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Paris 8 in 2003 as an assistant professor. Her research interests include knowledge
representation under uncertainty, especially by way of fuzzy logic and many-valued logic.
She is also interested in music and computer science and, more recently to software
architectures. She participates to projects in this field and co-supervises several PhD
students.

J. Malenfant received his Ph.D. from the Université de Montréal in 1990 and his
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1 Introduction

Optimizing complex systems and decision-making
processes are among the main points of industrial
engineering and management. This optimization

requires lots of tools from various disciplines such
as mathematics, management science or artificial
intelligence, and decision making is often seen as a
central problem to be solved.
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To address the multi-criteria characteristics of these
problems, the preference modeling and their elicitation
have attracted widespread attention for many years.
Several formalisms have been proposed to express the
choices or wishes. Among them are the factored models

that decompose preferences. Additive models are a
subclass of factored models. Their principle is that
the preference values on subsets of attributes may be
expressed independently of each others. It is the ceteris

paribus principle (Braziunas and Boutilier, 2006). This
avoids to ask the user for the comparison of all the
attributes which would require to go through their entire
joint instantiation.

The generalized additive independence model (GAI)
allow for an additive decomposition (preferences are
added instead of being multiplied, for example) of a
utility function. In (Boutilier et al., 2004), the authors
proposed a graphical and compact additive model called
CP-nets (Conditional Preference networks) that links
wished attributes to preferences. This model is a graph
and is quite intuitive. It has three elements: nodes that
represent the problem variables, arcs (or cp-arcs) that
carry preferences among these variables for various given
values, and conditional preference tables (CPTs) that
express preferences on values taken by the variables.

The CP-nets permit to model wishes such as “for
property X, I prefer the V1 value instead of V2 if
the property Y equals to VY and the property Z
equals to VZ”. There exists also a notion of relative

preference between the preferences themselves: a CPT
associated to a node has a higher priority than the
CPTs of its descendants. This notion is taken into
account when the complete outcomes are compared.
A complete outcome is a tuple of values for all the
variables of the graph. One of the interests of the CP-
nets is their ability to approximate preferences easily
with inference rules that will be nothing else than the
CPTs. But CP-nets must obey some restrictions in
order to allow (“algorithmically” speaking) the inference
computations. The first restriction is that the graphs
must be acyclic. The second one implies a “reasonable”
use of the indifference relation between the preferences
and so it implies total preorders in the CPTs for each
parent node (Boutilier et al., 2004).

The Utility CP-nets (UCP-nets) (Boutilier et al.,
2001) are inspired by the CP-nets but the definition
of the binary relation ≻ (“is preferred to”) between
two values of nodes in the CPTs is replaced by
numerical values (utility factors). Thus the CPTs
contain numerical values. The recourse to values instead
of order relations has been motivated by the fact
that, in a CP-net, it was not possible to establish a
comparison nor an order between the alternatives given
as solutions to the problem (when there was more
than a unique solution). By quantifying preferences,
this problem becomes less important (Boubekeur and
Tamine-Lechani, 2006). A utility factor is a real number
associated to a node assignment given the assignment of
its parent nodes. It expresses a preference degree between

several assignments. There are local utility factors that
indicate choices local to a node and global utility factors
computed for each complete outcome that permit to
order the solutions without any ambiguity. A UCP-net
indeed defines a total order on the outcomes.

Another model inspired by the CP-nets is the
Tradeoffs-enhanced CP-nets (TCP-nets). It allows to
manage tradeoffs in the expression of the preferences
(Brafman and Domshlak, 2002). TCP-nets deal with
linguistic expressions such as:“a better assignment for
X is more important than a better assignment for
Y ”. These are called relative importance preferences.
Moreover, TCP-nets deal with conditional relative
importance preferences: “a better assignment for X
is more important than a better assignment for Y
if Z = z”. Thus, new elements are introduced in the
model: the Conditional Importance Tables (CITs) and
two new kinds of arcs: i-arcs and ci-arcs. These arcs
permit to model basic and conditional clauses of relative
importance.

However these models (CP-nets, UCP-nets, TCP-
nets) have two important restrictions. The first one
concerns the continuity of the variable definition
domains. Only discrete and finite domains are handled.
The second one is about the difficulty to obtain precise
utility values from the users. Indeed, there are many
situations where the user is doubtful about his wishes
which leads to imprecision in the preferences.

To overcome these limitations, we proposed in recent
works an alternative to these models, the linguistic CP-

nets (LCP-nets) that can deal with linguistic clauses
and that can take into account variables defined over
continuous domains (Châtel et al., 2008, 2010b). This
model has been used in a specific use case to perform
late binding between services consumers and service
providers. But in order to make this model generic, a
formalization is needed.

The LCP-net approach to express conditional
preferences bridges the gap between GAI-based
techniques towards the field of fuzzy preference
elicitation. Examplary of this field, Curry and Lazzari
(2009) elicit preferences from the ground up using
raw data about choices of deciders exhibiting their
preferences. Their approach classifies the choices among
fuzzy subsets representing utility classes. Our work and
theirs complement each other and will allow for a more
thorough comparison between bottom-up approaches
treating preferences in extension and the top-down ones
that aim at capturing preferences in intension.

This paper lays the foundations of a formal definition
of the LCP-nets. In Section 2, we recall our tool and
then give two concrete examples. Section 3 exhibits the
preliminary notations of the LCP-nets essential to the
formal definitions of Section 4. Foundational properties
are given in Section 5, especially regarding the CP-
condition and the weights. Finally, we are interested
in queries over LCP-nets in Section 6 (the dominance
testing and the optimization query) while Section 7
concludes this study.
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2 LCP-nets as a tool for expressing
preferences

In LCP-nets, we partition the continuous domains using
linguistic terms associated to fuzzy subsets (Zadeh,
1965) or to linguistic 2-tuples (Herrera and Mart́ınez,
2000). Thus the utility factors are words. This allows
for an easier way to capture the user wishes and for a
better ordering of the outcomes that can be proposed
to the user. Indeed if two outcomes exhibit more or
less the same attributes, a use of discrete coarse-grained
domains will prevent a ranking between them. Except if
the granularity is increased and if the differences between
the preferences are high enough — this is actually an
explicit condition in the UCP-nets — to allow for a
discrimination.

