the presence of a single arbitrary body. Let us suppose we
have a body located in the region z1 < z < z2. Let us further
assume that an external field is impinging on our body, either
from its left or from its right side. This field will be scattered
upon the body, producing in this way new components of the
field on both sides of the body. In particular, the field coming
from the left (right) will produce a reflected field propagating
toward the left (right) on the left (right) side, and a transmitted

(a) (b)

FIG. 3. (Color online) The definition of the reflection and
transmission matrices.

one propagating toward the right (left) on the right (left) side.
The two possible configurations, depending on the direction
of propagation of the incoming field, are represented in Fig. 3.
The reflection and transmission matrices R± and T ± are the
operators linking each mode of the outgoing fields to the
incoming ones.

In particular, considering the case of a field coming from
the left side, the incoming field

E(in)+(R,t) = 2Re

[∑
p

∫ +∞

0

dω

2π

∫
d2k

(2π )2
exp[iK+ · R]

× exp[−iωt]ε̂+
p (k,ω)E(in)+

p (k,ω)

]
(31)

will result in a reflected (on the left) and a transmitted (on the
right) field defined by

E(re)−(R,t) = 2 Re

[∑
p

∫ +∞

0

dω

2π

∫
d2k

(2π )2
exp[iK− · R]

× exp[−iωt]ε̂−
p (k,ω)E(re)−

p (k,ω)

]
, (32)

E(tr)+(R,t) = 2 Re

[∑
p

∫ +∞

0

dω

2π

∫
d2k

(2π )2
exp[iK+ · R]

× exp[−iωt]ε̂+
p (k,ω)E(tr)+

p (k,ω)

]
. (33)

As remarked before, since the scattering process is stationary,
the frequency is conserved. We are thus able to define
the operators R− and T + through the following relations
involving the amplitudes defined in Eqs. (31), (32), and (33):

E(re)−
p (k,ω) =

∑
p′

∫
d2k′

(2π )2
〈p,k|R−|p′,k′〉E(in)+

p′ (k′,ω)

(34)

E(tr)+
p (k,ω) =

∑
p′

∫
d2k′

(2π )2
〈p,k|T +|p′,k′〉E(in)+

p′ (k′,ω),

(35)
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connecting each mode of the outgoing fields to all the modes
of the incoming one at the same frequency ω. In analogy with
the field correlators, we are going to drop, for the sake of
simplicity, the dependence on the frequency ω in the reflection
and transmission operators. A perfectly analogous procedure
leads to the definition of the scattering operators R− and T +.

Using the formalism we have just introduced, the case of
the absence of a given body is obtained, as far as its scattering
operators are concerned, by imposing

Rφ = 0, T φ = 1. (36)

As we will see later, it is convenient to introduce a modified
transmission operator which, in analogy with the reflection
operator, goes to zero as well in the absence of the body. We
thus define

T φ = 1 + T̃ φ, (37)

writing the transmission operator as the sum of the identity
describing the incoming field propagating unmodified on the
other side of the body and of a new operator T̃ φ accounting
only for the scattered part of the field. In the limit of the absence
of the body, we have as desired T̃ φ = 0.

VI. FIELD CORRELATORS

In order to proceed further and to calculate the force and
heat transfer on body 1, we need an expression for the correla-
tors 〈p,k|Cφφ′ |p′,k′〉, defined in Eq. (14), in each region of our
system. These correlators will be expressed as a function of
the correlators of the field emitted by each body by means of
the scattering operators introduced in Sec. V. In this section
we will first address the characterization of the single-body
field correlators (with this expression we refer both to the
bodies 1 and 2 and to the environment) and immediately
after express the total-field correlators as a function of these
quantities through the scattering operators. We will denote by
E

(γ )φ
p (k,ω) each mode of the total field propagating in the

direction φ in the region γ = A,B,C, as shown in Fig. 1. In
order to calculate the fluxes (25) and (30) in the three regions,
we need to know the expression for the the correlators Cφφ′

γ

defined by〈
E(γ )φ

p (k,ω)E(γ )φ′†
p′ (k′,ω′)

〉
sym = 2πδ(ω − ω′)

× 〈p,k|Cφφ′
γ |p′,k′〉. (38)

For a system like the one in Fig. 1 at thermal equilibrium
at temperature T with the environment, the correlators of the
total electromagnetic field outside the body follow from the
fluctuation-dissipation theorem [36]:〈

E
(tot)
i (R,ω)E(tot)†

j (R′,ω′)
〉
sym = 2πδ(ω − ω′)

2

ω
N (ω,T )

× ImGij (R,R′,ω), (39)

where

N (ω,T ) = h̄ω

2
coth

(
h̄ω

2kBT

)
= h̄ω

[
1

2
+ n(ω,T )

]
(40)

with

n(ω,T ) = 1

eh̄ω/kBT − 1
. (41)

In Eq. (39) i and j refer to the Cartesian components of the field
and Gij (R,R′,ω) is the ij component of the Green function of
the system, the solution of the differential equation (see also
Appendix C)[

∇R × ∇R − ω2

c2
ε(ω,R)

]
G(R,R′,ω) = ω2

ε0c2
I δ(R − R′),

(42)

where I is the identity dyad and ε(ω,R) the dielectric
function of the medium. The property (39) does not hold in
the case of a general nonequilibrium configuration. In our
particular system, we have assumed that for each body a local
temperature can be defined and remains constant in time. This
assumption reasonably leads to the hypothesis that the part of
the total field emitted by each body is the same as it would be
if the body were at thermal equilibrium with the environment
at its own temperature. In other words, the emission process
is not much influenced by the modification of the external
radiation impinging on the body. This hypothesis implies that
the correlators of the field emitted by each body can still be
deduced using the fluctuation-dissipation theorem Eq. (39) at
its local temperature. We note that the limits of validity of
this hypothesis, already used in [1,9,13,16,37], require further
experimental and theoretical investigations.

We are now ready to write down the expressions for the
correlators of the environmental field as well as the fields
emitted by the bodies at local thermal equilibrium.

A. Correlators of radiating bodies and environment

1. Environmental field

The correlators of the environmental radiation in equilib-
rium at temperature T3 are well known: they are given, for
φ,φ′ ∈ {+,−}, by〈
E(3)φ

p (k,ω)E(3)φ′†
p′ (k′,ω′)

〉
sym

= δφ,φ′
ω

2ε0c2
N (ω,T3)Re

(
1

kz

)
δpp′ (2π )3δ(ω − ω′)δ(k − k′)

= δφ,φ′
ω

2ε0c2
N (ω,T3)2πδ(ω − ω′)

〈
p,k|P (pw)

−1 |p′,k′〉
= δφ,φ′2πδ(ω − ω′)〈p,k|C(3)|p′,k′〉. (43)

In this expression we have defined the matrix C(3) and
introduced the notation, valid for any integer n,〈

p,k|P (pw/ew)
n |p′,k′〉 = kn

z 〈p,k|�(pw/ew)|p′,k′〉, (44)

�(pw) (�(ew)) being the projector on the propagative (evanes-
cent) sector. We remark that the operatorsP (pw/ew)

n and �(pw/ew)

depend implicitly on the frequency ω.

2. Field emitted by each body

We now calculate the correlators of the field emitted by body
i (i = 1,2) at temperature Ti by ignoring the presence of the
other body and assuming thermal equilibrium at temperature
Ti . The main point of this derivation is the connection between
the Green function and the scattering operators: the details of
this calculation are presented in Appendixes C and D. The
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result for the field correlators is, for two modes of the field
propagating in the same direction,

〈
E(i)φ

p (k,ω)E(i)φ†
p′ (k′,ω′)

〉
sym

= ω

2ε0c2
N (ω,Ti)2πδ(ω − ω′)〈p,k|

× (P (pw)
−1 − R(i)φP (pw)

−1 R(i)φ† + R(i)φP (ew)
−1

−P (ew)
−1 R(i)φ† − T (i)φP (pw)

−1 T (i)φ†)|p′,k′〉, (45)

where R(i)φ and T (i)φ are respectively the reflection and
transmission operators associated with the side φ of body i

defined in Sec. V. For fields propagating in opposite directions
(φ 	= φ′), we have〈

E(i)φ
p (k,ω)E(i)φ′†

p′ (k′,ω′)
〉
sym

= ω

2ε0c2
N (ω,Ti)2πδ(ω − ω′)〈p,k|

× (− R(i)φP (pw)
−1 T (i)φ′† − T (i)φP (pw)

−1 R(i)φ′†

+ T (i)φP (ew)
−1 − P (ew)

−1 T (i)φ′†)|p′,k′〉. (46)

In analogy with the previous definitions, the correlators of the
field produced by the body i will be gathered in the matrix
C(i)φφ′

, defined by the relation

〈
E(i)φ

p (k,ω)E(i)φ′†
p′ (k′,ω′)

〉
sym = 2πδ(ω − ω′)

×〈p,k|C(i)φφ′ |p′,k′〉. (47)

We are now ready to characterize the total field in each
region by means of the scattering operators and then to deduce
its correlators using the results just obtained in this section.

B. Correlators in region B

In order to build up the field in the region B between the two
bodies the ingredients we need are the amplitudes E(1)+

p (k,ω),
E(2)−

p (k,ω), and E(3)±
p (k,ω). In the region B of Fig. 1 the field

propagates in both directions: its amplitudes will be simply
denoted by E

(B)φ
p (k,ω). Gathering all the modes E

(B)φ
p (k,ω)

in the symbol E(B)φ , the amplitudes can be expressed as the
solutions of the system of equations{

E(B)+ = E(1)+ + T (1)+E(3)+ + R(1)+E(B)−,

E(B)− = E(2)− + T (2)−E(3)− + R(2)−E(B)+,
(48)

where all the operators and field amplitudes are calculated at
a given frequency ω, not explicitly indicated, and the products
between scattering operators and fields are to be considered as
matrix-vector products. As an intermediate step, we have⎧⎨
⎩

E(B)+ = E(1)+ + T (1)+E(3)+ + R(1)+E(B)−,

E(B)− = U (21)R(2)−E(1)+ + U (21)R(2)−T (1)+E(3)+

+ U (21)T (2)−E(3)− + U (21)E(2)−,

(49)

where we have introduced the operators

U (12) = (1 − R(1)+R(2)−)−1,
(50)

U (21) = (1 − R(2)−R(1)+)−1

describing the series of intracavity (between the two bodies)
reflections produced by the single-body operators R(1)+ and
R(2)−. From the definition

U (12) = (1 − R(1)+R(2)−)−1 =
+∞∑
n=0

(R(1)+R(2)−)n (51)

and its analogous counterpart for U (21), we easily deduce the
following useful properties:

R(1)+U (21) = U (12)R(1)+, R(2)−U (12) = U (21)R(2)−,

(52)

and

R(1)+U (21)R(2)− = U (12) − 1,
(53)

R(2)−U (12)R(1)+ = U (21) − 1.

