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Abstract

We investigate how scale-free (SF) and Erdős-Rényi (ER) topologies affect the interplay between evolvability and robustness of
model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that
networks with SFin topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more
evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results
are found for networks with SFboth and SFout topologies. The functionality of the SFout topology, which most closely resembles the
structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to
multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length,
the differences between SFout and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly
similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain
why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we
find that networks with SFout topologies are also more robust to mutations than ER networks. Furthermore, the SFout topologies
are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of
networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the
environmental robustness to changes in initial conditions.

Keywords: gene regulatory networks, Boolean threshold networks, robustness, evolvability, scale-free, oscillatory gene expression

1. Introduction

1.1. Robustness & evolvability in genetic regulatory networks

Biological systems require their phenotype to be robust to
a variety of perturbations. They must be mutationally robust

to minimize the possibility of a permanent deleterious muta-
tion in the genome. They must be environmentally robust to
mitigate the effects of temporary macroscopic environmental
variation, or stochastic noise in microscopic biochemical pro-
cesses. By possessing a robust phenotype, functions required
for survival can be performed consistently and descendants can
expect a similarly reliable genotype (Wagner, 2005).

At the same time, environments can change permanently and
populations must adapt by producing heritable phenotypic vari-
ation. This ability to generate phenotypic innovation from ge-
netic changes under natural selection is often called evolvabil-
ity, and is observed throughout the biological world (Dawkins,
1989; Kirschner and Gerhart, 1998; Wagner, 2005). It may it-
self be an evolvable trait (Earl and Deem, 2004). The relation-
ship between environmental robustness and evolvability is very
complex (West-Eberhard, 2003; Kirschner and Gerhart, 2005).
On the other hand, it would seem at first sight that evolvability
and mutational robustness are straightforwardly antagonistic:
the more easily mutations change the properties of an organ-
ism, the less mutationally robust it should be.

However, this simple picture can be challenged on numerous
fronts (Bloom et al., 2007a,b; Wagner, 2008b,a; Daniels et al.,
2008; Draghi et al., 2010). It is important to take into account
the fact that evolution acts on populations and not on individ-
uals. Furthermore, the structure of the evolutionary landscape,
the population size Npop, the mutation rate μ and the type of
phenotypic variation required are all factors that can influence
the relationship between mutational robustness and evolvabil-
ity.

For example Wagner, using RNA secondary structure as a
model (Wagner, 2008b), demonstrated the importance of dis-
tinguishing between genotype (sequence) robustness and evolv-
ability, which do share an antagonistic relationship, and pheno-
type (structure) robustness and evolvability which, by contrast,
share a beneficial relationship. For a single sequence (geno-
type), mutational robustness is simply the fraction of mutations
that alter the phenotype. However, a single RNA phenotype (a
particular secondary structure) may be the minimal free energy
structure for a large number of different genotypes. Such a set
of genotypes is called a neutral space, and during evolution, a
population can spread on the neutral space to generate a large
amount of genetic diversity. The larger the neutral space, the
more likely that random mutations will generate another mem-
ber of the neutral space, so the larger the mutational robustness.
It can be demonstrated (Wagner, 2008b) that for RNA, larger
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neutral spaces have a larger number of different phenotypes ac-
cessible with a single mutation. Thus a population that can
generate greater genetic diversity through non-deleterious mu-
tations across a larger neutral space, also has more evolutionary
innovation available, making such phenotypes more evolvable.
Furthermore, for RNA, the utility of the neutral space with re-
spect to robustness and evolvability is shown to be independent
of the evolutionary dynamical regime (being of importance in
both the Npopμ � 1 and Npopμ � 1 cases, where Npop is popu-
lation size and μ is mutation rate).

These arguments depend on the structure of the neutral
space (Wagner, 2008a). If it is made up of many disconnected
pockets, then a population may not be able to explore the en-
tire neutral space. If on the other hand all the neutral neigh-
bours are clustered together tightly in one part of the space,
then they may not have a large diversity of other phenotypes
within easy reach. Models of RNA secondary structure have the
advantage that they can be relatively easily analyzed by com-
putational methods (Wagner, 2005). Thus detailed questions
about the topology of neutral spaces and the effects of changing
mutation rates and population sizes can be analyzed in some
detail. For other systems, however, the relationship between
mutational robustness, neutral spaces and evolvability may be
more complex (Draghi et al., 2010).

In this paper we focus on gene regulatory networks (GRNs),
another set of biological systems that can be analyzed compu-
tationally. There has been an enormous amount of interest in
modeling GRNs because they play a central role in biological
functionality (Alon, 2006). Moreover, it is increasingly being
recognized that altering gene expression patterns is a highly ef-
fective evolutionary mechanism. Important phenotypic changes
are often achievable through very small numbers of muta-
tions to regulatory regions (Carroll, 2005). For these rea-
sons, the mutational robustness, environmental robustness and
evolvability of GRNs have received much theoretical attention.
For example, the reliability under perturbed system configura-
tions (environmental robustness) has been investigated (Aldana,
2003; Klemm and Bornholdt, 2005) whilst the evolution of this
type of robustness is considered in Braunewell and Bornholdt
(2009). Robustness to mutation has also been shown to be an
evolvable property, correlating with robustness to initial gene
expression states (Ciliberti et al., 2007b). Furthermore, there is
evidence suggesting that neutral spaces can enhance evolvabil-
ity of expression patterns (Ciliberti et al., 2007a). The effect of
varying environments has been demonstrated to increase evolv-
ability (Crombach and Hogeweg, 2008), whilst the role of over-
all network topology has also been considered (Aldana, 2003;
Oikonomou and Cluzel, 2006; Aldana et al., 2007).

1.2. Modelling GRNs

Realistically modelling large complex interacting GRNs is a
difficult task. Even a modest sized network can have an enor-
mous number of parameters depending on which details of the
fundamental processes involved in transcription and translation
are taken into account (Alon, 2006). In practice, therefore,
many different approaches to simplify the dynamics of GRNs

can be found in the literature, each with their strengths and lim-
itations (Polynikis et al., 2009).

A particularly simplified model, the Boolean network, was
proposed by Kauffman (1969). The generic Boolean model
makes two important assumptions. First, the gene states are the
variables under time evolution, as opposed to the concentrations
of gene products. These states are further assumed to be either
active or inactive, i.e. either “on” or “off”. This approximation
is based upon evidence that the changes in gene state are co-
operative transitions, allowing the approximation of sigmoidal
functions as step-wise ones (Kauffman, 1993). The second as-
sumption is synchronous updating of gene states throughout the
network in discrete time steps through physically reasonable
rules. In the original model, these rules were random Boolean
functions of all incoming nodes, whose output determined a
given node’s state in the next time step. Other update rules,
based upon neural threshold network models (Hopfield, 1982),
have also been applied in Boolean threshold networks (Wagner,
1994). The Boolean model has been extensively used in theo-
retical biology and, despite its coarse-grained nature, has been
successfully applied, for example, to the yeast cell cycle net-
work (Li et al., 2004), the segment polarity gene network of D.

melanogaster (Albert and Othmer, 2003) and the floral cell fate
of A. thaliana (Espinosa-Soto et al., 2004).

An important feature of Boolean network models is the man-
ifestation of attractors. Following a certain amount of time
evolution of the system, all initial configurations converge on
a very small subset of possible configurations – the attractors
of the network, also referred to as the network’s attractor land-

scape (Kauffman, 1993). Boolean network models can exhibit
ordered, chaotic and critical regimes (Kauffman, 1993). In the
ordered regime, small perturbations in an initial configuration
tend not to spread, with the same attractor reached as in the un-
perturbed case (Aldana, 2003). However, in the chaotic regime
these small perturbations spread, possibly resulting in the net-
work arriving at a different attractor. The transition from the
ordered to the chaotic regime occurs as the average connectiv-
ity increases. The critical regime lies on the boundary between
the ordered and chaotic regimes.

