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18 Abstract

19 1. Stable isotopes are increasingly used in ecology tofigats ontogenetic shifts

1



20 in foraging habitat (vied*3C) and in trophic level (vi@'°N). These shifts are in

2 essence an individual-level phenomenon, requiring redeatasures throughout the
2 life of individuals, that is longitudinal data. Longitu@ihdata require in turn

23 specifying an appropriate covariance structure. Here wsgnt a hierarchical model
24 to jointly investigate individual ontogenetic shiftsd#3C andd'°N values.

2 2. In a Bayesian framework, we used a Cholesky decompoditioestimating a

2 moderately-sized covariance matrix, thereby directlinesting correlations between
27 parameters describing time-series of isotopic measuresm@re offer guidelines on
28 how to select the covariance structure.

29 3. The approach is illustrated with a hierarchical changietp(or broken stick) model

30 applied to a data set collected on Southern Elephant Sdatsjnga leonina

3 Ontogenetic shifts in foraging habitat, following a juMerand variable stage, were
a2 detected and interpreted as fidelity to a foraging stratedmie ontogenetic shifts in
a3 trophic level were more likely the result of complete indegence from maternal

3 resources followed by a gradual increase in trophic levekads aged.

5 4. Specifying both an appropriate covariance and meantsteienabled us to draw

3 strong inferences on the ecology of an elusive marine poedatd has wide

a7 applicability for isotopic ecology provided repeated gt measurements are

a8 available.

» 1 Introduction

» The use of stable isotopes in ecology is expanding rapidgiyik2000; Newsomet al., 2007;
« Westet al,, 2006; Wolfet al,, 2009). This inexpensive technique has become extremelylao
» 10 investigate various phenomena, from migration (Hobetaad., 1999) to diet estimation

s (Semmenet al, 2009). A recent application is the detection of tempordtsin a species’ diet

« (Phillips & Eldridge, 2006; Popa-Lisseaetial,, 2007), and more specifically of changes in
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trophic level throughout the life of an individual, that leetdetection of ontogenetic shifts
(Estradeet al.,, 2006; Post, 2003). An ontogenic shift is definedraspatterns in an organism’s
resource use that develop as it increases in size from birttatching to its maximur@Werner

& Gilliam, 1984). In their review on ontogenetic shifts, Wer & Gilliam (1984) focused on
changes in habitat use and trophic level, both of which apeedqended in isotopic ecology via
carbon §13C) and nitrogend'°N) stable isotopes respectively.

Carbon isotopes are used for identifying carbon sourceslaxes within ecosystems (Kelly,
2000; Peterson & Fry, 1987; West al., 2006). Natural gradients in carbon isotopes occur
between terrestrial and marine food webs (Schoeninger &ifpell984; Hobsoret al., 1994),
between inshore and offshore waters (R&al., 1982; Hobsoret al., 1994), between benthic
and pelagic foodwebs (France, 1995) or between low and highdes water masses (Rau

et al, 1982, 1989). The nitrogen isotopic ratio is a reflectionhef trophic level of organisms
(Post, 2002; Vanderklift & Ponsard, 2003). Because thedigisotope is usually more reactive,
14N is preferentially excreted and the heavieN is preferentially retained, a phenomenon
known as fractionation (Fry, 2006). This differential r@aty results in a predictable
enrichment of the ratio 0N to 1N from preys to consumers (Kelly, 2000).

A large number of studies looking at ontogenic shifts consepecies with “cryptic lifestages”,
in particular marine organisms such as turtles (Reichl., 2007), fish (Estradat al., 2006;

Post, 2003) or marine mammals (Dragjcal., 2009; Hobson & Sease, 1998; Mendzgsl.,

2007; Newsomet al., 2009). In some studies, repeated isotopic measuremenrgsawailable
for the same individual using so-called archive tissuesabse they are metabolically inert after
synthesis, such as vertebrae (Estratal.,, 2006), or teeth (Hobson & Sease, 1998; Mendes
et al, 2007; Newsomet al., 2009). These studies addressed the estimation of a clpenmgiein
the time-series of isotopic measurements, yet they tylgipaloled data from all individuals to
infer a population-level change-point, or ontogeneti¢tskior example, Newsomet al. (2009)

fitted a 4 parameters logistic model to estimate a changeritirde!®>N of Californian Killer
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Whales Qrcinus orcg after weaning. The model is fit at the population level, teassuming
all individuals experienced an ontogenetic shifts at thmesage, despite apparent individual
heterogeneity in the raw plot (their Figura)2Ignoring individual heterogeneity when itis in
fact present may hinder our ability to draw accurate infeesn(Cooctet al, 2002; Petrovskii
et al, 2011). In addition, the change-point is often treated aswneven when it was first
estimated from the same data. Unless a profile likelihoodagah is used, no confidence
interval for the change-point is usually reported, and @dlisequent inferences are conditional
on the point estimate for the change-point.

