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Fast Padé Transform in the Theory of Resonances:

Exact Solution of the Harmonic Inversion Problem

Dževad Belkić and Karen Belkić

Karolinska Institute, P.O. Box 260, S-171 76 Stockholm, Sweden

Abstract: We present the fast Padé transform (FPT) as a polynomial quotient for the Green or response
function from signal processing, spectroscopy and resonant scattering theory. Specific illustrations are given
for nuclear magnetic resonance spectroscopy within the problem of harmonic inversion, quantification or
spectral analysis. Here, the input time signal points or auto-correlation functions are given via measurements
or computations, and the task is to reconstruct the unknown components as the harmonic variables in terms
of the fundamental complex frequencies and amplitudes. The FPT solves the harmonic inverse problem
exactly by retrieving the true number of resonances with all their proper spectral parameters. This output
list is finalized by means of Froissart doublets or poles-zero confluences for unequivocal disentangling of the
physical/genuine from unphysical/spurious contents of the analyzed time signal. Stability of investigated
systems under external perturbations is especially challenged by the presence of noise. The FPT can assess
the system’s stability through determining the locations and distributions of spectral poles and zeros in
the complex frequency plane. This permits identification of the regions that are void of noise. Hence the
possibility for improved system’s performance under more stable conditions with full signal-noise separation.
The FPT can provide a number of important biophysical and chemical quantities, including the density of
states and abundance or concentrations of all the physical constituents from the investigated substance.

1 Introduction

We study the quantification problem for general time signals and their spectra. The illustrations are given for data
from nuclear magnetic resonance spectroscopy (MRS) [1]–[6]. The quantification (or harmonic inversion) problem
entails using the input time signals to reconstruct the true number of resonances as well as all the constituent physical
transients (harmonics) together with the pairs of spectral parameters that are complex-valued frequencies and the
corresponding amplitudes [2]. Moreover, every time signal has a structure which is quantifiable by a relatively limited
number of parameters. In practice, neither this structure nor the related parameters of the studied time signals are
known prior to signal processing. The task of spectral synthesis is to reconstruct these unknown quantities from the
given time signal, and this is achieved by performing spectral decomposition. To this end a number of methods can be
used [7]–[14]. We presently achieve this goal by using the non-linear parametric signal processor called the fast Padé
transform (FPT) [15]–[17]. For the given Maclaurin series, a frequency spectrum in the FPT is defined by the unique
ratio of two polynomials PK/QK , where K is the total number of resonances (genuine plus spurious). The fast Fourier
transform (FFT), with its spectrum given by a single Riemann polynomial RN , where N is the total signal length,
cannot solve this quantification problem. This occurs because the FFT ignores the structure of the investigated time
signal. There are two kinds of spectral shapes in signal processing. These are the component shape spectra for each
separate resonance and the total shape spectrum as the sum of all the separate component shape spectra, resulting
from interference patterns of all the individual resonances. The FFT, as a linear non-parametric processor, can give
only the envelope or total shape spectra [2]. In contrast, the FPT as a non-linear parametric estimators, can generate
the component as well as the total shape spectra [2]. This occurs because prior to constructing any spectrum, the
FPT can retrieve the peak positions, widths, heights and phases of individual physical resonances.

The main distinction between these two kinds of processors is in the type of information extracted from the input
time signal. Non-parametric processors can generate only qualitative information, which is used to plot graphs of
spectral shapes. However, the quantitative data of critical importance are provided by parametric estimators through
unfolding the hidden spectral structure of the envelope. The quantitative features of resonances (peak position, width,
height and phase) reconstructed by the FPT are needed to estimate molecular concentrations. To re-emphasize, with
the FPT, these key resonance parameters are retrieved first. Thereafter, the spectra can be constructed in any mode,
if desired. This is a completely different methodology from fitting estimators that require the envelope spectrum from
the FFT before attempting to quantify the encoded time signals. These two distinct approaches, the FFT followed by
ambiguous fittings versus unambiguous and self-contained estimation by the FPT are anticipated to give substantially
different results, especially with respect to closely overlapping resonances that are often of critical importance in
applications across interdisciplinary fields, including atomic and molecular spectroscopy [18, 19].
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The FPT converges when all the reconstructed genuine frequencies and amplitudes become stable. This point of
stabilization is a veritable signature of recovery of the exact number KG of genuine resonances (KG < K). With any
further increase of the partial signal towards the full signal length i.e. beyond the point at which full convergence
was first reached, all the genuine frequencies and amplitudes remain constant and so do the ensuing spectra via the
saturation PK/QK = PKG+KF

/QKG+KF
= PKG

/QKG
, where KF is the number of Froissart or spurious resonances.

Protection against contamination by some KF noisy or noise-like resonances is provided within the FPT itself, since
each pole in the spectrum PK/QK from spurious resonances stemming from the characteristic equation of the denom-
inator polynomial QK = 0 coincides with the corresponding zero of the numerator polynomial, PK = 0. This leads to
pole-zero cancellation in the Padé polynomial quotient of the FPT. Such a feature can be used to differentiate between
spurious and genuine content of the signal. Since the unphysical poles and zeros always appear as pairs in the FPT,
they are viewed as doublets. These are called Froissart doublets after Froissart who, through numerical experiments,
discovered this extremely useful phenomenon, which is unique to the Padé methodology [20, 21].

As a complement to our earlier studies [15]–[17] with the main focus of estimation of lineshapes in signal processing,
the present study illustrates the use of the parametric version of the fast Padé transform in the theory of resonances.
Our primary goal is to carry out a stringent testing of the FPT by verifying the possibility of obtaining the numerically
exact solution of a highly challenging harmonic inversion problem with 25 tightly packed resonances, some of which
are practically degenerate. Each resonance is characterized by four real parameters describing the spectral position,
height, width and phase. Therefore, the present model signal possesses 100 real-valued spectral parameters. All these
parameters have been entered into the analysis with 12 digit accuracy. Once the time signal is constructed as a linear
combination of 25 damped complex harmonics and digitized, the input data for solving the quantification problem
consists merely of the numerical values of the signal points. The task is to retrieve all the 12-digit accurate 100 input
spectral parameters together with the exact number KG of genuine resonances. This would expose the fast Padé
transform to the most challenging testing for stability and robustness against perturbations due to the unavoidable
computational round-off errors. Spectral analyzers that do not pass such a demanding and fully controlled testing
cannot be considered as reliable when dealing with the corresponding experimentally measured time signals.

