
HAL Id: hal-00627087
https://hal.science/hal-00627087

Submitted on 27 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the date of an upgrading investment in a
data network

Frédéric Morlot, Benoît Fourestié, Salah Eddine Elayoubi

To cite this version:
Frédéric Morlot, Benoît Fourestié, Salah Eddine Elayoubi. Optimizing the date of an upgrading
investment in a data network. VTC Fall 2007, 2007, United States. �hal-00627087�

https://hal.science/hal-00627087
https://hal.archives-ouvertes.fr


Optimizing the date of an upgrading investment in a
data network

Frédéric Morlot, Benoı̂t Fourestié, Salah-Eddine Elayoubi
{frederic.morlot, benoit.fourestie, salaheddine.elayoubi}@orange-ftgroup.com

Abstract—Due to the introduction of new services, the volume
of data transferred in mobile networks is rapidly growing
and operators periodically face the necessity to upgrade their
network. Such upgrades allow them to increase the capacity,
and provide adequate Quality of Service (QoS). In this paper
we propose a general framework for deriving the optimal date
for a network upgrade. We show that this date is the result of a
compromise betweenthe decrease of upgrade investment costand
the loss of profit generated by insufficient capacity. The upgrade
should hence be performed when the loss of profit, derived using
analytical capacity expressions, exceeds the expected discount.
The model presented herein accounts for the randomness of the
demand and upgrading cost functions, and results are given for
a HSDPA network.

Index Terms—data flows, brownian motion, quality of service,
customer satisfaction.

I. I NTRODUCTION

As new high throughput services such as multimedia appli-
cations are introduced in the market, the traffic is significantly
growing in mobile telecommunications networks. In particular,
data flows are growing exponentially, as they have been doing
since the middle 90’ in the Internet. To face these soaring
volumes of data to be transferred, mobile operators must peri-
odically upgrade their equipments to offer higher throughputs
lest they should undergo blocking problems. However as the
demand does not increase steadily and must be considered as
partly random, the upgrade dates are difficult to be forecast.

In this article we consider a HSDPA cellular network and
assume for the sake of simplicity that there exists no priority
between data flows. As the demand increases, the operator can
choose between the following two strategies:

• with admission control: it sets a lower throughput thresh-
old and thus has to prevent some users from entering
the network to guarantee this minimum throughput. As
the demand rises, more and more users are rejected: the
blocking rateincreases.

• without admission control: there is no throughput lower
threshold. All users are admitted in the network, but
the communication duration becomes longer and longer
for each user until the network is saturated. The global
throughput experienced in the network may result very
small.

In the remainder of the article, we will assume that the
operator has chosen the second option. Note that if it had
chosen the admission control strategy, main results presented
herein would still hold and generalization elements are given
in section V. We further assume that the ”fair power” sharing

algorithm is used [1] since it can be shown that it has
good stationary properties. As the demand rises, the operator
increases its profit, since each user transfers more data andthus
spends more money. When the network starts experiencing
saturation problems, the global troughput and profit may fall.
The operator must then upgrade its network and faces the
following trade-off:

• The later the investment, the lower individual throughputs
and customer satisfaction. Permanent insatisfaction will
result into churn and additional loss of profit.

• The sooner the investment, the more expansive as up-
graded element costs decrease with time.

This article aims at proposing a global framework for
evaluating the optimal date for network upgrading, and its
content is the following:

• First, operator’s profit is calculated. Analytical values for
capacity, individual throughput and satisfaction will be
derived as a function of the demand. The randomness of
the rising demand will be accounted for;

• Second, upgrading costs will be estimated assuming
exponential decrease according to time;

• Third, elements are given in case that an admission
control strategy is used;

• Fourth, results are given for a HSDPA network and show
that the more random (volatile) the demand, the earlier
the investment should be made.

To the best of our knowledge, this paper presents the first
endeavour to analytically derive optimal dates of investments
in mobile radio networks taking into account randomly grow-
ing data transfers, capacity and throughput evaluations and
exponentially decreasing investment costs. Such an analysis
will be of interest for future operator upgrading decisions.