Stable isotopes in ecology of wild animals are often haiked powerful technique. Yet,
inferences are typically drawn from statistical analy$ed tend to 1) emphasize testing over
estimation and goodness-of-fit (Graham, 2001; Martineahi2010); and 2) focus on the
mean response at the expense of variability (but see Hétaalx(2011)). In the case of
detecting an ontogenic shift, the problem is clearly onestih@ation: when does an organism
change its habitat use or trophic level? Further questiansamise as to what are the
ecological, life-history and ultimately population cogsences of such an individual change
(Werner & Gilliam, 1984; Graharat al,, 2007). This paper thus deals with the problem of
estimating individual ontogenic shifts with longitudinabtopic data, that is repeated
measurements @f3C and5°N on the same organism throughout its life. We present a
Bayesian change-point model to jointly estimate individardogenic shifts irs*3C ands°N.
Our aim is to bring forward to a larger audience the vastdiigne on change-point models
(Beckageet al.,, 2007; Hallet al., 2000; Muniz-Terrerat al,, 2011; Ghosh & Vaida, 2007), and
how to fit them using th8UGSIlanguage (Lunret al., 2000).

Change-point, or broken-stick, models aim at finding an jpiomupture in a time-series. The
time-series is assumed to be the juxtaposition of piece-lingar homogeneous segments, each
segment separated from the next by a change-point. Suchisriwle been used in

epidemiology to infer the onset of cognitive decline (Halal., 2000; Muniz-Terrerat al.,
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2011), of prostate cancer (Bellezaal., 2008) or of HIV immunologic response decline (Ghosh
& Vaida, 2007). In ecology, Beckags al. (2007) used a change-point model to study
allometric relationships between tree height and tree eianor to study seedling recruitment
with respect to canopy cover along a transect; while Daa%it\al. (2008) studied
post-reproductive survival in a partially semelparoussupral. These models are very flexible
as they allow specifying different probability distribomis to describe different parts of a time
series. Change-point models thus seem appropriate taloesertogenetic shifts (e.g. Post
(2003)), but are not prescriptive. Other models (for examgwsomeet al. (2009)) may prove
useful when investigating ontogenic shifts. Our aims heeg@expose the use of powerful
statistical tools to help ecologists drawing strong infiees (Platt, 1964). We will illustrate our

methodology with an example using data on Southern ElegbeaisMirounga leonina

1.1 Southern Elephant Seal Example

Southern Elephant Seals are marine carnivores with a vasyvellifestyle since they can spend
more than 80% of their lifetime at sea (McIntyatal., 2010). Where they are foraging
remained a mystery until the advent of miniaturized elettrtags (Biuwet al., 2007). Seals
from iles Kerguelen (49°30’ S, 69°30’ E) in the Southern &mdOcean show a dual foraging
strategy: animals forage either in Antarctic waters or itap&rontal waters (Bailleuét al.,
2010). Across the Southern Oceah3C decreases with increasing latitude (Bentaehl.,
1998; Trull & Armand, 2001). Carbon stable isotopes can tielp identify the foraging areas
of marine predators: a relative differenceso%o is expected between the two strategies
(Cherel & Hobson, 2007; Jaegetral., 2010). Processes underlying carbon isotopic
fractionation in marine foodwebs are briefly reviewed in Manzieet al. (2011) and a model
for fractionation is described in Raat al. (1996).

With Southern Elephant Seals, we were interested in ansgvére following questions:
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Are seals faithfull to a foraging strategy (Bradshetwal., 2004)?

When do they become faithfull?

Are ontogenic shifts in carbon (foraging habitat) andogen (trophic level) isotopes

concomitant?

Are there notable sex differences?

Can we detect differences in stable isotope values befat@ter the 1970s population

crash (Authieet al,, 2011)?

2 Material & Methods

2.1 Notationsand Assumptions

Throughout we will assume the data are composéd ofeasurements éf3C and5°N onm
different individuals. For thg'" individual, there ar@; measurement, such thisdt= Elnj.

i=
These measurement are collected along some biologicabnmgful ordered scale such as age
(or size). This scale is assumed continuous for conveniaffeenill also posit that a piecewise
linear, or broken-stick model, provides an adequate datszni of the data, although this may be
relaxed to consider non-linear functions as well. With theklen-stick model, we will denote

by Kjf’13C (K1-515N) the age of thg'" individual when an ontogenetic shift in foraging habitat

(trophic level) occurs.