It has been hypothesised that the attractor landscape rep-
resents the possible “cell fates” given a cell’s regulatory in-
teractions. Different sets of initial configurations induce the
production of different attractors, regarded as different cell
types (Kauffman, 1993). Recently, some evidence has been
produced supporting this theory (Espinosa-Soto et al., 2004;
Huang et al., 2005). Within this interpretation, there is a diverse
range of possibilities, from “frozen” attractors of unit length,
as required in developmental gene expression patterns, to ones
including longer oscillatory periods capable of more complex
function, for example, the changes in gene expression over the
course of the cell cycle (Li et al., 2004).

1.3. The role of topology

Within the Boolean approximation that coarse-grains out
many biochemical parameters, a GRN can be viewed as a di-
rected graph, with genes as nodes and gene interactions as
edges. The number of incoming and outgoing connections for
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Table 1: The topologies investigated are defined with respect to combinations of
incoming and outgoing node degree distributions. When average connectivity
is small compared with the number of nodes, the binomial distribution may be
approximated as a Poisson distribution.

Topology Incoming degree Outgoing degree
ER Binomial/Poisson Binomial/Poisson
SFout Binomial/Poisson Power-law
SFin Power-law Binomial/Poisson
SFboth Power-law Power-law

a given node — its incoming/outgoing degree — can be de-
scribed statistically by distributions that characterize the overall
structures or topologies (Barabási and Oltvai, 2004). If a set of
nodes is randomly assigned connections, the resulting degrees
are binomially distributed, forming Erdős-Rényi graphs (Erdős
and Rényi, 1960). Another class is the scale-free (SF) topol-
ogy, where the node degrees are power-law distributed. Given
that the incoming and outgoing degrees are distinct, these two
distributions can be combined to produce four different topolo-
gies, which are defined in Table 1. The probability of any SF
topology occuring in a randomly constructed network decreases
rapidly as the number of nodes becomes larger than the average
connectivity (Oikonomou and Cluzel, 2006).

Since the observation of the Internet’s SF topology by (Al-
bert et al., 1999), SF networks have been identified in many
other fields, ranging from citation networks (Barabási and Al-
bert, 1999) to biological networks, including metabolic net-
works (Jeong et al., 2000) and GRNs (Babu et al., 2004). Given
the improbability of large SF topologies occurring randomly,
this ubiquity has been suggested to be a consequence of com-
mon generating mechanisms (Barabási and Albert, 1999). One
possible mechanism is preferential attachment, whereby highly
connected nodes have a greater probability of receiving a new
connection — “the rich get richer”. This could certainly ex-
plain the power law distribution of networks such as the Inter-
net (Barabási and Albert, 1999), but may not be the only re-
sponsible mechanism (Keller, 2005). A modified view of pref-
erential attachment has been suggested to be responsible for
the power laws observed in large GRNs (Barabási and Oltvai,
2004). A fundamental process in biological evolution and GRN
growth is gene duplication (Carroll, 2005), where a gene is sim-
ply copied twice into the daughter system. In the corresponding
GRN, all connections from the duplicated gene are doubled. As
a highly connected gene is more likely to be connected to the
randomly duplicated gene, new genes preferentially attach to
highly connected genes.

The process outlined above would give rise to an SF degree
distribution. However, in GRNs, it is only the outgoing de-
gree that has been observed to possess a power-law distribu-
tion (Babu et al., 2004; Aldana et al., 2007). Either evolution-
ary rewiring has undone SF incoming degrees (due to the vast
number of random network configurations relative to scale-free
ones), or it is not gene duplication that is responsible for the

generation of power-laws within GRNs. In either case, there
must be another force either maintaining or generating an out-
going SF distrbution.

The effect of the SF topology on Boolean networks has al-
ready been investigated by other authors. For example, Aldana
(2003) and Aldana and Cluzel (2003) investigated the effect of
dynamical perturbations in Boolean networks with an SF topol-
ogy. In random networks, the ordered regimes is achievable
through all nodes having low connectivities, with fine tuning
of mean degree connectivity. For SF topologies, however, the
ordered regime can be attained whilst allowing the presence of
highly connected nodes, or “hubs”. In more recent work, Al-
dana et al. (2007) have also demonstrated increased robustness
of the attractor landscape in SF topologies under the process of
gene duplication. In an important paper, Oikonomou and Cluzel
(2006) studied large (N = 500 node) networks with Boolean
threshold dynamics (Kurten, 1988). They used standard genetic
algorithms (GAs) to model evolution and found that when the
selection pressure is for a single node in the network to pro-
duce a desired oscillatory target, an SFin topology will on av-
erage reach its target in significantly less generations than an
ER network will, suggesting that the former is more evolvable
than the latter. The enhanced evolvability for oscillatory targets
holds for a number of different average connectivities. They ar-
gue that, in contrast to ER networks where the parameters must
be fine-tuned to achieve critical behaviour (and associated en-
hanced evolvability), the SF network will promote evolution for
a wide set of different parameter values.

In this study we consider the work of Oikonomou and Cluzel
(2006) further, with a particular focus on how the enhanced
evolvability they find depends on the specific target (phenotype)
and how it relates to both mutational and environmental robust-
ness. Besides the SFin topology used in Oikonomou and Cluzel
(2006) we also investigate the other topologies in Table 1 with
a particular focus on the SFout topology that better resembles
biological GRNs. We note that in our study, as in Oikonomou
and Cluzel (2006), the emphasis is on general results for very
schematic models of GRNs rather than on networks directly ex-
tracted from particular experimental systems. The advantage of
this approach is that general trends are easier to extract, while
the disadvantage is of course that any direct connections to bi-
ological systems will need to be worked out further down the
line.

We proceed as follows: In Section 2 we describe in some
detail the methods that we use to simulate the evolutionary dy-
namics of the networks. In Section 3 we study the evolvability
of the four different topologies described in Table 1 for single
oscillatory targets of length L = 10, confirming that all types of
SF topology are more evolvable than an ER topology. We also
demonstrate that SF topologies are much more likely to gener-
ate oscillatory outputs even without any evolutionary pressure.
Section 4 introduces two new kinds of targets. For multiple os-
cillatory targets of the same length L, the difference between ER
and SFout topologies is enhanced for increasing number of in-
dependent targets. However, these differences are much smaller
for multiple targets of different length. The difference in evolv-
ability between the ER and the SFout topologies is also quite
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small when evolving towards a target that fixes 100 of the 500
output nodes, suggesting that the enhanced evolvability of the
SFout topology depends in part on the kind of phenotype that
is being selected for. In Section 5, the mutational and envi-
ronmental robustness of the ER and SFout topologies are stud-
ied. Even though the SFout topologies are much more evolv-
able than the ER topologies for oscillatory outputs, they are
simultaneously more mutationally and environmentally robust.
Under neutral evolution both the mutational robustness and the
environmental robustness increase. We discuss our main re-
sults in Section 6. To show that these results are not limited to
the model used in Oikonomou and Cluzel (2006), we demon-
strate in Appendix A that another GRN model (Wagner, 1994)
also exhibits a similar interplay between robustness, evolvabil-
ity and topology. Appendices B – E are shorter and mainly
focus on technical points left out of the main paper.

2. Methods

We model the evolutionary dynamics of a population of
GRNs in several stages. Firstly, sample networks are created,
generating a population of genotypes. This is followed by the
simulation of network dynamics determining the attractor, with
the phenotype obtained from measurements at a node or set of
nodes randomly selected at the beginning of the run. This pop-
ulation of networks then undergoes evolution through recurrent
mutation of the genotype, followed by selection for the fittest
individuals based on their phenotype, which is re-measured ev-
ery generation.