2 Theory

By way of a clear introduction to the FPT, we shall briefly recall the major features of rational functions. General
rational functions R(z−1) are defined as quotients of two other functions f(z−1) and g(z−1) :

R(z−1) =
f(z−1)

g(z−1)
. (2.1)

Here, for convenience, the independent variable z−1 is chosen as the inverse of a general complex variable z. These
rational functions represent the leading class of functions from mathematics with a myriad of applications across
interdisciplinary research fields, ranging from physics to life sciences. This is primarily due to the main features of
rational approximations, as they apply to analysis and interpretation of data that can stem from either experimental
measurements or from theory by means of numerical computations. Such features are interpolation and extrapolation.
By interpolation, one attempts to reliably generate the values of the observables in certain ranges or points where mea-
sured data are unavailable. By extrapolation, one tries to faithfully predict the values that could have been measured
had the experiment continued beyond the last recorded data point of the studied physical quantity. Both cases are
of great practical importance, since a reliable method would save extra measurements or time consuming numerical
computations. Yet, the goal of an optimal theory is not to try in vain to achieve physically adequate interpolation and
extrapolation by fitting with unavoidable non-uniqueness, subjectivity and bias. Rather, the aim is to ingrain these
two features into adequate mathematical models without adjustable parameters for the purpose of description of mea-
sured phenomena. The most suitable framework for solving this challenging simultaneous interpolation-extrapolation
problem is provided precisely by rational functions of the general type (2.1). Interpolation and extrapolation are also
inherent in the important problem of sequence-to-sequence transformations as well as resummations of asymptotic and
divergent series and sequences [13, 14]. In Ref. [2] a detailed analysis has been reported on the relationships of the
FPT with a number of the well-known transforms due to Aitken, Shanks, Wynn, Levin, etc. In particular, the Levin
transforms and several more modern related methods [13, 14] could advantageously be applied to spectral analysis
from the present work.

The simplest, and crucially, the most powerful rational function, is the Padé approximant (PA), R(PA)(z−1), which
is introduced by a ratio of two polynomials P−

L (z−1) and Q−

K(z−1) of degrees L and K [2]:

R(PA)(z−1) =
P−

L (z−1)

Q−

K(z−1)
, (2.2)
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P−

L (z−1) =

L∑

r=0

p−r z−r ; Q−

K(z−1) =

K∑

s=0

q−r z−s, (2.3)

where {p−r , q−s } are the expansion coefficients of P−

L (z−1) and Q−

K(z−1). The most stable are the diagonal and para-
diagonal PA as obtained for L = K and L − 1 = K, respectively. The polynomial ratio from (2.2) becomes unique if
it is taken to approximate a given Maclaurin series G(z−1) via G(z−1) ≈ P−

L (z−1)/Q−

K(z−1) where:

G(z−1) =

∞∑

n=0

cnz−n. (2.4)

In physics, the conventional Green function or the response function (spectrum) is also given by the expansion (2.4).
In (2.4), the elements cn of the infinite assembly {cn} are the known expansion coefficients that can be any set of
numbers and not only time signal points. In applications to signal processing, the cn’s from (2.4) are time signal
points or auto-correlation functions [2]. These are given by linear combinations of decaying trigonometric functions
that are complex-valued damped exponentials called fundamental harmonics (transients):

cn =

K∑

k=0

dkzn
k ; zk = eiωkτ , Im(ωk) > 0. (2.5)

Here, τ is the sampling or dwell time, whereas {ωk, dk} are the nodal angular frequencies and the associated amplitudes,
respectively. By inserting (2.5) into G(z−1) from (2.4), the infinite sum over n can be carried out using the exact
result for the geometric series

∑∞

n=0(zk/z)−n = 1/(1 − zk/z) = z/(z − zk). The obtained fraction z/(z − zk) is the
simplest 1st order diagonal (L = K = 1) rational polynomial in the variable z+1 ≡ z. To cohere with (2.5), general
variable z can also be written in the harmonic form z = exp (iωτ), where ω is a running complex angular frequency.

A sum of K fractions z/(z − zk) via G(z−1) =
∑∞

n=0 cnz−n =
∑K

k=1 dk

∑∞

n=0(zk/z)n =
∑K

k=1 zdk/(z − zk) represents
the K th order diagonal (L = K) rational polynomial P+

K (z)/Q+
K(z) :

G(z−1) =

K∑

k=1

zdk

z − zk

≡
P+

K (z)

Q+
K(z)

, (2.6)

P+
L (z) =

L∑

r=1

p+
r zr , Q+

K(z) =
K∑

s=0

q+
s zs. (2.7)

Thus, for the expansion coefficients {cn} in the form of geometric progression (2.5), the exact result for the infinite
sum in (2.4) is given precisely by the rhs of (2.6), which can alternatively be re-written as:

G(z−1) ≈ R(PzT)(z) , R(PzT)(z) ≡
P+

K (z)

Q+
K(z)

. (2.8)

Here, the acronym PzT stands for the so-called Padé z-transform. Distinguishing PA from PzT is essential due to the
subtle, but critical differences (i) and (ii) between these two methods:

(i) The standard Padé approximant is invariably introduced in the literature on this method as the rational
polynomial P−

L (z−1)/Q−

K(z−1) from (2.2) in the same variable z−1 as the original function G(z−1) from (2.4). On the
other hand, we can alternatively interpret (2.4) as the usual z-transform in variable z−1 [2]. As such, subsequently
using geometric progression (2.5) for the cn’s, the resulting rational function R(PzT)(z) = P+

K (z)/Q+
K(z) from (2.8)

becomes the exact Padé polynomial quotient, but in the new variable z relative to the z-transform, G(z−1). Thus,
given G(z−1), the first key difference between the PA and PzT is that the former and the latter are defined in variables
z−1 and z, respectively. Of course, since the PzT is also a rational polynomial, the PzT and PA both belong to the
same family of Padé approximants, albeit with two different tasks. To specify these tasks, given (2.4), we can consider
two regions |z| > 1 and |z| < 1 in the complex z−plane. For |z| > 1 and |z| < 1, the series G(z−1) from (2.4) will
converge (say, slowly) and diverge, respectively. Therefore, the rational polynomial P−

K (z−1)/Q−

K(z−1) from the usual
PA in the same variable z−1 with respect to G(z−1) accelerates the already existing convergence of (2.4) for |z| > 1. For
the opposite case |z| < 1, the input series (2.4) diverges. However, for the same case |z| < 1, the rational polynomial
P+

K (z)/Q+
K(z) from the standard PzT converges, as it is defined in terms of the variable z as opposed to z−1 from

G(z−1). In this way, by means of the Cauchy analytical continuation, the PzT effectively induces convergence into
the originally divergent series G(z−1) for |z| < 1. This is how the same Padé methodology can achieve two opposite
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mappings via transforming divergent series into convergent ones, and converting slowly into faster converging series
(hence acceleration) [2].

(ii) The numerator polynomial P−

K (z−1) in e.g. the diagonal PA generally possesses the free, constant expansion
coefficient p−0 , such that the sum over r in (2.3) can start from r = 0 via: P−

K (z−1) = p−0 +p−1 z−1+p−2 z−2+· · ·+p−Kz−K

where p−0 6= 0. However, by definition, the corresponding expansion coefficient p+
0 of the numerator polynomial P+

K (z)
in the diagonal PzT is zero. Hence, this time, the sum over r in (2.7) for P+

K (z) begins with r = 1 with no free,
z−independent term, so that: P+

K (z) = p+
1 z + p+

2 z2 + · · · + p+
KzK with p+

0 = 0.
The mentioned uniqueness of the PA for the given input Maclaurin series (2.4) presents a key feature of this

method. In other words, the ambiguities encountered in other mathematical modelings are eliminated from the outset
already at the level of the definition of the PA. Moreover, this definition contains its “figure of merit” by revealing
how well the PA can really describe the function G(z−1) to be approximated. More precisely, given the infinite sum
G(z−1) via (2.4), the key question to raise is about the best agreement between R(PA)(z−1) from (2.2) and G(z−1)
from (2.4). This question can be easily answered by expanding R(PA)(z−1) as an infinite sum in powers of z−1 around
the point z∞ located at infinity, z = z∞ ≡ ∞. The result can be symbolically expressed by:

G(z−1) −
P−

L (z−1)

Q−

K(z−1)
= O−(z−L−K−1) , z −→ ∞, (2.9)

where O−(z−L−K−1) is the remainder of power series expansions around z = z∞ = ∞. The function O−(z−L−K−1), as
an explicit error of the approximation G(z−1) ≈ P−

L (z−1)/Q−

K(z−1), itself represents a power series with the expansion
terms z−L−K−m (m = 1, 2, 3, ...,∞). In other words, the mentioned “figure of merit” is explicitly given by the easily
obtainable error term O−(z−L−K−1), which is an infinite sum with higher-order expansion terms than those retained
in the Maclaurin series for the polynomial quotient P−

L (z−1)/Q−

K(z−1) from the PA. The possibility of being able to ex-
plicitly compute the difference term or the error via O−(z−L−K−1) in the Padé estimate G(z−1) ≈ P−

L (z−1)/Q−

K(z−1)
is the basis of a robust error analysis within the PA. Padé approximants can be computed through many different
numerical algorithms, including the most stable numerical computations via continued fractions. Moreover, unlike
any other related method, for the known G(z−1), both Padé polynomials P−

L (z−1) and Q−

K(z−1) in the PA can be
extracted by purely analytical means in their simple and concise closed forms [2]. This represents the gold standard
against which all the corresponding numerical algorithms should be benchmarked for their stability and robustness.

Outside mathematics, per se, theoretical physicists are most appreciative of the power and usefulness of the
PA [13, 14], which they began to use more than half a century ago in many problems ranging from the Brillouin-
Wigner perturbation series to divergent expansions in quantum chromodynamics in the theory of strong interactions
of elementary particles [2, 4]. The reason for such a widespread usage of this method in theoretical physics is that,
in fact, the most interesting and also the most important series expansions emanating from realistic problems are
divergent. Other frequently encountered series, although convergent in principle, often converge so slowly that they
become virtually impractical in exhaustive applications. Here, the PA comes to rescue the situation in both cases by (a)
converting divergent into convergent series and by (b) accelerating slowly converging series. The reason that the same
method is able to tackle these diametrically opposite tasks (analytical continuations and convergence accelerations) is
in the non-linearity of the PA, as is obvious from the definition (2.9).

The two main features of the Padé functions via its two wings, the PA (convergence rate enhancement of slowly
convergent series or sequences), and the PzT (forced or induced convergence of originally divergent series) are jointly
embodied into the fast Padé transform, the FPT. In the fast Padé transform, the PzT and PA are relabeled as
FPT(+) and FPT(−), respectively, where the superscripts ± refer to the employed independent variables, z+1 ≡ z and
z−1 = 1/z. By definition, the FPT(+) accomplishes analytical continuation through the forced convergence of divergent

series. Likewise, the FPT(−) achieves acceleration of slowly converging series or sequences. Given a Maclaurin series
(2.4), the FPT(+) and FPT(−) are aimed at approximating the same function G(z−1) :

G(z−1) ≈ R(FPT)±(z±1). (2.10)

Functions R(FPT)±(z±1) are explicitly defined as rational polynomials:

R(FPT)±(z±1) ≡
P±

L (z±1)

Q±

K(z±1)
, (2.11)

P±

L (z±1) =

L∑

r=1,0

p±r z±r , Q±

K(z±1) =

K∑

s=0

q±r z±s, (2.12)
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where r = 0 and r = 1 correspond to P−

L (z−1) and P+
L (z), respectively. As in (2.9), the quality of the FPT(+) i.e. the

adequacy of the two approximations in (2.10), is governed by the explicit definition:

G(z−1) −
P+

L (z)

Q+
K(z)

= O(zL+K+1) , z −→ 0. (2.13)

The remainders or error functions O±(z±(L+K+1)) follow by developing R(FPT)±(z±1) in their power series. Such
developments imply that both rational functions P±

L (z±1)/QK(z±1) are able to exactly reproduce the first L+K terms
from the infinite set {cn} of the input Maclaurin series (2.10). By definition, the rational polynomials P+

L (z)/Q+
K(z)

and P−

L (z−1)/Q−

K(z−1) from the FPT(+) and FPT(−) yield the series expansions in powers of z and 1/z. Therefore,
the remainders O(zL+K+1) and O(z−L−K−1) from (2.9) (2.13) are themselves power series expansions around the
points z = 0 and z = ∞. When z is a harmonic variable as in MRS, where z = exp (iωτ) and Re(ω) > 0, then the

FPT(+) and FPT(−) converge inside and outside the unit circle |z| < 1 and |z| > 1, respectively. However, being

in the family of Padé approximants, the FPT(+) and FPT(−) (just like the PzT and PA) converge, as well, in the
complementary regions |z| > 1 and |z| < 1, respectively, by virtue of their analytical continuations. In other words,

the FPT(±) are defined throughout the complex z−plane with the exception of K poles z = z±k (1 ≤ k ≤ K) of
P±

K (z±1)/Q±

K(z±1), where z±k are zeros of the denominator polynomials, Q±

K(z±k ) = 0. Once the K solutions {z±k } of
this latter characteristic or secular equations are available, the corresponding complex frequencies and amplitudes are
extracted from the formulae: ν±

k = ∓(i/τ) ln (z±k ) and d±k = P±

K (z±k )/Q±

K

′
(z±k ), where Q±

K

′
(z±1) = (d/dz±1)Q±

K(z±1)

and Q±

K

′
(z±k ) 6= 0. These expressions for the amplitudes d±k are obtained by taking the Cauchy residues of the Padé

polynomial quotients P±

K (z±k )/Q±

K(z±k ) evaluated at the poles z±1 = z±k .
The above outlines emphasize the universal importance of rational functions and their most powerful proponent –

Padé approximants. This led to a straightforward identification of the origin of the fast Padé transforms, via the FPT(−)

and FPT(+), as the standard PA (acceleration of slowly converging series) and the PzT (transformation of diverging
into converging series), respectively. However, in addition to convergence acceleration and induced convergence, the
FPT can be applied to signal processing, where the main task is to carry out spectral analysis i.e. to solve the
quantification problem. In this latter research area, a sampled time signal {cn} is available either from computations
or measurements. Particularly in MRS, magnetic resonance physics dictates that each cn is indeed a sum of K complex
damped exponentials, as in (2.5). Here, we are given a set of N sampled time signal points {cn} (0 ≤ n ≤ N − 1),
where the dwell time τ and the total signal length N are also known. As stated, the principal goal in parametric signal
processing is to solve the quantification problem as an inverse problem. For the input data {cn} (0 ≤ n ≤ N − 1), as
well as N and τ, this inverse problem amounts to finding the unique solutions for the three types of unknown quantities
that are the complex fundamental frequencies {ωk} and the corresponding complex amplitudes {dk}, as the building
elements of each cn. Moreover, in this quantification problem, there is yet another unknown quantity and that is the
number KG of genuine resonances with the spectral parameters {ωk, dk} (1 ≤ k ≤ KG).