2.2 Mode Building

The time-series of isotopic measurements forjtAéndividuals is then modelled as:

fori e [1:nj]
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, aj+&1, Agej <€l
513Ci7j =aj+ (quj — ea3~rl) X Q)

asj+¢&2 Agg; > e

aj = isotopic value at ontogenetic shift
apj = slope before the ontogenetic shift
13
agj= log(KP™)
where
ay,j = slope after the ontogenetic shift

&1~ N(0,053c ;) are the residuals before the ontogenetic shift

&2~ N(0, 0535 5) are the residuals after the ontogenetic shift
and 051§C is the residual standard deviation, which is allowed to lflexdint before and after the

ontogenetic shift. A logarithmic transformation is usedjt@rantee positive values for alflg’c
or Kf’lSN. We implicitly assume that only the consumer, not its prey, experience an isotopic
shift, but the model cannot be used to distinguish betweesettwo alternatives (Matthews &
Mazunder, 2004).

The individual coefficientsy_, , ; are assumed to be exchangeable and drawn from a

multivariate normal distribution of vector mean,_, , and covariance matrix of dimension 4:

2
a1 ai 0y 012 013 O14
2
a az 021 0O; 023 024
~MVN , (2)
ag as 031 032 03? 034
2
a | ag 041 042 043 Oy

J L - -

This formulation allows to directly estimate correlatidretween parameter of interest via the
covariance matrix. For example, one could be interesteddess whether an ontogenetic shift
occurs later or earlier depending on the steepness of thealq. The interpretation of such
correlations would depend on the biology of the studied migya.

The same broken-stick model can be applied'fiN: this model then calls for the estimation of
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two independent covariance matrices each of dimensionefam'3C and one fot1°N
(hereafter referred to @x4x4). An obvious question is whether ontogenetic shiftsi#C and
51°N are simultaneous or correlated. Answering this questiguires the estimation of
covariance matri¥ of dimension 8, as represented on Figure 1 (this model isrezféo as8x8
hereafter).

Specifying the covariance structure of a model has gewyardkived less attention than
specifying its mean response, but the problem is no lesgaei¢Pourahmadi, 2010).
Estimating a covariance matrix of size greater than 2 is desige: in addition to the usual
restriction to lie betweer-1 and 1, correlations are jointly constrained. For exampith a

3 x 3 covariance matrixp, » andps 3 can take any value betweerl and 1, bup, 3 must then
conform to the following constraints for the matrix to be piwe-definite and invertible

(Buddenet al.,, 2007):

P1,2P1,3 — \/(1 —P%,)(1—-pfs) < P23 < pr2p13+ \/(1 —p%,)(1-pis)
Estimating a matrix such as represented in Figure 1 presenis additional challenges since
some elements are constrained to be 0. We opted for a Chaleskynposition oV into a

diagonal matriX” and a lower triangular matrik with 1s on the diagonal:

V=TLL'T (3)

There are several Cholesky decompositions, all of whicliaguae positive-definiteness
(Pourahmadi, 2007), but equation 3 neatly separates sthddaiation (') and correlation
(LLT) parameters (Barnat al, 2000; Chen & Dunson, 2003). It becomes possible to force
some correlations to be 0 and impose the desired structuxé fo

In a Bayesian framework, priors need to be specified on eatltiteqfarameters. We used
weakly-informative priors: for parameters on the sameesaalthe datad(;, a2 anday) we

used normal priors with a large variance. For the parametegrging the distribution of ages at
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ontogenetic shifts, a logarithmic transformation in eguail guarantees positive values for all
Kflsc or Kf’lSN. For the parametars, we used a Studentprior (with location, scale and
degrees of freedom set to 0, 10 and 7 respectively (Gekhah 2008)). For modelliny/, we
used the priors similar to those of Chen & Dunson (2003): peaelent Half-Normal priors of
mean 0 and standard deviatiois or the elementsy,_, ., of the diagonal matrix’, and

independent normal priors of mean 0 and standard deviatfoOthe elements)p_, ; g, Of

G<p?
L. A prior covariance matrix of dimension 4 (8) with such a sfie&tion is depicted on Figure
S1 (Figure S3). This prior gives reasonable values (thagttiwden 0 and 10) for the variances
of thea; j, but can be altered depending on the studied organismsalkossomewhat
conservative as most of the probability mass for variancarpaters is put on values less than 5.

