
HAL Id: hal-00627034
https://hal.science/hal-00627034v3

Preprint submitted on 5 Dec 2016 (v3), last revised 24 Aug 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

On the Cohomological Crepant Resolution Conjecture
for the complexified Bianchi orbifolds

Fabio Perroni, Alexander D. Rahm

To cite this version:
Fabio Perroni, Alexander D. Rahm. On the Cohomological Crepant Resolution Conjecture for the
complexified Bianchi orbifolds. 2016. �hal-00627034v3�

https://hal.science/hal-00627034v3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


On the Cohomological Crepant Resolution Conjecture

for the complexified Bianchi orbifolds

FABIO PERRONI AND ALEXANDER D. RAHM

We give formulae for the Chen–Ruan orbifold cohomology for the orbifolds given by a Bianchi group

acting on complex hyperbolic 3­space.

The Bianchi groups are the arithmetic groups PSL2(O) , where O is the ring of integers in an imaginary

quadratic number field. The underlying real orbifolds which help us in our study, given by the action

of a Bianchi group on real hyperbolic 3­space (which is a model for its classifying space for proper

actions), have applications in physics.

We then prove that, for any such orbifold, its Chen–Ruan orbifold cohomology ring is isomorphic to

the usual cohomology ring of any crepant resolution of its coarse moduli space. By vanishing of the

quantum corrections, we show that this result fits in with Ruan’s Cohomological Crepant Resolution

Conjecture.

55N32, Orbifold cohomology

1 Introduction

Recently motivated by string theory in theoretical physics, a stringy topology of orbifolds has been

introduced in mathematics [1]. Its essential innovations consist of Chen–Ruan orbifold cohomology [9],

[10] and orbifold K –theory. They are of interest as topological quantum field theories [19]. Ruan’s

cohomological crepant resolution conjecture [38] associates Chen–Ruan orbifold cohomology with the

ordinary cohomology of a resolution of the singularities of the coarse moduli space of the given orbifold.

We place ourselves where the conjecture is still open: in three complex dimensions and outside the global

quotient case. There, we are going to calculate the Chen–Ruan cohomology of an infinite family of

orbifolds in this article; and prove in Section 6 that it is isomorphic as a ring to the cohomology of their

crepant resolution of singularities.

Denote by Q(
√−m), with m a square­free positive integer, an imaginary quadratic number field, and by

O−m its ring of integers. The Bianchi groups are the projective special linear groups PSL2(O−m). The

Bianchi groups may be considered as a key to the study of a larger class of groups, the Kleinian groups,

which date back to work of Henri Poincaré [30]. In fact, each non­co­compact arithmetic Kleinian group

is commensurable with some Bianchi group [24]. A wealth of information on the Bianchi groups can

be found in the monographs [13, 15, 24]. These groups act in a natural way on hyperbolic three­space,

which is isomorphic to the symmetric space associated to them. This yields orbifolds that are studied in

cosmology [4].

The orbifold structure obtained by our group action is determined by a fundamental domain and its

stabilizers and identifications. The computation of this information has been implemented for all Bianchi

groups [33].

http://www.ams.org/mathscinet/search/mscdoc.html?code=55N32, Orbifold cohomology
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The vector space structure of Chen–Ruan orbifold cohomology

Let Γ be a discrete group acting properly discontinuously, hence with finite stabilizers, by bi­holomorphisms

on a complex manifold Y . For any element g ∈ Γ , denote by CΓ(g) the centralizer of g in Γ . Denote by

Yg the subspace of Y consisting of the fixed points of g.

Definition 1 ([9]) Let T ⊂ Γ be a set of representatives of the conjugacy classes of elements of finite

order in Γ . Then the Chen–Ruan orbifold cohomology vector space of [Y/Γ] is:

H∗
CR([Y/Γ]) :=

⊕

g∈T

H∗ (Yg/CΓ(g); Q
)

.

The grading on this vector space is reviewed in (1).

This definition is slightly different from, but equivalent to, the original one in [9]. We can verify this fact

using arguments analogous to those used by Fantechi and Göttsche [14] in the case of a finite group Γ

acting on Y . The additional argument needed when considering some element g in Γ of infinite order is

the following. As the action of Γ on Y is properly discontinuous, g does not admit any fixed point in Y .

Thus, H∗ (Yg/CΓ(g); Q
)

= H∗ (∅; Q
)

= 0. For another proof, see [1].

Statement of the results

We complexify our orbifolds by complexifying the real hyperbolic three­space (Construction 6). We

obtain orbifolds given by the induced action of the Bianchi groups on complex hyperbolic three­space

H3
C . Then we compute the Chen–Ruan Orbifold Cohomology for these complex orbifolds [H3

C/Γ]. We

can determine its product structure with Theorem 10.

As a result of Theorems 17 and 18, we can express the vector space structure of the orbifold cohomology

in terms of the numbers of conjugacy classes of finite subgroups and the cohomology of the quotient

space, as follows.

Except for the Gaussian and Eisenstein integers, which we have treated separately (Sections 8.2 and 8.3),

all the rings of integers of imaginary quadratic number fields admit as only units {±1}. In the latter case,

we call PSL2(O) a Bianchi group with units {±1}.

As a corollary to Theorems 17 and 18, which we are going to prove in Section 5, and to Theorem 16, we

obtain:

Corollary 2 Let Γ be a finite index subgroup in a Bianchi group with units {±1}. Denote by λ2n the

number of conjugacy classes of cyclic subgroups of order n in Γ . Denote by λ∗
2n the number of conjugacy

classes of those of them which are contained in a dihedral subgroup of order 2n in Γ . Then,

Hd
CR

(

[H3
C/Γ]

) ∼= Hd
(

H3
R/Γ; Q

)

⊕















Qλ4+2λ6−λ∗
6 , d = 2,

Qλ4−λ∗
4 +2λ6−λ∗

6 , d = 3,

0, otherwise.
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Together with the example computations for the Gaussian and Eisensteinian cases (Sections 8.2 and 8.3),

we obtain Hd
CR

(

[H3
C/Γ]

)

for all Bianchi groups Γ .

The (co)homology of the quotient space H3
R/Γ has been computed numerically for a large scope of

Bianchi groups [44], [39], [36]; and bounds for its Betti numbers have been given in [22]. Krämer [23]

has determined number­theoretic formulae for the numbers λ2n and λ∗
2n of conjugacy classes of finite

subgroups in the Bianchi groups. Krämer’s formulae have been evaluated for hundreds of thousands of

Bianchi groups [35], and these values are matching with the ones from the orbifold structure computations

with [33] in the cases where the latter are available.

The quotient H3
C/Γ has a crepant resolution, since the stabilizer in Γ of any point of H3

C acts on the

tangent space at the point with determinant 1 (see Section 3). Then we prove the following result.

Theorem 3 Let Γ be a Bianchi group and let [H3
C/Γ] be the corresponding orbifold, with coarse moduli

space H3
C/Γ . Let f : Y → H3

C/Γ be a crepant resolution of H3
C/Γ . Then there is an isomorphism as

graded Q­algebras between the Chen–Ruan cohomology ring of [H3
C/Γ] and the singular cohomology

ring of Y :
(

H∗
CR([H3

C/Γ]),∪CR

) ∼=
(

H∗(Y),∪
)

.

The proof of this theorem, which we shall give in Section 6, uses the McKay correspondence and our

computations of the Chen–Ruan orbifold cohomology of Bianchi orbifolds. In Section 7 we compare

this result with Ruan’s Cohomological Crepant Resolution Conjecture ([38], [12]). Even thought H3
C/Γ

and Y are not projective varieties, hence Ruan’s conjecture does not apply directly, our results confirm

the validity of this conjecture.
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Organization of the paper

In Section 2, we work out the product structure of Chen–Ruan orbifold cohomology for arbitrary groups

of hyperbolic motions. Then we specialize to the Bianchi groups, and work out the information that we
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need about the conjugacy classes of their finite order elements in Section 3. We use this in Section 5

to develop the dimension formulas stated in Corollary 2. What reduces our considerations on complex

orbifolds here to the easier case of real orbifolds, is the spine described in Section 4. In Section 6, we prove

the Chen–Ruan ring isomorphism stated in Theorem 3. In Section 7, we show how the vanishing of the

quantum corrections makes this ring isomorphism fit in with Ruan’s Cohomological Crepant Resolution

Conjecture. We illustrate our study with the computation of some explicit examples in Section 8.

