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Stochastic amplification in an epidemic model with
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Abstract

We study the stochastic susceptible-infected-recovered (SIR) model with

time-dependent forcing using analytic techniques which allow us to disen-

tangle the interaction of stochasticity and external forcing. The model is

formulated as a continuous time Markov process, which is decomposed into

a deterministic dynamics together with stochastic corrections, by using an

expansion in inverse system size. The forcing induces a limit cycle in the de-

terministic dynamics, and a complete analysis of the fluctuations about this

time-dependent solution is given. This analysis is applied when the limit

cycle is annual, and after a period-doubling when it is biennial. The com-

prehensive nature of our approach allows us to give a coherent picture of

the dynamics which unifies past work, but which also provides a systematic

method for predicting the periods of oscillations seen in whooping cough and

measles epidemics.
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1. Introduction

The availability of extensive time-series data for childhood diseases is of-

ten the reason given for the amount of attention that this subject receives.

However, the possibility that relatively simple models can capture the essence

of the disease dynamics also makes the topic an attractive one for modellers.

Mathematical epidemiologists are especially intrigued by the rich variety of

oscillatory dynamics seen in this data (Earn et al., 2000; Grenfell et al.,

2002). Within the literature there is a broad consensus that there are two

main elements needed to model these oscillations: firstly stochasticity, due to

the individual nature of the population (Bartlett, 1960; Durrett and Levin,

1994); and secondly, seasonal forcing, arising from the term-time aggrega-

tion of children in schools, which is deterministic (London and York, 1973;

Schenzle, 1984; Altizer et al., 2006). Independently these two factors are well

understood, but how they interact when both included in the same model

is still an open question (Keeling et al., 2001; Rohani et al., 2002; Coulson

et al., 2004).

Measles is the canonical example of a disease which displays recurrent epi-

demic behaviour. In larger cities regular periodic oscillations, usually annual

or biennial, are observed, whereas smaller cities display more irregular dy-

namics (Grenfell et al., 2002; Lloyd and Sattenspiel, 2009). The introduction

of mass vaccination in the 1960s provides a ‘natural experiment’ after which

the dynamics become much more irregular (Grenfell and Harwood, 1997).

One of the early successes in the field was a simple deterministic model with

seasonal forcing which could recreate the regular dynamics of measles (Dietz,

1976; Schwartz and Smith, 1983). Where simple models such as this fail, is in
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capturing the more irregular dynamics seen in smaller populations (Grenfell

et al., 2002), after vaccination (Rohani et al., 1999), and in other diseases

such as whooping cough (Nguyen and Rohani, 2008). These aspects can only

be captured by fully stochastic models.

Stochastic models without external forcing show large oscillations caused

by the stochasticity exciting the system’s natural frequency (Bartlett, 1957;

Alonso et al., 2007). When forcing is included, it is less clear how the stochas-

ticity interacts with the cyclic solutions that are produced. It could act pas-

sively to kick the system between different deterministic states (Schwartz,

1985), as well as interacting with the non-linearity to excite the transients.

Power spectra (Priestley, 1982; Anderson et al., 1984) have proved a useful

tool in investigating these factors. They can help distinguish various compo-

nents in the time-series and classify them as essentially seasonal, stochastic

or an interaction of the two (Benton, 2006). The most successful synthesis,

by Bauch and Earn (2003b), showed that a simple mechanistic model can

accurately predict the position of peaks in the power spectrum of a number

of different disease time series.

We approach this problem by starting with an individual based model,

which is inherently stochastic. We can then both simulate it and derive the

emergent population level dynamics. The novel aspect of this work is that

we calculate the power spectrum analytically for explicitly time-dependent

external forcing, and compare the results with stochastic simulations. We

do this by formulating the model as a master equation which can then be

studied using van Kampen’s (1992) expansion in the inverse system size. The

macroscopic dynamics can then be viewed as a sum of a deterministic and
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a stochastic part. The value of the analytic approach is that we can more

easily deduce the mechanisms behind the dynamics and better understand

the interplay between deterministic and stochastic forces.

The theory we develop in this paper unifies much of the previous work on

these models. It encompasses the influential work of Earn et al. (2000) in un-

derstanding the transitions in measles epidemics, the later work of Bauch and

Earn (2003b) relating to the transient fluctuations close to cyclic attractors

for different diseases and the more recent work on stochastic amplification

in epidemic models (Alonso et al., 2007; Black and McKane, 2010). The

picture that emerges is close to that proposed by Bauch and Earn (2003b),

but goes beyond it in two important respects. Firstly, we calculate the exact

power spectrum for the forced model. Secondly, we show how the forcing

changes the form of the fluctuations, and how in a stochastic model these

are intimately related to the period doubling bifurcation, which is vital for

explaining the dynamics of measles.

The rest of this paper is as follows. In section 2 we introduce the seasonally-

forced version of the stochastic susceptible-infected-recovered (SIR) model

and the system-size expansion of the master equation. Section 3 provides a

discussion of the results for the simple case when the deterministic dynamics

are described by an annual limit cycle. In Section 4 we apply our method to

elucidate the dynamics investigated by Earn et al. (2000), which can account

for the transitions in measles epidemics. This is an interesting parameter

regime, as the deterministic theory predicts a period doubling bifurcation.

Finally, in section 5 a broad discussion of our results is given, describing how

this approach can account for the different dynamics of measles and whoop-
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ing cough. There are two appendices giving technical details relating to the

system-size expansion and Floquet theory.