This prior thus reflects skepticism for large differencesveen individuals. Uniform priors

were put on the residual standard deviations (Gelman, 2006)

2.3 Modéd Selection

With hierarchical models, model selection is a challengkseveral methods have been
suggested, such as DIC (Spiegelhadteal., 2002; Barnetet al., 2010); but there is currently no
consensus (Jordan, 2011). We choose to avoid using the RLibe of drawbacks such as lack
of invariance to reparametrization (Spiegelhadteal. (2002) and the following discussion). In
fact, DIC was computed but yielded non-sensical resultgf@estimated number of parameters
when the Cholesky decomposition was used (see Table S2glfct an appropriate model, we
focused on Posterior Predictive Checks (Gelreaal., 1996; Berkhotkt al., 2003) wherein

each fitted model is used to predict (hypothetical) remetgiof the data set. From this
hypothetical dataset, we compared an observed summaististélos) to its predicted values

(Trep) and compute @yaiue

Pvalue = Pr(Trep > Tobs) (4)

9
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A pyalue close to 05 tells us of a good fitTrep ~ Tops), While an extremepyaiue (0 or 1) betrays

a major model misfit. We chose the range of observed isot@hieg as discrepancy statistics
to assess model fit. The rational for choosing the range as attistic is the following: if a
change-point is necessary to describe the time-seriestofgg measurement, the range of
predicted value is likely to be underestimated when fittimyadel with no change-point. The
tip of the broken stick will be missed by a simple linear rexgien, hence an underestimation of
the range. Posterior Predictive Checks can be used to tethara broken-stick model is
justified or to select a covariance structure. For exampéecan compare the covariance
structure depicted in Figure 1 with a simpler structure whbe matrix is block diagonal with

no correlation betweed!3C ands®®N (that is,p1 5 = P26 = P37 = pag = 0 in Figure 1).

2.4 Checking Model Fit

Once a model has been selected, it is crucial to check mod&ditnan & Shalizi, 2010).
Therefore model fit was assessed for each individual usirgpdress-of-fit statistic for
non-linear models (Vonestt al., 1996; Huanget al,, 2010). This concordance coefficient is
denoted and varies between1 and 1, with values< 0 betraying a complete lack of fit
(Voneshet al,, 1996; Huanget al., 2010). This concordance coefficient assesses the fit of the
model at the individual level (Huargt al., 2010), and is computed as follow, wiffdenoting an

individual:

nj
S (Hij—8ij)?

re; = 1— = (5)

nj — nj — —_
3 (00 =82+ 3 (Hij—Hj)*+nj(8; — i)

10
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aj, Agaj <K

Hij = a1+ (Age —Kj) x
asj, Agej>K;

nj

whereq 58
5]' = E(éi’j) = =
nj
T izlui"j
| Hi=EH) =
b andy; are the means of the observed and fitted values respeciikalg the numerator in

nj

equation 5 is the sum of squared-residugf®r the jt" individual. In the next section, we will

apply the above methodology to a “real-life” case.

2.5 Southern Elephant Seal Data

Teeth were collected from elephant seals that died of natateses on iles Kerguelen. Canines
grow continuously throughout the whole life without clogiof the pulp cavity, allowing for age
determination (Laws, 1952, 1993). Canines from 47 male2@rfédmales were analyzed and
sampled for isotopic analysis. 18 teeth were sampled onasithat died before a population
crash in the 1970s, while the remaining 49 were sampled i2@0€s, after the population had
stabilized (Authieet al,, 2011).

Each tooth was cut longitudinally and observed under difilgght to count growth layers. The
alternate pattern of two opaque and two translucent groaytérks corresponds to the annual
biological cycle of Southern Elephant Seals (Laws, 19529n3lucent bands are enriched in
vitamin D and synthesized when seals are ashore to breed amolit, while opaque ones are
synthesized when at sea (Wilske & Arnbom, 1996). Within ay@&outhern Elephant Seal
comes onshore to breed, returns to the sea, then comes ernsmooult before another trip at
sea. Thus each growth layer was assumed to correspond tortmef a year (Martiret al.,,
2011). Each growth layer was sampled for 1 mg of bulk dentingia Micromill™ sampler
(ISEM, Université de Montpellier 2). Organic matter®C and5*°N signatures of the bulk

dentine were measured with an elemental analyzer (EA-IRBISy-Vector EA 3000) coupled

