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Abstract. The exploration of cold polar molecules in different geometries is a rapidly
developing experimental and theoretical pursuit. Recently, the implementation of
optical lattices has enabled confinement in stacks of planes, the number of which is
also controllable. Here we consider the bound state structure of two polar molecules
confined in two adjacent planes as function of the polarization angle of the dipole
moment of the molecules. We prove analytically and present numerical evidence for the
existence of bound states for arbitrary dipole moments and polarization directions in
this two-dimensional geometry. The spatial structure of the bound states is dominated
by two-dimensional s- and p-waves, where the latter exceeds 40 percent over a large
range of polarization angles for intermediate or strong dipole strength. Finally, we
consider the influence of the dimer bound states on the potential many-body ground-
state of the system.
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1. Introduction

A strong experimental drive in the field of polar atoms and molecules has realized

controllable samples in the rotational and vibrational ground-state that are close to

quantum degeneracy [1, 2, 3, 4, 5, 6]. These heteronuclear systems have a number

of very interesting properties due to the long-range and anisotropic dipole-dipole force

which can give rise to highly non-trivial many-body states in both the weak- and strong-

coupling regime [7, 8]. The attractive head-to-tail configuration can, however, lead to

strong chemical reactions [6] or many-body collapse of the system [9], and confinement

in optical lattices has been suggested as a means of avoiding this problem [10]. These

confined one- or two-dimensional geometries have led to a number of predictions of

novel few- and many-body states [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], and

very recently the first experimental implementation of a multilayered stack of pancakes

containing fermionic polar molecules was reported [23].

Here we consider the case of two adjacent layers. However, even in this seemingly

simple case there is a competition of intra- and interlayer interactions which can vary

between repulsion and attraction as one changes the polarization angle of the dipole

moments with respect to the layers. In the present paper we will be concerned with

few-body states with one particle in each layer in order to describe the simplest complex

in such a system in detail. The case of dipoles oriented perpendicular to the layers was

considered from the few-body bound state and scattering point of view in previous works

[24, 25, 26, 27]. At the so-called ’magic’ angle where the intralayer repulsion vanishes in a

one-dimensional trap the few-body bound state structure was also discussed [28, 29, 30].

To our knowledge, the full two-body bound-state problem as a function of the

polarization angle and the dipole moment has not been studied previously. This problem

is highly non-trivial due to (i) the anisotropy and (ii) the vanishing integral over space of

the potential for arbitrary polarization angle. The problem is a specification of a more

general problem of two particles in two dimensions interacting via anisotropic potentials

where the net volume is negative or zero. The more general problem has been addressed

only in a recent letter [31], where the details of analytical and numerical methods are

not elaborated.

In this paper, we present in section 2 analytic results for the dipole-dipole potential.

They are specialization of the derivation in Appendix A for an arbitrary potential. In

section 3, we describe the novel numerical method based on stochastic variation along

with the computed results for the dipole-dipole potential. We present energies, wave

functions, and expectation values of relevant operators as functions of the potential

strength and the polarization angle. One of our main results, analytical as well as

numerical, is that the bilayer system has a bound state for any polarization angle and

any value of the dipole moment. We also calculate a partial-wave decomposition that

characterizes the geometric structure of the wave function which indicates the likely

symmetries of the corresponding many-body problem. In section 4 we present a first

application of our results in a many-body context. We consider the limit of strong
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coupling where the system forms bound bosonic dimers that can potentially form a

(quasi)-condensate. Finally in section 5 we brifly summarize and conclude.

2. Analytic results

The general setup we consider consists of two particles confined to two spatial dimensions

with a pair potential V (~r) depending on the relative coordinate ~r. In polar coordinates,

~r = (x, y) = (r cos ϕ, r sin ϕ), we have the Schrödinger equation:
[
−1

s

∂

∂s
s

∂

∂s
− 1

s2

∂2

∂ϕ2
+ λV̄ (s, ϕ)

]
Ψ = α2Ψ , (1)

where Ψ is the wave function, µ the reduced mass, λ is the dimensionless strength,

λV̄ = 2µd2V/~2 and α2 = 2µd2E/~2, V is the potential and E the energy, d the unit of

length, and s = r/d, is the reduced coordinate.

The investigation of possible bound states was briefly sketched analytically in

[31] for an arbitrary potential in two spatial dimensions (2D). The result is that any

cylindrical or non-cylindrical potential has a least one bound state provided the volume

of the potential is negative or zero. We give more details of a similar derivation in

Appendix A. The difficulties are centered around exceedingly weak potentials where

no ordinary perturbation treatment is applicable because no unperturbed solution

is available. The binding energy approaches zero as the potential vanishes and the

continuum is approached. Thus the limiting energy is zero and the corresponding wave

function is uniformly distributed over all space.

We specialize to the dipole-dipole potential arising for the system of two polarized

molecules of mass M confined to two parallel planes separated by a distance d as

shown in figure 1. The corresponding dipole-dipole potential, V , projected to this

two-dimensional geometry is

V (r, ϕ) = D2 r2 + d2 − 3(r cos ϕ cos θ + d sin θ)2

(r2 + d2)5/2
, (2)

where D is the dipole moment ‡, and θ denotes the polarization angle measured from

the layer plane to the z-axis which intersects the two layers at right angles.

The potential in equation (2) is found in the ideal limit of zero-width layers.

The dipole polarization is measured such that for θ = π/2, the dipoles are oriented

perpendicular to the layers as in [24, 26, 27]. One can take corrections to the zero-

width layer limit into account by integrating out a gaussian in the transverse direction.

However, the corrections are second-order in the width, w, and we neglect them as we

here are interested in the w � d limit.