2. The seasonally forced SIR model

We first summarise the individual-based stochastic SIR model. We em-

phasise only the aspects which are relevant to this paper; a more general

discussion can be found in textbooks on the subject (Anderson and May,

1991; Keeling and Rohani, 2007). The population is split into three classes:

susceptibles, infected and recovered. Birth and death rates are set equal to

μ and these events are linked, even in the stochastic model, so that the total

population, N , remains constant. Recovery happens at a constant rate γ, so

that the average infectious time is 1/γ; once recovered, an individual is im-

mune for life. Seasonal forcing is included by assuming that the transmission

rate β(t) follows a term-time pattern (Schenzle, 1984),

β(t) = β0(1 + β1term(t)), (1)

where β0 is the baseline contact rate, β1 the magnitude of forcing and term(t)

is a periodic function which switches between 1 during school terms and −1
during holidays. In this paper we use the England and Wales term dates

set down by Keeling et al. (2001). The reproductive ratio is determined by

R0 = 〈β〉/γ, where 〈β〉 is the effective (time-averaged) transmission rate:

〈β〉 = β0[ps(1 + β1) + (1− ps)(1− β1)], (2)

and ps is the proportion of time spent in school. For our choice of terms

ps = 0.75. We also include a small immigration term, η, to account for

5



infectious imports. We use a commuter formulation, where susceptibles are

in contact with a pool of infectives outside the main population (Engbert

and Drepper, 1994; Alonso et al., 2007). Since N = S + I + R, we can use

this constraint to eliminate the variable R from the rate equations.

The model is then defined by the processes through which it evolves. If

we write the state of the system as σ ≡ {S, I}, we can specify the following
transition rates, T (σ|σ′), between an initial state σ′ and a final state σ:

1. Infection: S + I
β(t)−−→ I + I and S

η−→ I.

T (S − 1, I + 1|S, I) =
(
β(t)

S

N
I + ηS

)
. (3)

2. Recovery: I
γ−→ R.

T (S, I − 1|S, I) = γI. (4)

3. Death of an infected individual: I
μ−→ S.

T (S + 1, I − 1|S, I) = μI. (5)

4. Death of a recovered individual: R
μ−→ S.

T (S + 1, I|S, I) = μ(N − S − I). (6)

Since birth and death are coupled, the processes 3 and 4 also imply the birth

of a susceptible individual. An important point is that changes in vaccination

can be mapped onto the effective transmission rate 〈β〉 using (Earn et al.,

2000)

〈β〉 → 〈β〉(1− p), (7)

where p is the proportion of individuals vaccinated at birth. We can also

approximately map a change in birth rates onto 〈β〉, but this is not exact
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in this model because births and deaths are linked. In this paper we are

primarily interested in the parameter range of childhood diseases. These are

characterised by μ � γ, i.e. the average life expectancy of an individual is

orders of magnitude longer than the mean infectious period (Anderson and

May, 1991).

2.1. Methods of analysis

We use two methods to investigate the dynamics of this system. Firstly

we simulate the system using Gillespie’s (1976) algorithm with the appro-

priate time-dependent extensions (Anderson, 2007). This method generates

exact realisations from which statistical quantities, such as power spectra

and moments, can be computed. The second method is analytic, through

the construction of a master equation. The master equation describes the

evolution of the probability distribution of finding the system in state σ at

time t,
dP (σ; t)

dt
=

∑
σ′ �=σ

T (σ|σ′)P (σ′; t)−
∑
σ′ �=σ

T (σ′|σ)P (σ; t). (8)

This cannot be solved exactly so we instead use van Kampen’s (1992) ex-

pansion in the inverse system size to derive approximate analytic solutions.

This involves making the substitutions,

S = Nφ+N1/2x,

I = Nψ +N1/2y,
(9)

and expanding the master equation in powers of N−1/2. This technique and

similar ones have been documented at length in the literature, but almost

exclusively for time-independent models (Alonso et al., 2007). The novel as-

pect of this paper is that we analyse the full time-dependent system (Boland
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et al., 2009), whereas in a previous paper we used the approximation which

replaced β(t) by 〈β〉 (Black and McKane, 2010).
The details of the system-size expansion for this model are given in Ap-

pendix A. At leading order we find a pair of deterministic equations, describ-

ing the mean behaviour, which scale with the system size N ,

φ̇ = −β(t)φψ − ηφ+ μ(1− φ),

ψ̇ = β(t)φψ + ηφ− (μ+ γ)ψ.
(10)

These are the same as the equations that are found from a purely phenomeno-

logical treatment of the SIR system. At next-to-leading order we obtain a

pair of Langevin equations for the stochastic corrections to the deterministic

equations (10),

ẋ = K(t)x(t) + f(t), (11)

where x ≡ {x, y}, and f(t) are Gaussian white-noise terms with correla-

tion function 〈f(t)f(t′)T 〉 = G(t)δ(t − t′). The matrices K(t) and G(t) are

determined from carrying out the expansion and are given by

K(t) =

⎛
⎝−βψ̄ − η − μ −βφ̄

βψ̄ + η βφ̄− γ − μ

⎞
⎠ , (12)

and

G11 = βφ̄ψ̄ + ηφ̄+ μ(1− φ̄),

G22 = βφ̄ψ̄ + ηφ̄+ (γ + μ)ψ̄,

G12 = G21 = −βφ̄ψ̄ − ηφ̄− μψ̄,

(13)

where a bar indicates that the solutions are evaluated on the limit cycle.