11
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to a continuous flow mass spectrometer (Optima-MicromdgskpdJniversité de Montpellier 2.
As a recent study raised concerns about non-linear off$eiganic %C, %N ancﬁ after acid
treatment (Brodiet al,, 2011), we forwent any acid (or demineralization) treattypior to
isotopic measurement. As a result, the meastité@ is a mixture of organic carbon with a
small amount of inorganic carbon. To test the impact of tleeganic fraction, Martiret al.
(2011) compared acid-treated and untreated samples bud faudifferences£0.02%o).
Schultinget al. (2008) found similanﬁ ratios between bulk dentin and collagen, with a lower
carbon and nitrogen contents in bulk dentin most likely dugé mineral fraction. Here we
assumed that the impact of the mineral fraction is neglggilfinot, relative trends (see Results)
should be unaffected under the assumption of a systemasc bi

Stable isotopic signatures are presented in the usnatation (in %o) relative to Pee Dee
Belemnite and atmosphericNor 513C ands1°N respectively. Typical precisions for isotopic
measurement wereZD %o for both carbon and nitrogen. We us%datio thresholds of bone
and tooth collagen (2 to 36) as criteria for the identification of diagenetic altevati

(Ambrose, 1990); assuming that total dentin, whose orgaimase is mainly collagen and water
(Moyes & Doidge, 1984), has the sarﬁeratio than bone and tooth collagen590 samples
were analyzed, but 176 were discarded because of anom%llmlk)s, yielding a final sample
size of 1414 (1 115 from males and 299 from females) analyses from 67 indal&l(47 males
and 20 females). The first°N value of each time-series was also removed as it is clearly a
reflection of maternal diet (Hobson & Sease, 1998; Magtial., 2011). Summary statistics of
the data are available in Table S1 and depicted in FiguretSBolld be stressed that females
are under-represented in this data set, and that samplested|from dead females on beaches
were biased toward young females. Thus time-series ofpgoteasurement were usually
shorter for females (Table S1). We fitted the model defineddjoyaon 1 to these data.

To answer questions about any differences between maldeisrades, or between animals

living before and after the population crash, we can easddify the hierarchical change-point

12
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model defined by equation 1 by further specifying that theameaf means ((Yke[l:4]) depends on
the sex of seals and whether they liveforeor after the population crash:

B _jp.q,] = ALk T O2 Sex + az * Crash) + Ny j

where the individual-level residuatg ; are drawn from a multivariate normal distribution of

mean 0 and covariance mathk(see equation 3).

2.6 Software

All models were fitted withwinBUGS(Spiegelhalteet al., 2003) called fronR (R

Development Core Team, 2009) with the packBR@WinBUGSSturtzet al,, 2005). We used
normal priors for regression parameter on the natural ssaleStudent priors with 7 degrees of
freedom (Gelmaet al,, 2008) for regression parameters on the log scale. Thraeschvare
initialized with overdispersed starting values. After egggriate burn-in (20000 iterations) and
thinning of the chains (1 value every 200 iterations stqredjvergence was assessed using the
Gelman-Rubin convergence diagnostic (Cowles & Carlin,6)9@th thecodapackage
(Plummeret al, 2008). Posterior mean (or median when posterior disiobatwere
asymmetric) with 95% Highest Probability Density (HPD)antals are reported as

2 s0sMeany7 s, following Louis & Zeger (2009). Inferences are based on dgyas sample of
3,000 iterations. AnnotateBUGScode is available in the Appendix, along with Biscript and

a simulated data set.

3 Reaults

3.1 Modd Sdection and Fit

A hierarchical change-point model provided an adequate thé elephant seal isotopic data

(Figures 2 & 3). Ontogenetic shifts 513C and51°N values were generally supported, except

13
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for short time-series and a few individuals. The brokenkstnodel provided a better fit than a
null model with no change-point. The model with the most ctaxgovariance structur@x8
model) did not greatly improve predictive ability (Table Moreover, the estimated
correlations53C and5°N were small, with a posterior mean of0.1 in absolute magnitude
(Figure 1). Results from the hierarchical model with no etation betwee3C andd*°N are
thus reported, although results from the other hierartihmcalel were very similar. There was
no statistical support for distinguishing between sexdsetween individuals sampldxtforeor
afterthe population crash (Supplementary Figures 4 & 5): thegomstdistribution of

regression coefficients for both factors was as diffuse aisahits prior and included 0.