LCP-nets, as the other models from the “CP-
net family”, are acyclic graphs with nodes, arcs and
preference tables. Linguistic descriptors must first be
chosen to describe the term sets on each universe
of discourse. As usual we take term sets with an
odd cardinality (5, 7 or 9) (Delgado et al., 1993)
in order to have a mid-term. For example, a term
set T is: T = {s0 : very low , s1 : low , s2 : medium, s3 :
high, s4 : very high}. It is also required to have the three
following operators:

1. Neg(si) = sj such that j = g − i (with g + 1 being
the cardinality),

2. max(si, sj) = si if si ≥ sj ,

3. min(si, sj) = si if si ≤ sj .

In the linguistic 2-tuple model of Herrera and
Mart́ınez, trapezoidal or triangular fuzzy subsets are
enough to express the imprecision of the clauses. Given
a linguistic term, the 2-tuple formalism provides for
a pair (fuzzy set, symbolic translation) = (si, α) with
α ∈ [−0.5, 0.5[ as can be seen in Figure 1 where the
obtained 2-tuple is (s2,−0.3).

α = −0.3

s3 s4s2s1s0

Figure 1 Lateral displacement of a linguistic label ⇒
(s2,−0.3) 2-tuple.

In this example, the α translation can be seen as
a weakening modifier of the linguistic term s2. Thus,
using this model for the computations, one can give a
result more or less equals to one of the elements from the

original term set, i.e., the same linguistic term set can
be kept during the whole process.

Compared to the CP-, TCP- or UCP-nets, LCP-nets
allow to deal with clauses such as “I tend to prefer the
more or less V1 value for property X over exactly V2

if properties Y equals approximately VY and Z equals
a bit more than VZ”. These statements that resemble
improved fuzzy rules must be interpreted in a context
where the global preference on X has to take into account
each preference to be applied to Y to a certain degree.

Actually, this is equivalent to propose a flexible and
intuitive model to express complicated sets of fuzzy rules
that can be potentially interdependent.

The LCP-nets allow the users to express relative
importances (conditional or not) and tradeoffs among
the variables in using i-arcs or ci-arcs from the TCP-
nets in addition to the cp-arcs from the CP-nets1. They
include CPTs similar to those from the UCP-nets but
with linguistic utility factors.

Let us now illustrate our LCP-nets with two
examples.

Example 1 (Evening dress). This example is
inspired by the one explained in (Brafman et al., 2006).
Imagine a woman that has to choose an evening dress:
she has to attend a formal evening and she would like
to impress people with a long dress if she can find
shoes going with it. She always prefers to optimize the
length (L) over the color (C) of her dress (or skirt). Her
preference about the color of her shoes (S) and about the
height of heel (H) is conditioned by the color of the dress.
And her preference between the optimization of the color
of the shoes and the height of heel is conditioned by the
length of the dress. (If the dress is long, she doesn’t really
care about the height of heel and prefers to take care
about the color of shoes.) Figure 2 sums this example
up: four CPTs, one CIT and the three kinds of arcs are
used.
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Figure 2 Example of preferences for an evening dress.



4 I. Truck and J. Malenfant

The glossary that is used is the following:
Ls short dress
Lm medium dress
Ll long dress
Cd dark color
Cm medium color
Cl light color
Hnone no heel
HM medium height of heel
HH high heels
Sd dark color of shoes
Sm medium color of shoes
Sl light color of shoes
vvl very very low utility
vl very low utility
low low utility
med medium utility
high high utility
vh very high utility
vvh very very high utility

Example 2 (Purchase). Imagine a person that
has to purchase some good (any kind: a TV, a car, a
computer, etc.). He wishes to receive his purchase as soon
as possible, at the best price, unless he gets a really good
deal. He always prefers to optimize the delivery time
(D) on the quantity (Q) of options and on the price of
the item (P ). He also always prefers to optimize D over
the rebate (R). And his preference between Q and P is
conditioned by R: if the rebate is weak or medium, a
good price is more important than the options. But if
the rebate is high, he prefers to obtain as many options
as possible. Figure 3 sums this example up: four CPTs,
one CIT and the three kinds of arcs are used.
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RL RM RH

low med high
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Dimm low med high
Dw vl low vh

Dind vvl vl vvh

PL PH

Dimm vh high
Dw high low

Dind vl vvl

P ⊲RL
Q

P ⊲RM
Q

Q ⊲RH
P

Figure 3 Example of preferences for a purchase.

The new terms added in this example are the
following:

Dimm immediate
Dw week
Dind indefinite
RL low rebate
RM medium rebate
RH high rebate
QL a few options
QM a medium number of options
QH a lot of options
PL low price
PH high price

LCP-nets have been implemented in Java using
EMF (Eclipse Modeling Framework) to represent
the LCP-net itself, and delegating the fuzzy
inferences to the library jfuzzylogic (which has been
improved with the consideration of linguistic 2-
tuples by a member of our team (Abchir, 2011)).
This work is available at the following Internet
address: http://code.google.com/p/lcp-nets/. This
implementation has already been used in the context of
service-oriented computing to add a new programming
abstraction to BPEL (Business Process Execution
Language) that selects services to be called given their
current quality of service (QoS). This work has been
done in the context of the French ANR project SemEUsE
(07-TLOG-018) (Châtel et al., 2010a).