We have to solve the 2D Schrödinger equation in equation (1) with the potential

in equation (2). The reduced mass is µ = M/2 and the dimensionless dipolar strength

is given by U = MD2/(~2d), which is a measure of the ratio of potential to kinetic

‡ In SI units we have D2 = d2/4πε0 when d is dipole moment of the molecules. However, in this paper
we use d to denote the interlayer distance.
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Figure 1. Illustration of the setup consisting of two dipolar particles of mass M

moving in parallel planes separated by a distance d. Their dipole moments, D, are
assumed to be aligned by an external field at angle θ with respect to the planes.

energy. We will also consider the case where U < 0 which is also physically realizable as

explained below. In the notation above we have λ = U and we will use these notations

interchangeably in order to emphasize the generality of the analytic approach presented

in Appendix A.

This potential is invariant under reflection in the x-axis and has the peculiar

property that
∫

d xd yV (x, y) = 0 for any θ. In particular, it does not fulfil the

Landau criterion for bound states in two dimensions [32], which states that a bound

state always exists for
∫

d xd yV (x, y) < 0. An early existance proof was given in [33]

using a method that is not well-suited for expansions in the strengh of the potential. A

discussion of such an expansion appeared in [27] but only for case where θ = π/2 and

cylindrical symmetry holds. Here we are interested in the appearance and properties of

bound states for arbitrary θ. A partial-wave decomposition of the potential in the basis

{1, cos ϕ, cos(2ϕ)} (which are the only non-zero terms) leads to

λV̄ (s, ϕ) = V0(s) + V1(s) cos ϕ + V2(s) cos(2ϕ) (3)

V0(s) = U
[3 sin2 θ − 1][s2/2 − 1]

(s2 + 1)5/2
, (4)

V1(s) = −3U
s sin(2θ)

(s2 + 1)5/2
, (5)

V2(s) = −3

2
U

s2 cos2 θ

(s2 + 1)5/2
, (6)

which we will refer to as monopole, dipole, and quadrupole terms, respectively. The

monopole potential V0, has in itself zero net volume and it vanishes identically for θ = θc

where sin2 θc = 1/3. The dipole term only vanishes for θ = 0 and π/2, whereas the

quadrupole term is finite except at θ = π/2. Thus for θ > θc and U > 0, the monopole

term has an inner attractive pocket and a repulsive barrier outside s =
√

2, and vice
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versa for θ < θc. For U < 0 the story is reversed. We expect the monopole term to be

most important for the system properties, at least when it is non-vanishing away from

θ = θc. However, the monopole term is, except for the factor of (3 sin2 θ−1)/2, identical

to the full potential at π/2, i.e. we know from previous work that it always supports

bound states [26, 27, 33]. We also know that the configuration with an attractive inner

pocket and a repulsive outer barrier leads to considerably stronger binding than in the

reversed case [26]. We will see this explicitly in the energies presented below.

It is very important to notice that the angle θc is different from the magic angle,

θ∗c , where the potential of two dipoles moving in one dimension vanishes (determined

by cos2 θ∗c = 1/3) [8]. This demonstrates an important difference between one- and two-

dimensional dipolar systems. We will address this fact in more detail when we discuss

many-body physics below.

First we specialize the analytical results in Appendix A derived for general

interactions to the dipolar potential. A partial wave expansion is employed in analogy

to that of the decomposition in equation (3). For the dipole potential in equation (2)

the resulting energy expression from equation (A.25) then becomes

E = − 4~2

Md2
exp

(
−2γ − 2(1 + UB1 + U2B2)

U2(A0 + UA1 + U2A2)

)
, (7)

where γ is Euler’s constant and the coefficients, A0, A1 and B1, B2, are defined by

A0 =
1

4
M2

c +
1

8
sin2 2θ +

1

32
cos4 θ , (8)

A1 = + 0.0053 sin2 2θ cos2 θ − 0.0033 sin 2θ cos4 θ

− 0.0019 cos6 θ − Mc(0.0349 sin2(2θ) (9)

+ 0.0054 cos4(θ) + 0.0156Mc cos2 θ + 0.0343M2
c ) ,

B1 = − 1.204Mc −
1

16
cos2 θ , (10)

B2 = 0.8382Mc(Mc + 0.0667 cos2 θ) (11)

− 0.0037 sin2(2θ) + 0.0894 cos4 θ ,

Mc =
3

2
sin2(θ) − 1

2
. (12)

The expression for A2 is much more elaborate consisting of more than a hundred terms

each given as double, triple, and quadrupole integrals over well defined functions. We

refrain from showing them all here. Note that since the spatial integral of the potential

vanished, the term A2 has to be considered in an expansion to second order in U (see

also (A.25)).

The only non-zero matrix elements for the dipole potential in equation (2) are

Vm,m, Vm,m±1, Vm,m±2. This implies that the m = 0, 1, and 2 partial waves are sufficient

to get all contributions to the orders given on the right hand side of equation (7). Higher

partial waves beyond m = 2 only contribute to the wave function for the dipole potential

through orders of U that are higher than those in equation 7.

The scattering length, a, is usually considered to be a measure of the most crucial

model independent property of any potential. In the present case it is a function of
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strength and polarization angle, and to any order related to the energy as in [34], i.e.

through the general equation

E = −2
~2

µa2
exp(−2γ) . (13)

Any accuracy of E is then directly transferable to a through equation (13). The energy

can be calculated to any order in powers of U , as second order in equation (7). Then

the scattering length becomes

a

d
= exp

(
(1 + UB1 + U2B2)

U2(A0 + UA1 + U2A2)

)
, (14)

where the dependence on strength and polarization angle now is explicit.

The energy, and scattering length, very close to threshold is exponential in U−2,

as seen in eqs.(7) and (14), and determined by the polarization angle through A0. The

first order terms, (A1, B1), in U exhibits the difference in approach to threshold for the

different signs of the strength, U . The second order terms, (A2, B2), are necessary to

get the correct U -independent pre-exponential factor in the energy. Here B2 is both

much simpler and more significant than A2 which consists of sums of a large number of

contributions expressed as definite integrals.