2.1. Structure

Networks were created using the “Configuration model”,
a standard method of generating arbitrary directed net-
works (Newman et al., 2001; Milo et al., 2004). The num-
ber of nodes in the networks, N, was set to 500, whilst the
average connectivity of network topologies was chosen to be
1.88. These values provided a direct comparison with the work
of Oikonomou and Cluzel (2006), as well as being biologically
reasonable (Alon, 2006).

To allocate node degrees for SF topologies, numbers were
drawn randomly from a power-law distribution, with the prob-
ability of degree k given by

PS F(k) =
k−γ

∑N
m=1 m−γ 1 ≤ k ≤ N (1)

where γ parameterises the distribution.
For the ER topology, in the case where the number of nodes is

much larger than the average connectivity, the binomial distri-
bution may be approximated as a Poisson distribution (Newman
et al., 2001). In contrast to the SF distribution, where all nodes
have at least one connection (PS F(0) = 0), the Poisson distri-
bution permits some nodes to have either an in or out degree of
0, or even both. Such nodes cannot both affect and be affected
by the network and thus, their presence introduces a reduction
in the effective size of the networks. To combat this effect, we

imposed a condition on the Poisson distribution, whereby de-
grees of 0 are disallowed and the distribution is re-normalised
accordingly. We therefore restrict ourselves to considering net-
works consisting of a single, large connected component. This
adapted Poisson distribution for a degree k is given by

PER(k) =
Kke−K

(1 − e−K)k!
1 ≤ k ≤ N (2)

where K parameterises the distribution.
The average connectivity of each distribution can be deter-

mined simply by 〈k〉 = ∑N
k=1 kP(k). The corresponding values

of γ and K for an average connectivity of 1.88 are γ = 2.5 and
K = 1.431.

2.2. Dynamics

A Boolean threshold model was used to model the dynamics.
At the beginning of a dynamical run, each node σi is initialized
by a random process to to be either in an “on” state (σi = 1) or
an “off” state (σi = 0). These are the initial conditions (ICs) of
the network. In an evolutionary run, we either impose the same
set of initial node states at each generation (constant ICs) or
choose initial node states randomly at each generation (random

ICs). We investigate both situations in this work (in Oikonomou
and Cluzel (2006) only random ICs were used). From an ini-
tial configuration, the network dynamics are iterated over a set
of discrete time steps, with the state of each node updated syn-
chronously between time steps (see Fig. 1a).

The rules for updating the state of a particular node depend
on the state of the incoming nodes, and the strength of these
signals. An N×N matrix of weights, w, defines the interactions
between all nodes. Connections between nodes are assigned
weights in matrix w randomly from the set of real numbers on
the interval (−1, 1).

The state of node i at the following time step is denoted σi(t+
1) and is determined by a sum over all incoming nodes

S i =

N∑

j=1

wi jσ j(t) (3)

combined with the following threshold rule:

σi(t + 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if S i > 0
σi(t) if S i = 0
0 if S i < 0

(4)

To physically interpret the matrix of weights, consider a con-
nection from node i to node j. If wi j > 0, node j promotes node
i whilst for wi j < 0, node j inhibits node i. If wi j = 0 there is no
connection from j to i.

To prevent frozen dynamics, there is a modified rule for
nodes with only a single incoming connection (Oikonomou and
Cluzel, 2006). If node j is incoming to node i the the dynamics
depend purely on the sign of the weight with

σi(t + 1) =

⎧⎪⎪⎨⎪⎪⎩
σ j(t) if wji > 0
¬σ j(t) if wji < 0,

(5)
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Figure 1: A summary of the dynamical and evolutionary processes acting on a network. In (a) an example of the network dynamics is demonstrated. The node
coloured blue is selected as the output node. When one time step is performed, the state of the nodes will have been updated synchronously by the rules associated
with Eqns. 3 and 4. Further times steps are then performed to produce an output bit string as shown above. This is then compared to the target and its fitness
calculated with Eqn. 6. In this particular case maximal fitness is achieved. In (b) the two types of mutation are demonstrated. The red arrows represent a swapping
mutation where the grey edges have been switched but preserve each node’s degree distribution. The green edge, with a new weight of 0.79, represents a weight
mutation from its previous value of 0.23. When a mutation occurs during an evolutionary run, one mutation type is chosen, with each type being equally probable.

where ¬ is the NOT operator. The behaviour of nodes con-
nected by this modified rule is simple. Node states are either
copied or inverted for positive and negative weights respec-
tively.

The critical parameter values, γc and Kc, separating the or-
dered and chaotic regimes for each topology, have been previ-
ously calculated by Oikonomou and Cluzel (2006) based upon
the annealed approximation introduced by Derrida and Pomeau
(1986). We repeat the calculation (see Appendix B) finding the
critical value for the SF topology to be γc = 2.42 for networks
of size N = 500. We also calculate the critical connectivity
for the adapted Poisson distribution, which we determine to be
Kc = 3.538. The primary parameter values used in this study
of γ = 2.5 and K = 1.431, both produce average connectivities
below that needed for criticality, so that the networks are within
the ordered regime.

After a run typically lasting 350 time steps, the steady state
dynamics of the output node(s) in each network is determined
and this sequence defines the individual’s phenotype. An ex-
ample of a single dynamical time step is performed on model
networks in Fig. 1a.

2.3. Evolution

To model evolution of the population towards a desired out-
put (phenotype) we used a simple genetic algorithm. First a
population of Npop = 50 independent networks is generated.
Then, for each generation, the following cutoff selection regime
is applied. Each network first produces three daughter net-
works, enlarging the population from Npop = 50 to Npop = 200.
Each node in these daughter networks has a mutation proba-

bility μ = 0.02 of undergoing a mutation, a value previously
used by Oikonomou and Cluzel (2006). There are two types
of mutation: either a random change in the weight of any of a
node’s connections or an incoming connection is swapped with
another incoming connection in the network, provided the new
connections do not already exist (Fig. 1). Both mutation types
preserve the node degree distribution throughout an evolution-
ary run.

In single target experiments, the output of a node, randomly
selected at the start of the evolutionary run, is used to calculate
the network’s fitness. The fitness is calculated from the min-
imum Hamming distance between the node’s periodic output
and the target output over all cyclic permutations. We define
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this mathematically as

F = max
j∈{0,...,δ}

⎛⎜⎜⎜⎜⎜⎜⎝1 −
1

LoLtgt

LoLtgt∑

i=1

|σo(i + j) − σtgt(i)|
⎞⎟⎟⎟⎟⎟⎟⎠ , (6)

where Lo is the output period, Ltgt is the target period, σo(i) is
the ith bit in the output sequence and σtgt(i) is the ith bit in the
target sequence. The sequences are, for comparison, extended
by repeating them periodically to construct sequences of equal
length LoLtgt. The sum is then a Hamming distance of these two
strings. Taking the maximum over an offset j between 0 and
δ = max{Lo, Ltgt} performs the Hamming distance calculation
over all cyclic permutations of the strings.

The Hamming distance measures the fraction of the sequence
that matches the target, providing a linear measure for the fit-
ness. Once all networks in the enlarged population have been
assigned a fitness, the networks are ordered by fitness and the
top 50 kept to form the population for the next generation.

3. Evolution towards single L=10 targets

3.1. All types of SF topology are more evolvable

Expanding on the work of Oikonomou and Cluzel (2006), we
tested evolutionary performance or evolvability of each of the
four different topologies (ER, SFout, SFin and SF). Evolvability
is measured through adaptation speed towards the target output,
i.e. the number of generations before every member of a pop-
ulation has reached maximum fitness. Evolvability has been
frequently used in different contexts, sometimes creating con-
fusion (Poole et al., 2003; Wagner, 2005). In this case, however,
the adaptation speed would seem the most natural measure of
evolvability.

