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Risk-hedging using options for an upgrading
Investment in a data network

Frédéric Morlot, Thomas Redon, Salah Eddine Elayoubi
+33.1.45.29.68.10
frederic.morlot@orange-ftgroup.com
Orange Labs, 38-40 rue du Général Leclerc, 92794 IssyMa@sgineaux, France

Abstract—In this paper, we illustrate how a mobile data to hedge against the risk that demand evolves in an unexpecte
network operator can plan an upgrading investment to anticpate  way leading to a premature investment decision or a too late
explosions of the demand, taking into account the expected one. To perform that, we introduce an American call that

generated profit and the customers satisfaction. The former I it th bil ton to b . t
parameter grows with the demand, whereas the latter sinks if 2'OWS IS OWner (the mobile operator) to buy an equipmen

the demand is too high as throughput may collapse. As the at & fixed price, possibly less than the real one, until a ma-
equipment price decreases with time, it may be interestinga turity date. Given the profit analytical model and the opton

wait rather than to invest at once. We then propose a real optin parameters, we propose a dynamic programming method to

strategy to hedge against the risk that the investment has 0 yica the option. At the same time, we obtain the expected
take place earlier than expected. At last, we price this optin best investment date ’

with a backward dynamic programming approach, using recent : . .
improvements based on least-squares estimations. Note that in a previous work [2], we already used the profit

: . . model to find the best investment date by an actualization
Index Terms—data network, investment, real option, dynamic . . . . .
programming, least-squares. algorithm. However, we did not use risk-hedging nor dynamic
programming. Note that d’Halluin [1] presented a work on a
method to determine the best investment date in a wireless
o o o network. His approach was based on dynamic programming,
Today, it is expected that the data traffic will be signifiéant pt he did not introduce any risk hedging method nor an option
growing in mobile networks. The total amount of transferregyicing. Conversely, Longstaff & Schwartz [11] introducad
data is supposed to grow exponentially, as it has been ¥:ing method for american options, but his work was not

soaring volumes of data to be transferred, mobile operator . . . . . )
must periodically upgrade their equipments to offer highersrhe remainder of this paper is organized as follows: in a first

throughputs and avoid blocking problems. However as tI§8ction, we build an analytical model of the operator’s profi

demand does not increase steadily and must be consideregaassed on an HSPPAt nit\/\(/jork. Thgn \iv'([ehlntr.oSuie n sec:!on I(lj
partly random, the expected profit is difficult to be forecast an american option to hedge against tne risk aforementione

In this article, we consider upgrade investments in a HSD e define the underlying asset and the option's payoff. To

cellular network. Note that, when demand increases, the aBf'ce the option we use a risk-neutral approach, whose math-

communication duration becomes longer and longer for ea%Wat'cal Justlﬂcat!on lies in th_e appendix. In s_ectlon me_ .
user until the network is saturated. The individual thrqugth show how dynamic programming can help solving the pricing

experienced in the network may become very small. Cﬂ{oblem, and the best investment date problem as well. In

the other hand, as the demand rises, the operator increfaeecg'on IV, we present the numerical results before coreid

its profit. When the network starts experiencing saturati € paper.
problems, throughput and profit may fall. The operator must
then upgrade its network by adding new frequency carriers,
facing the following trade-off:
« The later the investment, the lower individual throughputs  |I. THE BASIC MODEL: OPERATOR S PROFIT AND
and customer satisfaction. Permanent non-satisfaction INVESTMENT COST
will result into churn and additional loss of profit.
« The sooner the investment, the more expensive the costs
of upgrade elements. The operator profit depends on the amount of data flowed
This article aims at modeling analytically the trade-offe Wby the network. It thus depends on the mean traffic demand
first derive analytical values for capacity, individualdhghput per cell (in Mbits/sec/cell). We denote it by,, where the time
and satisfaction as a function of the demand, and use thém 0, 1... variesdiscretely for example day by day. Note that
to calculate operator’s profit, taking into account randessn profit does not necessarily increase when demand grows. It in
of the rising demand, and decrease of network element cofsist also depends on the customer satisfaction, that wé shal
according to time. We second introduce a real options methecalculate hereafter.

I. INTRODUCTION



A. Traffic Demand 12

We assume that the network is formed by circular cells o
radius R, with a uniformly distributed demand. We have:

X =\ x E[E],

0.8

where )\; is the arrival rate per cell at the dateand E[¢] 06 1

is the mean size of a typical data flow. In the following we
assume thaf[¢] remains stable during), T], so thatX; is
proportional to\;. This model is strictly equivalent to the case
where the number of active users is constant, but they taitia
connections more often. 0
To model the evolution of(X;).cn, let us consider it
as the dailysampling of a continuous stochastic process
(X (t, W;))ser+ . Usually, one monitors the 24 demands over
one hour each, keeps the second or third highest, and nyultiply. 1.  Peak data rate against distance to the center of the Tde
it by a given factor. As many random phenomena related digtance an_d the rate are normalized w.r.t. the cell's mdind to Cp.
a social behavior (e.g. [3]), we assume tHatt, ;) is a 2/°= 3 Mbitsisecs = 10%.
geometric brownian motion (see [6] page 88):