The implementation proceeds in three steps. The
first one is the elicitation process. It is performed
before execution and creates the EMF model of the
LCP-net. The second step is the translation of the
preference model into an efficient representation that can
be used during execution. Each CPT is translated into
an inference system with a rule per table line. These
inference systems are then translated to the jfuzzylogic

format and loaded to be ready for computations. The last
step is the preference model evaluation that corresponds
to the valuation algorithm, see Subsection 4.3. At
runtime, current attribute values are injected after a
fuzzification phase (into fuzzy sets or into linguistic 2-
tuples). Then the system computes local utilities for each
node thanks to the CPTs with the inference systems.
Finally the global utility is obtained by aggregating local
utilities.

The aggregation operator cannot be a simple
weighted mean. Indeed we must take into account
the fact that the arcs give the relative importance
of the nodes they interconnect. This implicit relative
importance due to the node position in the graph,
also called CP-condition (see §5.1), must be reflected
in order to be considered while computing the global
utility factor. For instance, for the purchase example,
delivery time D that is the higher vertex of the graph
is necessarily more important than rebate, quantity of
options and price. Let us imagine that R equals RH , so
Q dominates P . Thus, R and Q have the same depth,
i.e., are of equal importance. A weight is thus attached
to each node i.e., to each utility factor (see figure 4).
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(depth=2, weight≈.055)
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Figure 4 From node depth to node weights.

It has to be noted that UCP-nets don’t use any
weights on nodes but rather constrain the utility factors
themselves to contain this information. Indeed, the UCP-
nets formalism requires gaps between utility values big
enough to carry this information implicitly. Because
LCP-nets use linguistic terms instead of real numbers to
express the utilities, it is much more difficult to introduce
such gaps. Weights are thus given to the nodes of the
LCP-net, taking into account their depth and beginning
with the root node. The assignment of the weights needs
a monotonous and strictly decreasing function according
to depth. Weights are between 0 and 1 and sum to 1.
This point is discussed and detailed in Subsection 5.2.

The resulting global utility allows for a simple and
quick comparison (since we have real numbers after
defuzzification) of the various outcomes for a given
decision and permits a precise ranking. If we want to give
the final proposed choices to a human, it can be useful
to give a linguistic answer for their utilities (and give
instead linguistic 2-tuples answers).

Now we introduce all the preliminary notations
needed to define the LCP-nets formally and to guarantee
their reusability in any context.

3 Preliminary notations

Following TCP-net notations, we define our LCP-nets
in a formal manner. To illustrate this work, we take the
purchase example. Let:

• Vi be a variable (i ∈ {1, . . . , p}): e.g., price,

• D(Vi) be the definition domain of Vi: e.g., [0, 100],

• TVi
be the linguistic term set associated to Vi: e.g.,

{PL, PH },

• LV (a linguistic variable) be the following triplet:
LV = 〈V,D(V ), TV 〉:
e.g., 〈price,[0, 100],{PL, PH }〉,

• Ker(t) be the kernel of the fuzzy set that represents
the linguistic term t, e.g., PH ,

• supKer (t) be the maximum value of abscissa of the
kernel of t,

• infKer (t) be the minimum value of abscissa of the
kernel of t,

• δ(t1, t2) = infKer (t1) − supKer (t2).

As in the UCP-net formalism, preferences are
expressed through utilities in our framework. But
they are expressed through linguistic variables, as
the other variables. For all tables in the LCP-
net, they take their values in the single triplet
〈VU ,D(VU ), TVU

〉 defined once for all (for each LCP-
net) over a normalized domain [0, 1]: e.g., 〈utility,[0, 1],
{very very low, very low, low,medium, high, very high,
very very high}〉. This definition of linguistic utilities
entail an order relation on the linguistic terms so that
the first one (here, very very low) is the weakest.

One utility is a triplet LVU = 〈VU ,D(VU ), SVU
〉, with

SVU
∈ TVU

, e.g., 〈utility,[0, 1], low〉.

A conditional preference table CPT (LV ) associates
preferences over D for every possible value assignment to
the parents of LV denoted Pa(LV ). In addition, as in the
TCP-nets formalism, each undirected ci-arc is annotated
with a conditional importance table CIT (LV ). A CIT

associated with such an edge (LVi ,LVj ) describes the
relative importance of LVi and LVj given the value
of the corresponding importance-conditioning linguistic
variables LVk.

Graphically, a preference table (CPT or CIT ) is a
tuple of triplets, i.e., a table with N dimensions. N is
the number of the linguistic variables interrelated with
LV , including LV (N = |Pa(LV )| + 1) and a utility SVU

is defined in each case.
Thus a preference table may be represented by the

tuple
〈LVi, LVi′ , . . . , LVi′′

...
′ , LVU1

, LVU2
, . . . , LVUη

〉
with η ∈ {2N, . . . , K}
and K = |TVi

| × |TVi′
| × . . . × |TVi′′

...
′
|.

For example, a preference table is the tuple:
〈〈price,[0, 100],{PL, PH}〉,
〈delivery time,[0, 90],{Dimm, Dw, Dind}〉,
〈utility,[0, 1], very high〉,
〈utility,[0, 1], high〉,
〈utility,[0, 1], high〉,
〈utility,[0, 1], low〉,
〈utility,[0, 1], very low〉,
〈utility,[0, 1], very very low〉〉.

More precisely, a preference table is equal to:

〈 〈SVi1
, SVi′

1

, . . . , SVi′′...′
1

, SVU1
〉,

〈SVi2
, SVi′

2

, . . . , SVi′′...′
2

, SVU2
〉,

. . .
〈SViη

, SVi′η
, . . . , SVi′′...′η

, SVUη
〉

〉

So we get η tuples 〈SVi
, SVi′

, . . . , SVi′′
...

′
, SVU

〉 with
min(η) = 2N and max(η) = K. The reason why the
minimum is equal to 2N is because it is necessary that
|TV | ≥ 2 in order to be able to express a preference (!).
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Following the same example and knowing that
price and delivery time are interrelated, the associated
preference table can be defined as these six (η = 6)
tuples:

〈〈PL, Dimm, very high〉,
〈PL, Dw, high〉,
〈PL, Dind, high〉,
〈PH , Dimm, low〉,
〈PH , Dw, very low〉,
〈PH , Dind, very very low〉〉.