The expressions simplify substantially for θ = π/2. In [35] the energy is calculated

for θ = π/2 to the order given in equation (7), including the A2 term, in agreement with

our result. The computation of the energy in [27] for θ = π/2 deviates from our results

in equation (7) in the first order correction.

3. Numerical procedure

The potential is in general anisotropic and the wave equation is not easy to solve by

discretization or integration. We therefore turn to the stochastic variational approach

using gaussian wave functions which has been successfully applied to other interactions

[36]. However, in the limit of weak binding the wave functions become very small and

spatially extended without structure at large distances. The special method to achieve

convergence with a fair amount of gaussians is described in this section, and the results

for energies and wave functions presented in the next section.

3.1. Method for weakly bound systems

For numerical calculations we employ the correlated Gaussian method which has been

sucessfully used in a range of few-body problems in atomic physics [37, 38, 39]. The

wave function Ψ(x, y) is found through the variational principle as a linear combination

of basis-functions Gi(x, y),

Ψ(x, y) =

Nbasis∑

i=1

ciGi(x, y), (15)
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where Nbasis is the size of the basis, ci are the linear variational parameters, and the

basis-functions are chosen in the form of shifted correlated Gaussians,

Gi(x, y) = e−(q−si)T Ai(q−si) , (16)

where the superscript T denotes transposition, q ≡ (x, y)T is the column-vector of the

coordinates, and where the elements of the symmetric positive correlation matrices Ai

and the shift vectors si are the non-linear variational parameters. The explicit shifts

employed here enhance greatly the flexibility of the correlated Gaussians specifically for

the non-rotationally symmetric system at hand.

According to the variational principle the wave function is found by minimizing the

expectation value of the Hamiltonian,

E[Ψ] ≡ 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 . (17)

The linear parameters ci are determined by solving the generalized eigenvalue problem

Hc = E[Ψ]N c , (18)

where H and N are Nbasis × Nbasis matrices,

Hij ≡ 〈Gi|H|Gj〉 and Nij ≡ 〈Gi|Gj〉 , (19)

where c is the column-vector of the linear parameters ci. The overlaps and the matrix

elements of the kinetic energy operator in equation (19) are calculated using the

analytical expressions in Appendix B. The matrix elements of the interaction potential

are calculated numerically using adaptive Gauss-Kronrod quadratures [40].

The generalized eigenvalue problem equation (18) is solved by first performing

Cholesky decomposition of the (symmetric and positive definite) matrix N = LLT ,

and then solving the ordinary symmetric eigenvalue problem,

H̃c̃ = E[Ψ]c̃ , (20)

where H̃ = L−1HL−1T
and c̃ = LT c, using standard linear algebra methods [40].

The non-linear parameters – the elements of the correlation matrices Ai and the shift

vectors si – are determined through stochastic sampling. Basically, the minimum of

the energy is found by sampling a large number of random sets of Nbasis Gaussians

with randomly generated correlation matrices and shift vectors. The elements of the

correlation matrices are generated as ±1/b2 and the elements of the shift vectors as ±b,

where b is a stochastic variable with the dimension of length sampled from an exponential

distribution with certain length parameter l. To ensure the positive definiteness of the

correlation matrix the following procedure is used: First a diagonal matrix with positive

elements 1/b2 is generated, and then a random orthogonal transformation is performed.

For ordinary quantum systems the length parameter, l, of the exponential distribution

should be chosen close to the typical range, d, of the interaction potential between

particles. For the dipolar potential considered in this paper, it is in fact the interlayer

distance d which explains the abuse of notation. If the binding energy B of the system

is of natural size, that is B ∼ ~2

2µd2 , such sampling proves very effective. However, for
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weakly bound systems, where B � ~2

2µd2 , two different length scales are of importance:

One is the interaction range d and the other is the typical size |α|−1 of the tail of the

wave function (where α = i
√

2µB
~2 ). We therefore subdivide the basis into Nshort, short-

range, and Nlong, long-range, Gaussians, Nbasis = Nshort + Nlong, where the short-range

Gaussians are sampled from the exponential distribution with range d and the long-

range Gaussians are sampled from the exponential distribution with range |α|−1. The

latter is calculated from the current estimate of the binding energy.

U = 1.8; θ = π/4

Nbasis

E
M

d
2

2
~2

454035302520151050

0

-0.005

-0.01

-0.015

-0.02

Figure 2. Illustration of the convergence of the energy with respect to the basis size:
the energy E of the ground state as function of the size Nbasis of the basis.

Since the long-range Gaussians are introduced specifically to better describe the

asymptotics of the wave function, they can be chosen in a much simpler form,

G = e−r2/b2 , r ≡
√

x2 + y2 . (21)

The typical convergence plot of the binding energy as function of the basis size is

presented in figure 2. It shows that the energy is converged to within four significant

digits with the basis size of about 45 Gaussians. The convergence of the tail of the

wave function is illustrated in figure 3 where it is compared to the analytic asymptotic

form. Clearly, addition of the long-range Gaussians significantly improves the quality

of the wave function at very large distances. In this example about 46 Gaussians, 30

short-ranged plus 16 long-ranged, can accurately describe the the wave function up to

the radius of about 800d.