Notation

We use the following symbols for the finite subgroups in PSL2(O): for cyclic groups of order n, we

write Z/n; for the Klein four­group Z/2 × Z/2, we write D2 ; for the dihedral group with six elements,

we write D3 ; and for the alternating group on four symbols, we write A4 .

2 The orbifold cohomology product

In order to equip the orbifold cohomology vector space with the Chen–Ruan product structure, we use

the orbifold complex structure on [Y/Γ].

Let Y be a complex manifold of dimension D with a properly discontinuous action of a discrete group Γ

by bi­holomorphisms. For any g ∈ Γ and y ∈ Yg , we consider the eigenvalues λ1, . . . , λD of the action

of g on the tangent space TyY . As the action of g on TyY is complex linear, its eigenvalues are roots of

unity.

Definition 4 Write λj = e2πirj , where rj is a rational number in the interval [0, 1[. The degree shifting

number of g in y is the rational number shift(g, y) :=
∑D

j=1 rj .

We see in [14] that the degree shifting number agrees with the one defined by Chen and Ruan. It is also

called the fermionic shift number in [46]. The degree shifting number of an element g is constant on a

connected component of its fixed point set Yg . For the groups under our consideration, Yg is connected,

so we can omit the argument y. Details for this and the explicit value of the degree shifting number are

given in Lemma 9. Then we can define the graded vector space structure of the Chen–Ruan orbifold

cohomology as

(1) Hd
CR([Y/Γ]) :=

⊕

g∈T

Hd−2 shift(g)
(

Yg/CΓ(g); Q
)

.

Denote by g, h two elements of finite order in Γ , and by Yg,h their common fixed point set. Chen and

Ruan construct a certain vector bundle on Yg,h , the obstruction bundle. We denote by c(g, h) its top

Chern class. In our cases, Yg,h is a connected manifold. In the general case, the fiber dimension of the

obstruction bundle can vary between the connected components of Yg,h , and c(g, h) is the cohomology

class restricting to the top Chern class of the obstruction bundle on each connected component. The

obstruction bundle is at the heart of the construction [9] of the Chen–Ruan orbifold cohomology product.

In [14], this product, when applied to a cohomology class associated to Yg and one associated to Yh ,

is described as a push­forward of the cup product of these classes restricted to Yg,h and multiplied by
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c(g, h).

The following statement is made for global quotient orbifolds, but it is a local property, so we can apply

it in our case.

Lemma 5 (Fantechi–Göttsche) Let Yg,h be connected. Then the obstruction bundle on it is a vector

bundle of fiber dimension

shift(g) + shift(h) − shift(gh) − codimC

(

Yg,h ⊂ Ygh
)

.

In [14], a proof is given in the more general setting that Yg,h needs not be connected. Examples where

the product structure is worked out in the non­global quotient case, are for instance given in [9, 5.3], [29]

and [6].

2.1 Groups of hyperbolic motions

A class of examples with complex structures admitting the grading (1) is given by the discrete subgroups Γ

of the orientation preserving isometry group PSL2(C) of real hyperbolic 3­space H3
R . The Kleinian

model of H3
R gives a natural identification of the orientation preserving isometries of H3

R with matrices

in PSO(3, 1). By the subgroup inclusion PSO(3, 1) →֒ PSU(3, 1), these matrices specify isometries of

the complex hyperbolic space H3
C . The details are as follows.

Construction 6 Given an orbifold [H3
R/Γ], we construct as follows the complexified orbifold [H3

C/Γ].

Recall the Kleinian model for H3
R described in [13]: For this, we take a basis {f0, f1, f2, f3} for R4 , and

rewrite R4 as Ẽ1 := Rf0 ⊕ Rf1 ⊕ Rf2 ⊕ Rf3 . Then we define the quadratic form q1 by

q1(y0f0 + y1f1 + y2f2 + y3f3) = y2
0 − y2

1 − y2
2 − y2

3.

We consider the real projective 3­space PẼ1 = (Ẽ1 \ {0})/R∗, where R∗ stands for the multiplicative

group R \ {0}. The set underlying the Kleinian model is then

K := {[y0 : y1 : y2 : y3] ∈ PẼ1 | q1(y0, y1, y2, y3) > 0}.

Once that K is equipped with the hyperbolic metric, its group of orientation preserving isometries is

PSO4(q1,R) =: PSO(3, 1). The isomorphism of K to the upper­half space model of H3
R yields an

isomorphism between the groups of orientation preserving isometries, PSO(3, 1) ∼= PSL2(C). This is

how we include Γ into PSO(3, 1).

Now we consider complex Euclidean 4­space Ẽ1 ⊗R C := Cf0 ⊕ Cf1 ⊕ Cf2 ⊕ Cf3, complex projective

3­space P(Ẽ1 ⊗R C) = (Ẽ1 ⊗R C \ {0})/C∗, and obtain a model

KC := {[z0 : z1 : z2 : z3] ∈ P(Ẽ1 ⊗R C) | q1(|z0|, |z1|, |z2|, |z3|) > 0}

for complex hyperbolic 3­space H3
C , where |z| denotes the modulus of the complex number z. The latter

model admits PSU(3, 1) as its group of orientation preserving isometries, with a natural inclusion of

PSO(3, 1).

This is how we obtain our action of Γ on H3
C . In the remainder of this section we show some properties

of this action that will be used in the following.
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Lemma 7 The action of Γ on H3
C just defined is properly discontinuous.

Proof This fact should be well known and can be proved using the existence of Dirichlet fundamental

domains for the Γ­action on H3
C [18, Section 9.3]. We include here for completeness a self­contained

proof which relies on the fact that the Γ­action on H3
R is properly discontinuous [13, Theorems 1.2, p.

34, and 1.1 p. 311].

Let {γn}n>1 be a sequence of elements of Γ and let x ∈ H3
C be a point, such that {γn · x}n>1 is infinite.

We show that {γn · x}n>1 has no accumulation point in H3
C . To this aim, assume by contradiction that

x∞ ∈ H3
C is an accumulation point for {γn · x}n>1 . Let p : H3

C → H3
R be the projection defined in

the proof of Theorem 16 and consider p(x∞), {p(γn · x)}n>1 . Notice that, since p is Γ­equivariant,

p(γn · x) = γn · p(x), and {γn · p(x)}n>1 is infinite, because Γ acts properly discontinuously on H3
R . It

follows that p(x∞) is an accumulation point for {γn · p(x)}n>1 , hence a contradiction.

Lemma 8 For any g ∈ Γ , the natural map
(

H3
C

)g
/CΓ(g) → H3

C/Γ induced by the inclusion
(

H3
C

)g ⊂
H3

C is proper.

Proof The proof is given in two steps, in the first one we show that the map has finite fibre. Since this fact

holds true in general, for any discrete group Γ acting properly discontinuously by bi­holomorphisms on

a complex manifold M , we prove it in this generality. Let us denote by f : Mg/CΓ(g) → M/Γ the natural

map induced by the inclusion
(

H3
C

)g ⊂ H3
C . For any x ∈ Mg , let [x] ∈ Mg/CΓ(g) be its equivalence

class. Then

f−1(f ([x])) = {y ∈ Mg | y ∈ Γ · x}/CΓ(g) ,

where Γ · x denotes the orbit of x. Notice that, for any h ∈ Γ , if h · x ∈ Mg , then g ∈ Stab(h · x) =

hStab(x)h−1 , and so there exists a unique gh ∈ Stab(x) such that hghh−1 = g, gh = h−1gh, here for any

element y, Stab(y) denotes its stabilizer. Furthermore, if h1, h2 ∈ Γ are such that h−1
1 gh1 = h−1

2 gh2 ,

then g = h2h−1
1 gh1h−1

2 = (h2h−1
1 )g(h2h−1

1 )−1 . Therefore h2h−1
1 ∈ CΓ(g) and hence h2 ∈ CΓ(g) · h1 .