These are essentially the same as are found in the non-forced model (Alonso

et al., 2007), except now β, φ̄ and ψ̄ are all functions of time.
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3. Stochastic amplification about a limit cycle

The mean behaviour is found by integrating the deterministic equations

(10). When β1 = 0, solutions show damped oscillations tending to a fixed

point (Anderson and May, 1991). For non-zero β1, this model can display a

rich set of dynamics including chaos (Olsen et al., 1988; Rand and Wilson,

1991), but for realistic parameter values the most common long-time solution

is a limit cycle with a period that is an integer multiple, n, of a year (Dietz,

1976; Schwartz and Smith, 1983). As the forcing is a step function in time,

we can visualise this as the system alternately switching between two spiral

fixed-points (Keeling et al., 2001) resulting in a piecewise continuous limit

cycle, illustrated in figure 1. Any other periodic forcing function, for instance

a sinusoidally varying one, could be used without more difficulty, and would

typically lead to a limit cycle which is smooth. As β1 is increased, the limit

cycle grows (although typically not linearly with β1) and at critical values

bifurcations are induced to longer period solutions (Aron and Schwartz, 1984;

Kuznetsov and Piccardi, 1994).

In this section we present results where there is only an annual limit-

cycle (n = 1). The case where we also have a period doubling is examined

in section 4. The stability of these limit-cycle solutions can be investigated

with the use of Floquet theory (Kuznetsov, 2004; Boland et al., 2009). This

quantifies how perturbations to the trajectory of the limit cycle behave and is

analogous to linear stability analysis about a fixed point (Grimshaw, 1990).

Floquet theory states that for any periodic solution of Eq. (10) there

exists a matrix B which satisfies the relation,

X(t+ Tn) = X(t)B, (14)
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Figure 1: Phase portrait illustrating a deterministic solution of the forced SIR model.

The term-time forcing creates a limit cycle (red curve) as the system alternately spirals

between the two fixed points defined by βH = β0(1 + β1) and βL = β0(1− β1). The light

blue solutions show the behaviour if the forcing was switched off, to illustrate the two

spiral attractors. The red dot shows the fixed point calculated using the approximation

where β(t) is replaced by 〈β〉.

where X(t) is the fundamental matrix (Grimshaw, 1990) and Tn is the period

of the limit cycle. The eigenvalues of B are called the Floquet multipliers, ρi;

a related set of quantities are the Floquet exponents λi = ln(ρi)/Tn (in this

paper, since we will be discussing frequencies rather than angular frequencies,

these exponents will be divided by a factor of 2π). Another way to think of

this is as linear stability analysis of the fixed points of the n-cycle Poincare

map of the system (Bauch and Earn, 2003b; Kuznetsov, 2004). A limit-cycle

solution will be stable if |ρi| < 1. When the multipliers are complex, pertur-

bations to the trajectories return to the limit-cycle in a damped oscillatory

manner, analogous to a stable spiral fixed point (Grimshaw, 1990). Similar

ideas have been used to investigate the transients in forced epidemic systems

in the past, but only in a deterministic setting (Bauch and Earn, 2003b; He
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and Earn, 2007). Here we will explore how the nature of the fluctuations can

be quantified using Floquet theory.
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Figure 2: Phase portrait of the stochastic SIR system. A time-series of 100 years duration

is shown in light blue. The first two years are highlighted in dark blue, with the dot showing

the start point. The macroscopic limit-cycle (red) is also superimposed. Parameters are

those relevant for whooping cough (Nguyen and Rohani, 2008): R0 = 17, γ = 1/22,

β1 = 0.25, μ = 5.5× 10−5, η = 10−6 and N = 2× 106.

Figure 2 shows a simulation of the full stochastic system together with the

deterministic limit-cycle solution. We can see that even for large populations

the stochastic corrections to the deterministic solution are important. The

noise due to demographic stochasticity (noise at the individual level due to

chance events; Nisbet and Gurney 1982) excites the natural oscillatory modes
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about the limit cycle, creating a resonance and giving rise to large scale

coherent oscillations—an effect known as stochastic amplification (McKane

and Newman, 2005; Alonso et al., 2007). As described in Appendix B, by

solving Eq. (11), and invoking aspects of Floquet theory, we can express the

auto-correlation function,

C(τ) =
1

Tn

∫ Tn

0

〈x(t+ τ)xT (t)〉 dt, x ≡ {x, y}, (15)

as an integral without further approximation (Boland et al., 2009). Taking

the Fourier transform of this expression then gives an exact expression for

power spectrum of these stochastic oscillations.

Figure 3 shows simulated and analytic power spectra for the system shown

in figure 2. We observe a sharp peak at 1 year due to the deterministic annual

limit-cycle and a number of broader peaks due to the stochastic amplification

of the transients. We would expect on general grounds that the stochastic

peaks would be observed at frequencies,

m/Tn ± Im(λ), (16)

where m is an integer and λ is the Floquet exponent (Wisenfeld, 1985b;

Boland et al., 2009), and this is indeed what is seen. For the annual limit-

cycle the dominant peak is at 0 + Im(λ), with the other peaks being much

smaller. Near to bifurcations these minor peaks become important and are

treated in more detail in the following section.

The area under the peaks in the power spectrum is proportional to the

root-mean-square amplitude of the oscillations. Away from any deterministic

bifurcation points the amplitude is proportional to Re(λ), as in the unforced

model. Thus the spectrum is close in form to that predicted from the unforced
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model by substituting 〈β〉 for the time-independent transmission rate (Bauch
and Earn, 2003a; Black and McKane, 2010).
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Figure 3: Power spectra for the number of infectives from simulation (light blue solid

curve) and analytic calculation (black dashed curve). From the simulations, we observe a

sharp peak at 1 year from the deterministic annual-limit cycle. The other peaks, marked

by the red lines, are from stochastic amplification, with the peak frequencies given by

m± Im(λ), where Im(λ) = 0.36. The dominant stochastic period is therefore 1/0.36 = 2.7

years. Parameters are as in figure 2

There is good agreement between analytical calculations and simulations.