A randomly chosen node from each network was evolved
towards a randomly chosen L = 10 target for a maximum of
10 000 generations. This was repeated 50 times for each topol-
ogy, with both constant and random ICs. When evolution is per-
formed with random ICs, robustness to this stochasticity must
evolve for an individual to maintain itself in the population. For
constant ICs there is no such constraint.

We observed that occasionally an evolutionary run continues
for a very large number of generations before converging to a
solution, or sometimes not converging at all within the limits of
our calculations. The mean of the adaptation time distribution
can be dominated by these rare events. For that reason, we use
the median adaptation time, arguing that this provides a more
accurate measure of the typical adaptation time than the mean
does. We define τ to be the number of generations for all mem-
bers of a population to reach maximum fitness in a single evo-
lutionary run, whilst τ̃ is the median over a batch of runs. The
values of τ̃ for the different topologies and ICs, are presented in
Table 2.

Out of the three SF topologies, the SFboth evolves more
rapidly than the SFin topology does, which in turn is fol-
lowed by SFout and ER. This result supports the findings
of Oikonomou and Cluzel (2006), where the SFin topology is
tested against the ER topology and shown to evolve much more

Table 2: The median number of generations to reach maximal fitness, τ̃, for runs
evolving towards a single L = 10 target. Results are shown for both random
and constant ICs. All SF topologies outperform the ER topology. The SFin
topology is most significantly affected by the difference between constant and
random ICs, whilst the SFout is least affected.

ICs ER SFout SFin SF
Constant 950 450 51 25
Random 3 200 680 390 200
Relative 3.4 1.5 7.7 8.0
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Figure 2: The probability of different periods being the largest in randomly
generated networks. SFboth and SFin perform similarly, whilst SFout and ER are
similar too.

rapidly. The order of the topologies, with respect to adapta-
tion speed, is unchanged between constant and random ICs,
although the decrease in speed from constant to random ICs
varies amongst the topologies, with SFin and SFboth topologies
showing greater relative changes than ER and SFout do. This
latter property gives an indication of the natural robustness to
ICs of each topology, a property we explore in later sections.

3.2. The SF topology exhibits more oscillations and greater

synchronicity than the ER topology

To investigate whether the SF topology more naturally gen-
erates oscillations than the ER topology does, we examined the
dynamics of networks without evolution towards a target. For
each topology 10 000 networks were generated and two mea-
surements made. For the first, the period of every node in a net-
work was found and the largest period recorded. A histogram
of these periods is presented in Fig. 2. For the second measure-
ment, the period of a randomly chosen individual nodes was
recorded. A histogram of periods from these 10 000 networks
is presented in Fig. 3.

In Fig. 2, we observe a clear divide between the SFout topol-
ogy and the other two SF topologies. The SFout topology pro-
duces a probability distribution similar to that of the ER topol-
ogy. The SFboth and SFin topologies have similar distributions
to each other. They are significantly more likely to have maxi-
mum periods at larger values of L.
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Figure 3: The probability of different periods being measured at a random node,
in randomly generated networks. Note the logscale. SFboth generates the most
oscillations, followed by SFin, SFout and ER.

Fig. 3 examines the probability of finding oscillations of pe-
riod L at a randomly chosen node. This result differs to the
previous one as SFboth now shows more oscillations than SFin,
whilst SFout is clearly superior to ER at generating oscillations.
Again the SFin and SFboth topologies are considerably more
likely than the SFout topology to have an oscillating node. In
both Fig. 2 and 3 even oscillations are more easy to generate
than odd ones.

We next measured the distribution of oscillations in the net-
work during evolutionary runs towards L = 10 targets. The
period of each node was measured in the first generation where
all individuals in the population have a fitness of unity (defined
to be the first maximally fit generation), giving an indication of
the extent to which the target node’s period is spread throughout
the network. This measures the synchronicity within evolved
networks.

The mean fraction of nodes oscillating with each period are
presented in Fig. 4 for each of the four network topologies,
averaged over 50 independent evolutionary runs. This figure
demonstrates that a greater fraction of ER networks are frozen
(L = 1). All the SF topologies have an increased number of os-
cillatory nodes and particularly L = 10 nodes. Periods that are
factors of 10 (2 and 5) also appear to be much more prevalent
than other periods.

In general we observe that the scale-free topologies are more
likely to exhibit oscillations at a randomly chosen node, have
larger maximum periods and show more synchronicity during
an evolutionary run. We note that this increased ability of
SF networks to produce oscillatory outputs is not universally
observed: studies of random Boolean networks (Drossel and
Greil, 2009) showed that critical SF networks possess more
frozen nodes than networks with a fixed number of inputs. The
increased oscillatory nature of SF networks in our model may
be due to the modified update rule for single incoming nodes.
Through this rule, any oscillatory node connected to a node
with a single incoming connection will always propagate the
oscillation to that node. Given that PS F(1) = 0.745 compared
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Figure 4: The probability of a randomly chosen node possessing period L in
the first generation where maximum fitness for an L = 10 target is attained.
The probability is calculated by taking the mean fraction of nodes with each
period, taken over 50 independent evolutionary runs. The “oth” column refers
to other periods, i.e. all periods not labelled. This figure measures the degree
of synchronicity in the networks. Note the difference in scale on the y-axes of
the right and left graphs.

with PER(1) = 0.450, guaranteed propagators are much more
likely in SFin networks. The adaptive advantage generated by
the SFout topology must have different origins, however, as the
corresponding P(1) is the same as for ER networks, and hence
the modified rule affects both cases similarly.

In the rest of this paper we focus mainly on comparisons
of the ER with the SFout distribution because the latter most
closely resembles the topology of GRNs found in nature (Babu
et al., 2004; Aldana et al., 2007).

4. Evolution towards multiple oscillatory and frozen tar-
gets

In nature GRNs may employ phenotypes where multiple
nodes require oscillating periods. This would be the case, for
example, if a set of genes played a part in an oscillatory pro-
cess within an organism. The segmentation clock (Pourquie,
2003) and circadian rhythms (Hirata et al., 2002) rely on multi-
ple genes working together in this way.

To study this scenario, evolution was performed towards a
target phenotype defined by requiring the output of several ran-
domly chosen nodes’ to have specific periods. We define the
target period set, L, to comprise the period of each target node.
For example, for Ntgts = 3 with two L = 5 targets and one
L = 10 target, L = {5, 5, 10}.

To determine the fitness of a network, each target is assumed
to make an equal contribution. A random set of nodes are as-
sessed against each of the randomly chosen target outputs of
length specified inL and each node’s fractional fitness is added.
As such, we define fitness of the networks with multiple targets
as

F =

Ntgts∑

i=1

Fi/Ntgts (7)
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Figure 5: τ̃ v.s. the number of L = 7 targets for the ER (red, × markers) and
SFout (blue, + markers) topologies with corresponding fits (the lines are guides
to the eye). Both topologies experience an increase in adaptation time with
an increase in the number of targets. This increase is more rapid for the ER
topology, typically requiring more than 20 000 generations for Ntgts > 6. The
slower rate of increase of τ̃ seen in the SFout topology is likely to be due to the
greater synchronicity of this topology.

where Fi is the fitness of the ith node in the phenotype and Ntgts
is the number of target nodes defining the phenotype. Each Fi

is given by Eq. (6).

4.1. The adaptation time required to achieve multiple targets

of the same length increases rapidly with the number of

targets

As the ER topology evolves rather slowly towards L = 10 tar-
gets, a smaller target length was selected. This allows a greater
range of target numbers to be tested within a computationally
reasonable number of generations. If the target length is too
small, however, only a few different targets will be possible.
For example, there are only 6 possible L = 5 targets (see Ap-
pendix C). Given these considerations, multiple L = 7 targets
were chosen as this length is easily attainable by the ER topol-
ogy whilst there are 18 possible L = 7 targets.