This implies that, if we define

Γx,g := {h ∈ Γ | h · x ∈ Mg} ,
then the map fx,g : Γx,g → Stab(x), h 7→ gh = h−1gh, descends to an injective map Γx,g/CΓ(g) → Stab(x).

The claim now follows from the fact that Stab(x) is finite and Γx,g/CΓ(g) is bijective to f−1(f ([x])).

In the second step of the proof, M = H3
C and f :

(

H3
C

)g
/CΓ(g) → H3

C/Γ . Let d be the distance

function on H3
C induced by the Bergman metric. By restriction d induces a distance function on

(

H3
C

)g
.

Moreover, defining for any [x], [y] ∈ H3
C/Γ (respectively [x], [y] ∈

(

H3
C

)g
/CΓ(g)),

d̃([x], [y]) := Inf{d(ξ, η) | ξ ∈ Γ · x , η ∈ Γ · y} ,
we have a distance function on H3

C/Γ (on
(

H3
C

)g
/CΓ(g) respectively, where d̃ is defined accordingly).

By elementary topology, for topological spaces with distance functions, a subspace K is compact, if and

only if any infinite subset Z ⊂ K has an accumulation point in K . So, let K ⊂ H3
C/Γ be a compact

subspace. To show that f−1(K) is compact, let Z ⊂ f−1(K) be an infinite subset. Since f has finite fibre,

f (Z) is infinite, so it has an accumulation point, say [x0] ∈ K . Notice that f−1([x0]) 6= ∅, since Im(f )
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is closed. To see this, let [x] 6∈ Im(f ). Then Γ · x ∩
(

H3
C

)g
= ∅, in other words, for any y ∈ Γ · x,

g 6∈ Stab(y). Since the action is properly discontinuous, any y ∈ Γ · x has a neighborhood U such that

γ · U ∩ U 6= ∅, if and only if γ ∈ Stab(y), for any γ ∈ Γ . In particular the stabilizer of any point in U

is contained in Stab(y), and hence Γ · U ∩
(

H3
C

)g
= ∅. So, Γ · U gives an open neighbourhood of [x]

which has empty intersection with Im(f ). To finish the proof of the lemma, we observe that, if [x0] ∈ K

is an accumulation point for f (Z), and f−1([x0]) 6= ∅, then there exists [y0] ∈ f−1([x0]) ⊂ f−1(K) which

is an accumulation point for Z , since f has finite fibres.

Lemma 9 The degree shifting number of any non­trivial rotation of H3
C on its fixed points set is 1.

Proof For any rotation θ̂ of angle θ around a geodesic line in H3
R , there is a basis for the construction

of the Kleinian model such that the matrix of θ̂ takes the shape









cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1









∈ PSO(3, 1).

This matrix, considered as an element of PSU(3, 1), performs a rotation of angle θ around the “complex­

ified geodesic line” with respect to the inclusion H3
R →֒ H3

C . The fixed points of this rotation are exactly

the points p lying on this complexified geodesic line, and the action on their tangent space TpH3
C
∼= C3

is again a rotation of angle θ . Hence we can choose a basis of this tangent space such that this rotation is

expressed by the matrix




eiθ 0 0

0 e−iθ 0

0 0 1



 ∈ SL3(C).

Therefore the degree shifting number of the rotation θ̂ at p is 1.

Theorem 10 Let Γ be a group generated by translations and rotations of H3
C . Then all obstruction

bundles of the orbifold [H3
C/Γ] are of fiber dimension zero.

Proof Non­trivial obstruction bundles can only appear for two elements of Γ with common fixed points,

and such that one of these is not a power of the other one. The translations of H3
C have their fixed point

on the boundary and not in H3
C . So let b and c be non­trivial hyperbolic rotations around distinct axes

intersecting in the point p ∈ H3
C . Then bc is again a hyperbolic rotation around a third distinct axis

passing through p. Obviously, these rotation axes constitute the fixed point sets Yb , Yc and Ybc . Hence

the only fixed point of the group generated by b and c is p. Now Lemma 5 yields the following fiber

dimension for the obstruction bundle on Yb,c :

shift(b) + shift(c) − shift(bc) − codimC

(

Yb,c ⊂ Ybc
)

.

After computing degree shifting numbers using Lemma 9, we see that this fiber dimension is zero.

Hence the obstruction bundle is trivial, and its top Chern class is the neutral element of the cohomological
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cup product. By Fantechi–Göttsche’s description, the Chen–Ruan orbifold cohomology product is then

a push­forward of the cup product of the cohomology classes restricted to the intersection of the fixed

points sets.

3 The centralizers of finite cyclic subgroups in the Bianchi groups

Let Γ be a finite index subgroup in a Bianchi group PSL2(O−m). In 1892, Luigi Bianchi [5] computed

fundamental domains for some of the full Bianchi groups. Such a fundamental domain has the shape

of a hyperbolic polyhedron (up to a missing vertex at certain cusps, which represent the ideal classes of

O−m ), so we will call it the Bianchi fundamental polyhedron.

It is well­known [21] that any element of Γ fixing a point inside real hyperbolic 3­space H3
R acts as a

rotation of finite order. For the remainder of this section, as well as Theorems 17 and 18, we will reduce

all our considerations to the action on real hyperbolic 3­space H3
R .

Let Z be the refined cellular complex obtained from the action of Γ on hyperbolic 3­space as described

in [32], namely we subdivide H3
R until the stabilizer in Γ of any cell σ fixes σ point­wise. We achieve

this by computing Bianchi’s fundamental polyhedron for the action of Γ , taking as preliminary set of

2­cells its facets lying on the Euclidean hemispheres and vertical planes of the upper­half space model

for H3
R , and then subdividing along the rotation axes of the elements of Γ . Let ℓ be a prime number.

Definition 11 The ℓ–torsion sub­complex is the sub­complex of Z consisting of all the cells which have

stabilizers in Γ containing elements of order ℓ .

For ℓ being one of the two occurring primes 2 and 3, the orbit space of this sub­complex is a finite graph,

because the cells of dimension greater than 1 are trivially stabilized in the refined cellular complex. We

reduce this sub­complex with the following procedure, motivated in [35].

Condition A In the ℓ–torsion sub­complex, let σ be a cell of dimension n − 1, lying in the boundary

of precisely two n–cells τ1 and τ2 , the latter cells representing two different orbits. Assume further that

no higher­dimensional cells of the ℓ–torsion sub­complex touch σ ; and that the n–cell stabilizers admit

an isomorphism Γτ1
∼= Γτ2

.

Where this condition is fulfilled in the ℓ–torsion sub­complex, we merge the cells τ1 and τ2 along σ and

do so for their entire orbits, if and only if they meet the following additional condition. We never merge

two cells the interior of which contains two points on the same orbit.

Condition B The inclusion Γτ1
⊂ Γσ induces an isomorphism on group homology with Z/ℓ–

coefficients under the trivial action.

The reduced ℓ–torsion sub­complex is the Γ–complex obtained by orbit­wise merging two n–cells of the

ℓ–torsion sub­complex satisfying conditions A and B.

We use the following classification of Felix Klein [21].
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Lemma 12 (Klein) The finite subgroups in PSL2(O) are exclusively of isomorphism types the cyclic

groups of orders 1, 2 and 3, the dihedral groups D2 and D3 (isomorphic to the Klein four­group

Z/2 × Z/2, respectively to the symmetric group on three symbols) and the alternating group A4 .