A critically important feature of the FPT is its ability to reconstruct exactly the total true number of physical
harmonics in the given FID. In practice, determination of the exact number of resonances can be accomplished via
Froissart doublets [20] or pole-zero cancellations. The total number of genuine resonances is given by the degree
K of the denominator polynomials Q±

K . The only known information about this degree K is that it must obey the
inequality 2K ≤ N. Algebraically, the 2K unknown spectral parameters (frequencies and amplitudes) require at least
2K signal points from the whole set of N available entries. To determine K unequivocally in non-parametric signal
processing, we compute a short sequence of the FPTs by varying the degree K ′ of the polynomials in the Padé spectra
{P±

K′/Q±

K′} until all the ensuing results stabilize/saturate. When this happens, say at K ′ = K ′′, we are certain that
the true number K is obtained as K = K ′′. If we continue on increasing the running order K ′ of the FPT beyond the
stabilized value K, we would always obtain the same results for K ′ = K + m and for K using any positive integer m.
The mechanism by which this is achieved (i.e. the maintenance of the overall stability, including the constancy of the
value of the true number of resonances) is provided by the concept of Froissart doublets [20].

Specifically, by not knowing the exact number K in advance, one would systematically augment the order K ′ =
K+m (m = 1, 2, 3, ...) and this would lead to extra zeros from P±

K+m and Q±

K+m. All the solutions of the characteristic

equations P±

K+m = 0 and Q±

K+m = 0 are the respective zeros and poles in the spectra P±

K+m/Q±

K+m because these
latter rational polynomials are meromorphic functions (functions whose only singularities are poles are meromorphic
functions). Such extra zeros and poles are spurious, since they are not a apart of the input FID, which is built from
the K true harmonics alone. These spurious poles and zeros coincide with each other. Therefore, in the spectra
P±

K+m/Q±

K+m, beyond the stabilized number K of resonances, all the spurious poles and zeros will be automatically
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Table 1. Twelve digit numerical values for all the input spectral parameters: the real Re(νk) and the imag-
inary Im(νk) part of complex frequencies νk, and the absolute values |dk| of amplitudes dk of 25 damped
complex exponentials from the synthesized time signal (2.5) similar to a short echo time (∼20 ms) encoded
FID via MRS at the magnetic field strength B0=1.5 T from a healthy human brain, as in Ref. [22]. Ev-
ery phase {φk} of the amplitudes is equal to zero, such that each dk is purely real, dk = |dk| exp (iφk) = |dk|.

  1   0.98501398674   0.18001465258   0.12203235945 Mob. Lip
  2   1.11203168723   0.25701463975   0.16102534769 Mob. Lip
  3   1.54802256874   0.17202754365   0.13502234563 Mob. Lip
  4   1.68903478456   0.11803476587   0.03401524874 Mob. Lip
  5   1.95901375986   0.06203746798   0.05602324897 Gaba
  6   2.06502285659   0.03101654587   0.17102458679 NAA
  7   2.14501198543   0.05002471356   0.11603534867 NAAG
  8   2.26102368757   0.06203456897   0.09201183765 Gaba
  9   2.41103487259   0.06202653745   0.08502419328 Glu

  10   2.51902265397   0.03601654189   0.03703346957 Gln
  11   2.67601285971   0.03302569432   0.00803438479 Asp
  12   2.67601285972   0.06201675478   0.06301243246 NAA
  13   2.85503367438   0.01603187452   0.00502167879 Asp
  14   3.00902483679   0.06401569438   0.06503534245 Cr
  15   3.06701235896   0.03602786435   0.10102493987 PCr
  16   3.23903157914   0.05003467587   0.09601373648 Cho
  17   3.30101296785   0.06402537896   0.06501124867 PCho
  18   3.48102497584   0.03103548627   0.01102547368 Tau
  19   3.58401351765   0.02801457683   0.03603282549 m−Ins
  20   3.69402268739   0.03602617584   0.04102389436 Glu
  21   3.80303157594   0.02401584975   0.03101432657 Gln
  22   3.94402312958   0.04203725359   0.06803345832 Cr
  23   3.96503247623   0.06202681945   0.01302532687 PCr
  24   4.27101432576   0.05503473576   0.01603293478 PCho
  25   4.68000000000   0.12201256293   0.08501458765 Water

no
k Re(ν

k
 ) (ppm) Im(ν

k
 ) (ppm) |d

k
 | (au) M

k

INPUT DATA for ALL SPECTRAL PARAMETERS of a SYNTHESIZED TIME SIGNAL or FID

canceled due to the quotient form of the Padé spectra, so that:

P±

K+m

Q±

K+m

=
P±

K

Q±

K

(m = 1, 2, 3, ...). (2.14)

Hence stability of the Padé spectral estimation. This stabilization condition is the signature of the determination of
the exact total number K of resonances. If the quantification problem is solved first, then the subsequent stability
via (2.14) will stem from the constancy of all the spectral parameters that are reconstructed exactly by the FPT
from the given FID. Of course, once all the parameters are reconstructed, it is not mandatory to search for saturation
(2.14) in the corresponding spectra from the FPT. In such a parametric signal processing within the FPT, the exact
number K of genuine resonances is determined by monitoring solely the potential constancy of all the found spectral
parameters. In this way, one may say that irrespective of whether poles or zeros are explicitly available or not, the
stabilization principle implicitly act by effectively reducing P±

K+m/Q±

K+m to P±

K /Q±

K , as per (2.14). Such a lowering
of the degrees of the characteristic polynomials from K + m to K, with parametric and non-parametric estimations
within the FPT(±) promotes the stabilization concept to the status of an efficient method for reduction of the original
dimensionality of the problem. Note that the problem of dimensionality reduction in itself is a very important issue
in the field of system theory, especially when dealing with large degrees of freedom [2]. Large systems are difficult to
handle in any computation and, therefore, it is essential to reduce their original dimension without any information
loss. This is important even without the obvious concern for computational demands because capturing the essence
of the investigated large system by an adequate extraction of a relatively small number of the main parametrizing
characteristics allows simple and yet reliable descriptions. To achieve this goal, the parametric version of the FPT does
not need a specially designed procedure, since stabilization of spectra and spectral parameters solve the dimensionality
reduction problem while separating genuine from spurious information.



Machine accurate solution of spectral analysis of time signals 7

3 Results

We use (2.5) to generate a complex-valued synthesized time signal {cn}(0 ≤ n ≤ N − 1), which is also called the
free induction decay (FID) curve. The chosen signal length N is N = 1024 and the bandwidth is set to be 1000 Hz.
This yields the sampling rate τ = 1 ms and the total duration time of the signal T = Nτ = 1.024 s. Table 1 gives
the 12-digit input data for the quantification problem to be solved in the present work. These data are the complex
fundamental frequencies and the corresponding amplitudes from the noise-free model signal (2.5) whose associated
spectrum is comprised of a total of 25 resonances, some of which are individual although tightly packed peaks, while
others are closely-overlapped or nearly degenerate. The numerical values of the spectral parameters were chosen to
correspond to the typical frequencies and amplitudes found in proton MR time signals encoded in vivo from healthy
human brain at 1.5T [22]. The columns in Table 1 of the input fundamental transients are headed by labels n◦

k ,
Re(νk) (ppm) , Im(νk) (ppm) , |dk| (au) and Mk that represent the running number, real and imaginary frequencies
(both in parts per million, ppm), absolute values of amplitudes (in arbitrary units, au) and the molecular (metabolite)
assignments, respectively. The phases of all the amplitudes are set to be equal to zeros. Of particular note are the
crossings of the 2nd column with the 11th and 12th rows where the two chemical shifts Re(ν11) = 2.67602157683 ppm
and Re(ν12) = 2.67602157684 ppm are separated by an exceedingly small splitting Re(ν12)−Re(ν11) = 1×10−11 ppm.