Although calculations give the power spectrum as an integral, it must be eval-

uated numerically because the deterministic equations (10) cannot be solved

in closed form; this is all carried out using the symbolic package Mathemat-

ica (Wolfram Research, 2008). This analysis about an annual limit cycle
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corresponds to that of Bauch and Earn (2003b) except that we can derive

the full power spectrum. They term the ‘resonant peak’ what we describe

as the deterministic or annual peak, and the ‘non-resonant peak’ what we

describe as the stochastic peaks. Their terminology is somewhat misleading,

as the stochastic peak is generated by a resonance phenomena whereas the

macroscopic peak is not.

4. Period doubling and measles transitions

We can use our analytic methods to help understand the dynamics and

large-scale temporal transitions in measles epidemic patterns, first investi-

gated by Earn et al. (2000). The main force in driving these transitions is

changes in the susceptible recruitment (a mixture of changes in birth rates

and vaccination), which can be mapped onto R0. Thus a knowledge of the

model dynamics as a function of R0 can be used to explain the changes in

epidemic patterns. Although the analysis of Earn et al. (2000) is in good

qualitative agreement with time-series data, there are a number of outstand-

ing questions with regard to the interpretation of the mechanisms for the

dynamics. We first provide a brief review of the original analysis and then

go on to show how the stochastic dynamics of this model can be understood

within the framework we have laid out in the previous section.

4.1. Review of original analysis

It is acknowledged that stochasticity plays a role in the dynamics of

measles, which can only be captured through simulation of the individual-

based model. Fundamentally though, the analysis of these mechanisms by

Earn et al. (2000) is deterministic. Figure 4 shows the bifurcation diagram
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Figure 4: Bifurcation diagram showing the SIR dynamics as a function of R0. Fixed

parameters: β1 = 0.29, γ = 1/13, μ = 5.5 × 10−5 and η = 0. The different period limit

cycles are shown in different colours, which are produced by different initial conditions.

derived from the SIR equations (10), as a function of R0, with parameters

corresponding to measles and no immigration (η = 0). This shows the in-

cidence sampled annually on the 1st of January each year, thus stable limit

cycles are shown by different numbers of (colour coded) curves. The sin-

gle curve, beginning at small R0, shows an annual cycle which bifurcates at

R0 = 15.5 into two curves giving a biennial cycle. For values of R0 lying be-

tween about 5 and 15, there are several sets of n curves representing n-year

cycles.

For large R0 (e.g. R0 ≈ 30) only an annual limit cycle exists. As R0 is

reduced a biennial limit-cycle is found; before vaccination was introduced in

England and Wales, most cities would be in this region. Higher birth-rates

might move the system back into the region with only an annual attractor,

whereas vaccination would act to reduce R0, moving it into the region with
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multiple co-existing longer period attractors. The interpretation put forward

by Earn et al, is that stochasticity will then cause the system to jump between

these different deterministic states (Schwartz, 1985), giving rise to irregular

patterns. Thus, in this description, noise plays a passive role (Coulson et al.,

2004).

Although peaks were seen in power spectra from simulations, which ap-

pear to confirm this view, there are a number of problems with this interpre-

tation. The crucial aspect that is neglected is that there are no infectious

imports included in the deterministic analysis (although presumably they

are included in simulations). When this factor is introduced (η �= 0) then

most of the additional structure disappears, see figure 5a; we are left with

an annual limit cycle and a period doubling (Engbert and Drepper, 1994;

Ferguson et al., 1996; Alonso et al., 2007).

When η = 10−6, there is only a small region in the range 24 < R0 < 25

where there are coexisting annual and biennial limit-cycles. As the immi-

gration parameter is reduced some of the additional structure reappears; for

example at η = 10−7 some of the period 3 attractors can be found in the

range 9 < R0 < 11. As η is decreased further still, more of the structure is

found (Bolker and Grenfell, 1995; Nasell, 2002).

Immigration is an important aspect in the simulation because without it

the disease would fade out as the minimum number of infections can go far

below a single individual (Bartlett, 1957; Bolker and Grenfell, 1995; Conlan

et al., 2009). In a deterministic analysis this term is easily omitted because

the variables are continuous and therefore fadeout cannot happen (Nasell,

1999). This raises the question: do these longer period solutions have an
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effect on the stochastic dynamics? If not, how can we describe the nature

of the stochastic dynamics? We can use our analytic method to help clarify

these questions. The power spectrum is especially useful as it can show up

anomalous peaks from simulations.

4.2. Analytic predictions
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Figure 5: (a) Bifurcation diagram for the SIR model with β1 = 0.29 and η = 10−6. (b)

The Floquet multipliers, which are in general a complex conjugate pair, thus we plot

the real (dark blue) and imaginary (light green) parts separately. (c) Imaginary parts of

the Floquet exponents. Note that in the region where there are the coexisting limit cycles

(24 < R0 < 25), only the multipliers/exponents for the biennial cycle are shown for clarity.