0.4

Normalized Peak Data Rate

0.2
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Normalized distance to the center of the cell

X(t, W) = moelo=/2)tteWe 4 e R+ o if p; < 1, the cell is underloaded and the number of

) ] o active users tends to a finite stationary regime.
whereW, is a standard brownian motioa,is the trend of the

demand and is its volatility. We are naturally led to introduce:

To evaluate the customer satisfaction, let us first recall th C(r)

flow throughputy;(r) a user can expect at distangefrom

the center of the cell as carried out in [5]. The resource 8HCh thatp, = X;/X,n... Hencep, <1 <= X; < Xy

a single downlink data channel is time-shared betweeneacth®t Us denote the flow throughput of users at distandgy
users. Denote by, the fraction of time the BS transmits?:(7) (it is the ratio of the mean flow size to the mean flow
to useru, with 3, ¢, = 1. The data rate of user is then duration). Then, it can be shown (see [5]) thatpjf< 1:

Cy(r) = C(r)x ¢y, whereC(r) is the peak data rate, obtained _ _

in t(hZE abS((en)ce of any othér)user in the cell, i.e.,dgr= 1. 7(r) = C(r)(A = po)- @
When there arer users, the "fair power” sharing is definedBy assumption, the mean flow size (the numeratorydf))

—1
B. Recapitulation of the HSDPA model R
P Xma;ﬂ = 7TR2 < 27T7ad7a> ) (1)
0

by ¢, = 1. We have: does not vary significantly, whereas the mean flow duration
7 I( (the denominator) does as the load increases. Thus, if we

) T) oo
C(r) = min <Oo, n X m) , want to compute the mean flow throughput, the significant

number to calculate is thearmonicmean of+.(r) over the

where: cell (balanced by the proportion of active users betweand
« () is the maximum peak rate (which depends on channelt dr). In other words, we have to calculate the arithmetic
bandwidth and coding efficiency) mean of1/~:(r) over the cell. From (2) we deduce:
o Z is the cell chip rate 1
e b is a lower bound for energy-per-bit to noise density _ 9 B ordr
. Tt =R N = Xonaz —Xt,
ratio (E,/No) o e(r)
« I'(r) is the path loss between the BS and user
« 7 is the thermal noise to received power ratio and of course, in overload; = 0. Finally, we can summarize
« I(r) is the interference to received power ratio. the whole calculation by:
Fig. 1 shows the peak data rate in a hexagonal cell. We only T = (Xmao — Xo) T, A3)

take interference from immediate adjacent cells in acgount
and we assume that the path |d§3s) decreases according towherez™ = max(z,0). Note thaty; = 0 if and only if the
1/r4. cell is saturated.

We define the cell load as (see [5]):

X: (B 2rrdr C. Customers satisfaction

pt = R2 C : . . .
0 0 (r) Now we can compute the customer satisfaction, which can

« if px > 1, the cell is overloaded and one can show ([5peasonably be supposed to depend?gn Since subjective
that the number of active users grows indefinitely; argatisfactions have been shown to be more sensitive to small
individual data rate tends to zero, and the cell is saturatedriations at low throughputs than at high throughputs egiéd



and Lagrange propose in [8] to model the customer satisfactiE. Upgrading Investment

as a negative exponential function of the throughput: As can be seen from Figure 2, if no upgrading action

S, — B/ (Xmao—Xo)* is taken, the profit will progressively tend to zero. Once
the operator decides to upgrade, he can install additional
For example,s can be chosen agl = log(2) - 71,2, where transmitters operating on different frequency bands. Ichsu
71,2 is the throughput value ensuring a satisfaction50f,. a case we obtain a higher value &f,.., so that:
Once again, note thaf; = 0 if and only if X; > X,,.4., i.€., )
if and only if the cell is saturated. m = 6 i min(Xy, X/, )€ Kmaw =X,

_ _ The upgrading cost is a decreasing function of time. The
D. Daily Profit decrease of the cost is due to many factors, for example the

Let us recall thatX; is sampled day by day, for exampléR&D progress, and also the serialization in the manufaoguri
during the second or the third highest peak hour. Withifh@in. Moore’s law states that electronic devices’ capacit
24 hours, the operator transmitsmin(X;, X,nqz) t0 active doubles every 18 months. So in this paper we assume it
users, wherg: is a multiplicative factor between the peak houfl€creases exponentially:
and the whole day. Typically, we can consider that the peak e
hour represents 25 % of the total daily transfer. This leads t K(t) = Koe™,

u =~ 43600 ~ 14000 sec. Since taxation is applied to the h is the d iati t
volume of transfers and not to the duration, the gross dal\f‘f/ erec Is the depreciation rate.
profit per cell is given by:

TITOSS — § min(Xt,Xmam), (4) F. Total Profit

where 5 is the transfer price (say in $/Mbit). However the Let us introduce dat&’, at which the investment becomes

gross profit should be weighed by the customer satisfaod;ionotbsoIete (in other words, the proposgd investment cannot be
. C .. undertaken aftefl’).If we denote the investment date by
account for the quality of the communications. Tt profit

s thus calculated as the productof** by s,: (0 < to < T), the total profitlly(¢y) actualized at the date
) t="Tis:
et = 6,“/ min(XhXmam)eiﬂ/(Xmazixt)Jr- to—1 T
Mr(te) = Y &T r + > &7, (5)
t=0

If S; =0, i.e. if the cell is saturated, the net profit is null. If =

the satisfaction is maximal, i.eS; = 1, the net profit is equal
to the gross profit (4). To sum up we have: where ( is the actualization rate. For simplicity, we assume
that ¢ is constant during the perigd, 7.

T = (SIU/Xte_B/(Xm“m_X') if X: < Xnmaz
m =0 otherwise

IIl. RISK-HEDGING USING ANAMERICAN OPTION

A. Externalizing the financial risk

As shown above, there is a tradeoff between the growth
of the demand (encouraging to invest) and the depreciation
of the equipment cost (encouraging to wait). Then the risk is
to be led to invest while the equipment is still expensive. In
this section we show how to hedge against this risk using an
American option. This option, acquired from a third parieli
051 a bank, gives us the right to buy the equipment at pfice

instead of K(¢), until datet* = t(K*) (see Fig. 3). Let us
recall that the operator has the right but not the obligatmn
0 : 2 3 s exercise this option, but has to pay in returrp@miumto
Mean Daily Demand [Mbits/sec/m?] the bank, denoted b¥. If he has to invest before dat&, he
will exercise the option, give(* to the equipment provider
Fig. 2. Daily Profit generated by deman&.... = 3 Mbits/secicel, and the bank will pay the difference. Otherwise, he will not
5 = 0.1 $/Mbit, 1 = 14000 sec,3 = 0.7 Mbit/sec (which corresponds to exercise the option and he will lose the premium, but he still
m/2 = 1 Mbit/sec). can invest.
In this section we will try to answer the two following
Intuitively, as the demand rises(; will increase as will the questions:
profit (Fig. 2). Then, the profit will decrease because the e« when is this option going to be exercised ?
unsatisfaction effect becomes dominant. o how much does it cost (i.e. calculai® ?

e Gross profit

154 N Net profit

Daily Profit [k$]




with:

T
v(t,x):/t 1E[e*<<57t>(ﬁ’(s,ws)_ﬁ(s,ws))m/t:x ds.
)

Note that applying the risk-neutralization approach wiica
require Novikov’s condition (see [7], page 65), which state

that:
1 T
E lexp(—/ 07 dt)
2 0

In the appendix D, we show that Novikov's condition is
verified in our specific case.

5

< +0o0. (20)

equipement cost

e 2) The risk-neutralization approachunder this condition,
let S([¢t,t*]) be the set of stopping times with values]int*]

and define the following process known as the Snell envelope:

Fig. 3. exponential decrease of the cost

B. Introducing the American option ;= sup Eq [e7Z(7)|F]. (11)

When is the option going to be exercised ? It depends on res((ttr)

the additional profit expected from investing to upgrade ttdere, Q* is the risk-neutral probability, whose density w.r.t.
network: at least, this additional profit has to be greatanthP, the historical probability, is:

K*. At datet, it can be expressed as follows: o -
dQ* 1 2
P = exp <—5/ 95 ds — / 95 dWS> .
ft] - (6) ’ ’

In fact, since we will have to simulate trajectories of the
Facing the decision to invest or not, the operator’s stsategsset beyond date® (until date T'), we will rather choose
is to compare the profit realized if investing with the valuthe probabilityQ, whose density w.r.tP is:
of waiting, typically to check that the traffic is not going
to decrease unexpectedly which would make the upgrading == dQ — — ex <__/ 62 ds _/ 0, dW) (12)

p
expenditure a sunk cost. This appears to be the classical ¢
problem of finding the exercise strategy for an Americ
option, with the following features:

S, =E VtTe =0 (7! (5, W) — m(s, Wy)) ds

aI(lote thatQ is indeed a probability measure, sifég/ L] = 1,
as 6, verifies Novikov's condition (see previous paragraph).

« t* as the option's maturity Note also thatQ* is the restriction ofQ to . (see [6],
e« K* as the exercise price or strike Theorem 9.1.2.), so that (11) still holds wif if ¢ < t*.
« S; as the underlying asset Then the premium of the option at any tintec [0,¢*] is
« (S; — K*)T as the option’s payoff, denoted #(t): given by [10]:
Z(t) = max{S, — K*,0} 7 I, = g [e=C0-02(r(t)| 7] (13)
C. Pricing of the American option whereT(t) is the solution of the maximization in (11)(¢t)

? interpreted as the optimal exercise strategy of the optio

The resolution of this problem appeals to classic Al iculated at date (D).

stochastics theory and the risk-neutralization approael:

[10][6].