Now we investigate the associated normalizer groups. Straight­forward verification using the multiplica­

tion tables of the implied finite groups yields the following.

Lemma 13 Let G be a finite subgroup of PSL2(O−m). Then the type of the normalizer of any subgroup

of type Z/ℓ in G is given as follows for ℓ = 2 and ℓ = 3, where we print only cases with existing

subgroup of type Z/ℓ .

Isomorphism type of G {1} Z/2 Z/3 D2 D3 A4

normaliser of Z/2 Z/2 D2 Z/2 D2

normaliser of Z/3 Z/3 D3 Z/3.

Lemma 14 Let v ∈ H3
R be a vertex with stabilizer in Γ of type D2 or A4 . Let γ in Γ be

a rotation of order 2 around an edge e adjacent to v. Then the centralizer CΓ(γ) reflects Hγ

— which is the geodesic line through e — onto itself at v.

Proof Denote by Γv the stabilizer of the vertex v. In the case that Γv is of type D2 , which is Abelian, it

admits two order­2­elements centralizing γ and turning the geodesic line through e onto itself such that

the image of e touches v from the side opposite to e (illustration: b
e

b
v

γe
b ). In the case that Γv is of

type A4 , it contains a normal subgroup of type D2 that admits again two such elements.

Any edge of the reduced torsion sub­complex is obtained by merging a chain of edges on the intersection

of one geodesic line with some strict fundamental domain for Γ in H . We call this chain the chain of

edges associated to α . It is well defined up to translation along the rotation axis of α .

Lemma 15 Let α be any 2–torsion element in Γ . Then the chain of edges associated to α is a

fundamental domain for the action of the centralizer of α on the rotation axis of α .

Proof We distinguish the following two cases of how 〈α〉 ∼= Z/2 is included into Γ .

The case b . Suppose that there is no subgroup of type D2 in Γ which contains 〈α〉. Then the

connected component to which the rotation axis of α passes in the quotient of the 2­torsion subcomplex,

is homeomorphic to a circle. We can write Γe = 〈α〉 and Γe′ = 〈γαγ−1〉. One immediately checks that

any fixed point x ∈ H of α induces the fixed point γ · x of γαγ−1 . As PSL2(C) acts by isometries, the

whole fixed point set in H of α is hence identified by γ with the fixed point set of γαγ−1 . This gives

us the identification γ−1 from e′ to an edge on the rotation axis of α , adjacent to e because of the first

condition on γ . We repeat this step until we have attached an edge δe on the orbit of the first edge e,

with δ ∈ Γ . As δ is an isometry, the whole chain is translated by δ from the start at e to the start at δe.

So the group 〈δ〉 acts on the rotation axis with fundamental domain our chain of edges. And δαδ−1 is

again the rotation of order 2 around the axis of α . So, δαδ−1 = α and therefore 〈δ〉 < CΓ(α).
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The cases b b , b b , b b , . . . Suppose that there is a subgroup G of Γ of type G ∼= D2 containing 〈α〉.

If there is no further inclusion G < G′ < Γ with G′ ∼= A4 , let G′ := G . Then the chain associated to α

can be chosen such that one of its endpoints is stabilized by G′ . The other endpoint of this chain must

then lie on a different Γ–orbit, and admit as stabilizer a group H′ containing 〈α〉, of type D2 or A4 .

By Lemma 14, each G′ and H′ contain a reflection of the rotation axis of α , centralizing α . These two

reflections must differ from one another because they do not fix the chain of edges. So their free product

tessellates the rotation axis of α with images of the chain of edges associated to α .

4 A spine for the complexified Bianchi orbifolds

In this section we prove the following theorem, which will be used to prove Theorem 3.

Theorem 16 Let Γ be a Bianchi group, then there is a Γ­equivariant homotopy equivalence between

H3
C and H3

R . In particular, H3
C/Γ is homotopy equivalent to H3

R/Γ .

Proof We consider the ball model for complex hyperbolic 3­space H3
C [18] (which is called the Klein

model in [13]). This provides us with a complex structure such that H3
R is naturally embedded into H3

C

as the fixed points set of the complex conjugation. In the other direction, following [18], we define a

projection as follows. For any point z ∈ H3
C , there is a unique geodesic arc, with respect to the Bergman

metric, αz,z̄ from z to its complex conjugate z̄ (see e.g. [18, Theorem 3.1.11]); and the intersection point

p(z) = αz,z̄ ∩ H3
R is equidistant to z and z̄ [18, Section 3.3.6]. This defines a projection p : H3

C → H3
R .

Notice that p is PSO(3, 1)­equivariant and hence also Γ­equivariant.

Clearly, the restriction p|H3
R

is the identity. On the other hand, let

H : H3
C × [0, 1] → H3

C , H(z, t) = αz,z̄ (tρ(z, p(z)))

where ρ is the hyperbolic distance and we have parametrized the geodesic arc such that αz,z̄(0) = p(z) and

αz,z̄(ρ(z, p(z))) = z. Then H is an homotopy between p and the identity map of H3
C . Furthermore, since

PSO(3, 1) is a group of isometries of H3
C , it sends geodesics to geodesics and so, for any M ∈ PSO(3, 1),

H(Mz, t) = αMz,Mz (tρ(Mz, p(Mz)))

= Mαz,z̄ (tρ(z, p(z))) = MH(z, t) .

It follows that H is PSO(3, 1)­equivariant, in particular it is Γ­equivariant.

5 Orbifold cohomology of real Bianchi orbifolds

Our main results on the vector space structure of the Chen–Ruan orbifold cohomology of Bianchi orbifolds

are the below two theorems.

Theorem 17 For any element γ of order 3 in a finite index subgroup Γ in a Bianchi group with

units {±1}, the quotient space Hγ/CΓ(γ) of the rotation axis modulo the centralizer of γ is homeomorphic

to a circle.
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Proof As γ is a non­trivial torsion element, by [35, lemma 22] the Γ–image of the chain of edges

associated to γ contains the rotation axis Hγ . Now we can observe two cases.

b First, assume that the rotation axis of γ does not contain any vertex of stabilizer type D3 (from [35],

we know that this gives us a circle as a path component in the quotient of the 3–torsion sub­

complex). Assume that there exists a reflection of Hγ onto itself by an element of Γ . Such a

reflection would fix a point on Hγ . Then the normalizer of 〈γ〉 in the stabilizer of this point would

contain the reflection. This way, Lemma 13 yields that this stabilizer is of type D3 , which we have

excluded. Thus, there can be no reflection of Hγ onto itself by an element of Γ .

As Γ acts by CAT(0) isometries, every element g ∈ Γ sending an edge of the chain for γ to an edge

on Hγ outside the fundamental domain, can then only perform a translation on Hγ . A translation

along the rotation axis of γ commutes with γ , so g ∈ CΓ(γ). Hence the quotient space Hγ/CΓ(γ)

is homeomorphic to a circle.

b b If Hγ contains a point with stabilizer in Γ of type D3 , then there are exactly two Γ–orbits of

such points. The elements of order 2 do not commute with the elements of order 3 in D3 , so the

centralizer of γ does not contain the former ones. Hence, CΓ(γ) does not contain any reflection

of Hγ onto itself. Denote by α and β elements of order 2 of each of the stabilizers of the two

endpoints of a chain of edges for γ . Then αβ performs a translation on Hγ and hence commutes

with γ . A fundamental domain for the action of 〈αβ〉 on Hγ is given by the chain of edges

for γ united with its reflection through one of its endpoints. As no such reflection belongs to the

centralizer of γ and the latter endpoint is the only one on its Γ–orbit in this fundamental domain,

the quotient Hγ/CΓ(γ) matches with the quotient Hγ/〈αβ〉 , which is homeomorphic to a circle.

Theorem 18 Let γ be an element of order 2 in a Bianchi group Γ with units {±1}. Then, the

homeomorphism type of the quotient space Hγ/CΓ(γ) is

b b an edge without identifications, if 〈γ〉 is contained in a subgroup of type D2 inside Γ and

b a circle, otherwise.