These relations allow us to obtain the following final expres-
sion for the field propagating in both directions in region
B as a function of the fields emitted by the bodies and the
environment:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(B)+ = U (12)E(1)+ + R(1)+U (21)E(2)−

+ R(1)+U (21)T (2)−E(3)− + U (12)T (1)+E(3)+,

E(B)− = R(2)−U (12)E(1)+ + U (21)E(2)−

+ U (21)T (2)−E(3)− + R(2)−U (12)T (1)+E(3)+.

(54)

We remark here that by taking E(3)± = 0 orT (1)+ = T (2)− = 0
in Eq. (54) we go back to Eqs. (18) and (19) of [16], where for
both bodies infinite thickness was assumed. Since the fields
E(1)− and E(2)+ clearly do not participate in the expression of
the total field between the two bodies, the expression of E(B)φ

(for φ = +,−) can be cast without loss of generality in the
form

E(B)± = A
(B)±
1 E(1)+ + A

(B)±
2 E(2)− +

∑
α=+,−

B(B)±
α E(3)α,

(55)

which in this case gives, by comparison with Eq. (54),

A
(B)+
1 = U (12), A

(B)+
2 = R(1)+U (21),

B
(B)+
− = R(1)+U (21)T (2)−, B

(B)+
+ = U (12)T (1)+, (56)

A
(B)−
1 = R(2)−U (12), A

(B)−
2 = U (21),

B
(B)−
− = U (21)T (2)−, B

(B)−
+ = R(2)−U (12)T (1)+.

Using Eq. (55) the correlators in region B can be expressed as
a function of the correlators C(i)φφ (for i = 1,2) and C(3) given
by Eqs. (43), (45) and (46). We finally obtain the expression
for the matrix C

φφ′
B in terms of the scattering operators of the

two bodies:〈
E(B)φ

p (k,ω)E(B)φ′†
p′ (k′,ω′)

〉
sym

= 2πδ(ω − ω′)〈p,k|
[
A

(B)φ
1 C(1)++A

(B)φ′†
1

+A
(B)φ
2 C(2)−−A

(B)φ′†
2 +

∑
α=+,−

B(B)φ
α C(3)B(B)φ′†

α

]
|p′,k′〉

= 2πδ(ω − ω′)
〈
p,k|Cφφ′

B |p′,k′〉. (57)
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C. Correlators in region A

The complete knowledge of the properties of the field in
region B is not sufficient, in general, to deduce the force and
the heat transfer associated with either of the two bodies.
Focusing our attention on body 1, for example, we also need
to characterize the field in the region on its left side, namely,
region A. The field E(A)+ propagating toward the right in this
region is obviously only the environmental field propagating in
the same direction, E(3)+. In contrast, as far as the field E(A)−
is concerned, it will also include, assuming a finite thickness
for body 1, components from the fields produced by bodies 1
and 2, as well as from the environment field E(3)−. The total
field in region A is then entirely described by the system of
equations{

E(A)+ = E(3)+,

E(A)− = E(1)− + R(1)−E(3)+ + T (1)−E(B)−,
(58)

which using the result (54) for the intracavity field becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(A)+ = E(3)+,

E(A)− = E(1)− + T (1)−R(2)−U (12)E(1)+

+ T (1)−U (21)E(2)− + T (1)−U (21)T (2)−E(3)−

+ (R(1)− + T (1)−R(2)−U (12)T (1)+)E(3)+.

(59)

Using the general decomposition

E(A)− =
∑

α=+,−
A

(A)
1α E(1)α + A

(A)
2 E(2)− +

∑
α=+,−

B(A)
α E(3)α,

(60)

we have

A
(A)
1+ = T (1)−R(2)−U (12), A

(A)
1− = 1,

A
(A)
2 = T (1)−U (21),

B
(A)
+ = R(1)− + T (1)−R(2)−U (12)T (1)+, (61)

B
(A)
− = T (1)−U (21)T (2)−.

We are now ready to give the final expression for the correlators
C

φφ′
A of the total field in region A in terms of the scattering

matrices, which reads

C++
A = C(3),

C+−
A = C(3)B

(A)†
+ ,

C−+
A = B

(A)
+ C(3),

C−−
A = A

(A)
1+C(1)++A

(A)†
1+ + C(1)−− + A

(A)
1+C(1)+−

+C(1)−+A
(A)†
1+ + A

(A)
2 C(2)−−A

(A)†
2 + B

(A)
+ C(3)B

(A)†
+

+B
(A)
− C(3)B

(A)†
− . (62)

Due to the geometry of our system, the correlators of the
field in region C can be obtained from the ones given here
for region A performing the interchanges A � C, 1 � 2 and
+ � −. This holds for all the other quantities we are going to
calculate in region A.

VII. FINAL EXPRESSIONS FOR THE CASIMIR-LIFSHITZ
FORCE AND HEAT TRANSFER OUT OF

THERMAL EQUILIBRIUM

A. Casimir-Lifshitz force

We are now going to calculate the flux of the stress tensor, in
order to deduce the expression of the force. For simplicity, we
will focus on the z component of the force acting on body 1,
using as a consequence the expression (25) with m = z in
regions B and A. The calculation of the other components of
the force follows the same scheme we are going to present in
the following. Let us now turn, then, to the evaluation of the
fluxes of Tzz in regions B (Sec. VII A 1) and A (Sec. VII A 2):
we will assume that for both surfaces the vector orthogonal
to the surface is oriented toward the right, i.e., the positive
direction of the z axis. These two results will provide the final
expression for the Casimir-Lifshitz force acting on body 1,
deduced in Sec. VII A 3.

1. Flux in region B

Using the relation (25) (with m = z and z2 < z̄ < z3) and
(57), we are able to express the flux in region B as a function
of the correlators of the field emitted by the bodies and the
environment (43), (45), and (46),

	(B)
z (T1,T2,T3)

= −2ε0

∑
p

∫
d2k

(2π )2

∫ +∞

0

dω

2π

c2k2
z

ω2
〈p,k|

×
{
�(pw)(A(B)+

1 C(1)++A
(B)+†
1

+A
(B)−
1 C(1)++A

(B)−†
1 + A

(B)+
2 C(2)−−A

(B)+†
2

+A
(B)−
2 C(2)−−A

(B)−†
2

)
+�(ew)

(
A

(B)+
1 C(1)++A

(B)−†
1 + A

(B)−
1 C(1)++A

(B)+†
1

+A
(B)+
2 C(2)−−A

(B)−†
2 + A

(B)−
2 C(2)−−A

(B)+†
2

)
+
∑

α=+,−

[
�(pw)(B(B)+

α C(3)B(B)+†
α + B(B)−

α C(3)B(B)−†
α )

+�(ew)(B(B)+
α C(3)B(B)−†

α + B(B)−
α C(3)B(B)+†

α )
]}|p,k〉.

(63)

Defining the trace operator for a frequency-dependent operator
A as

TrA =
∑

p

∫
d2k

(2π )2

∫ +∞

0

dω

2π
〈p,k|A|p,k〉, (64)

we can write the flux in region B in the form

	(B)
z (T1,T2,T3)

= −2ε0c
2Tr

{
1

ω2

[
P (pw)

2

(
A

(B)+
1 C(1)++A

(B)+†
1

+A
(B)−
1 C(1)++A

(B)−†
1 + A

(B)+
2 C(2)−−A

(B)+†
2

+A
(B)−
2 C(2)−−A

(B)−†
2

)+ P (ew)
2

(
A

(B)+
1 C(1)++A

(B)−†
1

+A
(B)−
1 C(1)++A

(B)+†
1 + A

(B)+
2 C(2)−−A

(B)−†
2

+A
(B)−
2 C(2)−−A

(B)+†
2

)
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+
∑

α=+,−

[
P (pw)

2

(
B(B)+

α C(3)B(B)+†
α + B(B)−

α C(3)B(B)−†
α

)

+P (ew)
2

(
B(B)+

α C(3)B(B)−†
α + B(B)−

α C(3)B(B)+†
α

)]]}
.

(65)

In both expressions it is clear that we have three separate
contributions associated with body 1, body 2, and the envi-
ronment, respectively. Using the fact that the trace is invariant
under cyclic permutations, we have

	(B)
z (T1,T2,T3)

= −Tr

{
1

ω

[
N (ω,T1)J (R(1)+,R(2)−) + N (ω,T2)

× J (R(2)−,R(1)+) + (N (ω,T3) − N (ω,T1)
)

×H (R(1)+,R(2)−,T (1)+) + (N (ω,T3) − N (ω,T2)
)

×H (R(2)−,R(1)+,T (2)−)
]}

, (66)

where
J (R(1)+,R(2)−) = U (12)

(
P (pw)

−1 − R(1)+P (pw)
−1 R(1)+†

+R(1)+P (ew)
−1 − P (ew)

−1 R(1)+†)U (12)†

× (P (pw)
2 + R(2)−†P (pw)

2 R(2)−

+R(2)−†P (ew)
2 + P (ew)

2 R(2)−),
H (R(1)+,R(2)−,T (1)+) = U (12)T (1)+Ppw

−1T (1)+†U (12)†

× (P (pw)
2 + R(2)−†P (pw)

2 R(2)−

+R(2)−†P (ew)
2 + P (ew)

2 R(2)−). (67)

Note that when calculating J (R(2)−,R(1)+) one also needs to
change U (12) into U (21).