This is to be read as six rules implying two different
linguistic variables, i.e., six triplets 〈V,D(V ), SV 〉 and
six triplets 〈VU ,D(VU ), SVU

〉:

R1. If we have
〈price,[0, 100],PL〉 and
〈delivery time,[0, 90],Dimm〉
then we have
〈utility,[0, 1],very high〉;

R2. . . .

. . .

R6. If we have
〈price,[0, 100],PH〉 and
〈delivery time,[0, 90],Dind〉
then we have 〈utility,[0, 1],very very low〉.

4 LCP-net formal definition

We now introduce some structural definitions to be able
to define our LCP-nets formally.

4.1 Structural definitions

Definition. An LCP-net L over variables
{LV 1, . . . ,LV p} is a directed graph over {LV 1, . . . ,LV p}
whose nodes are annotated with conditional preference
tables CPT (LV i) and with conditional importance
tables CIT (LV i) for i ∈ {1, . . . , p}.

Thus L is a tuple 〈SL,cp,i,ci,cpt,cit,W 〉 where:

• SL is a set of linguistic variables {LV 1, . . . ,LV p},
e.g. SL = {〈delivery time,[0, 90],{Dimm , Dw, Dind}〉,
〈rebate,[0, 100],{RL, RM , RH}〉,
〈quantity,[0, 10],{QL, QM , QH}〉,
〈price,[0, 100],{PL, PH}〉},

• cp is a set of directed cp-arcs. A cp-arc 〈−−−−−→LVi ,LVj 〉
is in L iff the preferences over the values of LVj

depend on the actual value of LVi . For each LV ∈
SL, Pa(LV ) = {LV ′|〈

−−−−−→
LV ′,LV 〉 ∈ cp},

• i is a set of directed i-arcs. An i-arc (
−−−−−→
LVi ,LVj ) is in

L iff LVi ⊲ LVj , i.e., iff LVi is more important than
LVj (see Definition 3 in (Brafman et al., 2006)),

• ci is a set of undirected ci-arcs. A ci-arc (LVi ,LVj )
is in L iff we have RI(LVi ,LVj |LVk ), i.e., iff the
relative importance of LVi and LVj is conditioned
on LVk, with LVk ⊆ SL r {LVi ,LVj}. We call
LVk the selector set of (LVi ,LVj ) and denote it by
S(LVi ,LVj ),

• cpt associates a CPT with every linguistic variable
LV ∈ SL, where CPT (LV ) is a mapping from
D(Pa(LV )) ×D(V ) (i.e., assignments to LV ’s
parent linguistic variables) to D(VU ),

• cit associates with every ci-arc between LVi and
LVj a CIT from D(S(LVi ,LVj )) to orders over the
set {LVi ,LVj},

• W is a weight vector as defined in Section 4.3.

4.2 Structural invariants

When implementing the LCP-nets in EMF, we construct
the graphs incrementally. So, it is very important to
factorize the objects. In particular, we define LCP-nets
fragments that are pieces of graphs (e.g., only a node and
its CPT), that are incrementally added to the LCP-net.

But this way of doing doesn’t guarantee the obtention
of structurally valid LCP-nets. Verifying the validity
of LCP-nets a posteriori is far from trivial. Therefore,
we propose to construct LCP-nets by gradually adding
coherent fragments that, given a valid LCP-net, augment
it to a larger valid one. There is a certain number of
conditions that have to be fulfilled. We define an atomic

valid LCP-net (a minimal LCP-net) as an object with
only one node and its CPT (or CIT). The elementary
operators to manipulate valid LCP-nets are: addition (of
a node, of an arc, etc.), subtraction, etc. These operators
have invariants, preconditions and postconditions.

In this paper we only focus on invariants.
Let consider the following objects:

• n is a node;

• SN is the set of nodes;

• an arc is denoted (s, t) with s the source node and
t the sink node. In the ci-arcs, s can be exchanged
with t;

• SA is the set of arcs (cp, i and ci) : SA = {cp,i,ci}.

Invariants that share all the operators on LCP-nets
are the following:

• the total number of arcs (cp, i, ci) is not greater
than the number of pairs (s, t) where s, t ∈ SN and
s 6= t ;

• there is mutual exclusion between the kinds of arcs:

– if (s, t) ∈ cp then (s, t) /∈ i and (s, t) /∈ ci;

– if (s, t) ∈ i then (s, t) /∈ cp and (s, t) /∈ ci;

– if (s, t) ∈ ci then (s, t) /∈ i and (s, t) /∈ cp.
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• the dimension of the CPT associated to s node
is equal to 1 + the number of cp-arcs that are
indegrees of s;

• each CPT has a dimension that is less or equal
than the number of domain values of the associated
node;

• there is no conditional cycles in the graph;

• there is at least one node (i.e., at least a CPT) and
there are from 0 to n arcs;

• there are at least as many CPTs than nodes, i.e

there are exactly ♯nodes CPTs and ♯ci-arcs CITs.

Under these conditions, we construct structurally
valid LCP-nets, i.e., acyclic graphs, with a number of
arcs less or equal to the number of nodes minus 1
(♯nodes − 1).

4.3 LCP-nets semantics

The LCP-net semantics defines how a structurally valid
LCP-net is used to compute the global utility function
it is expressing. The CPT (attached to an LV ) supplies
with a local utility for this LV . Let lu be this local utility
which is also an object of LV type. It is computed thanks
to an inference engine using the aforementioned rules.