Proof By Lemma 15, the chain of edges for γ is a fundamental domain for CΓ(γ) on the rotation axis

Hγ of γ . Again, we have two cases.

b b If 〈γ〉 is contained in a subgroup of type D2 inside Γ , then any chain of edges for γ admits

endpoints of stabilizer types D2 or A4 , because we can merge any two adjacent edges on a 2–

torsion axis with touching point of stabilizer type Z/2 or D3 . As D2 is an Abelian group and

the reflections in A4 are contained in the normal subgroup D2 , the reflections in these endpoint

stabilizers commute with γ , so the quotient space Hγ/CΓ(γ) is represented by a chain of edges

for γ . What remains to show, is that there is no element of CΓ(γ) identifying the two endpoints of

stabilizer type D2 (respectively A4 ). Assume that there is an element g ∈ CΓ(γ) carrying out this

identification. Any one of the two endpoints, denote it by x, contains in its stabilizer a reflection α

of the rotation axis of γ . The other endpoint is then g · x and contains in its stabilizer the conjugate
gα by g. Denote by m the point in the middle of (x, g · x), i.e. the point on Hγ with equal distance

to x and to g ·x. As 〈gα, γ〉 is Abelian, gα is in CΓ(γ) and hence (x,m) and (g ·x,m) are equivalent
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modulo CΓ(γ) via the element gαg (illustration: b b
x m gx gm

〈α, γ〉
b

〈g
α, γ〉

b ). Then the chain of edges for

γ does not reach from x to g · x. This contradicts our hypotheses, so the homeomorphism type of

Hγ/CΓ(γ) is an edge without identifications.

b The other case is analogous to the first case of the proof of Theorem 17, the rôle of D3 being

played by D2 and A4 .

Furthermore, the following easy­to­check statement will be useful for our orbifold cohomology compu­

tations.

Remark 19 There is only one conjugacy class of elements of order 2 in D3 as well as in A4 . In D3 ,

there is also only one conjugacy class of elements of order 3, whilst in A4 there is an element γ such

that γ and γ2 represent the two conjugacy classes of elements of order 3.

Proof In cycle type notation, we can explicitly establish the multiplication tables of D3 and A4 , and

compute the conjugacy classes.

Corollary 20 (Corollary to Remark 19) Let γ be an element of order 3 in a Bianchi group Γ with

units {±1}. Then, γ is conjugate in Γ to its square γ2 if and only if there exists a group G ∼= D3 with

〈γ〉 ( G ( Γ .

Denote by λ2ℓ the number of conjugacy classes of subgroups of type Z/ℓZ in a finite index subgroup Γ

in a Bianchi group with units {±1}. Denote by λ∗
2ℓ the number of conjugacy classes of those of them

which are contained in a subgroup of type Dn in Γ . By Corollary 20, there are 2λ6 − λ∗
6 conjugacy

classes of elements of order 3. As a result of Theorems 17 and 18, we have the following isomorphism

of vector spaces:
⊕

γ∈T

H•
(

(HR)γ/CΓ(γ);Q
)

∼= H•
(

HR/Γ; Q
)

⊕λ∗
4

H•

(

b b ; Q
)

⊕(λ4−λ∗
4 )

H•
(

b ; Q
)

⊕(2λ6−λ∗
6 )

H•
(

b ; Q
)

,

where T ⊂ Γ is a set of representatives of conjugacy classes of elements of finite order in Γ . The

(co)homology of the quotient space HR/Γ has been has been computed numerically for a large scope

of Bianchi groups [44], [39], [36]; and bounds for its Betti numbers have been given in [22]. Krämer

[23] has determined number­theoretic formulae for the numbers λ2ℓ and λ∗
2ℓ of conjugacy classes of

finite subgroups in the full Bianchi groups. Krämer’s formulae have been evaluated for hundreds of

thousands of Bianchi groups [35], and these values are matching with the ones from the orbifold structure

computations with [33] in the cases where the latter are available.

When we pass to the complexified orbifold [H3
C/Γ], the real line that is the rotation axis in HR of an

element of finite order, becomes a complex line. However, the centralizer still acts in the same way by

reflections and translations. So, the interval b b as a quotient of the real line yields a stripe b b × R as

a quotient of the complex line. And the circle b as a quotient of the real line yields a cylinder b × R
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as a quotient of the complex line. Therefore, using the degree shifting numbers of Lemma 9, we obtain

the result of Corollary 2,

Hd
CR

(

[H3
C/Γ]

) ∼= Hd
(

HC/Γ; Q
)

⊕















Qλ4+2λ6−λ∗
6 , d = 2,

Qλ4−λ∗
4 +2λ6−λ∗

6 , d = 3,

0, otherwise.

As we can calculate the Bredon homology HFin
0 (Γ; RC) of the Bianchi groups with coefficients in the

complex representation ring functor RC , the following lemma provides a check on our computations.

Lemma 21 (Mislin [26]) Let Γ be an arbitrary group and write FC(Γ) for the set of conjugacy classes

of elements of finite order in Γ . Then there is an isomorphism

HFin
0 (Γ; RC) ⊗Z C ∼= C[FC(Γ)].

6 The cohomology ring isomorphism

In this section we prove Theorem 3. To this aim we define a linear and grading­preserving func­

tion Φ : H∗
CR([H3

C/Γ]) → H∗(Y) as follows. For any cohomology class of the non­twisted sector

α ∈ Hd(H3
C/Γ), we define Φ(α) := f ∗(α) ∈ Hd(Y). Let now αg ∈ Hd−2shift(g)

(

(H3
C)g/CΓ(g)

)

⊂
Hd

CR([H3
C/Γ]) be a cohomology class of the twisted sector [(H3

C)g/CΓ(g)]. Let us consider the following

Cartesian diagram

E
−−−−→ Y

π





y





y

f

(H3
C)g/CΓ(g)

ı−−−−→ H3
C/Γ ,

where ı is the morphism induced by the inclusion (H3
C)g →֒ H3

C . Then we define Φ(αg) := ∗π∗(αg),

where π∗(αg) ∈ Hd−2shift(g)(E) is the usual pull­back, and ∗ : Hd−2shift(g)(E) → Hδ(Y), with

δ = 2 (dim Y − dim E − shift(g)) + d , is the composition of the following linear maps

Hd−2shift(g)(E) ∼= HBM
2 dim E−d+2shift(g)(E) → HBM

2 dim E−d+2shift(g)(Y) ∼= Hδ(Y) ,

where the first and last isomorphisms are given by Poincaré duality with Borel­Moore homology ([17]),

the linear map in the middle is the push­forward induced by  (notice that  is proper because ı is so

by Lemma 8). From the description of finite subgroups of Γ in Section 3 it follows that g acts, locally

around (H3
C)g , as a rotation; from Lemma 9 we conclude that shift(g) = 1. Furthermore, E ⊂ Y is a

divisor, hence dim Y − dim E = 1 and so δ = d .

The linear function Φ so defined is an isomorphism of graded vector spaces. Indeed, from the McKay

correspondence ([7], [11]) the graded vector spaces H∗
CR([H3

C/Γ]) and H∗(Y) are isomorphic, so it is

enough to show that Φ is injective. To this aim, let α ∈ Hd(H3
C/Γ)\{0}. Then, by Poincaré duality there

exists β ∈ H3−d
c (H3

C/Γ), such that
∫

H3
C
/Γ α∧ β 6= 0 ([1]), where H∗

c denotes cohomology with compact

support. Since f maps the fundamental class of Y to that of H3
C/Γ [17], it follows that

∫

Y
f ∗(α∧β) 6= 0,
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hence Φ(α) = f ∗(α) 6= 0. The fact that also the restriction of Φ to the cohomology of the twisted sectors

is injective can be proved as in [29, Proposition 4.9].