Equation (66) can be cast in the form

	(B)
z (T1,T2,T3) = 	

(B,eq)
z (T1) + 	

(B,eq)
z (T2)

2
+�	(B)

z (T1,T2,T3), (68)

where

	(B,eq)
z (T ) = −Tr

{
1

ω
N (ω,T )

[
J (R(1)+,R(2)−)

+ J (R(2)−,R(1)+)
]}

= −2ReTr

{
kz

ω
N (ω,T )

× [U (12)R(1)+R(2)− + U (21)R(2)−R(1)+]

}

− 2Tr

{
1

ω
N (ω,T )Ppw

1

}
(69)

and

�	(B)
z (T1,T2,T3)

= −h̄Tr

[
n12

2
(J (R(1)+,R(2)−) − J (R(2)−,R(1)+))

+ n31H (R(1)+,R(2)−,T (1)+)

+ n32H (R(2)−,R(1)+,T (2)−)

]
, (70)

where we have defined, for i,j = 1,2,3,

nij = n(ω,Ti) − n(ω,Tj ). (71)

At this point, a remark is important about the expression
(69), giving the equilibrium part of the flux in region B of
Tzz. We have to observe that, since the operator P (pw)

1 is
diagonal in the (k,p) basis, its trace defined as in (64) is
divergent. Moreover, this term is independent of the bodies
under scrutiny. Nevertheless, we have to keep in mind that
the flux in region B does not have a direct physical meaning,
since we still have to subtract from it the flux in region A
in order to obtain the value of the force. As we will see
in Secs. VII A 3 and VII C, the divergences present in the
individual fluxes are completely regularized when taking the
difference 	(B)

z − 	(A)
z .

2. Flux in region A

In order to calculate the flux of Tzz in A we have to use
Eq. (25) with m = z and z̄ < z1. Moreover, the correlators in
region A are given in Eq. (62). After algebraic manipulations
analogous to the ones used in the last section we have, for the
flux in region A,

	(A)
z (T1,T2,T3)

= −2ε0c
2Tr

[
1

ω2
P (pw)

2

(
C(3) + A

(A)
1+C(1)++A

(A)†
1+ + C(1)−−

+A
(A)
1+C(1)+− + C(1)−+A

(A)†
1+ + A

(A)
2 C(2)−−A

(A)†
2

+B
(A)
+ C(3)B

(A)†
+ + B

(A)
− C(3)B

(A)†
−
)]

. (72)

This can be cast in the form

	(A)
z (T1,T2,T3) = −Tr

[
1

ω

(
N (ω,T1) + N (ω,T3)

)
P (pw)

1

]
+�	(A)

z (T1,T2,T3), (73)

where

�	(A)
z (T1,T2,T3)

= −h̄Tr
[
n31P (pw)

2 R(1)−P (pw)
−1 R(1)−†

+ n32P (pw)
2 T (1)−U (21)T (2)−P (pw)

−1 T (2)−†U (21)†T (1)−†

+ n21
(
P (pw)

−1 + R(2)−P (ew)
−1 − P (ew)

−1 R(2)−†

−R(2)−P (pw)
−1 R(2)−†)U (21)†T (1)−†P (pw)

2 T (1)−U (21)

+ n31
(
P (pw)

2 R(1)−P (pw)
−1 T (1)+†U (12)†R(2)−†T (1)−†

+P (pw)
2 T (1)−R(2)−U (12)T (1)+P (pw)

−1 R(1)−†

+P (pw)
2 T (1)−R(2)−U (12)T (1)+P (pw)

−1 T (1)+†

×U (12)†R(2)−†T (1)−†)]. (74)

We repeat here that the flux in region C (necessary for the
calculation of the force acting on body 2) can be obtained from
Eqs. (73) and (74) by performing the interchanges A � C,
1 � 2, and + � −.

3. Casimir-Lifshitz force acting on body 1

We now have all the ingredients to give the z component
of the force acting on body 1. From the definition of the stress
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tensor we have

F1z = 	(B)
z (T1,T2,T3) − 	(A)

z (T1,T2,T3), (75)

where the two fluxes are given by Eqs. (68) and (73). Gathering
all the results obtained in the previous sections, the complete
expression of the force reads

F1z(T1,T2,T3) = F
(eq)
z (T1) + F

(eq)
z (T2)

2
+ �F1z(T1,T2,T3).

(76)

In this expression the result is written as a sum of two terms.
The first contribution is the average, at the temperatures T1 and
T2 of the two bodies, of the equilibrium force

F (eq)
z (T ) = −2ReTr

{
kz

ω
N (ω,T )

[
U (12)R(1)+R(2)−

+U (21)R(2)−R(1)+]}, (77)

which contains both the zero-temperature term and the thermal
correction. This result for the equilibrium force was already
obtained by different authors in the framework of scattering-
matrix theory [34,35]. As remarked in [16], Eq. (77) gives
a finite result for any choice of temperature and material
properties for the two bodies. Moreover, the equilibrium force
(77) shows the important property of depending only on
the intracavity reflection operators R(1)+ and R(2)−, i.e., the
operators describing the reflection produced by each body on
the side of the other one.

The second term in (76) is the nonequilibrium contribution,
given by

�F1z(T1,T2,T3) = �	(B)
z (T1,T2,T3) − �	(A)

z (T1,T2,T3)

+ h̄Tr
(
n32P (pw)

1

)
, (78)

where the two fluxes �	(B)
z and �	(A)

z are explicitly given
by Eqs. (70) and (74), respectively. The nonequilibrium
contribution manifestly satisfies the condition

�F1z(T ,T ,T ) = 0. (79)

Unlike the equilibrium force (77), the nonequilibrium contri-
bution (78) still contains terms which are individually formally
divergent. In Sec. VII C, where a unified expression for the
Casimir-Lifshitz force and the heat transfer will be provided,
we will see that this can be manipulated so that all these
divergent terms disappear.

B. Heat transfer

In order to obtain the expression for the heat transfer on
body 1 we have to follow the same steps we used in the case
of the force. We first need the fluxes of the Poynting vector in
regions B and A. Their difference will provide us the energy
absorbed per unit of time by body 1. The flux in region B
can be obtained by combining Eq. (30) with the correlators in
region B given by Eq. (57). The result can be cast in the form

ϕ(B)(T1,T2,T3) = h̄Tr
{
ω
[
n31L(R(1)+,R(2)−,T (1)+)

+ n23L(R(2)−,R(1)+,T (2)−)

+ n12J (R(1)+,R(2)−)
]}

, (80)

where

J (R(1)+,R(2)−) = U (12)
(
P (pw)

−1 − R(1)+P (pw)
−1 R(1)+†

+R(1)+P (ew)
−1 − P (ew)

−1 R(1)+†)U (12)†

× (P (pw)
1 − R(2)−†P (pw)

1 R(2)−

+R(2)−†P (ew)
1 − P (ew)

1 R(2)−),
L(R(1)+,R(2)−,T (1)+) = U (12)T (1)+Ppw

−1T (1)+†U (12)†

× (P (pw)
1 − R(2)−†P (pw)

1 R(2)−

+R(2)−†P (ew)
1 − P (ew)

1 R(2)−). (81)

An analogous calculation leads us to the following expres-
sion for the flux in region A:

ϕ(A)(T1,T2,T3)

= −h̄Tr
{
ω
[
n31
(− �(pw) + P (pw)

1 R(1)−P (pw)
−1 R(1)−†)

+n32P (pw)
1 T (1)−U (21)T (2)−P (pw)

−1 T (2)−†U (21)†T (1)−†

+ n21
(
P (pw)

−1 + R(2)−P (ew)
−1 − P (ew)

−1 R(2)−†

−R(2)−P (pw)
−1 R(2)−†)U (21)†T (1)−†P (pw)

1 T (1)−U (21)

+ n31
(
P (pw)

1 R(1)−P (pw)
−1 T (1)+†U (12)†R(2)−†T (1)−†

+P (pw)
1 T (1)−R(2)−U (12)T (1)+P (pw)

−1 R(1)−†

+P (pw)
1 T (1)−R(2)−U (12)T (1)+P (pw)

−1

× T (1)+†U (12)†R(2)−†T (1)−†)]. (82)

The total heat flux on body 1 is finally given by the
difference of the two contributions,

H (T1,T2,T3) = ϕ(A)(T1,T2,T3) − ϕ(B)(T1,T2,T3). (83)

Since the fluxes (80) and (82) in regions B and A respectively
are zero for T1 = T2 = T3, the heat flux (83) on body 1 satisfies
the evident property

H (T ,T ,T ) = 0 (84)

for any temperature T � 0.

C. Unified expression for force and heat transfer

We are now ready to give the main result of the paper,
namely, the analytic explicit expressions for the Casimir-
Lifshitz force and heat transfer on body 1. These expressions
are valid for any choice of the shape and dielectric properties
of the two bodies. We give the following definitions:

F1z(T1,T2,T3) = F
(eq)
z (T1) + F

(eq)
z (T2)

2
+ �2(T1,T2,T3),

(85)

H (T1,T2,T3) = �1(T1,T2,T3), (86)

which we can collect to give a unified expression for the
nonequilibrium contribution �2 to the force and the heat
transfer �1, both relative to body 1. Before providing the
explicit analytic expression of �m for m = 1,2, we recall that
the fluxes (73) and (68) of Tzz in regions A and B respectively
contain individual divergent terms. The same property holds
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for the heat transfer, as is evident from the example of the
flux (82) of Sz in region A, containing as a first term the trace
of �(pw). We are going to show that the nonequilibrium force
and the heat transfer are indeed convergent for any choice of
the two bodies. With this aim a fundamental intermediate step
is the identification of the individual divergent terms in the
expressions of the fluxes of Tzz and Sz. We first observe that all
the terms which do not contain any reflection or transmission
operator, such as the ones we have already discussed, are
indeed divergent. This in not the case, on the contrary, for
the terms proportional to at least one reflection operator,
since these tend to zero in the absence of the objects. As
far as the transmission operators are concerned, we have then
to express each T operator as 1 + T̃ : in analogy with the

reflection operators, T̃ tends to zero in absence of the bodies.
Finally, considering the terms containing only the operators
U (12), U (21), and projection operators, it is sufficient to use
the relations (53) in order to write each of them as a sum
of a divergent term, which is independent of the scattering
operators, and another one proportional to the reflection
matrices.