Figure 5 shows the bifurcation diagram for the model presented in the

previous section, but with η = 10−6, along with the Floquet multipliers and
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Figure 6: Floquet multipliers near to the period doubling bifurcation point, showing the

virtual-Hopf pattern. For R0 < 14.94 the multipliers are a complex conjugate pair, with a

negative real part (dark blue line); this is the Hopf-like region. The actual period-doubling

bifurcation occurs at Rbif
0 = 15.34, where one of the multipliers becomes equal to −1.

exponents. These parameter values will be used for the rest of this section.

Figure 6 shows the Floquet multipliers on a larger scale near the period

doubling bifurcation point and figure 7 shows the analytical and numerical

power spectra for various values of R0 with N = 5 × 106. Away from any

bifurcation points there is good agreement between the analytic and the

simulated spectra.

As we approach the period-doubling bifurcation point from below, the

stochastic oscillations follow a virtual-Hopf pattern (Wisenfeld, 1985a,b).

This is where the oscillations first show the precursor characteristics of a Hopf

bifurcation before changing into the precursor characteristics of a period-

doubling. This is clearly seen in the power spectra shown in figure 7. In the

Hopf-like regime (R0 < 14.94), the Floquet multipliers are a complex conju-

gate pair, giving rise to two peaks in the spectrum: a major one at frequency

Im(λ) and a minor one at 1−Im(λ), as in section 3. Therefore in figure 7a
the two peaks are most widely separated for R0 = 4.

As we increase R0, Im(λ) also increases, and the major and minor peaks
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Figure 7: Analytic (black dashed curves) and numerical (coloured) power spectra for

a range of R0 with N = 5 × 106. In most cases the analytic and numerical spectra

are virtually indistinguishable, apart from R0 = 14. (a) Spectra before the bifurcation,

R0 = 4, 6, 8, 10, 12, 14. (b) Typical biennial regime, R0 = 20. Note that the stochastic

peaks have been made clearer by subtracting the deterministic dynamics before calculating

the power spectrum. The spectrum would otherwise be dominated by the peak at 0.5 y−1.

(c) The major and minor peaks in the large R0 annual regime: R0 = 26, 30, with the

larger peaks corresponding to R0 = 26 for both the major and minor peaks.
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move closer together, converging at 0.5 y−1 when the multipliers become real

and negative; this marks the onset of the period doubling regime, see figure

6. In this regime (14.94 < R0 < 15.34), as the multipliers are negative,

so their phase is ±π and so the imaginary part of the Floquet exponents

is ±π/2πT1 = ±0.5. Therefore the peak stays fixed at 0.5 years−1 as we

increase R0 further within this range, but the amplitude increases quickly.

At Rbif
0 = 15.34 one of the multipliers reaches −1 and we see a deterministic

period doubling (Kuznetsov, 2004), and the size of the fluctuations grows to

order N . Figure 8 shows how in this way the oscillations smoothly turn into

the macroscopic biennial limit cycle. The same pattern is seen if we hold R0

fixed and increase β1 to induce a period doubling.

When the system is in the biennial regime we can still calculate the fluc-

tuations about the limit cycle and get a good correspondence with analytic

predictions (figure 7b). The positions of the peaks are now at m/2± Im(λ)

and the spectrum changes little within this parameter range. The peaks

at m/2 + Im(λ) are barely visible, as compared to the prominent peaks at

m/2 − Im(λ). In the annual regime after the doubling (R0 > 25), the an-

alytic results are again very accurate, with stochastic peaks at frequencies

m± Im(λ) (figure 7c). Here as well, the set of peaks at m+ Im(λ) are much

smaller. Note that in both of these regions the time-series will be dominated

by the deterministic signal as the stochastic oscillations are much smaller

than in the pre-bifurcation region (R0 < 15).

4.3. Near the bifurcation point

For values of R0 near the bifurcation point, the deviations between the

analytic and simulated spectra become larger (see for example figure 7a;
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R0 = 14). This is expected: the analysis developed here is essentially linear

and thus predicts an unbounded increase in the fluctuations as we approach

the bifurcation point (Greenman and Benton, 2005). As the fluctuations

become larger the linear approximation breaks down and non-linear effects

become important and act to bound the fluctuations. Going to larger system

sizes can result in better agreement between analytic results and simulation,

but this will always break down at some point.

Although the analytic approximation breaks down near the bifurcation

point, the structure we have uncovered is still visible. Figure 8 shows stochas-

tic power spectra from simulations for 14 < R0 < 18, as we move though

the bifurcation point. The virtual-Hopf pattern is still clear, as predicted

by the analysis, but the fluctuations remain bounded, growing to the same

order as the system size (van Kampen, 1992; Kravtsov and Surovyatkina,

2003). Within this region the macroscopic dynamics cannot be split into

a deterministic and stochastic part and it is not in general possible to re-

construct the deterministic part by averaging over many realisations. Thus,

determining exactly where the bifurcation takes place is difficult (Wisenfeld,

1985b). At R0 = 16 the deterministic biennial peak should be observed, but

is not clearly visible until R0 = 18. It is possible that the bifurcation point is

shifted in the stochastic system, but more analysis is required to determine

that this is so.

4.4. Smaller populations

The results presented in the previous sections were for N = 5 × 106,

which roughly corresponds to the largest populations we would be interested

in modelling. Simulations of smaller populations tend to show regular devi-
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Figure 8: Simulation results showing how the power spectrum of the stochastic oscillations

changes as the period doubling bifurcation point is crossed. The peaks for R0 = 17 and

18 have been cropped for clarity.

ations from the analytic calculations and results are sensitive to N , η and

β1. The forcing pushes the system close to the fade-out boundary (I = 0),

where fluctuations are non-Gaussian, and so large deviations from the theory

are expected. Figure 9 shows the stochastic power spectra from simulations,

within the range 4 ≤ R0 ≤ 30 and with N = 5× 106, 106 and 5× 105.