II. OPERATOR’ S PROFIT

The operator profit depends on the amount of data flowed
by the network, i.e. on the sum of individual throughputs.
However individual throughputs depend on a large number
of parameters and are difficult to calculate. The profit thus
depends on the following parameters:

• the mean daily traffic demand per cell (in Mbits/sec/cell).
We denote it byXt, where the timet = 0, 1...T varies
discretely, for example day by day.[0, T ] stands for the
considered time period.

• the customer satisfaction



– before the upgrading:S1
t = f1(Xt)

– after the upgrading:S2
t = f2(Xt)

• the daily profit per surface unit generated byXt, possibly
balanced bySi

t

πi
t = g(Xt, S

i
t) = g(Xt, f

i(Xt))

If we denote byt0 the investment date (0 < t0 < T ), the
total profit ΠT (t0) actualized at the datet = T is calculated
as follows:

ΠT (t0) =

t0−1
∑

t=0

eζ(T−t)π1
t +

T
∑

t=t0

eζ(T−t)π2
t , (1)

whereζ is the actualization rate. For simplicity, we assume
that ζ is constant during the period[0, T ].

A. Traffic Demand

We assume that the network is formed by circular cells of
radiusR and that the demand is uniformly distributed in the
cell. We have:

Xt = λt × E[ξ],

whereλt is the mean arrival rate per cell at the datet and
E[ξ] is the mean size of a typical data flow. In the following
we assume thatE[ξ] remains stable during[0, T ], so thatXt

is proportional toλt, whereasλt is growing. This model is
strictly equivalent to the case where the number of active
users is constant, but they initiate connections more often.
Furthermore a model where the rate of callsλt would be
constant withE[ξ] increasing would lead to similar results.

To model the evolution of(Xt)t∈N, let us consider it as the
daily samplingof a continuous stochastic process(X̃t)t∈R+ .
Usually, one monitors the 24 mean demands over one hour
each, keeps the second or third highest, and multiply it by
a given factor. As many random phenomena related to a
social behaviour (e.g. [2][5]), we assume thatX̃t is growing
according to the following stochastic differential equation:











dX̃t

X̃t

= αdt + σdWt

X̃0 = x0 almost surely,

(2)

whereWt is a standard brownian motion. In other words,X̃t

is a geometric brownian motion, whose solution is given by
(see [4]):

X̃t = x0e
(α−σ

2/2)t+σWt , t ∈ R
+

Note that we have hereE [Xt] = x0e
αt. Hence,α is the trend

of the demand, whereasσ is its volatility. Figure 1 shows the
daily evolution of the traffic according to time obtained using
the described model.

Fig. 1. Daily traffic evolution.α = -log(0.85)/30 day−1 (which corresponds
to an average increasing of 15% per month),σ = 0.04,x0 = 1.2 Mbit/sec/cell.

B. Customer Satisfaction

To evaluate the customer satisfaction, let us first compute
the flow throughputγt(r) a user can expect at distancer from
the center of the cell as carried out in [1]. The resource of a
single downlink channel is time-shared between active users.
Denote byφu the fraction of time the BS transmits to useru,
with

∑

u φu = 1. The data rate of useru is then

Cu(r) = C(r) × φu,

whereC(r) is the peak data rate, obtained in the absence of
any other user in the cell, i.e., forφu = 1. When there are
x users, the ”fair power” sharing is defined byφu = 1

x . We
have:

C(r) = min

(

C0,
Z

b
×

Γ(r)

η + I(r)

)

,

where:
• C0 is the maximum peak rate (which depends on channel

bandwidth and coding efficiency);
• Z is the cell chip rate;
• b is a lower bound for energy-per-bit to noise density

ratio (Eb/N0), such that the error probability will not be
higher than a target threshold;

• Γ(r) is the path loss between the BS and useru;
• η is the thermal noise to received power ratio;
• I(r) is the interference to received power ratio

.
Figure 2 shows the peak data rate in a hexagonal cell. In

the interference term, we only take immediate adjacent cells
in account. Furthermore, we assume that the path lossΓ(r) is
decreasing according to1/r4.