3.2 Ontogenetic Shifts

Results for the selected hierarchical change point mogedammarized in Tables 2 & 3. The
residual variances for both isotopes were larger beforembagenetic shift (Table 2). We found
individual heterogeneity in all four parametexs,, ,: all variance components were well
estimated (Table 3, Supplementary Figure 3). The estimagedt ontogenetic shift was larger
for 813C values (2 years) than fob1°N values (19 years, Table 2). This difference was
statistically significant at the 5% level*3C values at ontogenetic shifts were more variable
than51°N values, but the variability in age at ontogenetic shift wimsilar for the two elements
(Table 3). There is a sign reversal in slopes before and éigeontogenetic shift in both carbon
and nitrogen isotopes (Table 2): the slope was positive laevd negative fo63C and the
opposite fors°N. Slopes were more variable before than after the ontogestatt for both

513C ands°N values (Table 3). There was respectively a small and nelstion between

slopes before and after the change-poirt#*C andd*°N values (Figure 1).
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4 Discussion

4.1 Southern Elephant Seal Foraging Ecology

Using as an example the Southern Elephant Seal, a speclea anyptic life-style, we analyzed
stable isotope data with a hierarchical change-point mimdétaw inferences on its foraging
habits and its trophic level. Despite the on-going “biolgyj revolution, some questions are
still not easily addressed with miniaturized tags (Hebblégv& Haydon, 2010). For example,
equipping a large enough (in the statistical sense) sanfjhelioiduals with expensive data
recorders that may be lost is usually not an option. For #ason, carbon and nitrogen stable
isotopes are no longer studied in ecology as a complemefsiaig-kick” to biologging, but in
their own right (Newsomet al,, 2007; Wolfet al,, 2009). We were interested in inferring the
foraging behaviour of Southern Elephant Seal using refeagasurements of dent3C and
515N values over the whole life of individuals. Using a hierdeeth change-point model, we
estimated ontogenetic change-points in both foragingtatsand in trophic level, and found
that there was individual variability in both the trajegt@nd timing of shifts.

Our modelling approach proved fruitfull to investigate soaspects of the ecology of Southern
Elephant Seals. In particular, our selected model ansvadt&de questions we asked. After a
juvenile stage characterized by a large residual varigdaethern elephant seals became
faithfull to a foraging strategy. Inferences drawn fromddndinal isotopic data are in
agreement with those of biologging studies (Bradskaal., 2004), but the former involved a
larger sample over a longer time-period than the latters Tmmitment to a foraging strategy
occurred at an early age, on average at about 3 years, battasrsubstantial individual
heterogeneity (Table 3, Figures 2, S6 & S7). An ontogenéiitis 51°N was also detected, but
this shift occurred earlier (around9lyear-old on average).

The ontogenetic shifts we identified can be the result ofre¢ypeocesses, such as complete

independence from maternal resources acquired beforemngeg@tobson & Sease, 1998;
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Polischuket al., 2001) or a shift in foraging habitat (interfrontzrsusAntarctic waters) and
trophic level (Bailleulet al., 2010). If the estimated shift solely resulted from a deday o
maternal resources, we would not expect a difference iduasivariances before and after a
shift. In the case of Southern Elephant Seals, not only uesihriances, but also slope
variances were larger before the shift (Tables 2 & 3). Thitgpa may be interpreted as an
individual switching from a very variable state to a moreb&tabne, or in other words for
carbon isotopes, in seals becoming faithfull to a foragingtegy. The posterior mean for the
marginal slope after the ontogenetic shift was negativéchwve interpreted as individuals
foraging in Antarctic waters. These seals have to haul olilesrKerguelen for reproduction
and moulting, and they are very likely to feed on the way (Thetral,, 2011), thus diluting a
“pure” Antarctic signature fob3C. Hence a negative slope, as the Antarctic signal becomes
preponderant over the years. The estimated individuahl#ity showed that some slopes after
the shift were null or slightly positive, which can be a refilec of seals foraging always in the
same water mass, for example, in pelagic waters of the Padait [Bailleulet al., 2010).

Finally, a few individuals had a large positive slope befitne shift and a shift late in life. The
large positive slope before the shift may be a reflection alssraging on the Kerguelen
Plateau (Bailleukt al, 2010), which has an enrichéd°C signature compared to pelagic water
masses (Cherel & Hobson, 2007); before switching to anraltefe strategy.