4. Results

The general derivation in Appendix A demonstrates that there always is at least one

bound state in 2D for any anisotropic potential with zero net volume as obtained in

a different manner in [33]. When U becomes small we expect universal behavior of
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30 + 8
30 + 12
30 + 16

const × K0(|α|s)

U = 0.9; θ = θ∗c

s = (
√

x2 + y2)/d

A
0
Φ

0
(s

)
√

s

10008006004002000

1

0.1

0.01

Figure 3. Illustration of the convergence of the radial wave function with respect
to the basis size: the radial function Φ0(r) from equation (A.17) as function of s =√

x2 + y2/d calculated with bases of different sizes: Nshort = 30 and Nlong = 8, 12, 16.
For comparison the analytic form of the tail, K0(|α|r), is also shown.

energies and radii [31, 34, 41]. Using the stochastic variational approach in the small

U limit, our results for θ = π/2 approach the universal behavior of the energy which to

leading order scales like ln(−E) ∝ −1/U2 as discussed previously [26, 27, 31, 33]. For

other values of θ we expect the same scaling for very small U , however, the range of U

around zero where this applies has a strong dependence on θ as seen by the energies

presented below. We also expect differences for general θ between positive and negative

U in the limit U → 0 as for θ = π/2 [26]. The question of how the binding energy

approaches universality is investigated in more details in [31].

The energies have been calculated using the correlated gaussian approach. In figure

4 we exhibit the results as a function of U > 0 for a selection of polarization angles.

At small U the energy decreases very fast with decreasing U as noted already in [33],

whereas at larger U we find a linear dependence on U as argued in [26] for θ = π/2.

The binding energies decrease dramatically as θ approaches zero. We stress that we

numerically find a bound state for any value of U also in the particularly unfavorable case

of θ = 0 as well as for θc (sin2 θc = 1/3) where the decisive monopole potential vanishes

identically. Notice that there are more bound states for larger U but we restricted our

discussion to the single bound state regime.

The U < 0 case is also of great interest as that potential can be generated by using

microwave-dressed molecules. In [15, 16, 22] an AC light field directed perpendicular

to the layers was used to create the θ = π/2 potential with U < 0. A straightforward

calculation shows that if the laser hits the layers at an angle, θ, the potential is the same

as for a homogeneous electric field at angle θ but with negative U . For U < 0 we again

find numerically that for all values of the strength the two-body system has bound states.
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Figure 4. Bound state energies as a function of U for different angles. Insets show
contour plots of the potentials with valleys in bright (blue) and hills in dark (red)
colors.

The results for the binding energy at different angles are shown in figure 5 as function of

|U |. The first thing one notices is that the overall magnitude of the bound state energy

is smaller than that for U > 0. At θ = π/2 this can be understood as the potential

has a repulsive core at θ = 0, forcing the state to reside in the shallow attractive

pocket at intermediate distance. In turn, this gives a much smaller binding energy.

This qualitative behavior of the potential persists until θ decreases below θc where the

monopole changes sign. Then the potential changes overall character to become more

attractive with inner attractive pocket and outer repulsive tail. The U < 0 results thus

show maximum binding at θ = 0 which is, however, still about a factor of three smaller

than the U > 0 case at its most favorable angle of θ = π/2.

Numerical and analytical results are compared in figure 6. To get the most accurate

comparison we show the exponent in equation (7) multiplied by the square of the

strength, U2. The approach in the figure of analytical and numerical results is reassuring

in the limit of relatively weak potentials. Since we neglected the A2-contribution this

approach indicates its minor significance.
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Figure 5. Same as figure 4 but for U < 0. Note that the vertical scale is different
from that of figure 4.

4.1. Wave functions

The structure of the bound state wave functions can be seen from the partial wave

decomposition. The results are shown in figure 7 for a strong coupling of U = 10 and

a weaker one of U = 4. The probabilities are normalized so that they sum to one. We

note that the contribution of m > 2 is only a few percent with a maximum at θ = 0 of

5% in m > 2 terms. As expected we find that m = 0 becomes dominant for θ → π/2

as we approach cylindrical symmetry. Interestingly, close to θ = 0 we also find a very

large m = 0 component, no m = 1 content, and a significant m = 2 contribution. The

remaining content of the wave function is found in the higher m contributions. The

fact that m = 1 has no weight for θ = 0 can be understood from the symmetry of the

potential. For x → −x the m = 1 term changes sign, whereas the potential is invariant.

Interestingly, as we go away from θ = 0, the m = 1 component raises rapidly and stays

on the order of 40% until we reach θ = θc at which it starts to decline as for m = 2, in

line with the restoration of cylindrical symmetry at θ = π/2. For U > 10 the m = 0

component can be even more suppressed in comparison to m > 0 for intermediate θ,

whereas for positive U < 4 the m = 0 component will eventually dominate as one

approaches the universal limit discussed above.
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Figure 6. The function F (U) = −U2 ln(|E|Md2/(2~2)) for different polarization
angles θ. The dashed red curves are calculated numerically and the solid blue curves
are from equation (7). The relatively small contribution from the A2-term is neglected
in this comparison.

We have found similar results for the U < 0 when taking into account that the

angle θ for U > 0 correspond to angle π/2 − θ for U < 0 and vice versa. This is in fact

an exact symmetry of the dipole part of the potential and an approximate one for the

monopole term since θc is close to π/4. For U = −10 we find that there is a window

θc < θ < 1.1 in which the m = 1 term is around 40%. Interestingly, we find that the

partial-wave content for U < 0 is almost exclusively m = 0 and m = 1. This is perhaps

surprising as the potential in the m = 2 channel is non-vanishing except at θ = π/2.

The potential has completely different forms for different polarization angles as

illustrated on the contour plots in the inset of figure 4. For θ = π/2, the potential

is cylindrical while asymmetry appears for decreasing θ-values, and eventually two

minima emerge when θ approaches zero. For small θ, the potential looks like a harmonic
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Figure 7. Partial waves probabilities, Pm, for the bound state wave function at U = 10
(solid black) and U = 4 (dashed red) as function of polarization angle θ for m = 0, 1,
and 2. The vertical line indicates θ = θc. Note the different vertical scales.

oscillator along the y-axis for small x and y. The depth of this harmonic well around

zero is about twice as large for θ = 0 and U < 0 in comparison to the depth of the two

wells in the x-direction for θ = 0 and U > 0 that is shown in the inset of figure 4 and

figure 8. A simple gaussian wave function should therefore be a fair approximation to

the full problem and in turn the lowest partial-waves should dominate.