The results of the FPT(−) for machine accurate exact reconstructions of the input spectral parameters are given
in Table 2. It can be seen that a varying level of accuracy is attained in the retrieved spectral parameters from
the FPT(−) near full convergence at 2 partial signal lengths NP = 180, 220. Neither length is compliant with the
FFT-type lengths i.e. we have NP 6= 2m (m positive integers). On panel (i) at NP = 180, before full convergence is
achieved, some 2 – 7 reconstructed digits can be seen. Note that the 11th resonance is not detected here. Its absence
is marked by the sign “−” in the first column at the corresponding vacant location (n◦

k = 11). However, at NP = 220
an enormous increase in accuracy is observed on panel (ii), with all the 12 input digits exactly reconstructed for each
spectral parameter of 25 resonances. The phases of the amplitudes are not displayed, but they are also retrieved with
12 digit accuracy at NP = 220. Remarkably, with only 220 signal points out of 1024 entries from the full FID, the
FPT(−) resolves unequivocally the two near degenerate frequencies separated from each other by an unprecedented
chemical shift of merely 10−11 ppm. This shows that the FPT(−) has an exponential convergence rate (the spectral
convergence) to the exact numerical values within machine accuracy of all the reconstructed fundamental frequencies
and the associated amplitudes. Moreover, these 12-digit output results for the 12-digit input data prove an indeed
unprecedented robustness of the FPT(−) even against computational round-off-errors.

All the remaining computations will be illustrated graphically in Figs. 1–7 and, for this purpose, it is sufficient to
use only the first three decimals from the input data in Table 1. In such a case, the chemical shifts for the resonances
with n◦

k = 11 and n◦
k = 12 would be identical, and to avoid the exact degeneracy, we shall make the redefinitions

Re(ν11) = 2.675 ppm and Re(ν11) = 2.676. Figure 1 shows, on panels (i) and (ii), the real Re(cn) and imaginary
Im(cn) part of the synthesized FID. Panel (iii) in this figure displays the initial convergence regions of the FPT(+) and
FPT(−) located inside and outside the unit circle |z| < 1 and |z| > 1 in the complex planes of the harmonic variables
z and z−1, respectively. Since the Padé spectra are rational functions given by the quotients of two polynomials, the
Cauchy analytical continuation principle lifts the restrictions of the initial convergence regions. Namely, the Cauchy
principle extends the initial convergence region from |z| < 1 to |z| > 1 for the FPT(+) and similarly from |z| > 1
to |z| < 1 for the FPT(−). Thus, both the FPT(+) and FPT(−) continue to be computable throughout the complex
frequency plane without encountering any divergent regions. An exception is the set of the fundamental frequencies
of the examined FID that are simultaneously the singular points (poles) of the system’s response function. The small
dots seen on panel (iii) depict both the exact input harmonic variables z±1

k = exp (±iωkτ) and the corresponding Padé
counterparts z±k = exp (±iω±

k τ) reconstructed with N/4 = 256 where ωk = 2πνk and ω±

k = 2πν±

k . On panel (iii) the
locations of the 1st and the 25th damped harmonics for lipid and water are denoted by Lip and H2O, respectively.
These represent the two endpoints of the complex harmonic variable interval within which all the 25 studied resonances
reside. To avoid clutter, numbers for the remaining 23 resonances on both sides of the circumference |z| = 1 are not
written on panel (iii). These numbers will be shown in Figs. 4 and 5, whereas the corresponding acronyms for the
metabolites shall be depicted in Fig. 3. Panels (iv) and (v) in Fig. 1 display the two Padé absorption total shape
spectra from the Heaviside partial fractions of the FPT(+) and FPT(−), respectively, computed using a quarter signal
length (N/4 = 256). These results are identical to those obtained with N/2 = 512 and N = 1024. Panel (vi) in Fig.
1 presents the Fourier absorption total shape spectrum evaluated via the FFT using the full FID with N = 1024. A
comparison of panels (iv)–(vi) in Fig. 1 reveals that zero-valued spectra are obtained from the difference between any
two selected pairs of these spectra.

In Fig. 2 we present the absorption total shape spectra computed by the FFT (left column) and FPT(−) (right
column) at three partial signal lengths. On panels (i) and (iv) in Fig. 2, the most dramatic difference between the FFT

and FPT(−) is seen at the shortest signal length (N/8 = 128). Here, the FFT essentially presents little meaningful
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Table 2. Two to twelve digit accuracy for the complex frequencies and amplitudes reconstructed by the
FPT(−) at partial signal lengths NP = 180 and 220. Notice, especially, that using only 220 signal points
out of 1024 entries available from the full FID, the FPT(−) resolves unequivocally the two near degen-
erate frequencies separated from each other by an unprecedented chemical shift of merely 10−11 ppm.

Accuracy of FPT (−) for every parameter of each resonance:  2 − 7 Exact Digits (ED−
k
)

(i)  Partial FID Length:  N
P
 = 180

  1   0.9850237   5   0.1800194   5   0.1220619   4 
  2   1.1120512   4   0.2569843   4   0.1609715   4 
  3   1.5480096   5   0.1720104   5   0.1349519   4 
  4   1.6890928   4   0.1180372   6   0.0340191   6 
  5   1.9589440   4   0.0620274   5   0.0559128   4 
  6   2.0649981   4   0.0309978   5   0.1707346   4 
  7   2.1452547   4   0.0499006   4   0.1153643   3 
  8   2.2613642   4   0.0625697   3   0.0938521   3 
  9   2.4107820   3   0.0631962   3   0.0883812   3 

  10   2.5178233   3   0.0358176   4   0.0366389   4 
− − − − − − −

  12   2.6756914   4   0.0541871   2   0.0662096   2 
  13   2.8555552   3   0.0145382   3   0.0045096   4 
  14   3.0111369   3   0.0588950   3   0.0597010   2 
  15   3.0660880   3   0.0367181   3   0.1073692   2 
  16   3.2403693   3   0.0510559   3   0.1037399   2 
  17   3.2994204   3   0.0606733   3   0.0608598   2 
  18   3.4799613   3   0.0301651   3   0.0105043   3 
  19   3.5841217   4   0.0277123   4   0.0354333   3 
  20   3.6942698   4   0.0359785   4   0.0408703   4 
  21   3.8030803   4   0.0240617   4   0.0310847   4 
  22   3.9440911   4   0.0418756   4   0.0671497   3 
  23   3.9639891   2   0.0609991   3   0.0140652   3 
  24   4.2710137   7   0.0550357   6   0.0160335   6 
  25   4.6800001   7   0.1220122   6   0.0850142   6 

no
k

Re(ν−
k
 ) (ppm) ED−

k
Im(ν−

k
 ) (ppm) ED−

k
|d−

k
 | (au) ED−

k

Accuracy of FPT (−) for every parameter of each resonance:  12 Exact Digits (ED−
k
)

