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ERRATA TO: ON KAZHDAN-LUSZTIG CELLS IN TYPE B

CÉDRIC BONNAFÉ

ABSTRACT. Based on a combinatorial result about the domino insertion al-
gorithm [6], which appears to be false, the proof of our main result in [2] is
not complete. We explain here what can be saved from [2]: more precisely,
we explain what is the scope of validity of [2, Theorem 1.5].

In [2], we have found, using brute force computations, some (not all)
Kazhdan-Lusztig relations (let us call them the elementary relations) between
very particular elements of a Weyl group of type B . This shows in partic-
ular that the equivalence classes generated by the elementary relations are
contained in Kazhdan-Lusztig cells.

It was announced in [6, Theorems 1.2 and 1.3] that the elementary rela-
tions generate the equivalence classes defined by the domino insertion al-
gorithm (let us call them the combinatorial cells). As a consequence, we “de-
duced” that the combinatorial cells are contained in the Kazhdan-Lusztig
cells [2, Theorem 1.5], thus confirming conjectures of Geck, Iancu, Lam
and the author [3, Conjectures A and B]. However, as it was explained in
a revised version of [6] (see [7]), the equivalence classes generated by the
elementary relations are in general strictly contained in the combinatorial
cells. This has no consequence on most of the intermediate results in [2],
but changes the scope of validity of [2, Theorem 1.5]. Indeed, for some spe-
cial cases of the parameters, T. Pietraho [5] has found that the elementary
relations generate the combinatorial cells. So part of [2, Theorem 1.5] can be
saved: the aim of this note is to explain precisely what is proved and what
remains to be proved.

REMARK - The fact that [6, Theorems 1.2 and 1.3] is false does not imply that
the result stated in [2, Theorem 1.5] is also false: it just means that its proof is
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not complete and we still expect the statement to be correct (as conjectured
in [3, Conjectures A and B]).

1. PROVED AND UNPROVED RESULTS FROM [2]

Unproved results. We keep the notation of [2]. First of all, the proof of the
Theorem stated in the introduction of [2], so its statement remains a conjec-
ture (and similarly for the Corollary stated at the end of this introduction).
Also, [2, Theorem 1.5(a)] is still a conjecture. However, [2, Theorem 1.5(b)]
is still correct: its proof must only be adapted, using Pietraho’s results [5].

Theorem 1. Let r ¾ 0 and assume that b = r a > 0. Let ?∈ {L,R , LR} and x , y ∈Wn

be such that x ≈r
?

y . Then x ∼? y .

The proof of Theorem 1 will be given in the next section. It must also be
noted that [2, Theorem 1.5] is also valid if b > (n − 1)a (see [4, Theorem 7.7]
and [1, Corollaries 3.6 and 5.2]).

Proved results. Apart from the above mentionned results, all other interme-
diate results (about computations of Kazhdan-Lusztig polynomials, struc-
ture constants, elementary relations) are correct.

2. PROOF OF THEOREM 1

In [2, §7.1], we have introduced, following [6], three elementary relations
⌣1, ⌣r

2 and ⌣r
3: for adapting our argument to the setting of [5], we shall

need to introduce another relation, which is slightly stronger than⌣r
3.

Definition 2. If w and w ′ are two elements of Wn , we shall write w ⌢r
3

w ′ when-

ever w ′ = t w and |w (1)|> |w (2)|> · · ·> |w (r+2)|. If r ¾ n−1, then, by convention,

the relation⌢r
3 never occurs.

Using this definition, Pietraho’s Theorem [5, Theorem 3.11] can be stated
as follows:

Pietraho’s Theorem. The relation ≈r
R is the equivalence relation generated by⌣1,

⌣
r
2 and⌢r−1

3 .

It is easy to check that, if w ⌢r
3

w ′, then w ⌣r
3

w ′. Therefore, Theorem 1
follows from [2, Lemmas 7.1, 7.2 and 7.3] and the argument in [2, §7.2].
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