By following the procedure we have just described it can be
shown that all the divergent terms exactly cancel each other.
All the remaining terms are proportional to either a reflection
or a modified transmission operator, as explicitly shown in
Eqs. (87)–(90) below. We are now ready to give the final
analytic unified expression for the Casimir-Lifshitz force and
heat transfer on body 1. This reads

�m(T1,T2,T3) = (−1)m+1h̄Tr

[
ω2−m

{
n12

2

[
(U (21)†(2gm(T (1)−) − fm(R(1)+))U (21) + um)

(
P (pw)

−1 + f−1(R(2)−)
)

+ (−1)m(U (12)f−1(R(1)+)U (12)† + u−1)
(
P (pw)

m + fm(R(2)−)
)]

+ n13
[− (−1)m(U (12)g−1(T (1)+)U (12)† + u−1)

(
P (pw)

m + fm(R(2)−)
)+ P (pw)

m R(1)−P (pw)
−1 R(1)−†

+ (U (21)†gm(T (1)−)U (21) + um)R(2)−P (pw)
−1 R(2)−† + U (21)†(P (pw)

m + gm(T (1)−)
)
U (21)R(2)−g−1(T (1)+)R(2)−†

+ (P (pw)
m R(1)−P (pw)

−1 (1 + T̃ (1)+†)U (12)†R(2)−†(1 + T̃ (1)−†) + H.c.
)]

+ n23U
(21)†(gm(T (1)−) − fm(R(1)+))U (21)

(
P (pw)

−1 + g−1(T (2)−)
)}]

, (87)

where we have defined the auxiliary functions

fα(R) =
{

−RP (pw)
−1 R† + RP (ew)

−1 − P (ew)
−1 R†, α = −1,

(−1)mR†P (pw)
m R + R†P (ew)

m + (−1)mP (ew)
m R, α = m ∈ {1,2}, (88)

gα(T ) =
{
T P (pw)

−1 T † − P (pw)
−1 = T̃ P (pw)

−1 T̃ † + P (pw)
−1 T̃ † + T̃ P (pw)

−1 , α = −1,

T †P (pw)
m T − P (pw)

m = T̃ †P (pw)
m T̃ + P (pw)

m T̃ + T̃ †P (pw)
m , α = m ∈ {1,2}, (89)

uα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U (12)P (pw)
−1 U (12)† − P (pw)

−1 = P (pw)
−1 U (12)†R(2)−†R(1)+†

+R(1)+R(2)−U (12)P (pw)
−1 + R(1)+R(2)−U (12)P (pw)

−1 U (12)†R(2)−†R(1)+†, α = −1,

U (21)†P (pw)
m U (21) − P (pw)

m = P (pw)
m R(2)−R(1)+U (21)

+U (21)†R(1)+†R(2)−†P (pw)
m + U (21)†R(1)+†R(2)−†P (pw)

m R(2)−R(1)+U (21), α = m ∈ {1,2}.

(90)

Equations (85)–(90) allow then the explicit consideration of
two bodies of arbitrary geometries and dielectric properties, in
a system characterized by three possibly different temperatures
T1, T2, and T3. In order to obtain the expression of the force and
heat transfer on body 2, in Eq. (87) the indexes 1 and 2 must
be interchanged, as well as the indexes + and −. Moreover,
in the case of the force the overall sign has to be changed. In
what follows we analyze this expression for several cases.

VIII. FORCE AND HEAT TRANSFER ON A BODY ALONE
OUT OF THERMAL EQUILIBRIUM

Before discussing some numerical applications of Eqs. (85)
and (86) for particular choices of bodies 1 and 2, we will
start by applying our formalism to a simpler configuration,

providing an interesting example of the role played by the
reflection and transmission operators in the calculation of
the force and the heat transfer. We are now going to consider
the problem of a body (called body 1) at temperature T1 placed
in the absence of body 2 in the same environment as before
having temperature T3. In order to obtain the force and the heat
transfer in this case we can exploit the result (87) and impose
R(2)± = 0, T̃ (2)± = 0 as well as T2 = T3. We remark that the
equilibrium contribution to the force in (85) goes to zero in this
limit. After straightforward manipulations, the result reads

�m(T1,T3)

= (−1)m+1h̄Tr
{
ω2−mn31P (pw)

m

[
(−1)mR(1)+P (pw)

−1 R(1)+†

−R(1)−P (pw)
−1 R(1)−† + (−1)m

(
T̃ (1)+P (pw)

−1 T̃ (1)+†
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+ T̃ (1)+P (pw)
−1 + P (pw)

−1 T̃ (1)+†)− (T̃ (1)−P (pw)
−1 T̃ (1)−†

+ T̃ (1)−P (pw)
−1 + P (pw)

−1 T̃ (1)−†)]}. (91)

Clearly, this expression is in general different from zero.
Considering the particular case of thermal equilibrium T1 =
T3, we see that �m goes to zero: as expected, at thermal
equilibrium no force is acting on a body alone independently
from its geometrical properties, and it does not exchange any
heat with the environment. On the contrary, if T1 	= T3, the
force and the heat transfer are linked to the different behaviors
of reflection and transmission on the two sides of the body.
In particular, if the body is symmetric with respect to a plane
z = z0, it is easy to show that the matrix elements of reflection
and transmission operators on the two sides cancel each other
in the case of the force (m = 1). This is expected for evident
reasons of symmetry. Nevertheless, even under this specific
assumption, the heat transfer [m = 2 in Eq. (91)] still remains
different from zero.

IX. SOME APPLICATIONS

In this section we are going to perform some applications
of Eqs. (85) and (86). In particular, we are going to discuss
the force acting on a neutral atom in front of a planar slab of
finite thickness, as well as the force and the heat transfer in the
case of two parallel slabs. With this aim we will provide the
reflection and transmission operators associated with an atom
and a planar slab.

A. Force between an atom and a slab

Let us start with the case of a neutral atom (body 2) in front
of a slab (body 1) having finite thickness δ1. The atom has
position RA = (rA,zA) = (0,0,zA) (we have chosen rA = 0 by
virtue of the cylindrical symmetry of the problem with respect
to the axis z = 0) with zA > 0, whereas the slab is defined by
the two interfaces z = 0 and z = −δ1, as shown in Fig. 4. This
configuration is interesting since it implies the presence of a
body (the atom) not characterized by translational invariance
and thus for which the plane-wave basis is not a natural choice.
Nevertheless, we will show that the knowledge of the atomic
scattering operator in this basis, chosen in our calculation for
convenience, allows us to reproduce the known results in some
particular limiting cases and to give the general expression in
the presence of three different temperatures T1, T2, and T3.

(A) (B) (C)

FIG. 4. (Color online) Geometry of the atom-slab configuration.

We now first discuss the reflection and transmission
operators for the slab, R(1)+ and T (1)+. For homogeneous
flat slabs, these operators are diagonal and given by

〈p,k|R(1)+|p′,k′〉 = (2π )2δ(k − k′)δpp′ρ1p(k,ω),
(92)

〈p,k|T (1)+|p′,k′〉 = (2π )2δ(k − k′)δpp′τ1p(k,ω),

and defined in terms of the Fresnel reflection and transmission
coefficients modified by the finite thickness δ1,

ρ1p(k,ω) = r1p(k,ω)
1 − e2ikz1δ1

1 − r2
1p(k,ω)e2ikz1δ1

,

(93)

τ1p(k,ω) = t1p(k,ω)t̄1p(k,ω)eikz1δ1

1 − r2
1p(k,ω)e2ikz1δ1

.

In these definitions we have introduced the z component of the
K vector inside medium 1,

kz1 =
√

ε1(ω)
ω2

c2
− k2, (94)

the ordinary vacuum-medium Fresnel reflection coefficients

r1,TE = kz − kz1

kz + kz1
, r1,TM = ε1(ω)kz − kz1

ε1(ω)kz + kz1
, (95)

as well as both the vacuum-medium (denoted with t) and
medium-vacuum (denoted with t̄) transmission coefficients

t1,TE = 2kz

kz + kz1
, t1,TM = 2

√
ε1(ω)kz

ε1(ω)kz + kz1
,

(96)

t̄1,TE = 2kz1

kz + kz1
, t̄1,TM = 2

√
ε1(ω)kz1

ε1(ω)kz + kz1
.

The other ingredient of our calculation is represented
by the atomic scattering operators. As discussed in [38],
these operators can be deduced, in dipole approximation,
starting from the description of the atom as an induced dipole
d(ω) = α(ω)E(RA,ω) proportional to the component of the
electric field at frequency ω calculated at the atomic position
RA. The proportionality factor coincides with the atomic
dynamical polarizability α(ω). The field radiated by the
induced dipole can thus be written analytically as a function
of any incoming field; this produced field has then to be
decomposed in plane waves. The expression for the outgoing
amplitudes as a function of the incoming ones provides the
explicit expression for the atomic reflection and transmission
operators. They read (for φ = +,−)

〈
k,p
∣∣Rφ

A(ω)
∣∣k′,p′〉 = iω2α(ω)

2ε0c2kz

[
ε̂φ

p(k,ω) · ε̂
−φ

p′ (k′,ω)
]

× exp[i(k′ − k) · rA]

× exp[−iφ(kz + k′
z)zA],

〈
k,p
∣∣T̃ φ

A (ω)
∣∣k′,p′〉 = iω2α(ω)

2ε0c2kz

[
ε̂φ

p(k,ω) · ε̂
φ

p′ (k′,ω)
]

× exp[i(k′ − k) · rA]

× exp[−iφ(kz − k′
z)zA]. (97)

We remark that we provided the modified atomic transmission
operator T̃ φ

A (as a matter of fact, it clearly goes to zero in the
absence of the atom) and that both operators are nondiagonal
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with respect to the wave vector k and the polarization p, as
a result of the lack of translational invariance on the x−y

plane. Moreover, since we have attributed a temperature T2

to the atom, the atomic polarizability α(ω) must be the one
associated with a thermal state at the same temperature.