1) Preliminaries: to detail this approach, let us introduce IV. THE DYNAMIC PROGRA"_AM'NG_ SOLUTION _ _
two progressively measurable procesggsand r;, respec-  As stated above, the problem is to find the stopping time
tively the expected total return on the asset and its viatil maximizing the option’s payoff under risk neutrality (Eqn.

so that: (11)). However, it is impossible to compuft) analytically,
dS; /Sy = pg dt + k¢ AWy (8) so we make use of a dynamic programming approach, as in
[11]. We recall that it consists in dividing the problem into
along with the market price of risk: two binary decisions at the final date: the "immediate”
0, = k7 (e — C). one and its generated value, and the "delaying” one and its

We obtain expressmns th' k; and @, in the appendlces A Note that if the option were a european option, the price & tavould

to C, where we show that: I, = Eg [efc(t*,t)z(t*) }—t}

' (t, W) — 7 (t, Wy)
% (tv Wt)

(see [6] page 65). But here, our option is an American opsonwe have to
generalize this result and to use the Snell envelope.

0, = —

)



continuation value. Then moving backward, and repeatieg th vaIuesC’]{,_1 on a constantS and S2, as in [11] (see
same binary decision, we obtain the expected optimal time appendix E). Let us denote the estimated expression by
which lies in an expected interval in which the investment Cxy_1(S5). The estimated cash-flow &t —1 is then given
should be undertaken [4]. We must then, at each moment, find by: ‘ ‘ ‘

two different values: the option’s payoff in case of investrn F{ | =max{Z}_;,Cn-1(Sy_1)} (14)

and the continuation value in case of waiting. o ] )
If it is optimal to exerce atty_1, then by convention

F}, becomes) (because the option can only be exercised
once).

CalculatingS; involves a complex integration (Eqn. (6)) that « for each timet,,, repeat the same process unti= 0.
cannot be performed analytically. We then use Monte-Carlo

A. Monte-Carlo simulations to generate the underlying aisse

simul_ations as follows: _ Let us denote byD,, the set of thej such thatZ/ = 0, and
o first we computa;gt,:z:) with Eqn. (9) fort € [0,¢*] and by I,, the set of thej such thatZ/ > 0. Here is a summary
T € [Winin, Wimaz] 2. of the whole algorithm:

o then we discretize timet = ty...txy with ¢, = 0 and
ty = t* = N 6t. After that we simulate/ trajectories

of S, underQ: thej-th trajectory is denoted byS7) and 1. simulate J trajectoriegS’) underQ
has the valueS] at timet,, = n §t. More precisely, we _ _
simulate (undef)) J trajectories of the historical brow- | 2. forj =1...J, putF}, = Z}

nian (W7) ), and then we comput§? = v(t,, W)
by interpolatingu(t, ). This is far more efficient than | 3. forn= (N —1)...1,0:
computing directly the integral, especially if we want to _
simulate a large number of trajectories, since we do not| 3.1.forj=1...J, calculateZ}:
have to computes each time again. To know how we -if Z), =0,7€On
interpolate a surface, see appendix F. -if 27 >0,j€l,

B. Continuation value and decision tree algorithm 3.2. proces®), and [, separately:

At time ¢*, the operator invests iy > 0. More generally, Vj € Op:
at a timet,, < t*, the operator has two alternative choices: | ——
either invest now and gef,, or wait and get the expected
continuation value, denoted hy,,. The generated cash-flow
is then given by:

Vj e I,

put F = e OtFI | - regressCy = e *'F/., onl,
S and S? to obtain a 2-degree
polynomC,, (S)

F,, = max{Z,,C,}. - put FJ = max{ZJ,C,(S)}
-if ZJ > C,(S), thenn is the
new investment date, so put
Fi =0 Vm>n

We already knowZz, by (7). As for C,, we use the Least
Squares Monte-Carlo (LSM) approach defined by Longstaff
and Schwartz [11]. This approach consists in writing the
expected continuation valu€,, as a general function of,,

(in our case we took a 2-degree polynom), taking informatida. Option premium

from the J cash-flows at, 1, and using the fact that: Averaging the F/, and using (13) and the law of large
Cp(S) = efg‘étE[F 1|8, = 8] numbers, we obtain the premiubhy, of the option:
J

whereF;, . is the (random) cash-flow of the optiontat, ;. To T, ~ 1 ZFJ‘.
obtain recursivelyC,,, we can write the following algorithm: N = 0

o atty, for each trajectoryy = 1...J, calculate the cash-

flow FJ, = Z3,. D. Expected investing time
« move one period back toy_;. For each(S7), check if  |nvestigating our decision tree, it can happen that for some

the option is "in the money”, i.e. iZ3,_, > 0. If itis ; we do not decide to invest befote. Then we will be lead

the case, calculate the continuation vaftie_, using the to invest between* and7(4). For such trajectories, we do not
cash-flow if investment is delayecd?-}'W1 = e—<5tFJ{,. know when the investment takes place. Furthermore, even for
Estimate then the general expressiorCaf_;(S) by the the other trajectories, additional information betweenand
LSM algorithm. This consists in regressing the found can be useful to adjust the value of the investment date.