To conclude the proof of the theorem, we show that Φ is a ring homomorphism. Notice that on the

non­twisted sector Φ respects the cup products because f ∗ is a ring homomorphism. So let αg, βh be

cohomology classes of the twisted sectors (H3
C)g/CΓ(g), (H3

C)h/CΓ(h). Since shift(g) = shift(h) = 1, the

Chen–Ruan degrees deg(αg), deg(βh) are > 2, hence deg
(

αg ∪CR βh

)

> 4. By Theorem 16 we conclude

that Hd
CR([H3

C/Γ]) = 0, if d > 4, so αg ∪CR βh = 0. On the other hand, since Φ is grading preserving,

deg
(

Φ(αg) ∪Φ(βh)
)

> 4, so also Φ(αg)∪Φ(βh) = 0 because Hd(Y) ∼= Hd
CR([H3

C/Γ]), for any d . Finally,

let αg ∈ H∗((H3
C)g/CΓ(g)) and β ∈ H∗(H3

C/Γ). Then, αg ∪CR β = αg ∪ ı∗β ∈ H∗((H3
C)g/CΓ(g)), so

Φ
(

αg ∪CR β
)

= ∗π∗ (αg ∪ ı∗β
)

. On the other hand,

Φ(αg) ∪ Φ(β) = ∗π
∗(αg) ∪ f ∗(β)

= ∗
(

π∗(αg) ∪ ∗(f ∗(β))
)

(projection formula)

= ∗
(

π∗(αg) ∪ π∗(ı∗(β))
)

(f ◦  = ı ◦ π)

= ∗π
∗ (αg ∪ ı∗(β)

)

= Φ(αg ∪CR β) .

7 Cohomological Crepant Resolution Conjecture for Bianchi orbifolds

In this section we compare the results obtained so far with the Cohomological Crepant Resolution

Conjecture of Ruan. We begin by briefly reviewing the statement of this conjecture, referring to [38],

[12], and the references therein, for further details.

Let X be a complex orbifold, and let X be its coarse moduli space. We assume that X is a complex

projective variety which has a crepant resolution f : Y → X . The quantum corrected cohomology ring of

f : Y → X is a family of rings on the vector space H∗(Y,C) = ⊕d>0 Hd(Y,C), whose definition depends

on the choice of a basis of ker (f∗ : H2(Y,Q) → H2(X,Q)) consisting of homology classes of effective

curves β1, . . . , βn . One defines the 3­points function

(2) (α1, α2, α3)(q1, . . . , qn) =
∑

(k1,...,kn)∈Nn

〈α1, α2, α3〉Y
βq

k1

1 · . . . · qkn
n ,

where β = k1β1 + . . . + knβn ∈ H2(Y,Z), and 〈α1, α2, α3〉Y
β is the Gromov­Witten invariant of Y , of

genus 0, of homology class β , with respect to the cohomology classes α1, α2, α3 ∈ H∗(Y,C). Recall

that a compact complex curve D ⊂ Y of homology class β is called an exceptional curve for f . To

simplify the discussion we assume that the 3­points function (2) converges in a neighborhood of the origin

(q1, . . . , qn) = (0, . . . , 0), and then, for any (q1, . . . , qn) in this neighborhood, we define a product ⋆f on

the cohomology of Y as follows: given cohomology classes α1, α2 , then α1 ⋆f α2 is the cohomology

class which satisfies the following equation:

(α1 ⋆f α2, α3) = (α1, α2, α3)(q1, . . . , qn) , ∀α3 ∈ H∗(Y,C) ,

where the pairing (, ) to the left hand side is the Poincaré pairing of Y . The product ⋆f satisfies the usual

properties of the cup product, e.g. it is associative, graded­commutative, and 1 is its neutral element. The
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family of rings
(

H∗(Y,C), ⋆f

)

is by definition the quantum corrected cohomology ring of f : Y → X .

Notice that, if (q1, . . . , qn) = (0, . . . , 0), then ⋆f coincides with the usual cup product, as it follows from

the fact that (α1, α2, α3)(0, . . . , 0) =
∫

Y
α1 ∪ α2 ∪ α3 . So, the quantum corrected cohomology ring of

f : Y → X is regarded as a deformation of the usual cohomology ring of Y .

Ruan’s Cohomological Crepant Resolution Conjecture predicts that there is an analytic continuation

of (2) to a region containing a point (q̄1, . . . , q̄n) such that, for (q1, . . . , qn) = (q̄1, . . . , q̄n), the ring
(

H∗(Y,C), ⋆f

)

is isomorphic to the Chen–Ruan orbifold cohomology ring
(

H∗
CR(X ),∪CR

)

of X .

In the case of a Bianchi orbifold [H3
C/Γ], the coarse moduli space H3

C/Γ is not a projective variety

[13], and so, for every crepant resolution f : Y → H3
C/Γ , Y is not a projective variety. Hence the

Gromov­Witten invariants of Y are, in general, not well defined. However, we will see that [H3
C/Γ] has

a Kähler structure, and that one does not expect non­zero quantum corrections coming from exceptional

curves for f . This will be motivated by a deformation theoretic argument about the complex structure

of Y (let us recall that the Gromov­Witten invariants are invariant under deformations of the complex

structure). This allows us to convince ourselves that the quantum corrections vanish. We prove the

latter fact in one special case, namely Γ = PSL2(O−5), while the general case should be feasible with

similar arguments. Hence, in accordance with Ruan’s conjecture, there should be a ring isomorphism
(

H∗
CR([H3

C/Γ]),∪CR

) ∼=
(

H∗(Y),∪
)

. This is confirmed by our Theorem 3.

Proposition 22 Let [H3
C/Γ] be a Bianchi orbifold. Then the Bergman metric on H3

C descends to a

Kähler (orbifold) metric on [H3
C/Γ].

Proof Let

ds2
=

∑

gαβ̄ d zα d z̄β

be the Bergman metric on H3
C . By [27, Theorem 8.4, p. 144], ds2 is invariant under the action of Γ ,

hence it induces a Kähler metric on the orbifold [H3
C/Γ].

Let now f : Y → H3
C/Γ be a crepant resolution. Let D ⊂ Y be an exceptional compact complex

curve, that is f∗([D]) = 0, where [D] is the fundamental class of D . Since [H3
C/Γ] is Kähler, f (D)

is a point, so D is contained in the exceptional divisor of f . In particular, for any homology class

β ∈ ker
(

f∗ : H2(Y,Q) → H2(H3
C/Γ,Q)

)

, and for any stable map µ : C → Y , such that µ∗([C]) = β ,

the image of µ is contained in the exceptional divisor of f . Hence it suffices to consider the problem

locally in a neighbourhood of the exceptional divisor.

From the results of Sections 3 and 5 we have that the singular locus of H3
C/Γ is the union of several

irreducible components, each of which is isomorphic either to C or to C∗ . Furthermore, the generic

point of each irreducible component of the singular locus is a transverse singularity of type An of H3
C/Γ ,

with n = 1 or 2. Recall that a point p of a variety (an analytic space, respectively) X is a transverse

singularity of type An , if there is a neighbourhood of p in the analytic topology of X that is isomorphic

to a neighbourhood of a singular point of {(u, v,w) ∈ C3 |wn+1 = uv} × Cd−2 , where d = dim(X).

Let us now consider the special case where Γ = PSL2(O−5) (see Section 8.6). In this case we explain

in detail why the quantum corrections to the cohomology ring of Y coming from exceptional curves

should vanish. The singular locus of X = H3
C/Γ has two connected components, X(2)

∼= C∗ , whose
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points are transverse singularities of type A2 , and X(1) , that is the union of three irreducible components,

X′
(1),X′′

(1),X′′′
(1)

∼= C , that meet in two points P,Q and the complement X(1) \{P,Q} is a locus of transverse

singularities of type A1 (see Figure 8 and Section 8.6). The exceptional divisor of f : Y → X has two

connected components, E(2) , that is mapped to X(2) by f , and E(1) , such that f (E(1)) = X(1) . Furthermore,

E(1) has three irreducible components, E′
(1),E′′

(1),E′′′
(1) , that are mapped by f to X′

(1),X′′
(1),X′′′

(1) , respectively.