We are now ready to calculate the equilibrium and
nonequilibrium forces on the atom. Coherently with the dipole
approximation, we have to keep only the leading-order terms in
these expressions with respect to the atomic polarizability, and
thus to its scattering operators (97). Moreover, the appropriate
changes have to be made in Eq. (87), considering that we are
in this case calculating the force on the body 2. As shown
in [38], this procedure leads to the expression of the force on
the atom at thermal equilibrium deduced using several different
independent approaches. Focusing on the nonequilibrium
contribution, after some simple algebraic manipulations, we
obtain

�2(T1,T2,T3)

= − h̄

4π2ε0c2
Im

{∑
p

∫ +∞

0
dω ω2α(ω)

×
[
n13

∫ ω/c

0
dk k

(|ρ1p|2 + |τ1p|2 − 1
)

+
∫ ω/c

0
dk k(ε̂+

p · ε̂−
p )
(
n31ρ1p e2ikzzA + n23ρ

∗
1pe−2ikzzA

)
+n21

∫ +∞

ω/c

dk k(ε̂+
p · ε̂−

p )ρ∗
1pe2ikzzA

]}
, (98)

where the dependence on the variables ω and k of all the
quantities inside the integral is kept implicit. The first term
in the square brackets in Eq. (98) does not depend on the
atomic position zA and it was already identified in [9]. On
the contrary, the second and the third terms do depend on
the atom-slab distance zA, but they come from different
regions of the spectrum: the former results from propagative
waves only, the latter from the evanescent sector. As a check
of coherence with previous results, we have reobtained the
expression deduced in [9] using a different approach. With
this aim, we assumed that the atom occupies its ground state
(T2 = 0 K) and that the slab and environmental temperatures
T1 and T3 are such that no atomic excitation is possible: this
corresponds to the replacement of the frequency-dependent
dynamical polarizability α(ω) with its static value α(0).

B. Force between two slabs

The case of two parallel homogeneous dielectric slabs of
finite thickness will now be examined. This configuration,
already studied in [10] in the case of infinite thickness, shows
the advantage of keeping the translational symmetry, making
all the scattering operators diagonal in the (k,p) basis, allowing
at the same time a study of the effect of the environmental
temperature, by virtue of the finite thickness of the slabs.
Let us assume that the slab i (i = 1,2) has thickness δi and
denote by d the distance between the two slabs: in particular,
slab 1 occupies the region −δ1 < z < 0 (as in the atom-slab
configuration described in Sec. IX A) whereas slab 2 coincides
with d < z < d + δ2, as shown in Fig. 5. The reflection and

(A) (B) (C)

FIG. 5. (Color online) Geometry of the slab-slab configuration.

transmission operatorsR(1)+ and T (1)+ for slab 1 are still given
by Eq. (92). The operators R(1)− and T (1)− associated with the
left side of body 1 as well as all the scattering operators of
body 2 can be obtained by solving the problem of the behavior
of the scattering operators with respect to changes of frame
of reference, discussed in Appendix A. The result is that the
matrix elements of T (1)+ coincide with those of T (1)− given
by Eq. (92), while the interchange of 1 and 2 provides directly
the elements of the transmission operator T (2)−. As far as the
reflection operators are concerned we have

〈p,k|R(1)−|p′,k′〉 = (2π )2δ(k − k′)δpp′ρ1p(k,ω)e−2ikzδ1 ,

〈p,k|R(2)−|p′,k′〉 = (2π )2δ(k − k′)δpp′ρ2p(k,ω)e2ikzd .

(99)

Before moving to the explicit calculation of the force,
we remark that in this geometrical configuration the matrix
element of any scattering operator between the states |k,p〉
and |k′,p′〉 is proportional to the Dirac delta (2π )2δ(k − k′),
as evident from Eqs. (92) and (99). This property reflects
indeed the translational symmetry with respect to x and y

characterizing this system. As a consequence, the total force
(76) acting on body 1 is proportional to (2π )2δ(0) and thus
formally divergent. This happens since we are calculating the
total force on slab 1, which is by definition infinite, while
the force density, i.e., the force per unit of surface, is a finite
quantity. Nevertheless, the simple analysis of the symmetrized
average of the zz component of the stress tensor (17) shows
us that this quantity is in this case finite and independent of
r, coherently with the translational invariance. Moreover, the
result for the average value of Tzz, which means the force per
unit of area, is the same we would get by using the formula
(76) for the force and neglecting the divergent term (2π )2δ(0).

We are thus now ready to give the explicit expression for
the pressure acting on slab 1 given by Eq. (76) after neglecting
the divergent term. As for the equilibrium contribution at
temperature T , it is given by

P
(eq)
1z (T ) = −4Re

∑
p

∫ +∞

0

dω

2π

∫
d2k

(2π )2

kz

ω

×N (ω,T )
ρ1pρ2pe2ikzd

Dp

, (100)
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where

Dp = 1 − ρ1pρ2pe2ikzd (101)

and the quantities ρ1p, ρ2p, and Dp implicitly depend on
ω and k. We now turn to the nonequilibrium contribution

�F1z(T1,T2,T3) appearing in Eq. (76). This gives in this case
the nonequilibrium pressure

�P1z(T1,T2,T3)

= A(ew)(T1) − A(ew)(T2) + B
(pw)
1 (T1) − B

(pw)
1 (T2)

+B
(pw)
2 (T3) − B

(pw)
2 (T1) + B

(pw)
3 (T3) − B

(pw)
3 (T2),

(102)

where we have defined

A(ew)(T ) = h̄

2π2

∑
p

∫ +∞

0
dω

∫ +∞

ω
c

dk k Im kz n(ω,T )
Im(ρ1pρ∗

2p)

|Dp|2 e−2dImkz ,

B
(pw)
1 (T ) = − h̄

4π2

∑
p

∫ +∞

0
dω

∫ ω/c

0
dk kkzn(ω,T )

|ρ2p|2 − |ρ1p|2 + |τ1p|2(1 − |ρ2p|2)

|Dp|2 ,

B
(pw)
2 (T ) = − h̄

4π2

∑
p

∫ +∞

0
dω

∫ ω/c

0
dk kkzn(ω,T )

[ |τ1p|2[1 + |ρ2p|2(1 − |τ1p|2)
]

|Dp|2 − |ρ1p|2 − 2Re

(
ρ∗

1pρ2pτ 2
1p

Dp

e2ikz(d+δ1)

)]
,

B
(pw)
3 (T ) = − h̄

4π2

∑
p

∫ +∞

0
dω

∫ ω/c

0
dk kkzn(ω,T )

[ |τ2p|2
|Dp|2 (1 + |ρ1p|2 − |τ1p|2) − 1

]
. (103)

We note that the last term of the last line can be explicitly
integrated. It gives to the nonequilibrium force (102) a
contribution 2σ (T 4

3 − T 4
2 )/3c where σ = π2k4

B/60c2h̄3: this
term is the well-known Stefan-Boltzmann radiation pressure.
We have verified that in the limit of infinite thickness,
corresponding to τ1p,τ2p → 0 and the replacement of ρ1p

and ρ2p with the ordinary Fresnel coefficients, we analytically
reobtain the results already deduced in [10,13].

We then numerically evaluated, using Eqs. (100) and (102)
arranged as in Eq. (85), the total pressure acting on a 2-μm-
thick slab 1, made of fused silica, in front of a 1000-μm-thick
slab 2, made of silicon. The optical data for the two materials
are taken from [39]. We have considered different sets of
temperatures (T1,T2,T3). The results are shown in Figs. 6
and 7.

In Fig. 6 a wide range of distances, from 1 to 10 μm, has
been considered, for different equilibrium and nonequilibrium
thermal configurations. In particular, Figs. 6(a), 6(b), and 6(c)
correspond to three different choices of the slab temperatures
T1 and T2 (see caption of Fig. 6 for details). For each case we
have represented the nonequilibrium pressure corresponding to
the values of the environmental temperature T3 = 0,300,600
K, as well as the equilibrium pressure at the same three
temperatures. We note that the transition from an equilibrium
to a nonequilibrium configuration can dramatically change
both the qualitative and quantitative behavior of the interaction.
It is worth noting that, even for fixed values of T1, T2, and the
slab-slab distance d, the value of T3 may significantly affect
the value of the pressure, even by orders of magnitude. As a
consequence, the environmental temperature can, remarkably,
be considered as an efficient tool to tune the interaction. This
feature is equally present in the case described in Fig. 6(c),
where T1 equals T2. This underlines that even in experiments
devoted to the measure of the force at thermal equilibrium the
environmental temperature should be carefully controlled.

All these effects prove to be even more spectacular when
we look at Fig. 7, where linear scales are employed. Indeed,
in the case of T3 = 0 K the pressure becomes exactly zero at a
given distance around 6 μm, and repulsive for larger distances.

FIG. 6. (Color online) Slab-slab geometry (see Sec. IX B). Pres-
sure (102) acting on a δ1 = 2−μm-thick slab (body 1, fused silica)
parallel to a δ2 = 1000−μm-thick slab (body 2, silicon). Lines:
equilibrium pressures at T = 0 K (black solid), 300 K (blue dashed),
and 600 K (red dash-dotted). Symbols: nonequilibrium pressures at
T3 = 0 K (blue circles), 300 K (green diamonds), and 600 K (magenta
plus). T1 = 300 K and T2 = 0 K in (a), T1 = 0 K and T2 = 300 K in
(b), and T1 = T2 = 300 K in (c).
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The appearance of repulsive interactions with nonequilibrium
systems has been previously shown only for microscopic
bodies, and in particular for the atom-surface interaction [11].
Moreover, the possibility of drastically reducing the Casimir-
Lifshitz force may be useful in investigations of hypothetical
smaller forces of different origins [40–44].