For these two reasons, we decide to simulsgtdurther until
2to bind efficiently the brownian motion, see Appendix D.
3to perform that, assuming that the probability of our randgenerator is  4Note that in theory, it could happen that we never decide tesiy even
Q, we simulate a standard brownian moti@ﬂft@), and then using Girsanov's after 7. However, given the deterministic trend of the demand, isild
theorem (see [6], Theorem 9.4.5.), we build by recursion & bheownian mean that; remains extremely low. Considerations on the brownian onoti
motion (W) underP, such thatW; = WtQ - f0<s<t 0(s, Ws) ds. (see appendix D) ensure that in practice it will not happen.



T . Thus we perform one more time a backward dynamtbat the price increases withi. This was expected, since the
algorithm, that time betweef and 7", using: longer the option’s maturity is, the higher the risk for trenk
is, and then the more expensive the option is.
Z(t)= (S, — K@)* if t >t~ (15)
Z(t) = (S, — K*)*  otherwise B. Investment date

Finally, we obtain for each of the/ trajectories a best & T = —investment date
e

investment dately,. If T, > t*, it means that we have

invested without exercising the original option, wherefs i

T, < ot it means that we have exercised the option
Averaging theT , we obtain the expected investing time

under the risk-neutral probabilit¥g[Zin]. But for us, it is
more relevant to calculat@p|Ti,,]. Using (12), we obtain:

50 1

40 4

30 1

20 +

Investment Date (days)

J - K

Tinv:| 1 T

Ep|Tiv] =Eg |— | = —= v, 16 AN : : ‘ ‘ ' ‘ ‘

]P[ InV] Q |:LT N Z L",]T ( ) 00 10 20 30 40 50 60 70 80 90
t* (days)

Jj=1

V. NUMERICAL RESULTS Fig. 5. Investment date

In order to illustrate our algorithm, we applied it using the
free simulator Scilab (see [9]). We considered a HSDPA pureOn Figure (5), we represent the investment date versus
data network with a random growing demand, as describBécall that the date is obtained with equation (16), whére
in section II-A. We used the following parameters for ouappears in generalized functigh(see equation (15)), and may
computation: be prior to the investment’s date. It appears that the invest
« the investment can take place urifil= 150 days. date is very low for higher values of. This happens because
. the equipment can be purchased at the initial pride* is very low, thus it is all the more interesting to invest
K, = 300000 $, and its price decreases with a rate€arly. Theoretically, ask™* decreases slowly toward 0, the
of 50% per year. investment date decreases accordingly until reaching O for
« the actualization rate is fixed to 5% per year. t* = oo. However, as investment can only occur on a daily
. the traffic demand starts a, = 1.2 Mbit/sec/cell, and basis, this cannot be obviously observed on Figure (5).ssnle
increases with a drift fixed taw = 0.54% per day. Its We make computations for huge values®f the final date.
volatility is fixed to 0.01 day'/2. Its maximal value is Unfortunately, this is not reasonable, since these contipot
fixed t0 X,..: = 3 Mbit/sec/cell before the investmentwill be extremely heavy.
and toX’ = 8 Mbit/sec/cell after the investment. However, the lower the option’s maturity is, the later the
. the data"{ﬁgnsfer price is fixed to= 0.1 $/Mbit. investment takes place. The investment date may even lve late
. Wwe take a satisfaction parameter®f 0.7 Mbit/sec/cell. thant*. In that case, the option is not exercised. This can be

« we simulate 10000 different trajectories of the asset. explained as follows: when* is low, K*, the equipments
exercise price, is quite high. Thus, the option is not really

interesting. Rapidly the equipment’s real price will sinkder
K™, and within that short period it is better to take the risk of
waiting.

A. Option’s price

120.0

VI. CONCLUSION

100.0 4 In this work, we proposed a model for risk hedging when
dealing with investment under uncertainty in telecommanic
tion networks. In such a case, the risk comes from the random
60.0 4 evolution of the demand, possibly resulting in unexpected
explosions of the trafic leading to network saturation. Tddes
again this risk, the operator would buy an option from some

: : : : ‘ ‘ ‘ financial parts that gives him the right but not the obligatio
0 20 40 60 80 100 120 140 . . . . . .

¢ (days) of buying equipments at a given price, until a maturity date.

We calculate, using backward dynamic programming and a
least square approach, the premium of the option and the
expected investment date. Our results show that the option

On Figure (4), we represent the price of the option vetsus price increases \_/vith the exercise date, whereas th(_e mean
Recall that the price is obtained with equation (13), whire investment date sinks. As a future work, we aim at considerin

implicitly appears in functior? (see equation (7)). It appearsthe case where mul_tiple invest_ments are pos_si_ble: addirg mo
than one band, or implementing a more efficient technology

5That is the reason why we chogginstead ofQ*. (e.g. 3G LTE).