The wave functions for strongly bound states mimic the contours of the potential.

As the strength, as well as binding energy, decreases the wave function is spreading

out to larger distances and approaching cylindrical symmetry, as illustrated in figure 8.

The probability decreases in all points of space and approaches zero uniformly outside

the potential. However, inside the potential the shape of the potential is maintained

even for vanishingly small strengths where the probability also approaches zero. This

behavior is necessary to provide binding which arises from the attractive potential at

small distances. In turn, the modified Bessel function, K0(|α|s), is approached for

vanishing strength which corresponds to a wavefunction that is roughly constant in

space until the distance, s, is comparable to 1/|α|.
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5. The Many-Body Bilayer System

The bilayer system has an interesting many-body structure with combination of

attractive interactions that can induce pairing and repulsive interaction that tend to

suppress such effects. This was discussed recently for the θ = π/2 case in [19, 20]. Here

we consider the strongly-coupled limit (large U) where the bound two-body dimers are

expected to be the relevant degrees of freedom. As the dimers are effectively bosons, they

are capable of forming a (quasi)-condensate under the right conditions [20]. However, as

is well-known from BCS-BEC crossover studies [42], this is only expected to occur when

the density is low. Unfortunately, the Berezinskii-Kosterlitz-Thouless (BKT) transition

[43, 44] that governs this two-dimensional system has a critical temperature that is

proportional to density [19, 20]. Therefore, a compromise where the dimer condensate

occurs at not too low densities would be optimal to allow experimental access to this

unusual many-body state.

A further interesting complication is the fact that each of the layers can accomodate

various coherent many-body states when we consider them independently. Proposals

for the ground state include p-wave superfluids [14, 16] and density waves [17, 18].

Of course, when more than one layer is present the long-range inter- and intralayer

interactions are competing, and at this point it is not clear what state is favoured for

arbitrary directions of the polarization. It is known that the density-wave instability

will be enhanced and occurs at smaller coupling strength for bi- and multilayer systems

[21]. We note that in the U < 0 bilayer case, a particle-hole coherence reminiscent of

ferromagnetism has even been suggested [15]. Here we will be concerned mainly with

the BCS-BEC crossover scenario in the strongly-coupled limit, but we will also estimate

the appearance of a density-wave state and comment on possible superfluids.

As the criterion for the onset of condensation of dimers, we consider the point at

which the chemical potential becomes negative [20], i.e.

µ(U, θ) =
1

2
nVeff(U, θ) + EF − 1

2
EB(U, θ), (22)

where EB is the dimer binding energy and Veff is the long-wavelength (zero momentum)

effective momentum-space interaction between two dimers. Here we include both the

binding energy and the dimer-dimer interaction, and we also include a term for the Fermi

energy, EF , that the constituents of the dimer inherit from their layer. The density

of dimers (equal to the single-layer density when the layers have an equal number of

molecules) is denoted by n. To obtain the effective interaction, one must in principle

integrate out the wave function of the dimer and include all inter- and intralayer two-

body terms [20]. However, here we are only interested in the long-wavelength limit

(momentum zero) in which the interlayer term vanishes [13]. This gives

Veff(U, θ) =
~2

M

4U

3
√

2π

(
d

w

)
4πP2(sin θ), (23)

where P2(x) = (3x2 − 1)/2. For the layer width, we take w/d = 0.2 in the following.

Notice that Veff is attractive for θ < θc, vanishes at θc, and repulsive for θ > θc. The
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attraction for θ < θc results in a negative compressibility in a single layer [14]. We stress

again that θc is much smaller than the angle at which the intralayer repulsion vanishes in

a one-dimensional system. In this sense θc is a special angle for the intralayer repulsion,

whereas it has no dramatic effect on the binding energies which vary smoothly around

θ = θc. Combining the formula above, the final expression for µ becomes

Md2

~2
µ =

(kF d)2

2

(
4U

3
√

2π

(
d

w

)
P2(sin θ) + 1

)
− Md2

2~2
EB, (24)

where we use the Fermi momentum k2
F = 4πn for fermions in a single layer in place of

n.

The lines of µ = 0 for selected angles are shown in figure 9 in the (U, kFd) plane

for 1.5 < U < 5. For U > 2 the dimers have significant binding energy and can we

treat them as localized bosonic objects. For θ = π/2 we present results both with and

without the intralayer term which is clearly seen to shrink the region of potential dimer

condensation. For θ = θc, the intralayer term vanishes and we find a larger region of

µ < 0. For θ < θc the region would in principle become even larger, however, the

intralayer term is then attractive and can lead to instability and collapse [14]. We

therefore expect the line for θ = θc to provide a boundary for how large the BEC region

can become when tuning the angle within our approximations. In figure 9 we also show

the line above which the density-wave instability appears at angle θ = θc in the random-

phase approximation as discussed in Ref. [21] (above full blue line, denote by DW). To

study the crossover outside the density-wave region, we see that low densities are indeed

needed.

We now consider the important question of the finite temperature behavior of

the system. In the large U limit, the BKT transition temperature is maximal at

kBTBKT = EF/8 [15, 19, 20], or

TBKT = 765
n

108 cm−2

amu

M
nK. (25)

If we consider LiCs molecules (which can have a dipole moment of up to 5.5 Debye)

with d = 0.5 µm, then the µ = 0 phase for θ = θc at U = 10 is at n = 8.1 · 107 cm2, and

thus TBKT ∼ 4.9 nK. While still very low, this is a significant increase over the sub-nano

Kelvin temperatures for θ = π/2.