(ii)  Partial FID Length:  N
P
 = 220

  1   0.98501398674   12   0.18001465258   12   0.12203235945   12 
  2   1.11203168723   12   0.25701463975   12   0.16102534769   12 
  3   1.54802256874   12   0.17202754365   12   0.13502234563   12 
  4   1.68903478456   12   0.11803476587   12   0.03401524874   12 
  5   1.95901375986   12   0.06203746798   12   0.05602324897   12 
  6   2.06502285659   12   0.03101654587   12   0.17102458679   12 
  7   2.14501198543   12   0.05002471356   12   0.11603534867   12 
  8   2.26102368757   12   0.06203456897   12   0.09201183765   12 
  9   2.41103487259   12   0.06202653745   12   0.08502419328   12 

  10   2.51902265397   12   0.03601654189   12   0.03703346957   12 
  11   2.67601285971   12   0.03302569432   12   0.00803438479   12 
  12   2.67601285972   12   0.06201675478   12   0.06301243246   12 
  13   2.85503367438   12   0.01603187452   12   0.00502167879   12 
  14   3.00902483679   12   0.06401569438   12   0.06503534245   12 
  15   3.06701235896   12   0.03602786435   12   0.10102493987   12 
  16   3.23903157914   12   0.05003467587   12   0.09601373648   12 
  17   3.30101296785   12   0.06402537896   12   0.06501124867   12 
  18   3.48102497584   12   0.03103548627   12   0.01102547368   12 
  19   3.58401351765   12   0.02801457683   12   0.03603282549   12 
  20   3.69402268739   12   0.03602617584   12   0.04102389436   12 
  21   3.80303157594   12   0.02401584975   12   0.03101432657   12 
  22   3.94402312958   12   0.04203725359   12   0.06803345832   12 
  23   3.96503247623   12   0.06202681945   12   0.01302532687   12 
  24   4.27101432576   12   0.05503473576   12   0.01603293478   12 
  25   4.68000000000   12   0.12201256293   12   0.08501458765   12 

no
k

Re(ν−
k
 ) (ppm) ED−

k
Im(ν−

k
 ) (ppm) ED−

k
|d−

k
 | (au) ED−

k

PROOF−OF−PRINCIPLE ACCURACY of FPT (−) for QUANTIFICATION ; FID LENGTHS:  N
  P

 = 180, 220
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Figure 1: Time signal (panels (i), (ii)) and the corresponding absorption total shape spectra (envelope) in the FPT(±)

(panels (iv), (v)) and FFT (panel (vi)). The initial convergence regions in the FPT(+) and FPT(−), inside and outside
the unit circle, respectively, are shown on panel (iii).
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spectroscopic information. In contrast, with the FPT(−), at N/8 = 128, several major peaks are clearly delineated,
such as NAA, Cre, Cho, etc. On panel (ii) at N/4 = 256, the FFT has still not predicted the correct height of even the
largest resonance (NAA) around 2 ppm and, simultaneously, a number of other peaks are unresolved. On the other

hand, with the FPT(−) shown on panel (iv) at N/4 = 256, full convergence of the total shape spectrum is reached.
At half signal length N/2 = 512 on panel (iii), the height of the NAA peak in the FFT is still too short, thus causing

the lack of convergence for the whole Fourier spectrum. However, on panel (vi) at N/2 = 512, the FPT(−) maintains

its complete convergence by way of pole-zero cancellations. Overall, it is seen from Fig. 2 that the FPT(−) converges
faster than the FFT as the partial signal length is gradually augmented. Moreover, the FPT(−) produces no Gibbs
ringing in the process of converging in a steady fashion as a function of the increased signal length. This is in sharp
contrast to other existing parametric estimators that are usually unstable as a function of NP , typically undergoing
wide oscillations with unacceptable results before eventually converging, if they do at all.

Figure 3 compares the results for the FPT(+) and FPT(−) (left and right columns). The pertinent details with
regard to panels (i) and (iv) as well as (ii) and (v) of Fig. 3 have already been presented in section Fig. 1. Nevertheless,
further important information is presented on panels (ii) and (v) in Fig. 3 for the absorption total shape spectra by
displaying the usual acronyms that locate the positions of the major MR-detectable metabolites associated with
resonances stemming from FIDs encoded via MRS from a healthy human brain. Here, the same acronyms for several
resonances (Cho, Glu, NAA) are seen at more than one chemical shift. This is a consequence of the so-called J-coupling
[1]. On panels (iii) and (vi) in Fig. 3, the absorption component shape spectra are presented for each individual
resonance. The sums of all of such component shape spectra yield the associated total shape spectra from panels (ii)
and (v) in Fig. 3. Once again it is seen on panels (iii) and (vi) in Fig. 3, that only a quarter N/4 = 256 of the full FID
is necessary for both the FPT(+) and FPT(−) to fully resolve all the individual resonances, including the peaks that are
isolated (n◦

k = 8, 9, 10, 13, 18, 19, 20, 21, 24, 25), overlapped (n◦

k = 1, 2; n◦

k = 3, 4; n◦

k = 5, 6, 7; n◦

k = 14, 15; n◦

k = 16, 17),
tightly overlapped (n◦

k = 22, 23) as well as nearly degenerate (n◦
k = 11, 12). Furthermore, panels (iii) and (vi) of this

figure show that the component shape spectra coincide in the FPT(+) and FPT(−), as in Fig. 1. Such an equivalence
of these two variants is due to the uniqueness of reconstructions in the fast Padé transform.

Figure 4 reveals further insights into the exact quantification within the FPT(+). As was previously the case in Figs.
1 and 3, all the obtained results are for N/4 = 256. The absorption total shape spectrum is shown on panel (iv) in Fig.
4, where the individual numbers of resonances are located near the related peaks. Thus each well-resolved isolated
resonance is marked by the corresponding separate number e.g. n◦

k = 8, 9, etc. Similarly, the overlapped, tightly
overlapped and nearly degenerate resonances are labeled as the sum of the pertinent peak numbers e.g. n◦

k = 1 + 2 or
n◦

k = 5 + 6 + 7, etc. On panel (v) in Fig. 5, the absorption component shape spectra of the constituent resonances
n◦

k = 1 − 25 are shown, and all the individual numbers are indicated for an easier comparison with panel (iv) on
the same figure. Thereby, the hidden structures are well-delineated in these component shape spectra. These hidden
resonances are those that are overlapped (n◦

k = 1+2, 3+4, 5+6+7, 14+15, 16+17), tightly overlapped (n◦
k = 22+23)

and nearly degenerate (n◦

k = 11 + 12). As seen on panel (v), most resonances e.g. n◦

k = 5 − 24 are rather narrow
as implied by the relatively small values of Im(ν+

k ). Thus, these imaginary frequencies are quite close to the real
axis. As a result, these resonances are seen on panel (vi) in a group in the middle part of this sub-plot. In contrast,
panel (vi) in Fig. 4 shows wider resonances e.g. n◦

k = 1 − 4 and n◦

k = 25 with larger values of Im(ν+
k ). Thus, such

imaginary frequencies are deeper in the complex plane and these resonances are quite distant from the real axis, as
observed on the far left and the far right parts of panel (vi). Besides panel (vi) in Fig. 4, graphic presentations of the
reconstructed and the input data for the spectral parameters are also presented on panels (i) – (iii). Panel (i) in Fig.
4 depicts the distribution of the absolute values of the amplitudes at different chemical shifts. It follows from panel
(i) that the quantities |d+

k | do not represent the heights of the absorption peaks from panels (iv) and (v). Instead, the
absorption peak heights are directly proportional to the quotient |d+

k |/Im(ν+
k ), as it should be with any Lorentzian.