80.0 q

Premium (k$)

40.0

20.0

Fig. 4. Price of the option
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APPENDIX \
The purpose of this technical annexe is to prove that the

Q,

mathematical conditions for applying a risk neutralizatio

approach to price the American option are fulfilled. Prdgjse

there will be three main steps: 1- study the regularity of the Q A
function v(¢, z) from which the underlying asset is derived,
and give a differential equation checked by its derivatizs
deduce from b's lemma applied ta the expression of the
market price of riskd;, and 3- verify Novikov condition oi; 0

thanks to numerical simulations.

A. An explicit expression for(t, x) Fig. 6. Partition of the plane into two subséts and Qs.
Expression (6) of the underlying asset can be re-stated as
follows:
Sy = v(t, W, .
v =v(t, W), Proof: let us prove the property with! for example.
where we have introduced the function: o First we prove thatr is C*°(]0,+oo[xR). For all
T s0 €]0, 00|, let us introducewy, = h(sp), the number
v(t,z) =E [/ o(t, s, Wy) ds|W; = x] such thatX (sg, wo) = Xinaz:
t
with: owy = 10g(Xomaz/x0) — (o — 0%/2)s0
(s The points(sg, wy) define a lineA (see Fig. 6). Let us
_ C(s—t) (! _ 0, o
olt 5,w) = € (s, w) = (s, w)). also introduce the two subsets |6f +oo[xR:
In this section, we aim at giving a fully explicit expression
for the functionu(t, x), in order to study its properties in the Q1 = {(s,w)/w < h(s)}
following of the annexe. For this purpose, let us first swap Qs = {(s,w)/w = h(s)}

B . . ) . .
sum and expectation in the expressionvdf®). We obtain: These two subsets are situated respectively under and

T aboveA. On Qq, X (s,w) < X4 and we have:
v(t,z) = / E[o(t, s,z + Wy — Wy)|W; = ] ds,
t

2
02 a—Z-)s+ow
(s, w) = 5xoe(oz,T)SJrawe’ﬁ/(X’"“‘”*I“e( = )7

and, since the increments &f; are independent:

T and onQs, X (s,w) > X4, andm = 0.
u(t,x) = / E[o(t, s,z + W, — Wy)] ds On €, since:
t
T—t g _ _ o2
= / E[o(t, t + s, + Wips — Wi)] ds. aasX (e /)X ,
0 %X =X

Let us introduce another two functions: one can show by recursion over — p + ¢ that the

f(t,s,w) = o(t,t + s,w) derivatives ofr can be written:
and: 9 = Py q(X) e~ B/ (Xmas—X) (19)
OsPOw? (Xmaz — X)?"
u(t,s,x) = [ f(t,s,w)g(z, s, w)dw, a7
R where P, , is a polynom. Hence the denominator is
where g(z,s,.) is the gaussian density with mean and counterbalanced by the second exponential term in the
variances. We finally get: expression of the derivative of, so that the derivatives
T4 all tend to 0 in the neighborhood & and the transition
v(t, ) :/ ul(t, s, ) ds. (18) between(2; and; is C*°.
0
. . . . « Secondly we prove that each derivativerofs bounded.
B. Regularity and differential equation far Expression (19) is a continuous function of on
Let us first recall that: [0, X;max[, @nd is also continuous &,,... Hence, it is

bounded forX € [0, X4z Since:
Flt5,10) = €55/t + 5, ) — 7t + 5,10)) 0 e
9(z,s,w) = \/217r_3 e (w;:)Z X (1) =0, Ximas] C [0, Ximaal,

this achieves the proof.
Lemma 1: w(s,w) and 7'(s,w) are C*°(]0,+oo[xR),
bounded, with bounded derivatives SThis is possible becausg is positive, sinced < 7 < 7’



Lemma 2: for any two compact set§' C]0,+oo[,C’ C R,
we have the following majorations:

g

Vs e C, o l (w)
ai .
Ve e ', |53 < or(w)

wherey’! .~ and ¢! -, are summable oveR.

Proof: we only prove the first majoration, the second
one is exactly similar. One can show by recursion tggt
can be written:

gi a:stazk ,

where eachy; ;, varies continuously witfs. We want to bound
(20) whens varies within a compact sét = [a, b] C]0, +o0.

(20)

Since:
g &
‘asi Sg(x,s,w)2|ai,k(5)||w|kv
k=0
we deduce:
) d;
d'g 1 _ (wom)? k
/ e 20 max |a; k(S w|,
Ost 27a Z (Se[a’b]l H )l) v

k=0
from which the first majoration is immediate.

Lemma 3: f is C* w.rt. each of its variables € [0,T7,
s €]0,T —t[, w € R, and its derivatives are bounded.