The p-wave superfluid for single layers is estimated to appear for angles sin θ < 2/3

[14]. However, density-waves occur for sin2 θ > 1/3. This implies that there is a rather

large regime (2/3 < sin θ ≤ 1) where the single-layer p-wave superfluid should be absent

but where BCS-BEC crossover induced by the interlayer interaction is possible. We also

note that there is an intermediate region where both p-wave superfluid and density-

wave have been proposed as the ground state and one could imagine something like a

supersolid phase as recently discussed in a two-dimensional optical lattice with fermionic

polar molecules and perpendicular polarization [45]. In the strong-coupling limit we

expect that the allowed few-body states will play an important role in determining the

system properties, and calculation of the binding energies of states with three or more

particles for arbitrary directions of the polarization are being pursued.
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Figure 9. Lines of vanishing chemical potential for sin2 θc = 1/3 (solid black) and
θ = π/2 with (solid red) and without (dashed red) intralayer repulsion. Above the
solid lines we expect condensation of dimers to occur (BEC), whereas in the lower
right part a many-body paired BCS-like state (BCS) should be the ground-state of the
system. Also shown is the line above which a density wave (DW) for θ = θc is expected
in the bilayer system (solid blue).

We expect that the partial-wave analysis presented in the previous section can

help indicate what symmetries are possible and relevant for the corresponding many-

body problem in the large U limit. The problem is of course still that the intralayer

term is attractive in the long-wavelength limit for θ < θc, and we thus expect that

the most stable system require θ > θc where the decomposition of the wave function is

entirely dominated by the m = 0 term. However, close to θc we still have a substantial

m = 1 contribution (immediately to the right of the vertical line in figure 7). We

therefore expect a region of interest in which an exotic many-body state with non-

trivial symmetry like a p-wave dominated or mixed symmetry superfluid would emerge

in the bilayer. These indications are consistent with a partial-wave decomposition of the

potential itself [46]. Combining this information strongly suggests that there is a very

interesting crossover from weak- to strong-coupling in the corresponding many-body

system as recently discussed for the θ = π/2 case [19, 20]. Similar considerations hold

for the U < 0 case.
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6. Summary and Outlook

We have studied a bilayer system of dipolar molecules for arbitrary orientation of the

dipoles with respect to the planes. The two-body bound state structure was calculated,

including energies and partial-wave decomposition of the wave function as function of

dipolar strength and polarization angle. We proved that there is always a bound two-

body state in the system, irrespective of strength and polarization angle of the molecules,

and also verified this fact numerically. We argued that this follows from the fact that for

small strength, the wave function must reside outside the region where the potential is

non-zero. The results apply irrespective of the sign of the interaction strength. Negative

strengths invert the dependence of energy on the dipole angle such that perpendicular

polarization angle has the smallest binding energy. The structure of the wave function

is dominated by the monopole component which decreases with the strength of the

interaction. Up to moderate strengths, the monopole component is always larger than

50 percent while the dipole component accounts for most of the remaining probability.

The conclusion that zero net volume potentials always have at least one bound

state could perhaps be reached in other ways. First, approaching this limit from small

negative net volume with one bound state strongly indicates that the bound state

remains. Second, a perturbation argument is tempting, e.g. let us assume that the

cylindrical monopole potential always has a bound state (as shown in [33]), and then

treat dipole and quadrupole terms as perturbations. We thus extend from a Hilbert

space entirely of s-waves to include also p and d-waves. To second order in perturbation

theory this always gives a negative contribution and hence more binding than for the

monopole potential alone. However, closer scrutiny of such argements and their practical

implementation reveal that in the limit of weak potentials the perturbations are always

of the same order as the initial potential. This type of perturbative argumentation

always fails. The deeper lying reason is that the energy is a non-analytical function of

the strength for zero net volume potentials. This is seen in the expression for the energy

where zero’th and first order in the strength contribute to the non-analytical structure

at the continuum threshold. Only terms higher than second order in the strength are

perturbations around this strong singularity which is a characteristic feature of zero

volume potentials in two spatial dimensions.

Implications for the many-body physics of a bilayer were discussed in the limit

of strong-coupling where the two-body bound states are expected to be the important

degrees of freedom. We conclude that the region where (quasi)-condensation of two-

molecule dimers is likely to occur can be enhanced by tuning the angle of the dipoles.

In particular, at the critical angle, sin2 θc = 1/3, where the long-wavelength part of the

intralayer interaction vanishes, we expect the conditions are most favorable for accessing

this phase where dimers condense. This critical angle is different from the ’magic’ angle

at which dipoles moving on a line become non-interacting which has been discussed in a

number of previous works [8, 28, 29]. We also estimated the potential for a density wave

instability in the bilayer [21], and demonstrated that BCS-BEC crossover and (quasi)-
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condensation of dimers discussed here can occur also in an intermediate coupling and

low density part of the phase diagram which is below the density wave regime. The

possible roton instability in the bilayer system, as discussed for the perpendicular case

in [20], is currently under active investigation.

The results presented in this paper indicate that bound complexes of more than

two particles must exist in the bilayer. In the case of one-dimensional tubes this was

studied in some special cases in [28] and [29], while a more complete investigation of

one-dimensional complexes as function of angles and dipole moment can be found in [30].

For the two-dimensional case, the method employed here can be extended to complexes

of more particles and we plan such investigations in the near future. We also note that

the external trapping potential that is present in each layer in experiments [23] can be

easily accomodated in the current approach by introducing one-body harmonic oscillator

terms.

In conclusion, we find that bound states of dimers in a bilayer consisting of one

particle in each layer are generic for particles interacting through the dipole-dipole force,

irrespective of the dipole strength or polarization angle of the dipoles with respect to

the layers. In general, the wave function contains several partial-wave components and

therefore has interesting spatial structure. This suggests that few-body states with

more than two particles will also have rich structure and it also implies that the many-

body physics of the system is highly non-trivial. We sketched a phase diagram for the

appearance of a dimer condensate as a function of polarization angle and showed that it

is enhanced around the so-called magic angle. At this point the dimer contains a large

admixture of higher partial waves and we expect the collective behavior of the system to

reflect this fact. The many-body problem of a bilayer with polar molecules of arbitrary

polarization angle therefore deserve further investigation.
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Appendix

Appendix A. General derivation

We assume reflection symmetry in the x-axis as for the potential in equation (2) but we

shall otherwise proceed with the general derivation for any potential with this symmetry.