So we get on the one hand an LCP-net that expresses
the preferences and on the other hand p local utilities
denoted by the tuple:

LU = 〈lu1, lu2, . . . , lup〉

Then each node of L is associated with a weight w,
i.e., we obtain a weight vector W :

W = 〈w1, w2, . . . , wp〉

where wi depends on the node depth (see Section 5).
W is combined with LU to obtain the global utility

associated to an outcome o denoted GU o.
GU o = Agg(LU o, W ), with Agg a weighted

aggregator such as an OWA operator (for example a
simple weighted average aggregation).

A local utility is either a linguistic term, or a
linguistic 2-tuple, or a number corresponding to the
defuzzification (through operator d) of the subset: lu

equals 〈VU ,D(VU ), SVU
〉 and denotes either µSVU

, or
(SVU

, α), or d(µSVU
) with µSVU

the membership function
of SVU

such that:

µSVU
(y) =



















⊥(µS1
VU

(y), . . . , µS
η

VU

(y))

if the η rules are independent
⊤(µS1

VU

(y), . . . , µS
η

VU

(y))

otherwise

with y ∈ D(VU ), ⊥ a triangular conorm and ⊤ a
triangular norm.

For sake of simplicity, we assume that lui = µSVUi

(y).

GU o is thereof either a linguistic term or a number. We

Algorithm 1 Valuation algorithm

Require: o is a tuple 〈SV ′

1
, . . . , SV ′

p
〉, SO is the set of o,

L is valid
1: for i = 1 to p do
2: compute wi and add it to the weight vector W
3: end for
4: for each outcome o ∈ SO do
5: for each table CPT (LV i) or CIT (LV i) do
6: inject observed values of o and apply an

inference such as the generalized modus ponens,
7: compute and retrieve the set of lui for this o.
8: end for
9: compute and retrieve GU for this o

10: end for
11: return the set of GU , one per outcome

assume that in the case where it is a linguistic term, it is
always possible to find a defuzzification operator d that
provides for a number.

Considering that the rules are independent and
applying the generalized modus ponens (GMP),

µSVU
(y) =

sup
(x1,...,xN )∈D(V1)×···×D(VN )

n

⊤

h

g(µS
V ′

1

(x1), . . . , µS
V ′

N

(xN ),

Φ(g(µS1
V1

(x1), . . . , µS1
VN

(xN )), µS1
VU

(y))
i

∨ . . .∨

⊤

h

g(µS
V ′

1

(x1), . . . , µS
V ′

N

(xN ),

Φ(g(µS
η
V1

(x1), . . . , µS
η
VN

(xN )), µS
η
VU

(y))
i o

with µX(x) the membership function of element
x ∈ X, Φ any fuzzy implication, V ′ the real variables
observed (retrieved, given by the user), SV ′

1
the linguistic

term associated to the first variable (V ′

1) observed and g
an aggregation operator such as a triangular norm (min
for example). Let us precise that the linguistic terms
of the real variables observed SV ′ can be of two types.
If the LCP-net deals with fuzzy sets, SV ′ are possibly
modified2 fuzzy sets. If the LCP-net deals with 2-tuples,
SV ′ are 2-tuples (si, α) with α possibly different from
zero.

Thus an outcome o is actually a tuple 〈SV ′

1
, . . . , SV ′

p
〉.

The valuation algorithm that permits to compute the
global utility factor for each outcome is defined as follows
(see Algorithm 1). First thing to do is the computation
of the node weights wi, i.e., the weight vector W . The
observed values are then injected in the fuzzy inference
system that gives local utilities, one per node. Each
local utility is combined with its associated weight and
a global utility is then obtained thanks to Agg .

5 Properties for the LCP-nets

This section examines in more details conditions on
utility values that make them compatible with the
preferences expressed through the arcs, and then looks
at ways to compute them.
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5.1 Weights and the CP-condition

As in UCP-nets, the use of utilities in CPT, rather
than order relations in other kinds of CP-nets, can
come in contradiction with the preferences expressed
through the arcs. The underlying concept is the one of
dominance, which is better understood through an UCP-
net example.

Example Consider the two following pseudo-UCP-nets
that define two preference sets for the binary variables
A, B:

?>=<89:;A

��?>=<89:;B

fA a ā

4 5

fB a ā

b 8 2
b̄ 9 1

?>=<89:;A

��?>=<89:;B

fA a ā

5 10

fB a ā

b 4 2
b̄ 3 1

UCP-nets tables are filled with utilities taken from R,
and the global utility function is computed by adding the
values from the different tables that provide for its GAI
decomposition. For instance, GUab = fA(a) + fB(ab) =
4 + 8 = 12 with fX(·) the value of factor at the level of
X variable. On the left side, the cp-arc from A to B
makes a better assignment to A more preferable than a
better assignment to B, so ā is preferred to a given their
respective utilities. Yet, when we compute the global
utility of ab, GUab = 12, it is better than any one of
āb or āb̄, i.e., GUāb = 7 and GUāb̄ = 6. In this case, we
say that the utilities defined in fB invert the preference
expressed by the cp-arc from A to B. One can see that
the UCP-net on the right hand side does not exhibit such
an inversion. �

The pseudo-UCP-net on the left side in the example
is not a UCP-net, as it does not ensure the CP-condition
(Boutilier et al., 2001), while the one on the right is.
Intuitively, the utilities in the right UCP-net ensures
that any potential gain given by changing the choice for
A in fB will exhibit a more important loss in fA, thus
refraining the decider to make this change. In the UCP-
net terms, this property is called the dominance of a
node over all of its children, a property that is adapted
to the case of linguistic utilities of LCP-net as follows.

Definition (adapted from (Boutilier et al., 2001)) Let
X be a variable with parents U and children Y =
{Y1, ..., Yn} and let Zi be the parents of Yi excluding
X and any element of U. Let Z =

⋃

Zi. Let Ui be the
subset of variables in U that are the parents of Yi. We
say that X dominates its children given u ∈ D(U) if, for
all x1, x2 such that fX(x1,u) ≥ fX(x2,u), then for all
z ∈ D(Z), for all 〈y1, ..., yn〉 ∈ D(Y), we have:

δ(fX(x1,u), fX(x2,u)) ≥
n

∑

i

δ(fYi
(yi, x2,ui, zi),

fYi
(yi, x1,ui, zi))

(1)

X dominates its children if this relation holds for all
u ∈ D(U). �

Based on this definition, the following proposition
establishes how a fully valid LCP-net respects the CP-
condition.