For smaller values of R0 we still clearly observe the virtual-Hopf pattern,

but a visual inspection of the time-series shows much more irregular dynam-
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ics. This is due to the increased stochasticity in the smaller systems, but also

the closeness of the fade-out boundary, where extinction and re-colonisation

events start to have an impact on the dynamics (Griffiths, 1973). This has

an effect on the power spectra in two ways: firstly as a broadening of the

power spectra, showing a greater range or amplified frequencies and thus a

more irregular dynamics. Secondly the endogenous period is systematically

shifted higher, as in unforced versions of this model (Simoes et al., 2008).

This reflects the fact that the period of oscillations also depends on the re-

introduction of the disease after fade-out (Bartlett, 1957).

The most important effect is on the fluctuations in the biennial regime

after the period doubling. For N = 5 × 106 the peaks are sharp, indicating

a deterministic limit cycle, and the stochastic oscillations are much smaller

(figure 7b), hence the good predictability of these larger systems. For the

two smaller populations this is not the case. We do not observe the deter-

ministic biennial limit cycle, but instead see an enhanced stochastic peak

and a broadening of the spectrum. The range of this enhanced region is also

reduced.

Although there are large deviations, having an analytical description still

helps us interpret the dynamics at smaller N . Taking the average of Eq. (9)

we obtain

〈I〉 = Nψ(t) +N
1
2 〈y〉. (17)

In the linear noise approximation, which we have used in this paper, the

fluctuations are Gaussian and therefore 〈y〉 = 0. At some point this will

break down and we must include the next order corrections, which will be of

the order N1/2, to the macroscopic equations. It will no longer be true that
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Figure 9: Power spectrum through the bifurcation point for different size populations. (a)

N = 5 × 106, (b) N = 106, (c) N = 5 × 105. Some of the peaks are cropped for clarity.

Notice the anomalously enhanced peak for N = 106, R0 = 10, see section 4.5 for discussion

of this.
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the mean is equal to the average (van Kampen, 1992; Grima, 2009). This

effect of the fluctuations on the deterministic dynamics could be enough

to retard the onset of the biennial limit cycle and is the subject of further

research.

4.5. Switching between attractors

As seen from the bifurcation diagram in figure 5, where η = 10−6, the

only region where deterministically there are predicted to be two coexisting

states is when 24 < R0 < 25. This can be detected in simulations and the

period of switching depends strongly on the system size. If the system is

large it will tend to stay in the state it started in, because the fluctuations

are not large enough compared to the mean to kick the system into the other

state. Decreasing the system size makes this possible, and we see periods of

annual dynamics followed by biennial and back to annual, where the period

of switching depends on the system size.

There is another intriguing region where we see signs of this type of

behaviour. For N = 106 and R0 = 10 (figure 9b), we observe an enhanced

stochastic peak in the spectrum with a period of 3 years. Visual inspection of

the time-series shows regions of irregular annual oscillations interspersed with

very regular triennial oscillations. Note that this is not observed in the larger

or smaller systems and the power spectrum is shifted by the proximity to the

fade-out boundary from its infinite system size limit. Very similar behaviour

is observed for measles data from Baltimore between 1928 and 1935 (London

and York, 1973; Earn et al., 2000), which has similar parameter values (Bauch

and Earn, 2003b).
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5. Discussion

We have used an analytic approach, as well as simulations, to quantify

the effect of stochastic amplification in the forced SIR model. The time

dependence has been treated explicitly, instead of by using an approximation

as in a previous paper (Black and McKane, 2010). Because this model has

a finite population, and therefore is inherently stochastic, it can only be

studied ‘exactly’ by simulation. The system-size expansion, which we use to

derive approximate analytic solutions for this model suggests that we should

view the population-level dynamics as being composed of a deterministic part

and a stochastic part, where the spectrum of the stochastic fluctuations is

intimately related to the stability of the deterministic level dynamics. Power

spectra of these models have been known for some time, but it has not

always been clear what the mechanisms that generate the peaks are. This

is the main advantage of being able to calculate the power spectrum of the

stochastic fluctuations analytically; by comparison with the simulations we

can gain insight into the mechanisms at work.

Our analysis suggests a simple explanation for the differences seen in the

epidemic patterns of measles and whooping cough in England and Wales

both before and after vaccination (Rohani et al., 1999), and which are rep-

resentative of the two main parameter regimes for childhood diseases. The

generic situation occurs when we are far away from the bifurcation point.

Here we observe a deterministic annual limit cycle with stochastic oscilla-

tions, as in Figures 2 and 3. In general the form of the spectrum is close to

that predicted by the unforced model. As already shown in a previous pa-

per, this situation can account for the dynamics of whooping cough pre- and
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post-vaccination (Black and McKane, 2010). Pre-vaccination the stochastic

oscillations are centred on 2-3 years. Vaccination acts to shift the endoge-

nous frequency lower and increases the amplitude of these fluctuations giving

large four yearly outbreaks.

Measles epidemics show a contrasting behaviour and represent the second

important parameter regime, where the deterministic dynamics are near to

a bifurcation point. Pre-vaccination, large cities such as London are in the

regime with a deterministic biennial limit-cycle. Vaccination acts to lower

R0 and shift the system into the regime where there is an annual limit cycle

with large stochastic oscillations. As vaccination coverage is increased, the

endogenous period of these oscillations is also increased (Grenfell et al., 2001).