C. Heat transfer between two slabs

In analogy with the force, we have chosen the same
slab-slab configuration to provide a numerical application of
Eq. (86) giving the heat transfer on body 1 for any choice of
T1, T2, and T3. This case was already studied in [25], where

the influence of the environmental temperature T3 was not
considered. Also in this case, the result is expressed per unit
of surface: we then obtain the energy h1 absorbed per unit
of surface and per unit of time by the slab 1. Its analytic
expression, using the same formalism of Sec. IX B, reads

h1(T1,T2,T3) = A(ew)(T1) − A(ew)(T2)

+B(pw)
1 (T1) − B(pw)

1 (T2)

+B(pw)
2 (T3) − B(pw)

2 (T1)

+B(pw)
3 (T3) − B(pw)

3 (T2), (104)

where we have defined

A(ew)(T ) = h̄

2π2

∑
p

∫ +∞

0
dω

∫ +∞

ω/c

dk kωn(ω,T )
e−2dImkz

|Dp|2 [Re(ρ1pρ2p) − Re(ρ1pρ∗
2p)],

B(pw)
1 (T ) = h̄

4π2

∑
p

∫ +∞

0
dω

∫ ω/c

0
dk kωn(ω,T )

|ρ1p|2 + |ρ2p|2 − 1 − |ρ1pρ2p|2 + |τ1p|2(1 − |ρ2p|2)

|Dp|2 ,

B(pw)
2 (T ) = h̄

4π2

∑
p

∫ +∞

0
dω

∫ ω/c

0
dk kωn(ω,T )

[
1 − |ρ1p|2 − |τ1p|2[1 − |ρ2p|2(1 − |τ1p|2)]

|Dp|2 − 2 Re

(
ρ∗

1pρ2pτ 2
1p

Dp

e2ikz(d+δ1)

)]
,

B(pw)
3 (T ) = h̄

4π2

∑
p

∫ +∞

0
dω

∫ ω/c

0
dk kωn(ω,T )

|τ2p|2
|Dp|2 (1 − |ρ1p|2 − |τ1p|2). (105)

We have numerically evaluated the heat transfer (104) on body
1 for different set of temperatures (T1,T2,T3). In particular, the
cases of Figs. 8(a), 8(b), and 8(c) correspond to three different
choices of the slab temperatures T1 and T2 (see caption for
details). For each case we have represented the heat transfer
corresponding to the values of the environmental temperature
T3 = 0,300,400,500,600 K. As in the case of pressure, the role
of the environmental radiation for heat transfer is particularly
interesting. In Fig. 8 the heat transfer h1 shows an oscillating
behavior with an amplitude increasing with the temperature T3.
As far as the positions of minima and maxima are concerned,
they are almost insensitive to the slab thicknesses δ1 and
δ2 and to the three temperatures T1, T2, and T3, being on
the contrary connected to the dielectric properties of the
two bodies. Furthermore, these oscillations originate from
the propagative sector, as evident from the analysis of case
Fig. 8(c): as a matter of fact, in this configuration, where
T1 and T2 coincide, Eq. (104) contains only contributions
of pure propagative nature (B2 and B3). These oscillations
were already theoretically studied in [1]. Another interesting
property emerging from Fig. 8(a) is the occurrence of a change
of sign in the heat transfer. Focusing on the blue crosses,
corresponding to (T1,T2,T3) = (300,0,400) K, we observe
that at large separations, where the propagative waves play
a dominant role, the heat transfer is positive, i.e., the slab 1
absorbs energy. At smaller separations, and in particular for
distances of the order of 1 μm the heat transfer changes sign,
becoming negative (i.e., the slab 1 radiates energy). This can be
understood in terms of the evanescent-wave coupling between
body 1 and body 2, which is at zero temperature. We also note

that the higher is the value of T3, the smaller is the distance at
which the change of sign occurs. From the figure, we deduce

FIG. 7. (Color online) Zoom of Fig. 6 in linear scales, with
the same conventions. Here the change of sign of the force clearly
appears.
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FIG. 8. (Color online) Slab-slab geometry (see Sec. IX C). Radia-
tive heat transfer per unit of surface (104) on a δ1 = 2−μm-thick slab
(body 1, fused silica) parallel to a δ2 = 1000−μm-thick slab (body
2, silicon). The temperatures of the slabs are T1 = 300 K and T2 = 0
K in (a), T1 = 0 K and T2 = 300 K in (b), and T1 = T2 = 300 K in
(c). Symbols: T3 = 0 K (black squares), 300 K (green plus), 400 K
(blue crosses), 500 K (brown diamonds), and 600 K (red circles).

that for T3 = 500,600 K this transition happens at distances
below 0.5 μm.

X. CONCLUSIONS

We presented a systematic derivation of the radiative heat
transfer and the Casimir-Lifshitz force between two arbitrary
bodies. We first expressed the correlating functions of the
electromagnetic field in any region of the system as a function
of the scattering operators of each body. This result was used
to provide closed-form unified analytic expression of the heat
transfer and the force. This expression fully takes into account
the interaction between bodies of finite size, any shape, and
any temperature, as well as the presence of a thermal external
radiation coming from the environment.

We applied this theory to two simple but instructive
examples: an atom in front of a slab and two parallel slabs. The
former configuration is an example of a non-translationally-
invariant system, and generalizes previous results out of ther-
mal equilibrium. The latter represents the simplest geometrical
configuration in which the effects of finite size and external
temperature can be quantitatively analyzed. As far as the force
is concerned, we observed that the environmental temperature
can substantially tune the interaction, eventually producing a
repulsive force. As for the heat transfer, it shows an oscillatory
behavior with respect to distance that is connected to the
dielectric properties of the two slabs and whose amplitude
increases with the temperature. Moreover, we found that some
given choices of the environmental temperature are able to
produce a heat flux whose sign changes as a function of
distance.

This study shows the interest of nonequilibrium config-
urations, mainly consisting in a strong tunability of force
and heat transfer. It would thus be interesting to apply our
results to other geometrical configurations and to test them
experimentally.
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APPDNDIX A: TRANSFORMATIONS OF SCATTERING
OPERATORS UNDER TRANSLATIONS

We will discuss here the problem of the transformation
of the scattering (both reflection and transmission) operators
with respect to translations. Let us suppose we have a first
frame of reference O and a second one Õ obtained from
the first one by a translation of RS . For the purpose of this
section it is useful to gather the reflection and transmission
operators R± and T ± in a single operator Sφφ′

connecting the
outgoing modes propagating in direction φ to the incoming
modes propagating in direction φ′. As a consequence, we have
the following identification:

S++ = T +, S+− = R+,
(A1)

S−+ = R−, S−− = T −.

From the definition of the electric field in O,

E(R,ω) =
∑
φ,p

∫
d2k

(2π )2
exp(iKφ · R)ε̂φ

p(k,ω)Eφ
p (k,ω)

=
∑
φ,p

∫
d2k

(2π )2
exp[iKφ · (R − RS)]ε̂φ

p(k,ω)

× exp(iKφ · RS)Eφ
p (k,ω), (A2)

we deduce that the amplitude Ẽ
φ
p (k,ω) in the new frame of

reference Õ equals

Ẽφ
p (k,ω) = exp(iKφ · RS)Eφ

p (k,ω). (A3)

From these properties we deduce

Ẽ(out)φ
p (k,ω) = exp(iKφ · RS)E(out)φ

p (k,ω)

= exp(iKφ · RS)
∑
p′

∫
d2k′

(2π )2

×〈p,k|Sφφ′ |p′,k′〉E(in)φ′
p′ (k′,ω)

= exp(iKφ · RS)
∑
p′

∫
d2k′

(2π )2
〈p,k|Sφφ′ |p′,k′〉

× exp(−iK
′φ′ · RS)Ẽ(in)φ′

p′ (k′,ω), (A4)

and finally the link between the matrix element of the scattering
operators in the two frames of reference,

〈p,k|S̃φφ′ |p′,k′〉 = exp[i(Kφ − K
′φ′

) · RS)]

×〈p,k|Sφφ′ |p′,k′〉. (A5)
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In the particular and important case of translation along the
z axis, assuming that the origin of Õ has coordinates (0,0,d)
with respect to O, we have

〈p,k|R̃+|p′,k′〉 = exp[i(kz + k′
z)d]〈p,k|R+|p′,k′〉,

〈p,k|R̃−|p′,k′〉 = exp[−i(kz + k′
z)d]〈p,k|R−|p′,k′〉,

(A6)
〈p,k|T̃ +|p′,k′〉 = exp[i(kz − k′

z)d]〈p,k|T +|p′,k′〉,
〈p,k|T̃ −|p′,k′〉 = exp[−i(kz − k′

z)d] 〈p,k|T −|p′,k′〉.

Apart from their general theoretical interest, these relations
are used in Sec. IX in order to deduce any reflection and
transmission operator associated with a planar slab as a
function of the ordinary Fresnel coefficient (modified to take
into account the finite thickness), usually calculated assuming
that the interface coincides with the surface z = 0.

APPDNDIX B: RECIPROCITY RELATIONS OF
SCATTERING OPERATORS

The matrix elements of the scattering operators are not
all mutually independent. By exploiting some properties of
the electromagnetic field, it is in fact possible to deduce
some relations connecting these elements. This is the case,
for example, of the reciprocity relations presented in [45]. In
this appendix, we derive and express these relations using our
field decomposition and notation. In [45], the authors start
their derivation of the reciprocity relations from Lorentz’s
reciprocity theorem in the presence of sources. To formulate
this theorem, we start by supposing that we have, in the
presence of a given body, a dipole p1 (p2) in position R1 (R2)
and oscillating at frequency ω. Each of these dipoles produces
an electromagnetic field which is then scattered by the body
and reaches the other dipole. Lorentz’s reciprocity theorem
can then be formulated by imposing the requirement that

p1 · E2(R1) = p2 · E1(R2), (B1)

where E1(R2) [E2(R1)] is the result of the scattering on the
body of the field produced by the dipole p1 (p2) and then
calculated at the position of dipole p2 (p1).