Thus in Fig. 4, panel (ii) displays the distribution of these latter quotients of the absolute values of the amplitudes
and the imaginary frequencies. It can be observed from panel (ii) that all the 25 ratios |d+

k |/Im(ν+
k ) are, in fact,

proportional to the heights of the corresponding peaks in the absorption component shape spectra from panel (v) in
Fig. 4. Panel (iii) from Fig. 4 shows, in the complex z+−plane, the distribution of the Padé poles using the complex
harmonic variable z+

k . This is the zoomed version of panels (iii) or (i) from Figs. 1 or 3, respectively. The difference is
in displaying only the first quadrant in Fig. 4, since the rest of the complex z+−plane does not contain any genuine
resonance. Note that on panel (vi), both Re(ν+

k ) and Im(ν+
k ) are shown in descending order when proceeding from

left to right on the abscissa or from bottom to top on the ordinate in Fig. 4. This convenient layout reveals that
all the Padé poles n◦

k = 1 − 25 are aligned one after the other from right to left regarding the abscissa. The same
poles n◦

k = 1 − 25 are also packed together near the circumference (|z| = 1) of the unit circle in such a way that they
follow each other according to their consecutive numbers from inside the unit circle, by being aligned upward with
respect to the ordinate, as per panel (iii). Panel (iii) in Fig. 4 shows that the poles contained in the harmonic variable
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Figure 2: Convergence rate as a function of the partial signal length NP at the fixed bandwidth, 1000 Hz. Fourier
(FFT, left panel) and Padé (FPT(−), right panel) absorption total shape spectra computed using the time signal from
Fig. 1 at three different lengths N/8 = 128, N/4 = 256 and N = 1024 as displayed on the top, middle and bottom
panels, respectively, where the full signal length is N = 1024.
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Figure 3: The initial convergence regions (panels (i), (iv)), absorption total shape spectra (panels (ii), (v)) and
absorption component shape spectra (panels (iii), (vi)) in the FPT(+) (left column) and FPT(−) (right column). The
middle panels display the usual acronyms for the main MR-detectable metabolites in the healthy human brain, whereas
the bottom panels give the corresponding numbers of these metabolites (see Table 1).
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z+
k in the polar coordinates are less scattered from each other relative to the associated distributions of the complex

frequencies from panel (vi) in the rectangle Descartes coordinates. The reason for this is in the exponential function
of the complex frequency which is plotted on panel (iii), whereas the frequency itself is shown on panel (vi) in Fig. 4.
It is seen on panel (iii) in this figure that all the genuine poles retrieved by the FPT(+) are found inside the unit circle
(|z| < 1), as expected. Notice that narrow resonances n◦

k = 5− 24 are shown to be near the circumference (|z| = 1) of
the unit circle. On the other hand, the wide resonances seen on panel (iii) in Fig. 4, such as n◦

k = 1 − 4 and n◦

k = 25,
lie further from the borderline |z| = 1.

Figure 5 displays the results of the FPT(−). The interpretation of the results from the FPT(+) as presented on
panels (i), (ii) and (iv) – (vi) in Fig. 4 holds as well with respect to the corresponding findings from the FPT(−) shown
on panels (i), (ii) and (iv) – (vi) in Fig. 5. This observation emerges from the fact that the FPT(+) and FPT(−)

generate indistinguishable spectral parameters for the same number of signal points, N/4 = 256. However, panel (iii)
differs for Figs. 4 and 5, since the information presented in these plots relates to the two complementary regions of
the initial convergence, inside and outside the unit circle, for the FPT(+) and FPT(−), respectively. In order to match
the configuration from panel (iii) in Fig. 4, the Padé poles contained in the harmonic variable z−

k
, as displayed in

the complex z−− plane on panel (iii) in Fig. 5, are plotted with the values of Im(z−k ) in ascending order when going
from bottom to top of the ordinate. This is opposite to the ordering of Im(z+

k ) on panel (iii) in Fig. 4, as anticipated
because Im(z+

k ) > 0 and Im(z−k ) < 0. Thus, in reconstructions by the FPT(+) and FPT(−), the harmonic variables
z+

k and z−k are located in the first and the fourth quadrant of the complex z+− and z−−planes, respectively. This
is apparent on panel (iii) of Fig. 1 or on panels (i) and (iv) in Fig. 2. Furthermore, on panel (iii) in Fig. 5 all the
resonances reconstructed by means of the FPT(−) are observed to lie outside the unit circle (|z| > 1), as expected. A
careful inspection reveals that the k th heights |d±k |/Im(ν±

k ) shown on panels (ii) in Figs. 4 and 5 do not fully match
the corresponding tops of the k th peaks in the component shape spectra d±

k
z±1/(z − z±

k
) from panel (v). This is

explained by the fact that the heights |d±k |/Im(ν±

k ) are due to the line-shapes d±k /(ω−ω±

k ) rather than to the presently
adopted spectra d±k z±1/(z − z±k ). The former and the latter line-shapes are given in terms of the angular frequencies
{ω, ω±

k } and harmonic variables {z±1, z±1
k }, respectively, where z±1 = exp (±iωτ) and z±1

k = exp (±iωkτ).
In Fig. 6 we display the absorption component shape spectra (left column) and total shape spectra (right column)

from the FPT(−) computed near full convergence at 3 partial signal lengths NP = 180, 220, 260. The three panels on
the right column for the total shape spectra have all reached full convergence. However, on the left column for the
corresponding component shape spectra, full convergence is achieved only at NP = 220, 260. On panel (i) for the
component shape spectra at NP = 180, peak n◦

k = 11 is absent, and peak n◦

k = 12 is over-estimated. Furthermore, the
area of the 12th peak is over-estimated by the amount of the area of the absent 11th peak. As a consequence of this
latter compensation, the total shape spectrum has not reflected that either shortcoming had occurred. Namely, the
total shape spectrum on panel (iv) for NP = 180 reached complete convergence even though peak n◦

k = 11 was missing
and peak n◦

k = 12 was over-estimated. We verified that this full convergence is also conformed by the corresponding
zero-valued spectra for the residual Re(P−

K /Q−

K)[N ]−Re(P−

K /Q−

K)[NP ] (N = 1024, NP = 180, 220, 260). We have also
verified that the corresponding three consecutive difference spectra on panels: Re(P−

K /Q−

K)[220] − Re(P−

K /Q−

K)[180],
Re(P−

K /Q−

K)[260] − Re(P−

K /Q−

K)[220] and Re(P−

K /Q−

K)[260] − Re(P−

K /Q−

K)[180] (not shown). These differences were
all found to be identical to each other, despite the lack of convergence of the component shape spectrum from panel
(i). Hence, we can conclude that while obtaining the residual or error spectra at the level of background noise may
be a necessary condition, this is not sufficient for judging the reliability of estimation in practice. Therefore, it is
recommended to pass beyond the point where full convergence of the total shape spectra has been reached for the
first time (in this case above NP = 180) in order to verify that anomalies as seen on panels (i) and (iv) of Fig. 6 do
not occur in the final results. Such final results obtained for NP = 220 and 260 are displayed on panels (ii) and (iii)
in Fig. 6 for the components as well as panels (v) and (vi) for the envelopes. Clearly, for consistency, monitoring the
stability of the component spectra should be done together with the inspection of the constancy of the reconstructed
genuine spectral parameters.