To measure speed of adaptation, we used the median number
of generations until a population is maximally fit, τ̃, as in Sec-
tion 3.1. In Fig. 5, τ̃ is plotted against Ntgts. As expected, for
both ER and SFout topologies there is an increase in the adap-
tation time as Ntgts increases. The change in adaptation time is
non-linear, increasing rapidly with the number of targets. The
rate of increase is much more rapid in ER networks than SFout
ones. For example, SFout networks are still capable of adapting
to Ntgts = 20 in just over half the time ER takes to adapt for
Ntgts = 8.

As observed earlier in Section 3.2, the SFout topology shows
greater synchronicity for oscillatory signals than the ER topol-
ogy does. This difference may explain why the SFout topology
performs so much better for multiple targets of the same length.

Table 3: Values of τ̃ for evolutionary runs evolving under random ICs to differ-
ent sets of periods. τ̃ is smaller for L = {5, 10} compared with L = {5, 8} for
both topologies. For the L = {5, 10, 20} no convergence was achieved.

Period set, L ER SFout

{5, 10} 7 000 2 400
{5, 8} 9 900 4 700
{5, 10, 20} > 40 000 > 40 000

4.2. The adaptation time required to acheive multiple targets

of different lengths depends on the number of targets and

their relative periods

To test whether the enhanced synchronicity of the SFout
topology is a key reason it performs so much better for multiple
targets of the same length, we also examined different sets of
multiple targets with different lengths. All the evolutionary runs
were performed with random ICs, and the results are shown in
Table 3. Clearly having targets with multiple lengths greatly
slows down the median adaptation time compared to having
multiple targets of the same length for both topologies. It is
also interesting to compare the performance of the networks for
the L = {5, 10} targets to the performance for the L = {5, 8}
targets. Although the former targets are slightly longer than the
latter, they are easier to reproduce. Presumably this is because
L = 10 is a multiple of L = 5 whereas L = 8 and L = 5 are co-
prime. We also note that the difference between the SFout and
ER topologies is smaller for the coprime targets, suggesting that
the enhanced synchronicity of the SFout topology, observed in
Fig. 4, plays an important role in its enhanced ability to adapt to
certain types of targets (phenotypes). Finally, we also tested the
target L = {5, 10, 20} but were not able to find solutions within
the 40 000 generation cutoff we used in our simulations, show-
ing that multiple longer targets are significantly more difficult
to achieve than a larger set of shorter targets (as in Fig. 5).

4.3. The evolvabilities of SFout and ER networks for multiple

L = 1 targets are much more similar than for oscillatory

targets

Thus far only targets of an oscillatory nature have been con-
sidered. This is because single L = 1 targets would be trivial
to evolve; nodes of L = 1 are by far the most common in all
attractors. With the extension to multiple target nodes, how-
ever, evolving to a large number of specific L = 1 targets is
a non-trivial task. Biologically, a set of “frozen” targets could
correspond to a particular constant gene expression pattern over
some length of time, for example in an organisms’ develop-
ment.

As was done earlier, networks of each topology were evolved
over 10 000 generations in 50 independent runs. Out of the
N = 500 nodes, 100 were randomly chosen and required to
possess a specific L = 1 target. We will refer to this target set as
L = {100 × 1}. The values of τ̃ with random and constant ICs
are displayed in Table 4. The SFout topology maintains its ad-
vantage over the ER topology but the difference in evolutionary
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Table 4: Median adaptation time τ̃ for runs evolving towards L = {100 × 1}
targets. The performance of the topologies is much more similar than for evo-
lution towards oscillatory targets, although the SFout topology retains a slight
advanatage.

ICs ER SFout

Constant 255 193
Random 402 278
Relative 1.58 1.44
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Figure 6: Mean mutational robustness R̄m, against generation T (where T = 1
is the first maximally fit generation) for L = {10}. The errorbars represent the
standard error on the mean. Robustness is still increasing after 10 000 gener-
ations for both topologies. The SFout topology is more robust from the outset
and remains so throughout. Both topologies are able to evolve greater robust-
ness. Noting the y-axis range, the change in robustness is small but statistically
significant for both topologies.

adaptation times are vastly reduced. The effect of random ICs
does not slow evolution down that much, and there is a similar
relative decrease for both topologies.

5. Robustness in single & multiple target experiments

In the previous section we have investigated the evolvability
of ER and various SF topologies towards oscillatory and frozen
targets. In this section we study the mutational and environ-
mental robustness of these networks under similar evolutionary
situations. We particularly focus on the change in robustness
under neutral evolution, after the population has achieved max-
imal fitness.

5.1. Mutational robustness is higher in SF topologies and in-

creases under neutral mutation

To examine the mutational robustness of large networks
with a large range of weights, a sampling approach must be
taken as the number of possible network genotypes in a 1-
mutation neighbourhood is astronomical. To sample these
genotypes, each node in a network was tested with 6 sam-
ple mutations of each mutation type in Fig. 1. We em-
ploy constant ICs throughout, ensuring that IC robustness ef-
fects do not play a role. An individual’s mutational robust-
ness, Rind

m , is defined as the proportion of sample mutations

that do not result in a network’s phenotype changing. The
robustness testing was performed on every member of a pop-
ulation during an evolutionary run at the generation where
maximum fitness is attained (T = 1), and then at intervals
(T = 2, 5, 10, 20, 50, 100, 200, 500, 1 000, 2 000, 5 000, 10 000)
afterwards. At each interval, Rind

m is averaged over the whole
population producing an average population mutational robust-
ness, Rm. By averaging over the population, the statistical error
is reduced. We show in Appendix E that the diversity of geno-
types is maintained during neutral evolution.

Mutational robustness was measured for L = {10} and L =
{100 × 1} targets, although we only show results for the former
target in Fig. 6. The main and perhaps unexpected result for
both types of target is that throughout these evolutionary peri-
ods the SFout topology maintains a greater robustness to ran-
dom mutation than the ER topology, even though it is simul-
taneously more evolvable. We also note that Rm is fairly high
for both topologies, suggesting that the vast majority of mu-
tations don’t affect the phenotype. The most likely reason for
this is that a large number of nodes simply do not participate in
the core network that drives the output of the target node. Al-
though it is not shown, the value of Rm is also fairly high for the
L = {100 × 1} targets (Rm > 0.8) and moreover the SFout topol-
ogy outperforms the ER topology here as well. Again, since
20% of the nodes are fixed by the target output, this suggests
that a large number of the nodes do not participate in the output
that determines the phenotype of these systems.

The second effect this figure clearly shows is that the mu-
tational robustness increases with evolutionary time. It was
shown in van Nimwegen et al. (1999) that under neutral mu-
tation, the mutational robustness of a population can increase.
One mechanism for this phenomenon is that those genomes that
are more mutationally robust are more likely to have offspring
that share the same phenotype. Under continued selection then,
such genomes are more likely to survive than genomes with low
mutational robustness. These authors also showed that for se-
lection to optimize mutational robustness in neutrally evolving
systems, the condition μNpop � 1 must be satisfied. Here the
mutation rate per node is set to μnode = 0.02. For an N = 500
node network, this gives an average of μ = μnodeN = 10
mutations per mutated offspring. With a fraction m = 0.75
mutated offspring in the extended population before the cut
off is imposed, in each generation there are μ × m × Npop =

〈μ〉Npop = 10 × 0.75 × 50 = 375 mutations in a future gener-
ation’s genepool. Given that the condition μNpop � 1 is sat-
isfied, along with the genetic diversity observed in the popu-
lations (see Appendix E), further optimisation of mutational
robustness is certainly expected. However, selection may not
be the only cause of the observed effects. It may be possible for
the increase to be obtained purely through entropic effects – for
example, if many more genotypes are available at higher muta-
tional robustness, the population will discover such possibilities
simply through diffusing over the neutral space. Working out
the exact reasons of this optimisation is thus a subtle question,
and we don’t think that our results unambiguously fix the cause
of the increase in Rm.
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Figure 7: Mean environmental robustness R̄d , against T with random ICs for
L = {10}. SFout is initially much more robust, although the gap is reduced
over the course of neutral evolution. The increase in R̄d is dramatic for both
topologies, indicating a strong optimisation.