In order to fix the notation, let us suppose that the dipole p1

is on the side φ of the body, while p2 is on the side φ′. In order
to calculate the field E1(R2), we need to take the component
of the field emitted by p1 propagating in direction −φ, then
apply the operator Sφ′,−φ , and calculate the resulting field in
position R2. The component at the frequency ω of the field
produced by a dipole p in position Rp reads

E(R,ω) = 1

4πε0
∇R × ∇R ×

[
p

ei(ω/c)Rd

Rd

]
, (B2)

where Rd = |Rd | = |R − Rp| and ∇R represents the gradient
with respect to R. As discussed in [38], the passage from
the spherical wave emitted by the dipole and our angular
spectrum representation can be performed by using the Weyl
representation [46]; the resulting field propagating in the

φ direction from position Rp reads, after straightforward
algebraic manipulations,

Eφ(R,ω) = iω2

2ε0c2

∑
p

∫
d2k

(2π )2

1

kz

ε̂φ
p(k,ω)

×[ε̂φ
p(k,ω) · p

]
exp[iKφ · (R − Rp)

]
. (B3)

We can then simply deduce the expression

E1(R2) = iω2

2ε0c2

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2
ε̂φ′

p (k,ω)

× 1

k′
z

[
p1 · ε̂

−φ

p′ (k′,ω)
]〈k,p|Sφ′,−φ|k′,p′〉

× exp[i(Kφ′ · R2 − K
′−φ · R1)], (B4)

and analogously

E2(R1) = iω2

2ε0c2

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2
ε̂

φ

p′ (−k′,ω)

× 1

kz

[
p2 · ε̂−φ′

p (−k,ω)
]〈−k′,p′|Sφ,−φ′ | − k,p〉

× exp[i(Kφ′ · R2 − K
′−φ · R1)], (B5)

where we have performed the change of variables

(k,k′,p,p′) −→ (−k′, − k,p′,p). (B6)

By imposing the condition (B1) we get

kz

[
p1 · ε̂

−φ

p′ (k′,ω)
][

p2 · ε̂φ′
p (k,ω)

]〈k,p|Sφ′,−φ |k′,p′〉
= k′

z

[
p1 · ε̂

φ

p′ (−k′,ω)
][

p2 · ε̂−φ′
p (−k,ω)

]
×〈−k′,p′|Sφ,−φ′ | − k,p〉, (B7)

from which we deduce, by using the properties of the
polarization unit vectors (8), the final relation

kz〈k,p|Sφ′,−φ|k′,p′〉 = k′
z(−1)p+p′ 〈−k′,p′|Sφ,−φ′ | − k,p〉.

(B8)

By choosing the four possible values of the couple (φ,φ′), we
obtain the relations

kz〈k,p|T ±|k′,p′〉 = k′
z(−1)p+p′ 〈−k′,p′|T ∓| − k,p〉,

kz〈k,p|R±|k′,p′〉 = k′
z(−1)p+p′ 〈−k′,p′|R±| − k,p〉.

(B9)

These equations clearly show that the matrix elements of
each transmission operator are connected to elements of the
specular operator, while the matrix elements of each reflection
operator are not independent. The relations (B9) contribute to
the derivation presented in Appendix D.

APPDNDIX C: GREEN FUNCTION AND SCATTERING
OPERATORS

In this appendix we are going to derive the relation between
the Green function in the presence of a single body and its
reflection and transmission operators. This feature is a main
point in the calculation given in Appendix D. In order to
derive this connection we will start from the definition of the
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Green function. Suppose we have a dipole electric moment p
located at R′ oscillating at frequency ω and thus producing an
electric field oscillating at the same frequency proportional to
the components of the dipole moment itself. The component
Gij (R,R′) at frequency ω of the Green function can be
interpreted as the part of component i of the total electric field
at the point R, namely, Etot

i (R), proportional to the component
j of the dipole moment, divided by pj . Of course, in our
description of the electromagnetic field in the presence of
scatterers, the field directly produced by the dipole p will result
in reflection and transmission; as a consequence, the Green
function will prove to be linked to the scattering operators R±
and T ±.

It is important at this point to recall that our choice of mode
decomposition of the field naturally introduces a left and a
right side for a given body. Thus, we will separately discuss
the cases in which the arguments R and R′ appearing in the
Green function are either on the same side or on opposite sides
of the body. Let us suppose first that the two points R and R′
are located on the same side φ of the body. In this case, the field
directly produced by the dipole at the point R′ will be directly
observed in R. Moreover, this field will produce a reflected
field defined in the same region φ, and consequently observed
in R as well. We argue then that for R and R′ on the same side
φ of the body the Green function can be expressed as a sum of
two terms, a free one independent of the scattering operators,
and a reflected one proportional to Rφ . Analogously, if the
first argument R of the Green function is located on the side φ,
while R′ is located in the −φ region, the Green function will
be made up of a unique transmitted term, proportional to T φ .

In order to make this description analytic we need the
explicit expression for the dipole field propagating in direction
φ given in Appendix B. As far as the free contribution is
concerned (existing if R and R′ are located on the same side
of the body), if R is on the right (left) side of R′, the Green
function will contain the component of the field emitted by the
dipole propagating toward the right (left). Let us now suppose
that both R and R′ are on the same side φ of the body. In this
case, apart from the direct contribution we have just discussed,
the field contains a component propagating in direction φ,
resulting from the reflection by means of the operator Rφ of
the dipole field propagating in the opposite direction −φ. Then
the ij component of the Green function for R and R′ on the
side φ of the body reads

Gij (R,R′,ω) = G
(0)
ij (R,R′,ω) + G

(R)
ij (R,R′,ω),

G
(0)
ij (R,R′,ω) = iω2

2ε0c2

∑
p

∫
d2k

(2π )2
exp[ik · (r − r′)]

× 1

kz

[θ (z − z′)[ε̂+
p (k,ω)]i[ε̂

+
p (k,ω)]j

× exp[ikz(z − z′)] + θ (z′ − z)[ε̂−
p (k,ω)]i

× [ε̂−
p (k,ω)]j exp[ikz(z

′ − z)]],

G
(R)
ij (R,R′,ω) = iω2

2ε0c2

∑
pp′

∫
d2k

(2π )2

∫
d2k′

(2π )2

× exp[i(k · r − k′ · r′)]
1

k′
z

[
ε̂φ

p(k,ω)
]
i

× [ε̂−φ

p′ (k′,ω)
]
j

exp[iφ(kzz + k′
zz

′)]

×〈k,p|Rφ|k′,p′〉. (C1)

On the contrary, if R (R′) is located on the side φ (−φ) of
the body, we observe a field, propagating in the φ direction,
resulting from the transmission described by the operatorT φ of
the component of the field emitted by the dipole propagating in
direction φ as well. As a consequence, in this case we conclude

Gij (R,R′,ω) = iω2

2ε0c2

∑
p

∫
d2k

(2π )2
exp[i(k · r − k′ · r′)]

×
∑
p′

∫
d2k′

(2π )2

1

k′
z

[
ε̂φ

p(k,ω)
]
i

[
ε̂

φ

p′(k′,ω)
]
j

× exp[iφ(kzz − k′
zz

′)]〈k,p|T φ|k′,p′〉. (C2)

The expressions (C1) and (C2) describe, for any position of
the points R and R′ with respect to the body, the connection
between the Green function and the scattering operators.

APPDNDIX D: CORRELATORS OF THE FIELD EMITTED
BY THE BODIES

As discussed in Sec. VI, when a body is at thermal
equilibrium with the environment at temperature T , the
fluctuation-dissipation theorem gives complete knowledge of
the correlation functions of the total field, resulting from the
environmental field, the one emitted by the body, and the
result of scattering processes. Nevertheless, even at thermal
equilibrium the correlation functions describing the field
emitted by the body are not straightforward. They were given
in Eq. (45) for two components of the field propagating in the
same direction, while (46) gives the corresponding quantity for
counterpropagating components. The derivation of Eqs. (45)
and (46) is the main scope of this appendix.

Let us consider a body at thermal equilibrium at temperature
T and described by the scattering operators R± and T ±. The
first step of our calculation is to write the expression for the
total field both on the left and on the right sides of the body.
Their components at frequency ω are given by

E(tot)φ(R,ω) = E(env)−φ(R,ω) + E(b)φ(R,ω)

+ E(re)φ(R,ω) + E(tr)φ(R,ω). (D1)

In this expression the superscript φ for the total field in the
left-hand side (LHS) refers to the region we are considering,
while for the four fields in the RHS it corresponds, as usual
in the rest of the paper, to the direction of propagation.
Equation (D1) tells us that the total field in region φ contains
first the environmental field propagating in direction −φ (i.e.,
toward the body) and of course the field E(b)φ emitted by
the body itself and propagating in direction φ. Moreover, the
environmental field E(env)−φ produces a reflected field E(re)φ

connected to E(env)−φ by the operator Rφ . Finally, in region φ

there is a field E(tr)φ resulting from the transmission of the envi-
ronmental field E(env)φ (existing in the other region −φ) by the
operator T φ .
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We are looking for correlation functions such as〈
E(b)φ

p (k,ω)E(b)φ′†
p′ (k′,ω′)

〉
sym (D2)

of the field emitted by the body, both for φ = φ′ and for φ 	= φ′.
Let us start with the case of copropagating components of
the field, namely, with the case φ = φ′. It is first useful to
calculate the correlation function of the i and j components
of Eq. (D1), for two couples of coordinates (R,ω) and
(R′,ω′). As for the LHS, the result is directly given by
the fluctuation-dissipation theorem stated in Eq. (39). The
discussion of the RHS requires a more accurate analysis. We
first point out that we already know the correlation function
characterizing the environmental field: it is given by Eq. (43)
and it also tells us that two counterpropagating components
of this field are uncorrelated. As a consequence, E(env)−φ

is correlated (apart from with itself) with the reflected field
E(re)φ , but not with the transmitted field E(tr)φ , coming from
the counterpropagating component of the environmental field.
As a consequence E(tr)φ is correlated only with itself; the
same holds for the field E(b)φ , since the field produced by
the body alone is of course uncorrelated with everything that
results from the environment. We now observe that, since
the reflected and transmitted fields are connected by means
of scattering operators to the environmental field, whose
correlation functions are known, the only unknown remaining
is the correlation function〈