Proposition (adapted from (Boutilier et al., 2001)) Let
L be a DAG over {Vi} whose CPT reflect the GAI-
structure of the utility function it defines. Then L is a
LCP-net iff each variable Vi dominates its children.
Proof: see (Boutilier et al., 2001). �

Observing this condition puts an annoying burden
over the elicitation process. Boutilier et al. have shown
that stronger but simpler conditions can be adopted
to facilitate the elicitation. If the domain of utilities is
normalized to [0, 1], then, for each X and instantiation of
its parents u, they show that there exist a multiplicative

tradeoff weight πu

X and additive tradeoff weights σu

X such
that the global utility function obtained by applying
these weights to the values of the CPT respects the CP-
condition and thus always gives a UCP-net. Using only
multiplicative tradeoff weights gives an even stronger
condition but allows to ensure the CP-condition on LCP-
nets merely by a careful choice of the weights used to
aggregate the local utilities, therefore freeing the users
from this burden.

Proposition For any LCP-net, there exist weights
w1, ..., wp such that the global utility function respects
the CP-condition.

Proof: The proof is constructive, exhibiting a set of
weights that ensures the respect of the CP-condition.
Consider the equation 1. Let A be

A = min
x1,x2

δ(fX(x1,u), fX(x2,u)) (2)

then if each of the terms in the right hand side sum in
equation 1 is affected of a weight A/n, observe that the
inequation will always be verified. Indeed, as the utilities
are normalized to [0, 1], then 1 is an upper bound of
δ(fYi

(yi, x2,ui, zi), fYi
(yi, x1,ui, zi)), so

n
∑

i=1

δ(fYi
(yi, x2,ui, zi),

fYi
(yi, x1,ui, zi))

≤
n

∑

i

1 = n (3)

And if we multiply this result by the weight A/n, we
get A as an upper bound for the right hand side of the
inequation. As A is taken as the minimal value for the
left hand side, the inequation will always be true.

Let Vl, l = 1, ...,m be the partition of the set of
variables V into the levels 1, ...,m of the LCP-net, then
the weights that are the solution to (nodes on the same
level have the same weight):

wl = wl−1







min
V ∈Vl

min
v1,v2∈TV ,u

δ(fV (v1,u),
fV (v2,u))

max
V ∈Vl

♯C (V )






(4)

for l = 2, ...,m, and

m
∑

1=1

(♯Vl)wl = 1 (5)
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where C (V ) is the set of children of V and ♯ the
cardinality operator. Then the CP-condition will hold on
the LCP-net because the decrease in the weights over
the levels just implements the above necessary condition
for the weighted inequation to be always true. �

Indeed, this way to look at LCP-nets considers
them as discretized into their linguistic terms. In
general, outcomes are not restricted to take only their
values among the linguistic terms of variable definitions,
but rather observed values over the entire continuous
domains to give utilities also covering the entire
continuous domain D(U). In the continuous domain
case, the CP-condition is more subtle. Intuitively, the
dominance requires that for all values of the parent
variable X and all values of its children Yi, any changes
in the value of X that would give better utilities in
the tables of the children would give a more important
loss in utility in the table of X. Such a condition
can be expressed using directional derivative: in any
direction changing the values of the outcome where the
gradient is positive among the CPT of the children, if
the gradient found for the projection of this direction
onto the dimension X in its CPT is negative, then it is
larger in absolute value than the former. The following
therefore adapts the above definition to the continuous
case of LCP-nets.

Definition (continuous domains case) Let X, U,
Y = {Y1, ..., Yn}, Zi, Z and Ui as in the previous
definition. For all variables V , let FV be the
functions from D(Pa(V )) ×D(V ) → D(U), defined from
their associated CPT given the underlying fuzzy
inference system, which are derivable everywhere, and
FY(y, x,u, z) =

∑n

i=1
FYi

(yi, x,u, z).
We say that X dominates its children given u ∈ D(U)

if, for all x, for all z ∈ D(Z), for all y = 〈y1, ..., yn〉 ∈
D(Y), for all vectors b in the space D(Y) ×D(X) ×
D(Z) and its projection b̂ onto the dimension D(X),

then if b̂ · ∇fX(x,u) < 0, we have

| b̂ · ∇fX(x,u) | > b · ∇FY(y, x,u, z) (6)

where ∇ is the usual gradient operator, and
the directional derivative obtained by the scalar
mutiplication of the direction vector b and the gradient
vector.

As before, X dominates its children if this relation
holds for all u ∈ D(U). �

Unfortunately, this condition is very difficult to
verify. The form of the functions FV depends upon the
underlying GMP used to do the fuzzy inference and
it also depends upon the shapes of the fuzzy subsets
that are adopted. Cases that do not respect it are
easy to construct. It is also very difficult to get an
analytical definition of these functions, that would be
required to verify the condition. Moreover, expressing
simpler sufficient conditions that would allow for the
assignment of weights to guarantee the CP-condition, as
it has been done in the discrete case, remains an open

problem. In practice, when using for example Mamdani-
style GMP over well-spaced triangular fuzzy subsets, the
weights computed for the discretized case in the previous
definition appears to also respect the CP-condition for
the continuous case.