Note that we considered the ideal case where a continuous
set of peak rates is achievable. But in practice, because of
coding constraints, the set of achievable peak rates is discrete,
and locally constant.

We define the cell load as (see [1]):



Fig. 2. Peak data rate against distance to the center of the cell. The distance
and the rate are normalized with respect to the cell’s radiusand to C0.
Z/b = 3 Mbits/sec,η = 10%.

ρt =
Xt

πR2

∫ R

0

2πrdr

C(r)
,

whereR is the radius of the cell.
• if ρt > 1, the cell is overloaded and one can show ([1])

that the number of active users grows indefinitely; any
individual data rate tends to zero, and the cell is saturated.

• if ρt < 1, the cell is underloaded and the number of
active users tends to a finite stationary regime.

We are naturally led to introduce:

Xmax = πR2

(

∫ R

0

2πrdr

C(r)

)−1

, (3)

such thatρt = Xt/Xmax. Henceρt < 1 ⇐⇒ Xt < Xmax.

Let us denote the flow throughput of users at distancer by
γt(r) (it is the ratio of the mean flow size to the mean flow
duration). Then, Bonald and Proutière [1] show that, ifρt < 1:

γt(r) = C(r)(1 − ρt). (4)

By assumption, the mean flow size (the numerator inγt(r))
does not vary significantly, whereas the mean flow duration
(the denominator) does as the load increases. Thus, if we
want to compute the mean flow throughput, the significant
number to calculate is theharmonicmean ofγt(r) over the
cell (balanced by the proportion of active users betweenr and
r + dr; remember we suppose users are uniformly distributed
in the cell. In other words, we have to calculate the arithmetic
mean of1/γt(r) over the cell. From (4) we deduce:

γt = R2

(

∫ R

0

2rdr

γt(r)

)−1

= Xmax − Xt,

and of course, in overload,γt = 0.

Finally, we can summarize the whole calculation by:

γt = (Xmax − Xt)
+ (5)

where, for a given realx, x+ = max(x, 0). Note thatγt =
0 if and only if Xt ≥ Xmax, i.e., if and only if the cell is
saturated.

Now we can compute the customer satisfaction, which can
reasonably be supposed to depend onγt. Since subjective
satisfactions have been shown to be more sensitive to small
variations at low throughputs than at high throughputs, Enderlé
and Lagrange propose in [6] to model the customer satisfaction
as a negative exponential function of the throughput:

St = e−β/(Xmax−Xt)
+

.

For example,β can be chosen as:β = log(2) · γ1/2, where
γ1/2 is the throughput value ensuring a satisfaction of50%.
Once again, note thatSt = 0 if and only if Xt ≥ Xmax, i.e.,
if and only if the cell is saturated.

C. Daily Profit

Let us recall thatXt is sampled day by day, for example
during the second or the third highest peak hour. Within 24
hours, the operator transmitsµmin(Xt, Xmax) to active users,
whereµ is a multiplicative factor between the peak hour and
the whole day. Typically,µ ≈ 4 · 3600 ≈ 14000 sec. Since
taxation is applied to the volume of transfers and not to the
duration, the gross daily profit per cell is given by:

πgross = δµmin(Xt, Xmax) (6)

where δ is the transfer price (say in $/Mbit). However the
gross profit should be weighed by the customer satisfaction to
account for the quality of the communications. Thenet profit
is thus calculated as the product ofπgross by St

πnet = δµmin(Xt, Xmax)e−β/(Xmax−Xt)
+

.