Proof: this comes directly from Lemma 1. In particular, there
exist constantd(; and K} so that:

‘(Wf ot f

!
ot = hi ’ ‘asi < K

— K2

Since . ., is summable oveR, we deduce the deriv-
ability of v w.r.t. x, along with the second majoration,
taking:

Kic = Ky / VL oo (w) dw
R

Each denvatlve(g(fg) is a sum of terms which can be
written:

8Pf g
asp 68‘1 (p+q—l)
From Lemma 2 (taking” = [0,7]) and Lemma 3, we
get:
ap'f 8qg !, 4
OsP Osd < K05 10,7(W);

which is integrable oveR. Hence,u is C*° w.r.t. s.

« By deriving under the integral sign, we have:

ul (t,s,r) = Je [t s,w)gll, (x5, w) dw
ul(t,s,x) = fR (t,s,w)gl(z, s, w) dw
+ fR (t, s,w)g(z, s,w) dw,

(splitting into two sums is allowed sincg.g is
summable). Thanks to the heat equation verified by the

gaussian kernel:
1

we finally get third assertion of Lemma 4:

W, = 2 / £(t, 5, w)g (. 5,w) dw
R

2 (ufq — / fi(t, s, w)g(x, s, w) dw) :
R

Lemma 5: v is C* w.rt. each of its variables € [0, +o0]

Lemma 4: u is C> w.rt. each of its variables € [0,T7,

s €]0,T — t[, = € R. For any compact sef’ C R:

8y

ati S K’L

g4l < Kio,Vzel
and the following differential equation is verified by v}

=2(ug — / fe9)
R

Proof:

« Using Lemma 3, we obtain:

(i)i zf
’@(fg)‘ o0
Then, the derivability ofu w.rt. ¢t and the first

majoration immediately come from expression (17) and
the differentiation under the integral sign theorem.

’_Kig

« Using Lemmae 2 and 3, we obtain (for any C’):
5

%

dig
fg)‘ = ‘f(?a:

%( Kows C’( )

flt,,w) being continuous at points =
limg_o u(t, s, x)

g(z, O,w) has to be understood as the Dirac distribution.at
Therefore:

andz € R and, v} + v/, = —é(t, t,x) + Cv.

Proof: the regularity ofv is a direct consequence of equation
(18) and Lemma 4. The differential equation checkedvlig
obtained as follows:

T—t
/ uyds —u(t,T —t,x)
0

T—t
= / /ft/gdwds—u(t,T—t,:zr)
0 R

T—t
/0 /R(f;ngCfg)dwds—u(t,T—t,:c)

Il
o\..
)ﬂ
A
N
<
w
|
N =
N
83
8
~__
Q
»
+
N
4
|
I~
—~
\.P#
~
|
\.P#
8
S~—

1
= u(t,T—t, )—111r(1)u—5vm Cv—u(t,T —t,x).

0, we have

= [z o(t, t,w)g(x,0,w) dw where the term

1
v = —¢(t, t,x) — v

2 II+</U'



Lemma 6: %(t,x) is null only on a curver = z(t). differential equation checked hy I1to’'s lemma holds since
is regular. It gives:

Proof: this lemma will not be rigorously proved, but in- o 1 0% o

stead inferred from numerical simulation of the surface dS: = {E(EWJJFQW(L‘, Wt):| dt + ——(t, W) dW;

Do . ) x or

e (t,x), t €[0,T[, z € R. Fig. 7 shows this surface. Clearly, ) ,

one can observe that on the left side of the red ligie goes ProvidedX},,, > Xz, We havev(t,z) > 0 for any (¢, z).

to zero only on a curve(t). What can be proved analytically Hénces; > 0 and we can write:

is that %(t,x) < 0 on the right side of the line, where dS; 1 (0v 1 0% d 1 0v I
paradoxically the surface is very close to zero. Let us write S, v \ot T 2 9x2 t+ vor b
v

o Inanew way: By identifying this equation with the dynamics of the under-

lying asset (8), we get the expression of the expected total

0 Tt o return on the asset; and the volatilitys;:
_U(t7x) = / /f(t,s,w)—g(x,s,w)dwds o <
Oz o Jr dx _1 (@ " laz_v)
T—t w— Mt v \ Ot 2 9z?
= ‘/0 Rf(tvsaw) s g(x,s,w)dwds Kt:%%
T—t 774 Lemma 6 ensures that, # 0 a.s, therefore the market price
— W
= / E [sﬁ(t,t + 5,0+ W) SW ds, of risk 6; is well defined, and:
e ow\ /o 16%
/~ 9 = —_— —_— _— .
A ! (ax) <6t T35 C”)

The final expression fof; is a consequence of Lemma 5:
ot t,Wy) w2 (t, Wi) — 7' (¢, W)
%(ta Wt) %(ta Wt) .