E
(b)φ
i (R,ω)E(b)φ†

j (R′,ω′)
〉
sym, (D3)

strictly connected to the one we are looking for. In particular
we obtain the expressions

L = R,

L = 〈E(tot)φ
i (R,ω)E(tot)φ†

j (R′,ω′)
〉
,

R = 〈
E

(env)−φ

i (R,ω)E(env)−φ†
j (R′,ω′)

〉
+ 〈E(re)φ

i (R,ω)E(re)φ†
j (R′,ω′)

〉
+ 〈E(env)−φ

i (R,ω)E(re)φ†
j (R′,ω′)

〉
+ 〈E(re)φ

i (R,ω)E(env)−φ†
j (R′,ω′)

〉
+ 〈E(tr)φ

i (R,ω)E(tr)φ†
j (R′,ω′)

〉
+ 〈E(b)φ

i (R,ω)E(b)φ†
j (R′,ω′)

〉
, (D4)

where the subscript (sym) has been dropped for simplicity. We
will start by working on the RHS term R. In this case, using
the expression of all the fields by their Fourier decomposition
(6) (all for a given value of φ), it is easy to see that all the
correlation functions will contain a double integral on k and
k′ as well as the factor exp[i(k · r − k′ · r′)], which we will
drop here, by virtue of the fact that it will also appear in the
LHS. L. Moreover, we will also drop the factor 2πδ(ω − ω′),
appearing in both L and R. With these conventions and using
the definition of the scattering operators given in Sec. V, we
have

〈
E

(env)−φ

i (R,ω)E(env)−φ†
j (R′,ω′)

〉 =∑
pp′

exp[−iφ(kzz − k
′∗
z z′)]

[
ε̂−φ

p (k,ω)
]
i

[
ε̂

−φ

p′ (k′,ω)
]∗
j
〈k,p|C(3)|k′,p′〉,

〈
E

(re)φ
i (R,ω)E(re)φ†

j (R′,ω′)
〉 =∑

pp′
exp[iφ(kzz − k

′∗
z z′)]

[
ε̂φ

p(k,ω)
]
i

[
ε̂

φ

p′ (k′,ω)
]∗
j
〈k,p|RφC(3)Rφ†|k′,p′〉,

〈
E

(env)−φ

i (R,ω)E(re)φ†
j (R′,ω′)

〉 =∑
pp′

exp[−iφ(kzz + k
′∗
z z′)]

[
ε̂−φ

p (k,ω)
]
i

[
ε̂

φ

p′(k′,ω)
]∗
j
〈k,p|C(3)Rφ†|k′,p′〉,

〈
E

(re)φ
i (R,ω)E(env)−φ†

j (R′,ω′)
〉 =∑

pp′
exp[iφ(kzz + k

′∗
z z′)]

[
ε̂φ

p(k,ω)
]
i

[
ε̂

−φ

p′ (k′,ω)
]∗
j
〈k,p|RφC(3)|k′,p′〉,

〈
E

(tr)φ
i (R,ω)E(tr)φ†

j (R′,ω′)
〉 =∑

pp′
exp[iφ(kzz − k

′∗
z z′)]

[
ε̂φ

p(k,ω)
]
i

[
ε̂

φ

p′ (k′,ω)
]∗
j
〈k,p|T φC(3)T φ†|k′,p′〉,

〈
E

(b)φ
i (R,ω)E(b)φ†

j (R′,ω′)
〉 =∑

pp′
exp[iφ(kzz − k

′∗
z z′)]

[
ε̂φ

p(k,ω)
]
i

[
ε̂

φ

p′ (k′,ω)
]∗
j
〈k,p|Cφφ|k′,p′〉. (D5)

We now need to calculate the LHS by using the fluctuation-
dissipation theorem (39) and inserting the explicit expression
found in Appendix C of the Green function as a function of
the scattering operators. Since in this case we are calculating
the correlator of E

(tot)φ
i with E

(tot)φ
j , we are using the Green

function calculated at positions R and R′, which are on the
same side φ of the body. We will thus make use of Eq. (C1)
to connect the Green function to the scattering operators. In
particular, the fluctuation-dissipation theorem tells us that we
need to calculate the imaginary part of the Green function
(C1). Starting from the free term G

(0)
ij and inserting a term

(2π )2δ(k − k′) integrated over k′ as well as a δpp′ in order
to have the desired factor exp[i(k · r − k′ · r′)] and the same
structure as the terms in (D5) [we remark here that the factor
2πδ(ω − ω′) is already in the fluctuation-dissipation theorem
(39)], we obtain

ImG
(0)
ij (R,R′,ω)

= ω2

4ε0c2

∑
pp′

δpp′ (2π )2δ(k − k′)
{
θ (z − z′)

[
1

kz

× [ε̂+
p (k,ω)

]
i

[
ε̂+

p′ (k′,ω)
]
j
exp[i(kzz − k′

zz
′)]
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+ 1

k∗
z

[ε̂+
p (−k,ω)]∗i [ε̂+

p′ (−k′,ω)]∗j

× exp[−i(k∗
z z − k

′∗
z z′)]

]

+ θ (z′ − z)

[
1

kz

[ε̂−
p (k,ω)]i[ε̂

−
p′ (k′,ω)]j

× exp[i(k′
zz

′ − kzz)]

+ 1

k∗
z

[ε̂−
p (−k,ω)]∗i [ε̂−

p′ (−k′,ω)]∗j

× exp[−i(k
′∗
z z′ − k∗

z z)]

]}
, (D6)

where for the terms obtained by complex conjugation we made
a change of variable from k to −k. Making use of the properties
of the polarization unit vectors, it is easy to show that each term
multiplying a step function θ is zero in the evanescent sector
of k (and then k′). After simple algebraic manipulations the
imaginary part of G

(0)
ij finally takes the form

ImG
(0)
ij (R,R′,ω)

= ω2

4ε0c2

∑
pp′

δpp′ (2π )2δ(k − k′)θ (ω − ck)
1

kz

× [[ε̂+
p (k,ω)]i[ε̂

+
p′ (k′,ω)]j exp[i(kzz − k′

zz
′)]

+ [ε̂−
p (k,ω)]i[ε̂

−
p′ (k′,ω)]j exp[i(k′

zz
′ − kzz)]].

(D7)

Observing from Eq. (43) that

〈k,p|C(3)|k′,p′〉 = ω

2ε0c2
N (ω,T )δpp′(2π )2δ(k − k′)

× θ (ω − ck)
1

kz

(D8)

and taking back the factor 2
ω
N (ω,T ) in Eq. (39), we conclude

that the term (D7) cancels the first term in (D5) and gives in
the LHS a contribution∑

pp′
exp[iφ(kzz − k

′∗
z z′)]

[
ε̂φ

p(k,ω)
]
i

[
ε̂

φ

p′ (k′,ω)
]
j

×〈k,p|C(3)|k′,p′〉. (D9)

We are now left with the calculation of the imaginary part of
G

(R)
ij . We have

ImG
(R)
ij (R,R′,ω)

= ω2

4ε0c2

∑
pp′

[
1

k′
z

[
ε̂φ

p(k,ω)
]
i

[
ε̂

−φ

p′ (k′,ω)
]
j

× exp[iφ(kzz + k′
zz

′)]〈k,p|Rφ|k′,p′〉
+ 1

k
′∗
z

[ε̂−φ
p (k,ω)]∗i [ε̂φ

p′ (k′,ω)]∗j exp[−iφ(k∗
z z + k

′∗
z z′)]

× (−1)p+p′ 〈−k′,p′|Rφ†| − k,p〉
]
, (D10)

where the second term was obtained by the change of
variables (k,k′) −→ (−k, − k′) and using the properties of
the polarization unit vectors (8). Starting from the first term
we note that its part which is propagative in k′ exactly cancels
the fourth term in Eq. (D5). Observing that in the evanescent
sector we have k

′∗
z = −k′

z and using again (8), we are left from
the first term with a contribution

ω2

4ε0c2

∑
pp′

[
ε̂φ

p(k,ω)
]
i

[
ε̂

φ

p′(k′,ω)
]∗
j

× exp[iφ(kzz − k
′∗
z z′)]

〈
k,p|RφP (ew)

−1 |k′,p′〉. (D11)

As far as the second term is concerned, we exploit the
reciprocity relations of scattering operators presented in
Appendix B to conclude that

1

k
′∗
z

(−1)p+p′ 〈−k′,p′|Rφ†| − k,p〉 = 1

k∗
z

〈k,p|Rφ†|k′,p′〉.
(D12)

As a consequence the propagative part with respect to k of this
second term analogously cancels the third term in (D5), and
we are left with

− ω2

4ε0c2

∑
pp′

[
ε̂φ

p(k,ω)
]
i

[
ε̂

φ

p′ (k′,ω)
]∗
j

× exp[iφ(kzz − k
′∗
z z′)]

〈
k,p|P (ew)

−1 Rφ†|k′,p′〉. (D13)

Having considered all the terms in the equality (D4), we remain
now with quantities which all have exactly the same structure,
namely, the same sum over p and p′, the same z-dependent
exponential, and the same polarization unit vectors. As a
consequence we can identify the matrices whose elements are
calculated between (k,p) and (k′,p′) and obtain immediately
the equality (45).

In the case of the correlation function between two
components of the field emitted by the body propagating in
two opposite directions, the structure of the calculation is the
same. Now one has to use Eq. (C2) instead of (C1) in order
to connect the Green function to the scattering operators.
The analytic expression (46) for the correlation function
for counterpropagating fields has already been given in the
paper.
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