Measles dynamics show a strong dependence on population size (Bartlett,

1957; Grenfell et al., 2002). Our analysis also offers some insight into this:

in large populations the stochastic oscillations are very small compared with

the deterministic biennial limit-cycle. This accounts for the regularity and

explains why purely deterministic models capture this aspect so well (Dietz,

1976). For smaller populations the deterministic biennial limit-cycle is not

observed, just enhanced stochastic oscillations, thus accounting for the more

irregular dynamics seen in these smaller populations.

Finite size effects and immigration / imports are closely related in a

stochastic individual-based model because the population is finite. Immigra-

tion reflects the basic fact that no population is isolated and there must be

reintroduction of the disease if it fades out. One advantage of the approach

which starts from an individual based model and derives the population level

model, is that the immigration terms from the stochastic model are automat-
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ically included in the deterministic equations on the macro-scale. As we have

shown, this is vital, as the longer period solutions are no longer found when

they are included, and thus removes some speculation as to the influence of

multiple co-existing attractors. These terms are easily omitted in a deter-

ministic analysis because the system size is an innocent parameter (Nasell,

1999). It is interesting to note the similarities between immigration and

age-structure in these forced models (Schenzle, 1984). Adding age-structure

creates a constant pool of infectives in the infant class which acts to damp the

dynamics (Bolker and Grenfell, 1993), exactly analogous to how we model

immigration.

Owing to the importance of immigration in these epidemic systems one

relevant outstanding question is: what form should the immigration pa-

rameter take? As measles dynamics can be highly synchronised it could

be argued that the immigration parameter should reflect this (Bolker and

Grenfell, 1995; Xia et al., 2004; Lloyd and Sattenspiel, 2009). On the other

hand for larger cities, this parameter can be viewed as an aggregate of many

infectious encounters from varied sources and could be approximated as a

constant. Previous work has hinted at the sort of spatial effects that can

arise (Keeling, 2000; Keeling and Rohani, 2002; Hagenaars et al., 2004), but

investigation of explicitly spatial stochastic models should be a high priority.

The bifurcation diagrams for SEIR and SIR models are very similar, which

justifies our use of the SIR model in this paper. The extension to uncoupled

births and deaths would be straightforward, but would offer no further insight

(Keeling and Rohani, 2007). There are technical difficulties in extending the

method to the SEIR model because of the difference in time scales between
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the collapse onto the centre manifold (Schwartz and Smith, 1983) and the pe-

riod of forcing; this creates difficulties in computing the Floquet multipliers.

These could in principle be overcome either by calculating the multipliers by

a different method (Fairgrieve and Jepson, 1991; Lust, 2001), or by carry-

ing out a centre-manifold reduction before doing the van-Kampen expansion

(Forgoston et al., 2009). The breakdown of the linear theory near the bifur-

cation point can be remedied by including next-to-leading order terms from

the expansion of the master equation (van Kampen, 1992), but would result

in a much more complex calculation. The calculations and discussions we

have given here once again highlight the important role that simple models

play in the understanding of complex systems. It also makes a novel con-

tribution to the wider debate on the relative importance of stochastic and

deterministic forces in ecology (Coulson et al., 2004).
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Appendix A. Expansion of the master equation

In this appendix we review the van Kampen system-size expansion, which

approximates the master equation (8) by the deterministic equations (10)

plus stochastic fluctuations given by Eq. (11) when N is large. The method

has been described by Alonso et al. (2007) for the SIR model without forcing

(i.e. where β is independent of time), where further details are given.

We begin by introducing step operators which allow us to express the

master equation in a more compact form and also allow us to carry out the
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expansion in a more straightforward way. These are defined by:

E
±1
I f(S, I, t) = f(S, I ± 1, t),

E
±1
S f(S, I, t) = f(S ± 1, I, t).

(A.1)

The master equation (8) can then be written in full as,

d

dt
P (S, I, t) =

{
(ESE

−1
I − 1)

[
β
S

N
I + ηS

]

+ (E−1
S − 1) [μ(N − S − I)]

+ (EIE
−1
S − 1) [μI] + (EI − 1) [γI]

}
P (S, I, t),

(A.2)

which agrees with Alonso et al. (2007), up to typographical errors in that

paper. The essential step in the expansion is the ansatz (9); we anticipate

that the approximate probability distribution has a mean which scales as N

and width which scales as N1/2 (van Kampen, 1992). To expand Eq. (A.2) in

a power series inN−1/2, we write the step operators in terms of the fluctuation

variables x and y:

E
±1
S = 1±N− 1

2
∂

∂x
+ 1

2
N−1 ∂

2

∂x2
± · · ·

E
±1
I = 1±N− 1

2
∂

∂y
+ 1

2
N−1 ∂

2

∂y2
± · · · .

(A.3)

Substituting these and the ansatz (9) into Eq. (A.2) we identify a hierarchy

of equations multiplied by different powers of N−1/2. At leading order we

find the deterministic equations (10) for the macroscopic variables, φ(t) and

ψ(t). At next-to-leading order we obtain a linear Fokker-Planck equation for

the fluctuations variables x ≡ {x, y}, of the form,
∂Π

∂t
= −

∑
i,j

Kij(t)
∂[xjΠ]

∂xi
+
1

2

∑
i,j

Gij(t)
∂2Π

∂xi∂xj
, (A.4)
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where the matrices K(t) and G(t) depend on time through β(t), φ(t) and

ψ(t). The Fokker-Planck equation (A.4) is equivalent to the Langevin equa-

tions (11) given in the main text (van Kampen, 1992; Gardiner, 2003). Since

we will not be interested in transient behaviour, only fluctuations about the

limit cycle, the solutions to (10) will be those of the limit cycle, which we

denote by φ̄ and ψ̄. The explicit forms for K(t) and G(t) are then given by

Eqs. (12) and (13) respectively. Since β(t), φ̄(t) and ψ̄(t) are periodic, so are

K(t) and G(t).