5.2. Environmental robustness increases markedly with time

after maximal fitness is reached for random initial con-

ditions, and is higher in SF topologies

GRN oscillators in vivo are often required to function un-
der a variety of environmental conditions. By possessing en-
vironmental robustness, function can be maintained under such
stochasticity and is thus a desirable trait. Here we examine the
change in environmental robustness over time during neutral
evolution and consider runs with both random and constant ICs.

Given the size of the networks (there are 2500 ≈ 3 × 10150

different initial configurations) a sampling approach was nec-
essary. To estimate the environmental robustness, a random
set of initial node states was taken, and the output phenotype
was measured. This process was repeated for 1 000 different
initial conditions (chosen randomly for each dynamics simu-
lation) and the average fraction of initial conditions where the
target phenotype was produced for an individual is called Rind

d
.

The average of Rind
d

was taken over all the networks in the pop-
ulation to give Rd, a measure of the environmental robustness
(the subscript d refers to the dynamic nature of this measure of
environmental robustness). This quantity was then further av-
eraged over 50 evolutionary runs to reduce statistical error, and
measured at the same intervals as in Section 5.1 after maximum
fitness is attained.

Results for the mean environmental robustness R̄d for L =
{10} targets are shown for random ICs in Fig. 7 and for runs
with constant ICs in Fig. 8. Firstly we observe that the SFout
topologies are more environmentally robust than the ER topolo-
gies are, an effect that mirrors the mutational robustness. Sec-
ondly, the runs with random ICs show a marked increase of Rd

during neutral evolution. The runs with fixed ICs show a mod-
est increase of Rd during neutral evolution, especially for the
ER networks.

When random ICs are used, it may be possible for selection
to increase the environmental robustness of the population, for
similar reasons to the arguments for the increase in mutational
robustness. During the evolutionary runs those genotypes that
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Figure 8: Mean environmental robustness R̄d versus T , with constant ICs for
L = {10}. The SFout topology naturally possesses greater environmental ro-
bustness. Over time the robustness of SFout changes insignificantly. The ER
topology, on the other hand, almost doubles its robustness over the period mea-
sured. However, the ER topology still remains much less robust than the SFout
topology.

are more environmentally robust, with larger attractor basins as-
sociated with the desired target, are more likely to have progeny
that generate the required phenotype. Thus they are more likely
to survive than less environmentally robust genotypes. Further-
more, we can make an estimate of the minimal environmental
robustness (Rmin

d
) for individuals to simply be sustained in the

population. Let us assume individuals possess maximal muta-
tional robustness and mutations affect their environmental ro-
bustness negligibly. Under these conditions, at least one of the
four genotypes must produce the target phenotype again. This
gives a value of Rmin

d
= 0.25. As the solution must propagate

through the population, and is not fully mutationally robust, this
is the lower bound and the actual value of Rd required may be
significantly larger.

For constant ICs there is no minimum environmental robust-
ness which explains in part why the values of R̄d are lower than
for random ICs. Moreover, there is no direct selection pres-
sure for environmental robustness that acts on runs with con-
stant ICs. We observe that R̄d does increase for ER networks.
The reasons for this are not clear. A possible cause could be
a correlation between mutational robustness, which is affected
by selection, and environmental robustness. Such a correlation
was also found by Mihaljev and Drossel (2009), in a study of
random Boolean networks. Another possibility would be an en-
tropic effect where diffusion on a neutral space is more likely to
find phenotypes with higher robustness.

Although they are not shown, the L = {100× 1} targets show
similar trends to the L = 10 targets: the SFout topology is more
environmentally robust than the ER topology and furthermore
both topologies show a modest increase in Rd under neutral mu-
tation for both random and fixed ICs.
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6. Discussion

In this paper we have studied the interplay between evolv-
ability and robustness of Boolean threshold dynamics models
with ER and SF topologies. Our main conclusions are:

1) The enhanced evolvability of SF networks over ER de-

pends on the phenotype under selection.

We confirm the results of Oikonomou and Cluzel (2006) that
networks with SFin topology are more evolvable towards sin-
gle oscillatory targets than ER networks are, and find the same
enhanced evolvability for the SFboth topology and also for the
SFout topology that most closely resembles the global topology
of biological GRNs. The evolvability advantage of the SFout
topology over the ER topology increases significantly for mul-
tiple targets with the same length. By contrast, for multiple tar-
gets of a different length, the difference in evolvability between
SFout and ER topologies is reduced, and if the targets are co-
prime, the differences are even smaller. We also studied targets
where 100 of the 500 nodes were given a fixed output. Here
again the differences in evolvabilities between the topologies
was greatly reduced compared to the L = 10 oscillatory outputs
studied in Oikonomou and Cluzel (2006). These results show
that the evolvability advantage of a particular network topology
depends strongly on the phenotype under selection.

2) SF networks show more oscillatory phenotypes and

greater synchronicity than ER networks do.

We compared the likelihood of finding an oscillatory output of
period L � 1 at a randomly chosen output node in networks
without any evolutionary selection. The SF networks show a
greater probability of finding oscillatory outputs than the ER
networks do. Similarly, once a population has reached max-
imum fitness under evolution towards an L = 10 target for a
single output node, a different node in the SF networks is much
more likely than an ER network to show L = 10 oscillatory out-
put: SF networks show much greater synchronicity than ER net-
works do. We argue that the increased evolvability towards os-
cillatory targets observed for SF networks is due to the fact that
such phenotypes are more naturally generated by these topolo-
gies.

3) SFout networks are more mutationally robust than ER net-

works are. For both network topologies, the mutational ro-

bustness increases under neutral mutations. One might naively
expect that the enhanced evolvability would lead to a reduced
mutational robustness. However, as has been pointed out by
numerous authors (Bloom et al., 2007a,b; Aldana et al., 2007;
Wagner, 2008b,a; Daniels et al., 2008; Draghi et al., 2010),
this simple expectation does not necessarily hold for popula-
tions. Even without selection, SF topologies show a greater
propensity than ER networks to exhibit oscillatory phenotypes.
This difference suggests that the number of different genotypes
that generate the same oscillatory phenotype is larger in SF
networks, i.e. that the neutral spaces are larger. Larger neu-
tral spaces may explain how greater mutational robustness can
correlate with greater evolvability (Wagner, 2008b). The size
of dynamic network neutral spaces has been investigated in
studies of the evolution of random Boolean networks (Mihal-
jev and Drossel, 2009; Szejka and Drossel, 2010), which have

shown that these systems possess large neutral spaces which
span search space. However, to firmly establish that the evolv-
ability advantage of the SF networks can be explained by prop-
erties of the neutral space requires further investigation. For
example, one must show that larger neutral spaces have evolu-
tionary access to a greater phenotypic diversity.

Another possible factor is the heterogeneity introduced by
the SFout topology. The measure of mutational robustness treats
each node in the network equally (a biologically reasonable as-
sumption), whereas, in an SFout topology, nodes are not equal:
most nodes trivially have a single outgoing connection, whilst
a few have a large number, the so-called ‘hubs’ of the network.
The hubs in the SFout topology may play an important role, and
mutations to these may be most effective, but rare as hubs only
comprise a small part of the network. However, when muta-
tions do occur to hubs (or to nodes closely connected to a hub),
there is the potential for large scale influence of the mutation.

We also find that the mutational robustness increases un-
der neutral mutations, an effect we attribute to the fact that
more mutationally robust genotypes are more likely to have
progeny that survive under future mutations (van Nimwegen
et al., 1999).