The slightly more general formulation without any symmetry can be found in [31]. We

decompose the wave function into partial waves, cos(mϕ), i.e.

Ψ(s, φ) =
1√
s

∞∑

m=0

amΦm(s) cos(mφ) (A.1)
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amΦm(s)√
s

=
1

(1 + δm0)π

∫ 2π

0

dφ cos(mφ)Ψ(s, φ), (A.2)

where the corresponding contribution of the sin(mφ) terms is zero due to the assumed

symmetry and the coefficients am are real. The normalization of the functions Φm(s) will

be chosen later. The rather artificial separation into coefficients and functions allows

a simple procedure to compute higher orders in the strength λ. The 2D radial wave

functions, Φm(s), satisfy the system of coupled radial equations

Φ′′
m +

1 − 4m2

4s2
Φm + α2Φm = λ

∑

l

al

am
ΦlVml(s) , (A.3)

where the matrix elements, Vml, carrying all information about the potential, are

Vml =
1

(1 + δm0)π

∫ 2π

0

cos(mϕ) cos(lϕ)V̄ (s, ϕ)dϕ . (A.4)

For cylindrical potentials Vml ∝ δml and the different m-values decouple. The regular

radial solution to equation (A.3) at the origin provides the usual boundary condition for

a centrifugal barrier potential, i.e. we choose the normalization of Φm(α, s) such that

lims→0 s−1/2−mΦm(α, s) = 1. We inserted here explicitly the dependence on the energy

parameter, α, in Φm. We assume here the potential, and consequently also the right

hand side of equation (A.3), diverges slower than 1/s2 when s → 0.

We use the Green’s function formalism which in 2D is described for a cylindrical

potential in [47]. For anisotropic potentials we have more generally that the m-

components, amΦm, are given by

amΦm(α, s) = amΦm0(α, s) (A.5)

− λ
∑

l

al

∫ s

0

gm(α, s, s′)Vml(s
′)Φl(α, s′) ds′ . (A.6)

The last terms vanish for s = 0 and the boundary condition at s = 0 is obeyed through

the first term:

Φm0 =
√

sJm(αs)(2/α)mm! , (A.7)

where Jm is the Bessel function. The Green’s function in the last terms of equation

(A.6) is expressed as

gm(α, s, s′) = (A.8)
iπ

4

√
ss′[H(1)

m (αs)H(2)
m (αs′) − H(1)

m (αs′)H(2)
m (αs)] ,

in terms of Hankel functions, H
(n)
m [48]. At large distance equation (A.6), with the

Green’s function from equation (A.8), may be rewritten as

amΦm(α, s) =
1

2

√
s

(
2

α

)m

m! (A.9)

×
[
H(1)

m (αs)
∑

l

(c∗ml + δml)al + H(2)
m (αs)

∑

l

(cml + δml)al

]
,
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where the matrix elements, cml, are:

cml ≡ (A.10)

λ
(α

2

)m iπ

2m!

∫ ∞

0

√
s′H(1)

m (αs′)Vml(s
′)Φl(α, s′)ds′ .

Equation (A.9) contains incoming and outgoing waves and is applicable for scattering

problems. For bound states, α has to be imaginary corresponding to negative energy,

and H
(2)
m (αs) in equation (A.9) diverges unless the coefficient vanishes, i.e.

∞∑

l=0

cmlal = −am . (A.11)

This is an eigenvalue equation, which only has non-trivial solutions for discrete values of

α, and hence for the binding energy. However, the full radial wave functions, Φm, enter in

the definitions of the matrix elements and the equations must be solved selfconsistently.

We look for solutions in the limit of very weak strength, |λ| � 1, which implies that |α|
(i.e. the energy) must also be very small. The m = 0 component will then dominate in

the solution to equation (A.11), because the centrifugal barrier suppresses higher partial

waves. This suppression becomes more pronounced with decreasing binding energy.

We now expand both coefficients, am, and functions, Φm, in powers of the strength,

i.e.

am = λa(1)
m + λ2a(2)

m + ..., (A.12)

Φm = Φ(0)
m + λΦ(1)

m + λ2Φ(2)
m + ..., (A.13)

where we leave the coefficient a0 (without expansion) for normalization of the total wave

function. In total we then find

a
(1)
m

a0
= − 1

2m

∫ ∞

0

s1−mVm0(s)ds , (A.14)

a
(2)
m

a0
= − 1

2m

∫ ∞

0

s
1
2
−mVm0(s)Φ

(1)
0 (0, s)ds (A.15)

− 1

2m

∑

i>0

a
(1)
i

a0

∫ ∞

0

s
1
2
−mVmi(s)Φ

(0)
i (0, s)ds , (A.16)

Φ
(1)
0 (0, s) = −

√
s

∫ s

0

s′V00(s
′) ln(s′/s)ds′ , (A.17)

Φ(0)
m (0, s) = sm

√
s +

∫ s

0
(s′)2k−(s)2k

(ss′)m s′Vm0(s
′)ds′

∫ ∞
0

Vm0(s′)(s′)1−mds′
, (A.18)

Φ(1)
m (0, s) =

∫ s

0

gm(0, s, s′)
(√

s′
a0a

(2)
m[

a
(1)
m

]2Vm0(s
′) −

a0

a
(1)
m

Vm0(s
′)Φ

(1)
0 (0, s′) −

∑

i>0

a
(1)
i

a
(1)
m

Vmi(s
′)Φ

(0)
i (0, s′)