Let us consider first the A2 ­singularities X(2) . We can find an open neighbourhood U of X(2) , such that

U ∼= Ũ/(Z/3Z), where Ũ is a complex manifold with an action of Z/3Z , such that the fixed­points locus

ŨZ/3Z is a smooth submanifold of Ũ isomorphic to X(2) . Furthermore, up to deformation, we can assume

that Ũ is an open neighbourhood of the zero­section of the normal bundle NŨZ/3Z|Ũ of ŨZ/3Z in Ũ . This

can be achieved using the deformation to the normal cone of the imbedding ŨZ/3Z ⊂ Ũ ([17, Chapter 5]).

The vector bundle map NŨZ/3Z|Ũ → ŨZ/3Z ∼= X(2) induces a morphism Ũ/(Z/3Z) → X(2) that gives to

U ∼= Ũ/(Z/3Z) the structure of a fibration over X(2) with fibres all isomorphic to the surface singularity of

type A2 . The important fact is that this fibration is trivial. To see this, let us recall that the action of Z/3Z

on the fibres of NŨZ/3Z|Ũ induces a splitting, NŨZ/3Z|Ũ = L ⊕M , where L and M are the eigenbundles

corresponding to the irreducible characters of the representation of Z/3Z on the fibres of NŨZ/3Z|Ũ . In

our case L and M are trivial line bundles on X(2) , as it follows from Theorem 10 and the computation

of the Chen–Ruan cohomology ring of orbifolds with transverse singularities of type An [29, Theorem

3.12]. Therefore the fibration NŨZ/3Z|Ũ/(Z/3Z) → X(2) is trivial, that is, it is isomorphic to the projection

to the first factor of X(2) × {(u, v,w) ∈ C3 | uv = w3}. Now, using the theory of deformations of rational

double points (see [8], [43]), we deform the family NŨZ/3Z|Ũ/(Z/3Z) → X(2) to a family of affine smooth

surfaces. Finally, consider the neighbourhood U := f−1(U) of E(2) . Taking a simultaneous resolution of

the previous deformation of NŨZ/3Z|Ũ/(Z/3Z) → X(2) , we obtain a deformation of U to a manifold that

does not contain compact complex curves.

Let us now consider the exceptional curves that are contained in E(1) . Notice that each component E′
(1) ,

E′′
(1) , E′′′

(1) , can be seen as the exceptional divisor of a crepant resolution of a transverse singularity of

type A1 . Hence, from our description of the obstruction bundles (Theorem 10) and from [29, Theorem

7.6], it follows that the exceptional curves contained in one of these components do not contribute to the

quantum corrected cohomology ring of Y . If D ⊂ Y is a connected exceptional curve which is contained

in more that one component of E(1) , then f (D) coincides with P or Q , the points where the components

X′
(1),X′′

(1),X′′′
(1) meet together. Near P and Q , X is isomorphic to the singularity C3/D2 (see Section 8.6),

where D2 = 〈ξ, η | ξ2 = η2 = (ξη)2 = 1〉 ∼= Z/2Z ⊕ Z/2Z . We can realize the quotient C3/D2 as
(

C3/〈ξ〉
)

/〈η〉, and notice that C3/〈ξ〉 ∼= {(u, v,w, z) ∈ C3 × C | uv = w2} with the action of 〈η〉 given

by η · (u, v,w, z) 7→ (u, v,−w,−z). The semi­universal deformation of {(u, v,w) ∈ C3 | uv = w2} is

uv = w2 + t , where t is the deformation parameter. Notice that the action of 〈η〉 on C3/〈ξ〉 extends

to {(u, v,w, z) ∈ C3 × C | uv = w2 + t}, for all t , as follows: η · (u, v,w, z) = (u, v,−w,−z). Hence

{(u, v,w, z) ∈ C3 × C | uv = w2 + t}/〈η〉, for t ∈ C , is a deformation of C3/D2 . Notice that, for

t 6= 0, {(u, v,w, z) ∈ C3 ×C | uv = w2 + t}/〈η〉 has transverse singularities of type A1 , and they can be

smoothed by a deformation as follows. Taking the invariants of the 〈η〉­action, we see that

{(u, v,w, z) ∈ C3 × C | uv = w2
+ t}/〈η〉 ∼= {(u, v, ρ, σ, τ ) ∈ C5 | uv = ρ+ t , ρσ = τ 2} ,

where ρ = w2, σ = z2, τ = wz, and so, {(u, v, ρ, σ, τ ) ∈ C5 | uv = ρ + t , ρσ = τ 2 + s} is a

deformation of C3/D2 , with deformation parameters t and s. For t 6= 0 and s 6= 0, the variety

{(u, v, ρ, σ, τ ) ∈ C5 | uv = ρ+ t , ρσ = τ 2 + s} is an affine smooth variety, so a simultaneous resolution
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of this family yields a deformation of a neighbourhood of f−1(P) (f−1(Q), respectively), such that the

generic member of the family is a smooth affine variety, hence it does not contain compact complex

curves.

8 Orbifold cohomology computations for sample Bianchi orbifolds

(1)′ (7)′

(1)

(2)

(7)

(8)

Figure 1: Fundamental domain in the

case m = 2.

We will carry out our computations in the upper­half space model

{x + iy + rj ∈ C⊕ Rj | r > 0} for H3
R in three cases. Details on

how to compute Chen–Ruan orbifold cohomology can be found

in [29]. In the case Γ = PSL2(Z[
√
−5 ]), we also compute the

cohomology ring structure.

8.1 The case Γ = PSL2(Z[
√
−2 ]).

Let ω :=
√
−2 . A fundamental domain for Γ := PSL2(Z[ω]) in

real hyperbolic 3­space H has been found by Luigi Bianchi [5].

We can obtain it by taking the geodesic convex envelope of of its

lower boundary (half of which is depicted in Figure 1) and the vertex ∞ , and then removing the vertex

∞ , making it non­compact. The other half of the lower boundary consists of one isometric Γ–image of

each of the depicted 2­cells (in fact, the depicted 2­cells are a fundamental domain for a Γ–equivariant

retract of H , which is described in [37]). The coordinates of the vertices of Figure 1 in the upper­half

space model are (1) = j, (1)′ = ω + j, (2) =
1
2
ω +

√

1
2
j, (7) =

1
2
+

√

3
4
j, (7)′ = 1

2
+ ω +

√

3
4
j,

(8) = 1
2
+

1
2
ω +

1
2
j.

The 2­torsion sub­complex ( ) and the 3­torsion sub­complex ( ) are colored in the figure. The set

of representatives of conjugacy classes can be chosen

T = {Id, α, γ, β, β2},

with α = ±
(

1 ω
ω −1

)

, β = ±
(

0 −1

1 1

)

and γ = ±
(

0 1

−1 0

)

, so α and γ are of order 2, and β is of order 3.

Using Lemma 21 and with the help of our Bredon homology computations, we check the cardinality

of T . The fixed point sets are then the following subsets of complex hyperbolic space H := H3
C :

HId = H ,

Hα = the complex geodesic line through (2) and (8),

Hγ = the complex geodesic line through (1) and (2),

Hβ = Hβ2
= the complex geodesic line through (7) and (8).