Robustness and stability of reconstructions in the fast Padé transform stems from the capability of this method
to unambiguously disentangle genuine from spurious information in signal processing. A clear illustration of this
separation is given in Fig. 7 by identifying spurious or Froissart doublets through their coincident poles and zeros.
Although genuine poles and zeros are not confluent, they nevertheless could be very close to each other, as is indeed
seen in some of the physical resonances shown in Fig. 7. The question then arises as to how to unequivocally separate
genuine from spurious resonances in such difficult cases. The answer is in the stability of genuine versus the instability
of spurious resonances. Irrespective of the smallness of a pole-zero distance for genuine resonances, they will always
remain stable against e.g. changing the order/rank of the FPT, when going from one diagonal to another in the Padé
table or altering the partial signal length or adding a small amount of random Gaussian white noise, etc. By contrast,
any similar changes will yield marked instability of spurious poles and zeros, so that they will roam around in the
complex frequency plane, near the natural locations of noise in the vicinity of the unit circle, |z| = 1, as in Fig. 7.
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Figure 6: Absorption component shape spectra (left) and absorption total shape spectra (right) from the FPT(−) near
full convergence for signal lengths NP = 180, 220, 260. On panel (iv) for NP = 180, the total shape spectrum reached
full convergence, despite the fact that, on panel (i) for the corresponding component shape spectra, the 11th peak is
missing and the 12th peak is over-estimated.
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Figure 7: Froissart doublets for unequivocal signal noise-separation which yields exact reconstruction of the true
number KG of genuine resonances by the FPT(+) (top) and FPT(−) (bottom). Complex-valued, random zero-mean
Gaussian noise of standard deviation 0.00275RMS is added to the noiseless FID (RMS is the root mean-square of the
noise-free FID). All spurious resonances are located outside the unit circle. As such, a complete separation of spurious
and genuine resonances is achieved by the FPT(+). Although spurious and genuine resonances are mixed together in
the FPT(−), only the former have confluent poles and zeros. The star symbol on both panels points to the two closest
resonances (n◦

k = 11 and n◦
k = 12) whose chemical shifts differ by 0.001 ppm.
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As such, Froissart or spurious resonances are not recognized merely through pole-zero coincidences and the ensuing
zero or near-zero amplitudes, but also via their noticeable instability relative to the persistent stability of genuine
resonances. For noisy time signals, spurious poles and zeros cannot coincide exactly, as opposed to the noiseless FID.
Therefore, one can certainly have a situation, where a distance between a pole and a zero is so small that it would
be tempting to identify the underlying resonance as spurious. However, this might be incorrect. What is additionally
needed for a convincing separation of spurious from genuine information is to test stability of the retrieved pole-zero
couples by varying the degree of the Padé polynomials or by gradually increasing the partial signal length, etc. If
the reconstructed pole-zero pair emerges as stable, it would be associated with a genuine resonance. Otherwise, it
would represent a spurious resonance, i.e. a Froissart doublet. In this way, uniquely within the FPT(+) and FPT(−),
Froissart doublets can be used to determine the exact number KG of genuine resonances, as illustrated in Fig. 7, both
inside |z| < 1 and outside |z| > 1 the unit circle.

4 Conclusion

The Padé approximant (PA), as a ratio of two polynomials, is the most known rational function. In physics, this
polynomial quotient represents the finite rank representation of the Green function or the energy spectrum of a
general system. Energy or frequency spectra of a generic system are completely described by the fundamental sets of
all the physical poles and zeros. Such key characteristics are directly ingrained in the very form of the PA, because
its numerator and denominator polynomial give rise to the system zeros and poles, respectively. In spectral analysis
and signal processing, the PA is equivalently called the fast Padé transform (FPT). This was done to make an implicit
reference to the integral transformation from the originally measured time domain to the subsequently analyzed
frequency domain information. The most often employed qualitative method for this type of transformation has been
the fast Fourier transform (FFT), which is commercially built into spectrometers for physics and chemistry as well as
in magnetic resonance scanners for medicine.

The FFT provides only an overall total shape spectrum in the frequency domain, which represents an envelope
of all concentrations of molecules in the structural studies of matter. The goal, however, is precisely to extract the
information which is underneath this envelope, namely the component spectrum for each molecule. Since this is
impossible within the Fourier analysis, the customary procedure has been to resort to fitting the total shape spectrum
from the FFT by adjusting the entire envelope to a subjectively pre-selected number of components. The number of
molecules and their abundance or concentrations are estimated in post-processing the given FFT spectrum via least
square fitting. The major drawback of this usual procedure in signal processing is the lack of uniqueness, since any
number of pre-assigned peaks can be fitted to a given envelope within a prescribed accuracy. This procedure has not
met with success in the interdisciplinary applications because some physical molecules can be missed and unphysical
ones falsely predicted. Moreover, due to its linearity, the FFT imparts noise as unaltered from the time domain to
the frequency domain. The FFT has no possibility of separating noise from the true signal. Each molecule has one or
more resonant frequencies. Besides concentrations, the task is also to reconstruct these frequencies, known as chemical
shifts. The FFT cannot retrieve them, since this method deals with the preassigned Fourier grid frequencies as a
function of the total acquisition time. This is the main reason for which post-processing the envelopes from the FFT
is used by means of fitting to surmise the underlying components.

On the other hand, the fast Padé transform, the FPT, simultaneously circumvents all these drawbacks of the FFT.
As a non-linear transform, the FPT effectively suppresses noise from the analyzed time signals. Most importantly,
the FPT avoids post-processing altogether via fitting or any other subjective adjustments. This is accomplished by
a direct quantification of the time signal through exact spectral analysis, which provides the unique solutions with
machine accuracy for the inverse harmonic problem. This solution contains four spectral parameters (two complex
frequencies and two complex amplitudes) for each resonance or peak in the associated frequency spectrum. From
such spectral parameters, the molecular concentrations are unequivocally extracted, thus bypassing the ubiquitous
ambiguities from fittings (under-fitting associated with missing genuine molecules and over-fitting corresponding to
finding unphysical resonances). Moreover, the FPT succeeds in solving the most difficult problem in spectral analysis
of time signals corrupted with noise by providing the exact separation of signal from noise. Identification of noise
and noise-like information is achieved in the FPT through the appearance of Froissart doublets where poles and zeros
coincide in the analyzed spectrum. As a double signature for signal-noise separation, the FPT detects zero amplitudes
for Froissart doublets. In this way, genuine and spurious resonances are unambiguously disentangled within the FPT.

The expounded features of the fast Padé transform have been confirmed in practice for both theoretically generated
and experimentally measured time signals. In the present work, we provide the proof-of-principle as a supporting
evidence for machine accurate reconstructions that are robust even against the computational round-off-errors. For
concreteness, the concept of the versatile and powerful Padé methodology and illustrations are presented specifically
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for time signals encountered the field of nuclear magnetic resonance spectroscopy. However, there is no limitation
for wide applications of the fast Padé transform to any other field dealing with time signals and spectra. Whenever
the fast Fourier transform and the accompanying fitting are employed with all their ensuing ambiguities as obvious
drawbacks, the fast Padé transform can come as the rescue to carry out spectral analysis for reconstruction of the
hidden information from the studied substance through reliable extraction of spectral parameters of all the genuine
resonances, including their true number.
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