5.2 Fuzzy interpretation of weights

The algorithm for computing W can be based on a BUM
(Basic Unit-interval Monotonic) family function (Yager,
2007). A BUM function fBUM is a mapping from [0, 1]
to [0, 1] and assumes the following properties:

• fBUM (0) = 0

• fBUM (1) = 1

• fBUM is increasing
(i.e., if x > y then fBUM (x) ≥ fBUM (y))

So weights W are computed thanks to fBUM in the
following manner:

wi = fBUM (i/p) − fBUM ((i − 1)/p)

The chosen fBUM function can be fBUM (x) = x (in
this case, all weights equal (1/p) with p the number of
nodes) ; or fBUM (x) = x3 (in that case, w1 is very small
compared to wp) ; or fBUM (x) =

√
x (in that case, w1

is the greater weight). To be able to analyze the choice
of fBUM , we can compute a measure of orness on this
weight vector (Yager, 1988):

orness(W ) =
1

p − 1

p
∑

i=1

(p − i)wi

This measure, between 0 and 1, allows us to express
to which extent the aggregator using these weights
resembles an OR. For example, when fBUM (x) = x,
orness(W ) = 0.5. But when w1 is much bigger than the
“following” weights, orness(W ) tends towards 1.

As in the CP-nets, the deeper we go, the smaller the
weights: we will then choose a vector W whose measure
orness is between 0.5 and 13, i.e., fBUM (x) =

√
x or 3

√
x,

etc.
Assigning weights to nodes of a graph is slightly

different from a classical weight assignment to values.
The difference is in the order of the values. In an LCP-
net graph several nodes can have the same depth, so the
order is not total. That is why assigning w only thanks
to a BUM function, even appropriately chosen, doesn’t
permit to completely answer our problem, since nodes of
the same depth would be discriminated.

We apply a BUM function such as the associated
w be decreasing (wi > wi+1, with i ∈ [1, p]). Then for
every node of the same depth, we sum their associated
weights and make an equirepartition of the obtained sum
between these nodes.

Thus, every constraint is fulfilled, by constructing
weights through fBUM :
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•
p

∑

i=1

wi,li = 1 with li the depth of node i, li ∈ [1, L]

and L ≤ p

• ∀i ∈ [1, p],∀li ∈ [1, L],

{

wi,li > wi+1,li+1
if li 6= li+1

wi,li = wi+1,li+1
otherwise

6 Queries over LCP-nets

The two major uses of preference networks are to
compare two outcomes and to look for an optimal
outcome. The LCP-nets algorithms for these two kinds
of queries are now presented.

6.1 Dominance testing

A basic query with respect to the LCP-net model is
preferential comparison between outcomes. In order to
perform the dominance testing, we shall prove that an
outcome o1 can be found as being preferred to another
outcome o2.

In the theorem that follows, the notations used
are those from the sequent calculus (Gentzen, 1935).
Sequents are expressions of the form Γ ⊢ ∆, where Γ and
∆ are (possibly empty) sequences of logical formulas. A
statement ∆ follows semantically from a set of premises
Γ (Γ |= ∆) iff the sequent Γ ⊢ ∆ can be derived by the
above rules. And with the horizontal lines, we proceed
to sequential derivations.

Theorem.
Given an LCP-net L and a pair of outcomes o1 and o2,
we have that L |= o1 4 o2 iff GUo1

is weaker than GUo2
.

We say that o2 is preferred o1 and that o2 dominates o1

with respect to L.

L ⊢ luo
1 = µSV o

U,1
. . . luo

p = µSV o
U,p

L ⊢ LU o = 〈luo
1, . . . , lu

o
p〉

(7)

L ⊢ LU o1
= 〈luo1

1 , . . . , luo1

p 〉
L ⊢ LU o2

= 〈luo2

1 , . . . , luo2

p 〉
L ⊢ ∆(LUo1

,W ) ≤ ∆(LUo2
, W )

(8)

L ⊢ ∆(LUo1
,W ) ≤ ∆(LUo2

, W )

L ⊢ d(GUo1
) ≤ d(GUo2

)
(9)

L ⊢ d(GUo1
) ≤ d(GUo2

)

L ⊢ GUo1
4 GUo2

(10)

L ⊢ GUo1
4 GUo2

L |= o1 4 o2

(11)

This means that starting with a well-formed LCP-
net, i.e., a valid LCP-net, it is always possible to
infer whether an outcome is preferred to another one.
Of course, that doesn’t mean that in all situations,
indifference is impossible. Indeed, if two outcomes are
very close (granularity would be too coarse to distinguish
between them) then both will be equally chosen as the
best ones.

6.2 Optimization query

After stating precisely the problem, the optimization
algorithm is presented in two steps, global optimization
and per CPT local optimizations, before looking forward
to remove the current underlying hypothesis.

6.2.1 Problem statement

The outcome optimization query on a LCP-net defined
over a set of variables V = {V1, ..., Vp} consists in
finding the outcome o = 〈v1, ..., vp〉 such that ∀o′ 6=
o, o < o′. In CP-nets, where the domains are discrete
and finite, this amounts to select the most preferable
tuple of values among the combinatorial set of possible
tuples. As LCP-nets are defined over linguistic variables
which themselves have continuous domains, optimization
queries can take one of two flavors:

• a linguistic flavor, consisting in finding the most
preferable outcome defined over the linguistic term
sets, or

• a fuzzy logic flavor, consisting in finding the most
preferable outcome defined over the (infinite and
continuous) set of fuzzy subsets for every variable.

Note that finding the optimal crisp outcome is just a
special case of the second flavor, albeit a bit simpler as
crisp values are represented by singleton fuzzy subsets.

As LCP-nets are defined over linguistic variables
and foster a qualitative assessment of preferences, the
optimization queries tackled in this section is from the
first flavor. Hence, the problem statement is: given a
LCP-net L, find the optimal outcome o = 〈v1, ..., vp〉
such that v1 ∈ TV1

, . . . , vp ∈ TVp
.