)
ds′ , (A.19)
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Φ
(2)
0 (0, s) = −

∫ s

0

ds′g0(0, s, s
′)

×
(
V00(s

′)Φ
(1)
0 (0, s′) +

∑

i>0

a
(1)
i

a0
V0i(s

′)Φ
(0)
i (0, s′)

)
, (A.20)

g0(0, s, s
′) =

√
ss′ ln

s′

s
, (A.21)

gm(0, s, s′) =
1

2m

√
ss′

s′2m − s2m

(ss′)m
. (A.22)

The equations A.17,A.19, and A.20 provide the expansions for the coefficients and the

wave functions in eqs. (A.12) and equation (A.13) when s � 1/|α|. The behaviour of

the wave function at infinity is now given by the non-diverging piece in equation (A.6),

i.e.

lim
s→∞

Φm(α, s) ∼
√

sH(1)
m (αs) , (A.23)

or in the particular case of weak binding we have

lim
s→∞

Φm(α, s) ∼
√

sH(1)
m (αs)δm0 . (A.24)

This behaviour is a consequence of the attractive and repusive centrifugal barriers for

m = 0 and m > 0, respectively.

The energy can now be found to any order in powers of λ. To second order the

results can be written as

E = − 2~2

µd2
exp(−2γ) (A.25)

× exp

(
− 2(1 + λB1 + λ2B2)

−λI + λ2(A0 + λA1 + λ2A2)

)
,

where the leading order constant is given by

I =

∫ ∞

0

sV00ds =

∫ ∞

0

∫ 2π

0

sV (s, ϕ)dsdϕ . (A.26)

The potential dependent constants, (Ai, Bi), become increasingly more complicated with

powers of λ. When the net volume of the potential, λI < 0, is negative the weak binding

limit for an arbitrary potential is given by the Landau expression [32], which also turns

out to be valid for anisotropic potentials with the appropriate definition of the volume.

In the case of λI < 0, it is not necessary to retain A2 in (A.25) to second order in λ,

whereas for I = 0 it must be retained when calculating the corrections to the leading

term.

When I = 0 corresponding to zero net volume of the potential the leading order

term is given by A0, i.e.

A0 ≡ −
∫ ∞

0

√
sV00(s)Φ

(1)
0 (0, s)ds + (A.27)

∑

m 6=0

∫ ∞

0

s1−m

2m
Vm0(s)ds

∫ ∞

0

√
s′V0m(s′)Φ(0)

m (0, s′)ds′ ,
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where only first order from equation (A.14) has to be used in the derivation.

This derivation is completely general for two-dimensional, anisotropic and reflection

symmetric interactions. The symmetry requirement is only a minor simplification,

and omitted in the derivation in [31]. The overall results are that there is always a

bound state for very weak potentials with negative or zero net volume, and the weak

binding threshold behavior of the energy is given by equation (A.25) to second order

in the potential strength. The leading order term for zero net volume is given by

equation (A.27) where only the first term contribute for cylindrical potentials since

then V0m ∝ δ0m. For non-cylindrical potentials even the leading order expression in

equation (A.27) is rather complicated.

Higher orders than those related to I and A0 are found for small energy by an

iteration procedure through eqs.(A.6) and (A.10). The radial solutions are computed

from equation (A.6) which in turn are used to determine the C-matrix and the energy.

This procedure can be repeated to give higher order corrections of both energy and

wave function. Much care is necessary to include consistently all terms up to a given

order because the resulting expressions contain many terms. The simplest is B1 which

is found to be

B1 ≡ −
∫ ∞

0

V00(s) ln(s)sds (A.28)

+
∑

m 6=0

∫ ∞

0

s
1
2
−m

2m
Vmm(s)Φ(0)

m (0, s)ds .

The remaining expressions, A1, A2, B2 are more complicated and we do not show them

here. They can be found by expanding c00 in equation (A.10) up to fourth order in λ,

as well as c0i up to third order in λ in eqs.(A.19) and (A.18), and cml up to second order

for m 6= 0 and l 6= 0. Finally, we compute the determinant of the matrix cml + δml, and

equate to zero, i.e.

1 + λB1 + λ2B2 (A.29)

+ λ2(A0 + λA1 + λ2A2) ln(
α

2
exp(γ)) = 0 ,

which then directly leads to equation (A.25) with the identifiable constants A1, A2, B2.

If only A1 is needed, lower orders are required at each step but then A2, B2 are not

obtained correctly.

Appendix B. Matrix Elements

The different matrix elements with shifted correlated n-dimensional Gaussians can be

calculated with the help of the following integrals,
∫

dnxe−xT Bx+vT x =
(
√

π)
n

√
det B

exp(
1

4
vTB−1v) ≡ M , (B.1)

∫
dnxe−xT Bx+vT x

(
aT x

)
= (aT u)M , (B.2)
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∫
dnxe−xT Bx+vT x

(
xT Dx

)
=

(
uT Du +

1

2
tr(DB−1)

)
M , (B.3)

∫
dnxe−xT A′x+s′T x

(
− ∂

∂x
Λ

∂

∂x

)
e−xT Ax+sT x =

(
2tr(A′ΛAB−1) + 4uT A′ΛAu − 2uT (A′Λs + AΛs′) + s′T Λs

)
M , (B.4)

where

B = A + A′, v = s + s′, u =
1

2
B−1v . (B.5)

For dipole-dipole interaction equation (2) the matrix elements of with the long-range

Gaussians equation (21) are given as
∫ ∞

0

e−
r2

b2 V (r, ϕ)rdrdϕ =
D2

d3
π

3 sin2(θ) − 1

2

[
U(2,

1

2
,

1

b2
) − 2U(1,−1

2
,

1

b2
)

]
,(B.6)

where

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt , (B.7)

is the Tricomi confluent hypergeometric function. Note that only the monopole part,

V0(r), gives a non-zero contribution to the matrix element.
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