Concerning trophic level inferred frod°N values, the shift occurred on average earlier than
for the 813C data (Table 2). Slopes before the shift were negative hgstteversed sign after.
Their magnitude also halved before and after the shift, wetty few individual variability left
after the shift (Table 3). This pattern suggested the shfttN values to mostly reflect the
gradual decay of maternal influence ®3N (Hobson & Sease, 1998), followed by a gradual
elevation in the trophic web as seals grew in size. Growthdsterminate in these seals: they
keep growing until their death although growth is very slovadults (McLaren, 1993). This

continuous growth means that older seals can physicalbhdagger preys, which may explain
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why we observed a gradual elevation in trophic levels. Adddlly, the large energy stores
males must accumulate before the breeding season may als@dhift toward large and
energetically profitable preys. Residual variances wese larger before than after the shift but
the decrease was not as dramatic as$#8€ values (Table 2). Thus this shift may mostly reflect
complete independence from maternal inputs.

This pattern of an elevation in trophic level with age (Fig@) does not conflict with blood
isotopic data for males, but was not expected for femalea:grevious study, Baillewdt al.

(2010) collected blood samples on juvenile males and ort &slables. This study evidenced

an elevation irb*°N with increasing snout-to-tail length, a proxy for age,yoinl juvenile males.
This discrepancy probably results from the imbalance ofd¢heale data compared to males:
few time-series for females spanned more than 4 years (BdhlEigures S6 & S7). The limited
number time-series spanning more than 4 years means thatlkeeattern largely dominates
the population-level pattern in our hierarchical modelu$blood isotopic data is more reliable
to infer the female pattern (Bailleet al., 2010), although the dentin isotopic analysis suggested
that a few females too underwent an elevation in trophictjpzsas they aged (that is,

individuals with increasing slope after the ontogenetiftshigures 2, S6 & S7).

4.2 Modelling strategy

The explicit modelling of correlations between paramegergerning a broken-stick model for
both613C andd'°N values allowed us to investigate whether ontogeneti¢sstifforaging
habitat and trophic level were concomitant. There was a s®egil positive correlation between
the ages at shift. The explicit incorporation of this caatign into the model did not
substantially improve its predictive ability fé6f3C or for 51°N values (Table 1). There seemed
to be such a large variability in individual trajectoriesfofaging strategy and trophic level in
this population that there is no meaningfull 'avera§¥C profile associated with an average’

SN profile.
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Finally, the hierarchical modelling approach enabled wsssess whether there were differences
between sexes and between seals living before and aftendatiop crash. The data at hand
suggested none (Figures S4 and S5), but the Bayesian fratnenexplicit about inferences
being drawn conditional on the observed data. Thus, fattuoetect any differences in this
peculiar data set may stem for the imbalance between matefearales (respectively 70%
versus30% of seals), and between animals living before and afeeptpulation crash
(respectively 28%ersus’2% of seals).

We believe that the piecewise linear formulation of our @gepoint model is biologically
sound for this species since the change-points reflechigi®ry events such as complete
independence from maternal resources or commitment taagifay strategy. This assumed
model suggested gradual changes after a shift (non-npiés)pwhich we deemed to be
reasonable with longitudinal isotopic data. The intergiiet of isotopic data in ecology
crucially depends on the rate of tissue turn-over/synthesid the accuracy (not the precision)
of isotopic data can be quite crude depending on the samigkdet Turn-over rates may be
very short for some tissues (for example blood plasma), betavder of magnitude larger for
others (for example claws) (Carletehal.,, 2008). These rates also scale with body mass
(Carleton & Martinez del Rio, 2005), which may allow to us@esimentally-estimated rates
from one species on similar-sized species. However, tlaslisomewhat of a blackbox for
wild animals (Wolfet al,, 2009).

Assumptions are unavoidable, but the Bayesian frameworérisflexible, allowing to fit
models to peculiar data sets rather than “adjusting thetddiethe model”. The broken-stick
model we assumed reasonable for Southern Elephant Seahotke so for other species.
With little modification in the prior specification of the canance matrix, non-linear functional
responses such as a logistic curve, which also has 4 pamaneda be easily fitted. However, a
logistic curve carries also assumptions such as symmethagymptotic isotopic values at the

end of the time scale. Finally, the broken-stick model waguldor estimating individual shifts
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for Southern Elephant Seals, but it did not accommodatecpeltterns discernible during the
first years in some individuals (Figure S6). The brokenkstimdel lumped these cycles into a

residual variance which was larger in early life comparelate life.