4) SFout networks are more environmentally robust to

changes in initial conditions than ER networks are, and both

networks types exhibit an increase in environmental robustness

under neutral mutations. The increased environmental robust-
ness observed in SF topologies may be due to the comparatively
large number of nodes acting in cohort to produce the required
oscillatory signal – a feature shown by the observed high syn-
chronicity in SF topologies. This large group of synchronised
nodes may act to increase the number of initial states that con-
verge to the required attractor, as perturbations to node states
may be “damped out” by the overall tendency of the group to
produce a particular oscillation. By contrast, the smaller groups
of synchronised nodes in ER networks may be more sensitive
to the initial states of nodes.

For random ICs, the environmental robustness increases un-
der neutral mutations for reasons similar to those that explain
how mutational robustness increases: more environmentally ro-
bust genotypes are more likely to survive in future generations
when the environment changes, due to the increased attractor
basin size associated with the desired target sequence. We find
a similar, but more modest increase in environmental robustness
in ER networks for fixed ICs, where there should be no selec-
tion for more robust phenotypes. At present it is not clear what
causes this increase, but it may be correlated to the increase in
mutational robustness.

An important question is whether the conclusions listed
above hold only for the particular models we studied, or
whether they are valid more generally. We show in Appendix
A that similar conclusions also hold for a different threshold
model (Wagner, 1994) that is frequently applied to study GRNs.
Another consideration is the effect of varying network connec-
tivity. For example, higher network connectivity can lead to the
chaotic phase, and the network properties we discuss may be
significantly altered in that regime (Szejka and Drossel, 2010).

The evolutionary dynamics of the threshold models we study
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here is considerably simpler than that which occurs in nature
and so further work is needed to probe to what extent these con-
clusions hold for biological GRNs. At present such studies are
very challenging because they require knowledge of the evolu-
tionary history of GRNs, much of which is not easily accessible.
The conclusions from this work that will most likely carry over
are: (a) that the relationship between robustness and evolvabil-
ity can depend on the class of phenotypes under selection; and
(b) an organism’s GRN can become both more evolvable and
more robust simply though changing its overall topology.
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Appendix A. Comparison with the Wagner model

To examine the generality of the dynamical properties intro-
duced by the SFout topology, we made a comparison with an-
other threshold model that was proposed by Wagner (1994) and
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Table A.5: The results for evolution towards L = 10 targets with the A.Wagner
model. τ̃ is shown for both constant and random ICs. ER and SFout topologies
perform similarly under constant ICs. However, intrinsic robustness to ICs may
play a more important role.

ICs ER SFout

Constant 25 25
Random 19 000 3 800
Relative 850 150

that has been investigated extensively with respect to GRNs.
The essential differences between the Wagner model and the
one of Oikonomou and Cluzel (2006), is the use of different
node states and update rules. In the original Wagner model, the
gene states for node i are either σi = 1, 0,−1. The update rules
differ by using purely threshold rules, with no modified rule for
single incoming degrees. The node state σi = 0, occurs when
the input sum S i = 0. Node states of 1 and −1 correspond to our
“on” and “off” states considered in the Oikonomou and Cluzel
(2006) model.

We investigated dynamics with the essence of the Wagner
model. We note that nodes with σi = 0 make no contribution
to the dynamics in the next time step and given a continuous
range of weights, such nodes will only occur when lacking any
incoming connections. As a result, nodes with σi = 0 will
always remain in this null state throughout a dynamical run,
rendering them ineffective within a network. Effectively, the
update rules only differ from the Oikonomou and Cluzel (2006)
model because we can abandon the modified rule for single in-
coming connections. The effect of this rule is now incorporated
into the behaviour of all nodes, as when a node is in its “off”
state, a signal still affects the nodes it connects to. This is due
to the “off” state now corresponding to σi = −1, resulting in
a non-zero amount being added in the threshold sum S i, even
when the node is “off”.

To examine the networks using the Wagner model, we firstly
consider for what parameters the system enters the chaotic
regime. In the Oikonomou and Cluzel (2006) model, networks
were within the ordered regime and need the same to be true
here for comparison and biological realism. It was found that
for the adapted ER topology (or SFin topology), a phase transi-
tion occurs for an average connectivity of 〈k〉 = 1. This gives
a critical parameter of Kc → ∞ for the adapted Poisson dis-
tribution. As a consequence, networks with this topology (or
SFin) cannot be produced in the ordered regime. This is an ef-
fect due to local noise propagation in the Wagner model being
more likely than in the Oikonomou and Cluzel (2006) model
(see Appendix B). As a result we considered ER graphs with a
standard Poisson distribution

PERstd
(k) =

Kke−K

k!
(A.1)

rather than an adapted one. For the standard Poisson distribu-
tion, the phase transition occurs at Kc = 2.075. This allowed
us to compare non-adapted ER networks and SFout (SFout also
possesses a non-adapted ER incoming degree distribution here)
networks at the previous average degree connectivity, whilst re-
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Figure A.9: The probability a random node has a given period, L, in the first
generation where maximum fitness is attained, within the Wagner model. The
probability is derived from the mean fraction of measured nodes taken over 50
independent evolutionary runs. The “oth” column refers to other periods, i.e.
all periods not labelled. As in the model of Oikonomou and Cluzel (2006) the
SFout topology exhibits greater synchronisity.

maining in the ordered regime.

Appendix A.1. The evolvability of SF networks using the Wag-

ner model is again greater than that of ER net-

works

As in Section 3.1, we evolved networks towards random
L = 10 targets over 50 evolutionary runs. The median gen-
eration numbers for a population to reach maximum fitness, τ̃,
are shown in Table A.5 for each topology under random and
constant ICs. Evolution with constant ICs is a much simpler
task for both, with τ̃ reduced by more than an order of mag-
nitude for both topologies. Interestingly, the SFout topological
advantage has vanished in this case. For random ICs, however,
the results are dramatically different. The SFout topology now
outperforms the ER topology by roughly the same factor as
in the Oikonomou and Cluzel (2006) model. Both topologies
struggle to a much greater extent to adapt under random ICs.
This is likely to be a consequence of local noise propagation
being greatly increased in this model.

Appendix A.2. Networks with the Wagner model show more

oscillatory behaviour

As in Section 3.2, the synchronicity in networks under evo-
lution towards a single L = 10 target was examined but with the
Wagner model. The period of each node in the first maximally
fit population was measured, with an average taken over 50 evo-
lutionary runs. A comparison of the probability of measuring
each period is presented in Fig. A.9. As for the Oikonomou and
Cluzel (2006) model, the probability of a node having the same
period as the evolved output (L = 10) is significantly higher
in the SFout topology than in the ER topology. In the Wagner
model, oscillations spread much more widely with both topolo-
gies having a much smaller fraction of L = 1 nodes. This is
due to an increase in local noise propagation under the Wagner
update rules.
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Figure A.10: Mean mutational robustness R̄m, against T for evolution of L = 10
targets in the Wagner threshold model. As found for the Oikonomou and Cluzel
(2006) model, neutral evolution can optimise muational robustness over time.
The relative change in mutational robustness attained in this case is larger than
that in the Oikonomou and Cluzel (2006) model, whilst the typical maximal
mutational robustness values attained after 10 000 generations of neutral evolu-
tion are similar.
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Figure A.11: Mean environmental robustness R̄d , against T for evolution of L =

10 targets in the Wagner threshold model for random ICs. Selection increases
environmental robustness in both topologies. The limit of this increase appears
to be reached towards the end of the neutral evolutionary period, levelling off
at around R̄d ≈ 0.6. The overall lower level of environmental robustness is a
consequence of increased local noise propagation in the model.

Appendix A.3. Mutational and environmental robustness of

networks with the Wagner model also increase

with time after maximal fitness is reached

In Section 5, we considered the mutational and environmen-
tal robustness of networks evolving towards L = {10} tar-
gets. These experiments made use of the update rules used
by Oikonomou and Cluzel (2006). In this section, we confirm
the overall results presented previously are not a consequence
of those update rules, and are a general feature of threshold
networks. The same method of measurements were used as in
Section 5.