6.2.2 Forward sweeping over LCP-nets

Performing optimization queries over LCP-nets inherits
much of the properties of UCP-nets. As for UCP-nets,
the fact that LCP-nets satisfy the CP-condition enables
a forward sweep procedure to optimize each variable
in turn from the outmost to the inmost level in the
DAG. In UCP-nets, a simple topological sort of the
nodes in the DAG produces an order in which variables
can be optimized. In LCP-nets, it is not as simple,
because of the ci-arcs, which are undirected and becomes
directed i-arcs only when the variables they depend upon
receive values. Such values will only be known during the
forward sweep, so the topological sort must be done in
parallel with the optimization.

Thus the forward sweep algorithm for LCP-nets
becomes the following. Let LV, cp, i, ci be initially
the whole set of variables, cp-arcs, i-arcs and ci-arcs
respectively in the LCP-net, then

1. Extract a variable LVi from LV such that for all
LVj ∈ LV \ {LVi}

• −−−−−−−→
(LVj , LVi) /∈ cp
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•
−−−−−−−→
(LVj , LVi) /∈ i

• (LVj , LVi) /∈ ci

2. Let LVi = 〈Vi,D(Vi), TVi
〉, find vi ∈ TVi

that gives
the highest utility in the CPT of Vi given
the partial assignment to the previous variables
LV1, ..., LVi−1.

3. For each ci-arc in ci which selector set LVk ⊆
{LV1, ..., LVi} of variables already optimized,
convert the ci-arc to the i-arc selected from the
optimal assignment to LVk.

4. Delete from cp and i all arcs originating from LVi.

5. Repeat steps 1 to 4 with LV \ {LVi} until it
becomes empty.

This algorithm gives the optimal outcome 〈v1, ..., vp〉,
subject to the proper implementation of step 2, which is
tackled in the next subsection.

6.2.3 Abductive reasoning over CPT

The step 2 in the forward sweep algorithm calls for
finding the values that will give the best utility. Because
of the fuzzy inference systems, this turns out to be
a complex task. To do this, we have to reverse the
inferences in order to obtain the linguistic term defined
by µSVm+1

(x) that gives the best possible conclusion,
knowing that the m first nodes have been already
assigned. This depends on the way (i.e., with a triangular
conorm or norm) the aggregation of the rules is
performed.

In our running example, it should be a purchase
that would propose PL as price, given that delivery time
equals to Dimm.

This reverse inference is an abduction problem. Peirce
(1839 – 1914), a famous logician, defined the abduction
this way: in case “C is true if A is true”, and C is
observed (C is called the manifestation), then there is
some reasons to think A may be true.

Since, many works have focused on this problem.
Miyata et al. define cause-and-effect relationships. They
try to give a definition of maximum and minimum
fuzzy sets which can explain the manifestations (Miyata
et al., 1995). In our case, the manifestation is the
best outcome. Revault d’Allonnes et al. also tried to
construct a set of likely explanations for a manifestation
(Revault d’Allonnes et al., 2007), but they noticed
that it is very hard to extend formal fuzzy abductive
results to different classes of implications. A set of
explanations can be constructed only for ‘deduction-
coherent’ implications, not for all the implications
(Revault d’Allonnes et al., 2009).

All these studies show us that it is not possible to
prove the outcome optimization query without fixing
some conditions on different entities, such as:

• the shapes of all the fuzzy sets (considering only
linguistic 2-tuples shall be a great simplification),

• the implication operators,

• the operators used to aggregate the rule
conclusions,

• the operator Agg that aggregates the local utilities
lu thanks to vector W .

The conditions to transform this general abduction
problem into a simpler one to solve the optimization
queries are the following:

(C1) As in the CP-nets, we always want clear
preferences, i.e., no indifference in the CPTs (the
highest preference among the different values of
the variable is always unique, for any partial
assignment of its parents).

(C2) All the observable values are bounded and the
whole set of values they can take is represented in
the CPTs. The union of the whole values they can
take covers the entire universe, instead of being
strictly included in it.

(C3) All the variables are expressed through fuzzy sets
or linguistic 2-tuples that fulfill Ruspini condition
(Ruspini, 1969), i.e., that get into a well-formed
partition.

Under these conditions, the implications of the rules
become equivalences in the case where conclusions are
equal to the highest preferences (and only in this case).
So the optimization query problem becomes: for each
table, look for the tuple of fuzzy-sets (or linguistic 2-
tuples) among the premises that maximize the user
preferences. Inside the CPT of node X, knowing the
(best) values taken by Pa(X), we only have to search
for the highest preference (we recall that it is unique,
according to (C1)) in one dimension (the one of X).
This permits to abduce the (best) associated value for
X (we recall that the implications can be considered as
equivalences according to (C2)) and to save this value.

7 Conclusion

In previous works, we have proposed the LCP-nets,
a new model to express conditional preferences over
variables of continuous domains in a qualitative way,
thanks to the linguistic modeling of both the problem
variables and the utilities expressing user preferences.
In this paper we have established LCP-nets on a
firmer ground by formally defining their structure, their
semantics, and their validity. We have also formalized
the dominance testing and optimization queries (for a
discretized version of the problem in this latter case), in
the line of previous CP-nets models.

For LCP-nets themselves, future work will essentially
have to address the optimization query and the
hypothesis that we have put on it. First, we will need
to complete the current assessment of the conditions to
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be put on the inference process used to map outcomes
to local utilities through their conditional preference
tables in order to guarantee correctness of the global
optimization. Also, we will address the extension of the
optimization query to the continuous outcome case.

Another line of work is the comparison of LCP-nets
with other models for expressing conditional preferences,
especially at the frontier between the CP-net family of
models and the fuzzy preference models. As LCP-nets
bridges the gap between the two worlds, we conjecture
that they will allow for a more precise comparison
between the two, in order to better characterize their
respective limitations, advantages and disadvantages.
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1Cp-arcs are symbolized by a simple arrow, i-arcs by an
arrow with a black triangle ◮ on it and ci-arcs by a line
with a black square � on it.

2modified through linguistic modifiers.
3In our implementation, the obtained weight vector verifies
this criterion.