5 Conclusions

Carbon and nitrogen stable isotope analyses are a powecfulique to peek into the ecology
of cryptic species: even a cursory glance at the plethortudifes using this technique cannot
fail to notice how often “stable isotopes revealed” biokdisurprises. The technique is hailed
as powerful, which it is even more so conditional on usingisiaal analyses specifically
designed to investigate a particular question (see for pi@riénauxet al. (2011)). Here, we
presented a hierarchical model to investigate individagtigsns of ontogenetic shifts in
foraging habitat and trophic level (Werner & Gilliam, 198ZFhe most important aspect of the
model is not the specification of the mean response, whichezadily be modified to conform
to the biology of the studied species, but of the covariatreeire. The methodology we
outlined can be useful for researchers interested in dgpimierences at the individual level
(Coochet al,, 2002; Semmenst al,, 2009). Bayesian methods allow to fit with relative ease
complex models, and thereby to accommodate the (usuallplexstructure of ecological
data (Ellison, 2004; Clark, 2005). This move towards Bagesnethods is not confined to
ecology (Link & Barker, 2009; O’Harat al., 2008) or even the biological sciences (Treier &
Jackman, 2008; Wainer, 2010). Rather, it stems for a grovaatization that uncertainties need
to be quantified and to flow freely across different levelsrofaalysis to avoid overconfident
claims. As more data become available, more complex modelsiso be fit to refine our
knowledge (Gelman & Shalizi, 2010). The modelling approactiined here can be further
extended to incorporate, for example, a survival anal\Gig(& Carlin, 2004; Horrocks & van

Den Heuvel, 2009; Vonestt al., 2006) of Southern Elephant Seals to assess the life-histor
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s consequences of a foraging strategy; thereby harnessnapther of stable isotope analyses.
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« ( Tables

Model | 813C  &T°N
8x8 0.85 073
2x4x4 | 0.84 069
Null 0.69 058

Table 1: Posterior Predictive Checks. The statistic cared is the range of isotopic values
and the reporteg,4ues are the probability that the predicted range exceeds therodd one.
The percentage of individuals with al0< pyaue < 0.9 is reported for both carbon and nitrogen
isotopic time-series. Broken-stick models decreased tbpgption of individuals with extreme
Pvalues @ broken-stick model was appropriate for most individudaltere was however little
support for an increase in covariance complexity: ovefadinges in513C were not correlated
with changes irp1°N.
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ol3C ON .
Parametel ,so6  Mean 975% | 25% Mean 975% unit
Og1 0-75 0.81 0-86 0-46 0.52 0-57 %0
O¢ 2 0-29 0.32 0-35 0-33 0.36 .39 %0
ay —184 —18.0 ~17-6 11-9 12.1 12.3 %0
ar 001 0.21 043 | —0.79 —0.46 _o.13 | %o per year
ay —0-42 —-0.24 _g.08 0-11 0.20 0-30 %o per year
K6 2.2 3.2 4-2 1.3 1.9 2.4 years

Table 2: Estimated marginals from a broken-stick model fthioSouthern Elephant Seal data.
O¢,1 andog » are respectively the residual standard deviations befudeaéter the shiftp; and
K® the isotopic value and age at the shift respectively,@andnda, the slopes before and after
the shift respectively.
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. sBc SN .
Varance| ; s, Median 975% | 2.5% Median 9750 | orPretation
(o f] 1.81 2.88 4-08 0-46 0.72 1.03 Value at Shift
K?® 1-13 1.56 2.29 1.27 1.60 2.17 Age at Shift
ar 0-18 0.31 0-49 0-19 0.48 0-91 Slope before
ag 003 0.20 0-41 004 0.08 0-13 Slope after

Table 3: Estimated individual-level variances in all 4 paeders governing the broken-stick
model fit the Southern Elephant Seal data. Medians are expor$tead of means because some
posterior distributions were slightly asymmetric.
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8 FigureCaptions

Figure 1: Covariance matrix for a joint broken-stick model®@fC ands1°N values. Light gray

squares symbolize free parameters to estimate from thewlagsieas squares left blank
represent parameters with no biological interpretati@ #ine thus constrained to 0. Estimated
mean correlations betweéh>C ands'°N parameters for the Southern Elephant Seal example

are shown below the diagonal.

Figure 2: Broken-stick model fitted to 4 individual time-series adtispic measurements. Each

row corresponds to a different individuaft3C (51°N) profiles are depicted on the left (right)
panel. pvaiuesOf the posterior predictive check are reported on the grappyaiue close to 05

signals a good-fit.

Figure 3: Assessing the fit of the selected mod&{4x4). Distributions of individual-level

concordance coefficients; are reported for both!3C (x-axis) and*°N (y-axis) values.
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