Fig. A.10 shows the average change in mutational robustness
after the population reaches maximal fitness. We find, once
again, that SFout topologies exhibit greater robustness through-
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Figure A.12: Mean environmental robustness R̄d , against T for evolution of
L = 10 targets in the Wagner threshold model for constant ICs. Both topologies
demonstrate a significant increase from very low initial levels. The increase
generated may be consequence of the selection for mutational robustness also
affecting environmental robustness.

out and that both topologies increase their mutational robust-
ness over time. For the Wagner model the mutational robustness
changes to a greater extent for both topologies than is observed
for the model of Oikonomou and Cluzel (2006). This difference
is likely due to the greater extent of local noise propagation in
the Wagner model.

Fig. A.11 and Fig. A.12 show the change in average environ-
mental robustness over the maximally fit evolutionary period,
for both random and constant ICs. As before, in the case of ran-
dom ICs, environmental robustness can be optimised directly
by selection. A significant increase in environmental robustness
is observed in this case, although for both topologies, the typical
maximum environmental robustness attainable starts levelling
off around R̄d ≈ 0.6. This is different to the Oikonomou and
Cluzel (2006) model, where a higher environmental robustness
was generated by both topologies. Again this difference may
be a consequence of local noise propagation being stronger in
the Wagner model. The inability to evolve more complete envi-
ronmental robustness requires further research. The analysis of
the attractor properties within the Wagner model would proba-
bly be helpful. The result for constant ICs in Fig. A.12 shows
that under neutral mutation there is a clear optimisation for both
topologies. The networks naturally possess very low environ-
mental robustness at T = 1, particularly for the ER topology.

Fundamentally the results are very similar to before with
the Oikonomou and Cluzel (2006) model. SFout topologies
are consistently more evolvable than the ER topology, whilst
both topologies increase their mutational robustness and envi-
ronmental robustness under neutral mutation

Appendix B. Calculation of order-chaos phase transition

In order to calculate the order-chaos transition, we followed
the method of Oikonomou and Cluzel (2006). Let us consider
two different sets of ICs, {σ(1)

i } and {σ(2)
i }. The difference be-

tween these sets over time can be measured as with the Ham-
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Figure B.13: The probability of local noise propagation, ps(k) against k for
both the Oikonomou and Cluzel (2006) model and the Wagner (1994) model.
Local noise propagation is stronger in the Wagner model. Both distributions
are approximately ∝ k−0.5.

ming distance as

d(t) =
1
N

N∑

i=1

|σ(1)
i (t) − σ(2)

i (t)| (B.1)

The annealed approximation of Derrida and Pomeau (1986)
measures whether noise propagation diminishes or extremifies
in the limit of the Hamming distance between the two configu-
rations tending to 0

M =
∂d(t + 1)
∂d(t)

∣∣∣∣∣
lim d(t)→0

=

∞∑

ki=1

P(ki).ki.ps(ki) (B.2)

where M measures the noise propagation in the network. When
M > 1, the network is in the chaotic regime, whilst M < 1 is the
ordered regime. For M = 1, critical behaviour is obtained. P(ki)
is the usual degree distribution, whilst ps(ki) is the probability
of local noise propagation. This measures the probability that if
one of the inputs to a node is flipped at time t, this will change
the output of the node at time t + 1. For threshold models this
is a function of ki, unlike in the Boolean function models. Here
we calculate numerically the values of ps(ki) for both the update
rules in the Oikonomou and Cluzel (2006) model, as well as the
Wagner model. These two probability functions are presented
in Fig. B.13. The Wagner model has much greater local noise
propagation due to an “off” state still passing a signal to a node.

Using these distributions the critical parameter values are cal-
culated for the various topologies using Eq. (B.2) and presented
in Table B.6.

Appendix C. Total number of sequences for each repeat
length

There are a finite number of possible configurations a se-
quence of bits of a given length may take. Two sequences are

Table B.6: The critical parameter values for the phase transition in the various
topologies.

Topology Oikonomou Wagner
ERadapted Kc = 3.54 Kc → 0
SF γc = 2.42 γc → ∞
ERstandard Kc = 3.83 Kc = 2.08
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Figure D.14: Mean mutational robustness R̄m, against T for evolution towards
L = {10} with modified weight mutation method. As previously shown, SFout
topologies possess greater robustness than their ER counterpart indicating that
the previous mutation rules do not bias our result.

regarded as identical if they can be mapped on to each other
through cyclic permutation. If a sequence can be broken down
into a multiple number of shorter sequences, it is invalid. As
such, the number of possible sequences A(n), for a sequence of
a length n, is given by the following

A(n) =
2n −∑k∈F kA(k)

n
(C.1)

where F is the set of all factors of n and A(1) = 2 (i.e. 0 and 1).

Appendix D. Importance of mutation method with respect
to increased robustness

One possible explanation for the increase in mutational ro-
bustness of the SFout topology would be a possible bias intro-
duced by the weight mutation rules. This bias could arise in
the following way. Given that any edge, incoming or outgoing,
can have its weight mutated for the node under mutation, the
probability of selecting an incoming node for a hub in the SFout
topology will be much smaller. Explicitly, there are many more
outgoing edges that could be randomly selected for mutation.
To assess whether this mutation method was introducing erro-
neous results, we performed runs towards L = {10} with modi-
fied mutation rules. Instead of allowing the weight of any edge
touching a given node to be mutated, we only allowed weight
mutations of the edges incoming to that node. As both topolo-
gies have the same incoming degree distribution, this removes
any possible bias.
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Figure E.15: The heat of a square represents the fraction of pairs of networks in
the population separated by a genetic distance of D at time T. As can be seen,
the genetic distance gradually increases as neutral mutations are incurred to
each network. The increasing “hot” lines demonstrate the population diffusing
through genotype space creating a genetically diverse population. The sudden
drops in diversity, occassionally observed, correspond to a new most recent
common ancestor taking over the population.

A graph of the change in average mutational robustness, R̄m,
for 50 evolutionary runs is shown in Fig. D.14. As can be
seen there is limited difference between this and the original,
demonstrating any bias does not affect the evolution of muta-
tional robustness in this case.

Appendix E. Population Diversity

To determine whether the diversity of a population geno-
types undergoing neutral mutations, we measured the genetic
difference between every pair of inviduals each generation after
maximal fitness is reached. The fractional genotypic distance
D(A, B), between two networks A and B is given by

D(A, B) =
1

2M

N∑

i=1

N∑

j=1

f (wA
i j − wB

i j) (E.1)

where

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x � 0
0 if x = 0

and M is equal to the average number of entries in a network’s
weight matrix, given by M = N〈k〉. Values for D(A, B) are
taken over all pairs A, B ∈ {population}, and then the values are
binned in distances of 50/2M up to the maximal value of 1.

These measurements were performed on several different
types of evolutionary run. A heat map of these distances is
displayed in Fig. E.15 for a typical evolutionary run (once
maximum fitness is reached) for evolution towards a L = {10}
target. This figure demonstrates several features of an evolu-
tionary run. The gradually increasing “hot” curves show the
population spreading out from each other in genotype space as
independent mutations are incurred. The gradient of the “hot”
line decreases as mutations start occuring on top of each other.

However, the “hot” lines can still increase to large values (tend-
ing to D ≈ 1 for some lines), indicating that most of the muta-
tions are neutral ones and lead to a large population diversity.

An interesting feature of the plot are the occasional dramatic
decreases in diversity. These are indicated through the collapse
of a “hot” line to a much lower value on a new curve, corre-
sponding to the introduction of a new most recent common an-
cestor for the population. This ancestor may have been selected
for or simply fixed through random sampling.
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