==

dvidx(tw)

D. Novikov's condition
Now we have to prove that:

1 T
E |exp| = / 07 dt
2 0
Actually, is fOT 0? dt even finite ? The question is relevant,

because Lemma 6 shows that on a certain Ig%eis null, and

Fig. 7. The surfacév/dz (we kept the previous parameters). On the righ80 6 (¢, w) is infinite (see Fig. 8).
of the red line, we show in Lemma 6 that it is nonnull. On the, lefe see
that it is null only on the green line. log(hetal)

< +00.

whereW, is a standard brownian motioa(t, t+s, z+W )

is always positive, and nuiff ¢+ s > a(x + W) + b, where
we have introduced two coefficients:

ag _ log(X;nam/wo)

a=-——7__ b
a—a%/ ’ a—a%/2

Hence:

v T— A7 _S
%(tv z)= [ 'E [d’(t’ t+ s,z + W) ]l{t+s<a(w+Ws)+b}:| ds

= Jo s a

Tt [¢(t,t t s, x4 W) He

W, < Ls=b _ x]

xP(t+s<a(z+Ws)+b) ds

If t=b _ z < 0, it is immediate to Obtair‘%(t,x) < (0. The Fig. 8. Repartition of the peaks @f¢, w). They all lie on the green line
= T

a . .
; t—b ; : . : represented on Fig. 7. Normally, they should form a contisucrest, but due
lrl]ne E z _|t0 belng preC|ser the red line of Fig. 7, Weto discretization they show an uneven behavior.
ave the resuit.

Now, could a trajectoryW;) come close to this line during a

C. Expression of the risk premiuéy time long enough so that:

T
In this section, we justify the existence of the market price E lexp<%/ 62 dt) = 400 ?
0

of risk 8, and deduce its expression frond’tt lemma and the
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Here we use a result of El Karoui and Gobet (see [6f Interpolating a surface
Proposition 1.3.8.):

P (Sup W,| > C) <2 P(|Wr| > o), Given a surface of equation: = v(t, z), suppose we only

t<T know a discrete set of values of z; ; = v(t;,z;). We want

which tends to 0 extremely rapidly when — co. Hence, @ computev(t,z) for any value oft andz. The technique is
if we choose correctly our parameters so that the critic li€ery Similar to a linear interpolation in 1 dimension:

lies far enough from the line = 0, the probability to reach it

during the experiment will be extremely low. Then, in preeti ~ * fIrst find the intervalst;, ¢;41[ and[z;, zj41[ in which ¢

we will consider that); remains almost surely bounded by a and:c_ lie . N
constan®; anda fortiori, Novikov’'s condition will be verified, * thbetn_mterpolate first w.r.t.. Denoting tiv1—ti by a:, we
obtain:

since we will have:

E

2 _
22 =gz (1= o)zig1 41

T N
exp l 6?2 dt < elo?/2,
2 ¢ l= -
0 {z = 7 +(1 = ap)zit1,y

E. Regressing a set of points on a 2-degree polynom

Given a set of point§z;,y;)1<i<, in R?, the aim of the
section is to find three real numbetsb, ¢, such that

« at least interpolate w.r.t:. Denoting—===%:- by «a,, we

Tit1—T;

2 obtain:
Z |yz - Pa,b,c(Ii)|2
=1
is minimal, where: z=az2" + (1 —a,)2>
Popc(x) = az® + bx + c.
After deriving w.r.t.a, b and ¢, we obtain respectively: Remark
aS et b a3+ e a2 =3 a2y We have:
adz+bY 22 +ced . =Y wiy (21)
azxf-l—bzxi-i-c =>y z2= ouagzij+ (1 —ap)ozzit
Has (21) a solution ? Let us consider the four vector®of Far(l —ag)zijen + (1 - a)(1 = az)zit g,
a:% T 1 U1
= fz=]|1=|:|y=|:], which is symmetrical in(¢,7) and (z, j). Hence, we would
x2 T 1 Un have found the same result by interpolating first war,tand

then we can re-write the system as: then w.r.¢ (see Fig. 9).

(2?]2%)  (a®]z) (2*[1)\ [a (@°[y)
(lez) (zlz) (z[1) | | b] =| (z]y)
Mfz%)  (Az) (A1) ) \e (1y)
It is equivalent to say that the vectgr— az® — bx — ¢ is
orthogonal tol, z andz2. In other wordsgaxz? + bx + ¢ is the
orthogonal projection of; on Vect(l,z,2?), and thus we are
sure that (21) has a solution.
Is this solution unique ? I1,  andz? were not independent,
there would be three real numbersv andw such that:

Vi, w4 vx; +wa? =0.

« as soon as there are more than two different values,of
this is impossible, and so there is a unique solution.

o if x; takes only two different values, then the solution
is not unique any more, butl{r,z?) has rank 2. So
we choose to regresg on 1 and x for example (and
we find a line which intersects the centroids of the two  (t,,;.X;) (t X))
corresponding subsets). ]

« if x; takes only one value, ther (,z?) has rank 1. So

we choose to regreggon 1 (and we find the mean of
the y;s). Fig. 9. Interpolation of the surface.
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