If St = 0, i.e. if the cell is saturated, the net profit is null. If
the satisfaction is maximal, i.e.,St = 1, the net profit is equal
to the gross profit (6). To sum up we have:

πt = δµXte
−β/(Xmax−Xt) if Xt < Xmax

πt = 0 otherwise

Intuitively, as the demand rises,Xt will increase as will
the profit (Fig. 3). Then, the profit will decrease because the
unsatisfaction effect becomes dominant. In case no upgrading
action is taken, the profit will progressively tend to zero. Once
the operator decides to upgrade the network, two solutions are
possible:

• make the network denser, i.e. install new base stations in
the network

• install additional transmitters operating on different fre-
quency bands with the view to increase the throughputs.
In such case we obtain a higher value ofXmax, so that:



Fig. 3. Daily Profit generated by demand.Xmax = 3 Mbits/sec/cell,
δ = 0.1 $/Mbit, µ = 14000 sec,β = 0.7 Mbit/sec (which corresponds to
γ1/2 ≈ 1 Mbit/sec).

πt = δµmin(Xt, X
′

max)e−β/(X′

max
−Xt)

+

In this article we restrict our analysis to the latter case, i.e.,
Xmax changes but other variables do not.

D. Total Profit

As we have now derivedπt analytically, we can compute
numerically the expectation ofΠT (t0) given t0 using the
Monte Carlo method. Results for the calculation of the daily
profit calculated using Scilab are shown in Fig. 4.

Fig. 4. Expected Daily Profit during the period. Parameters are identical to
those used in former figures.

We observe that the higher sigmais , the more important the
risk is and the sooner the maximal value of the expected profit
is reached. Additionally, the higher sigma is, the slower the
curve tends to zero. Whenσ becomes paramount, the curve
flattens out.

From the previous simulation, we can deduce the total profit
shown in Fig. 5. We observe that the expected profit diminishes
as the volatility increases, because of the risk.

Fig. 5. Total Expected Profit.Xmax = 8 Mbits/sec/cell after the upgrade.
ζ = -log(0.95)/365 day−1 , which corresponds to a5% / year actualization.

To summarize the results:
• for a given value ofσ, the earlier the investment, the

happier the consumers, and the higher the profit;
• at a given date, the higherσ, the lower the profit, since

the system can be saturated earlier.
However, we must now take the investment cost into ac-

count. This is the subject of next section.

III. U PGRADING INVESTMENT

The upgrading cost is a decreasing function of time. The
decrease of the cost is due to many factors, for example the
R&D progress, and also the serialization in the manufacturing
chain. Moore’s law states that electronic devices’ capacity
doubles every 18 months. So in this paper we assume it
decreases exponentially:

K(t) = K0e
−ǫt,

whereǫ is the depreciation rate.

Fig. 6. Expected PMC during the period.K0 = 300 k$ andǫ = -log(0.5)/365,
which corresponds to a50% / year cost decrease.



The number to maximize is what we call the totalProfit-
minus-Cost(PMC), actualized at dateT :

PMC(t0) = ΠT (t0) − K(t0)e
ζ(T−t0)

= ΠT (t0) − K0e
ζT−(ǫ+ζ)t0 .

Note that generallyǫ ≫ ζ, so thatǫ + ζ ≈ ǫ. Results when
taking theK(t) component in our simulations and results are
shown in Fig. 6.

Again we show that the higher the volatility is, the lower
the expected profit is. This result was expectable because
of the increased risk. Furthermore, we see that the optimal
investment date decreases according to the volatility, as shown
in Fig. 6. However, works on investment under uncertainty
obtain the opposite result [5]. In fact, as will be shown in
next section, the significant value to observe is the optimal
actualizedinvestment date, and we will observe the opposite
trend.