Appendix B. Floquet analysis

The analysis of the Langevin equation (11) is not difficult when the determin-

istic system approaches a fixed point at large times, and for the SIR model

this is described by Alonso et al. (2007). When the attractor of the dynamics

is a limit cycle, the analysis is more complicated, but can still be carried out

to give the power spectra as integrals over known functions. Here we outline

this analysis, following closely Boland et al. (2009), which may be consulted

for further details.

We begin by considering linear perturbations about the limit cycle, that

is, Eq. (11), but without the noise which originates from the discreteness

of the individuals. The equation describing these small perturbations x ≡
{x, y} is

ẋ = K(t)x, (B.1)

where K(t) is given by Eq. (12). A fundamental matrix, X(t), is constructed

from the linearly independent solutions of the homogeneous equation (B.1),
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thus it satisfies the relation,

Ẋ(t) = K(t)X(t). (B.2)

The matrix X(t) is not unique and will depend on the initial conditions.

Floquet theory states that if K(t+Tn) = K(t), then there exists a canonical

fundamental matrix which can be expressed in the form X0(t) = P (t)Y (t)

(Grimshaw, 1990). It has the property that the Floquet matrix, defined by

B0 = X−1
0 (0)X0(Tn), is diagonal. These diagonal elements are called Floquet

multipliers, ρi and play a central part in the theory. The matrix P (t) carries

the periodicity of the limit cycle, while Y (t) = diag[eλ1t, eλ2t], where λi are

the Floquet exponents. Using the periodicity of P (t) it can be seen that

B = Y −1(0)Y (Tn) and so the Floquet multipliers are related to the Floquet

exponents by ρi = eλiTn , i = 1, 2. Using the canonical form, we can derive an

expression for the power spectrum in terms of the matrices, P (t) and Y (t).

In practice, one obtains a fundamental matrix, X(t) by numerically in-

tegrating (B.2) with initial condition X(0) = I. With this choice of initial

condition, B = X(Tn). The multipliers and exponents are then calculated

from the the eigenvalues of B, which allows the construction of the matrix

Y (t), since the eigenvalues are independent of the choice of fundamental

matrix. One can then calculate the canonical form, X0(t) = X(t)S, where

the columns of S are the eigenvectors of B. Finally P (t) is found from

P (t) = X(0)Y −1(t) = X0(t)Y (−t).
Having described the basic idea behind Floquet theory, we can now return

to the Langevin equation (11), which is an inhomogeneous linear equation

with periodic coefficients. We can use Floquet theory to construct a solu-

tion to this by adding a particular solution to the general solution of the
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corresponding homogeneous equation (B.1) (Grimshaw, 1990). This gives,

x(t) = X(t)X−1(t0)x0 +X(t)

∫ t

t0

X−1(s)f(s)ds, (B.3)

with initial condition x(t0) = x0. We are interested in the steady state solu-

tions, when transients have damped down, thus we can ignore the first part

of Eq. (B.3) and set the initial time to the infinite past, t0 → −∞. Taking

the case where X(t) is X0(t) = P (t)Y (t), one finds using the properties of

the diagonal matrix Y (t), that

x(t) = P (t)

∫ t

−∞
Y (t− s)P (s)−1f(s)ds. (B.4)

The correlation matrix is defined as C(t+τ, t) = 〈x(t+τ)xT (t)〉, which using
Eq. (B.4) may be written as

C(t+ τ, t) = P (t+ τ)

∫ t+τ

−∞

∫ t

−∞
Y (t+ τ − s)P (s)−1G(s)

× δ(s− s′)(P−1(s′))TY (t− s′)T ds′ ds P (t)T ,

(B.5)

where 〈f(s)fT (s′)〉 = G(s)δ(s − s′). Integrating over the delta function, the

result will depend on the sign of τ . If we take τ ≥ 0 then the integration

region is −∞ < s < t, giving

C(t+ τ, t) = P (t+ τ)

∫ t

−∞
Y (t+ τ − s)Γ(s)Y (t− s)T ds P (t)T , (B.6)

where we have defined

Γ(s) = P (s)−1G(s)(P−1(s))T , (B.7)

which will have the periodicity of the limit cycle. Next we make a change of

variables, s→ t− s′, which gives

C(t+ τ, t) = P (t+ τ)

∫ ∞

0

Y (τ + s′)Γ(t− s′)Y (s′)T ds′ P (t)T . (B.8)
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The form of Y means we may write Y (τ+s′) = Y (τ)Y (s′), and so the integral

that we need to evaluate is given by

Φ(t) ≡
∫ ∞

0

Y (s)Γ(t− s)Y T (s) ds. (B.9)

Using the periodicity of the matrix Γ(t− s), this integral can be recast as a

finite one over the period of the limit cycle:

Φij =
1

1− ρiρj

∫ Tn

0

Γij(t− s)e(λi+λj)sds. (B.10)

Therefore, the final expression for the correlation matrix is

C(t+ τ, t) = P (t+ τ)Y (τ)Φ(t)P (t)T . (B.11)

So we can obtain the correlation matrix as an integral, but this has to be

evaluated numerically because the neither the limit-cycle solutions nor P (t)

can be obtained in closed form.
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