IV. STRATEGY

As time goes by, we have realizations of the daily demand.
These values can thus be used to derive a more precise
optimal date than the one we found att = 0 assuming demand
randomness. Instead of calculating expectations, we can now
take in account whatreally happens during the period. We can
implement the following algorithm: each dayt ∈ [0, T ], we
perform deterministic calculations over[0, t] and expectations
over [t, T ], with an initial valuext of traffic demand which
is now a deterministic parameter. Each computation thus
provides us with a new investment datet0 ∈ [t, T ]. In other
words, t0 is daily actualized. When t0 becomes close tot,
it is time to invest. Note that such a situation (t0 → t) will
inevitably happen by continuity, since at the end of the process
we havet = t0 = T . Interestingly we can take the upgrading
delay into account: if for example we need 1 month of delay
for the deployment, we will plan it as soon ast0 − t ≤ 30
days.

Fig. 7. Best investment date during actualization algorithm in the determi-
nistic case. Investment will take place att = 41 days.

In Fig. 7, we show the results in the deterministic case, i.e.,
σ = 0. Fort = 0, we findt0 = 41 days as expected by Fig.??.
Since there is no randomness,t0 is fixed until t = t0. Then,
t0 remains ”stuck” tot. In the random case, we can observe
some fluctuations beforet0 becomes stuck tot (see Fig. 8).
In fact, the optimal date we find (60 days) seems to be higher
than the one found at the beginning (30 days). Is it a hazard, or
is the mean final best result always greater ? To examine that
assumption, we simulate several possible scenarios, in other
words, several possible trajectories of the brownian demand.
For each trajectory, we apply the actualization algorithm and
we compute a final result, averaged over all the simulations
(see Fig. 9): now, we are in accordance with classic investment
studies.

Fig. 8. Best investment date during actualization algorithm in the random
case (σ = 0.05), for one given trajectory. Here, investment will take place
at aroundt = 60 days. WhenXt does not grow as fast as expected, the
actualized investment date is postponed. But as soon asXt has sufficiently
grown, the actualized date is stabilized.

V. GENERALIZATION

So far, the actualization algorithm has been illustrated ina
simple situation. However it could be applied to a wide range
of different situations. For example, we could introduce:

• admission control: the network then guarantees to each
user a minimal data throughput, but some users are
blocked. In that case, the satisfactionSt depends on the
blocking rate, not on the throughput. [1] gives an analytic
expression of the blocking rate:



Fig. 9. Mean final date returned by actualization algorithm regarding
volatility. As expected, this date becomes later while volatility is growing.

B =
ρm

t

1 + ρt + ... + ρm
t

,

whereρt is the cell load (refer to section II-B) andm is
the maximum allowed number of users in one cell. Then
we assume that the customer satisfaction decreases expo-
nentially according to blocking rate, and the actualization
algorithm still holds.

• different power allocations. In that case, we have to
compute a mean satisfaction over the cell, balanced by
the probability density function of the user position.

• coding constraints, which entail discontinuities in the
peak data rate curve [1].

• discontinuities and randomness in the investment cost
curve to modelize R&D’s breakthroughs. This random
component is added to the expected PMC’s computation.

VI. CONCLUSION

In this paper, we presented an analytical approach for
determining the optimal date of an upgrade investment in
mobile radio networks. The strategy we adopted is:

• first, analytically model the operator profit and the cus-
tomer satisfaction;

• second, compute the optimal upgrading date with an
actualization algorithm.

The first step is of utmost importance because it has to
reflect as accurately as possible the real situation of the
network: Radio Ressource Management (RRM) algorithms
(such as admission control, power allocation) must be taken
into account to correctly model the capacity of the network.
To illustrate this modelling, we consider a HSDPA data
network and show how to calculate the cell capacity, the
user’s throughput and the satisfaction, and the operator’s
profit. Note that the demand parameters, such as the volatility,
the trend and the mean size of data flows, have to be
evaluated carefully because results are rather sensitive to
input variations, especially to volatility (Fig.??). Models
should therefore be calibrated using measurements taken in
the past to avoid too big discrepancies between forecasts and

reality.
In the second step, we introduced the cost of the upgrading
investment and developed an actualization algorithm that
calculates the optimal investment time using the above
described analytical modeling.
The method presented herein should be of interest for
operators, allowing them to make optimal decisions as to
when upgrade their radio networks.
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