The matrix g = ±
(

1 −ω
0 1

)

performs a translation preserving the j­coordinate and sends the edge (1)(7)

onto the edge (1)′(7)′ , so the orbit space HR/Γ is homotopy equivalent to a circle. Consider the real

geodesic line Hγ
R on the unit circle of real part zero. The edge g−1 ·

(

(2)(1)′
)

=
(

g−1(2)
)

(1) lies on Hγ
R

and is not Γ–equivalent to the edge (1)(2). Because of Lemma 14, the centralizer CΓ(γ) reflects the line

Hγ
R onto itself at (2), and again at g−1(2). Furthermore, none of the four elements of Γ sending (2) to
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p q

u

〈W〉〈V〉

v

〈R〉

〈AL〉 = 〈VS2〉

〈S〉
〈A〉

〈RA〉〈L〉

Figure 2: Half of a fundamental domain for the action of PSL2(Z[
√
−1 ]) on H , open towards the cusp at ∞ . The

second half can be obtained as a copy of the open pyramid glued from below to its base square.

g−1(2) belongs to CΓ(γ) . Hence the quotient space Hγ
R/CΓ(γ) consists of a contractible segment of two

adjacent edges. Thus Hd−2
(

Hγ
C/CΓ(γ); Q

) ∼=
{

Q, d = 2

0 else
is contributed to the orbifold cohomology.

Next, consider the real geodesic line Hβ
R on the circle of constant real coordinate 1

2
, of center 1

2
and

radius

√

3
4

. The edge g−1 ·
(

(8)(7)′
)

=
(

g−1(8)
)

(7) lies on Hβ
R and is not Γ–equivalent to the edge

(7)(8). The centralizer of β contains the matrix V := ±
(

21 − ω
ω − 1 1 + ω

)

of infinite order, which sends

the edge
(

g−1(8)
)

(7) to (8)z with z =
1
2
+

3
5
ω +

√

3
100

j. We conclude that the translation action of the

group 〈V〉 on the line Hβ
R is transitive, with quotient space represented by the circle

(

g−1(8)
)

(7)∪ (7)(8),

first and last vertex identified. Thus Hd−2
(

Hβ
C/CΓ(β); Q

)

∼= Hd−2
(

Hβ2

C /CΓ(β2); Q
)

∼=
{

Q, d = 2, 3

0 else
is

contributed to the orbifold cohomology.

Because of Lemma 14, the centralizer CΓ(α) reflects the line Hα
R onto itself at (2), and again at (8).

So, the quotient space Hα
R/CΓ(α) is represented by the single contractible edge (2)(8). This yields that

Hd−2
(

Hα
C/CΓ(α); Q

) ∼=
{

Q, d = 2

0 else
is contributed to the orbifold cohomology.

Summing up over T , we obtain

Hd
orb

(

[H3
C/PSL2(Z[

√
−2 ])]

)

∼= Hd
(

HC/PSL2(Z[
√
−2 ]); Q

)

⊕















Q4, d = 2,

Q2, d = 3,

0, otherwise.
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〈VS2〉 〈VS〉p
q

〈L〉

S · ∞ S2 · ∞

S2 · p

S · p

〈V〉

Figure 3: Geodesics fixed by certain finite order elements of PSL2(Z[
√
−1 ]).

8.2 The case Γ = PSL2(Z[
√
−1 ]).

Let i :=
√
−1 . A fundamental domain for the action of Γ := PSL2(Z[i]) on real hyperbolic 3­space H

has been found by Luigi Bianchi, and the stabilizers have been computed by Flöge [16], whose notation

we are going to adopt. It is drawn in Figure 2. Here the vertex stabilizers are

Γp = 〈A,L〉 ∼= D2 , Γq = 〈V, S〉 ∼= D3 , Γu = 〈W, S〉 ∼= A4 , Γv = 〈R,A〉 ∼= D3 ,

where A = ±
(

0 1

−1 0

)

, L = ±
(

−i 0

0 i

)

, S = ±
(

0 −1

1 1

)

,

R = ±
(

−i 1

0 i

)

, V = ±
(

−i −i

0 i

)

and W = ±
(

−i 1 − i

0 i

)

;

1 = A2 = L2 = V2 = R2 = S3 = W2.

The matrices mentioned in Figure 2 (and their square when they are of order 3) constitute a system

of representatives modulo Γ of the non­trivial elements of finite order. So we compute the respective

quotients of their rotation axis by their centralizer, in order to obtain the CR orbifold cohomology. For the

elements of order 3, namely RA and S, Theorem 17 and its proof pass unchanged, so HRA/CΓ(〈RA〉) ∼= b

and HS/CΓ(〈S〉) ∼= b .

For the elements of order 2, we study the quotient of their fixed geodesic by their centralizer through

Figure 3. Further, we obtain another such figure useful for our purpose by making the following

replacements on Figure 3: q 7→ v, S 7→ (RA)2 , VS2 7→ A , V 7→ R . The symmetries obtained from

combining complex conjugation with the rotation by L ensure that the relabeled figure is isometric to the

printed one.

The points p, S · p, S2 · p, (RA)2 · p, R · p all have stabilizer type D2 , because they are on the orbit

of p, and hence the 2­torsion axes passing through them are mirrored by order­2­elements commuting

with the rotation around the respective axis. We immediately conclude that HL/CΓ(〈L〉) is represented by

the half­open interval [p,∞). In the stabilizer of q, which is of type D3 , apart from the trivial element,

only the order 3 element and its square commute with each other. So there are no mirrorings at q in

the centralizer of the rotations with axis passing through q. Hence, HV/CΓ(〈V〉) ∼= [S · p, q,∞) and

HVS2
/CΓ(〈VS2〉) ∼= [p, q, S2 · ∞).
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u

w

v

〈L〉 〈K〉 〈MS〉

〈AL2 = M〉

〈AL = K2S2〉

〈S〉

Figure 4: Half of a fundamental domain for the action of PSL2(O
−3) on H , open towards the cusp at ∞ . The

second half can be obtained as a copy of the open pyramid glued from below to its base square.

u

ww′′′

w′

vv′

v′′

Figure 5: The 2­cells in H equidistant to the cusps at 0 and ∞ , with no other PSL2(O
−3)­cusp being closer. The

triangle (u, v,w) is the same one as in Figure 4, and the vertex u sits on the middle of the geodesic (0,∞) .

By the above described replacements on Figure 3, we obtain analogously that

HR/CΓ(〈R〉) ∼= [(RA)2 · p, v,∞) and HA/CΓ(〈A〉) ∼= [p, v,RA · ∞).

In the stabilizer of the point u, there are order­2­elements commuting with W , and therefore

HW/CΓ(〈W〉) ∼= [u,∞).

Summing up, and taking into account that H/Γ is contractible, we obtain the CR orbifold cohomology

Hd
orb

(

[H3
C/PSL2(Z[

√
−1 ])]

)

∼=























Q, d = 0,

Q10, d = 2,

Q4, d = 3,

0, otherwise.
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8.3 The case Γ = PSL2(O−3).

Let ω :=
√
−3−1

2
. A fundamental domain for the action of Γ := PSL2(Z[ω]) on real hyperbolic 3­

space H has been found by Luigi Bianchi, and the stabilizers have been computed by Flöge [16], whose

notation we are going to adopt. It is drawn in Figure 4. Here the vertex stabilizers are

Γu = 〈A,L〉 ∼= D3 , Γv = 〈K, S〉 ∼= A4 , Γw = 〈M, S〉 ∼= A4 ,

where A = ±
(

0 1

−1 0

)

, L = ±
(

−ω2 0

0 ω

)

, S = ±
(

0 −1

1 1

)

, K = ±
(

ω2 −ω
0 ω

)

;

1 = A2 = L3 = K3 = S3 = M2 .

As 〈S〉 ∼= Z/3 and Γv
∼= A4

∼= Γw , the latter two vertex stabilizers do neither reflect HS , nor do they

contribute any element to CΓ(〈S〉). That is why though all cusps are on one Γ­orbit, the centralizer

CΓ(〈S〉) ∼= 〈S〉 leaves pointwise fixed HS , which is the geodesic line through (v,w) starting at a cusp s

in the Γv ­orbit of ∞ and ending at a cusp e in the Γw ­orbit of ∞ . By the A4 ­symmetries in v and w ,

(s, v) is mapped to (∞, v) and (e,w) is mapped to (∞,w). Hence there can be no translations of HS

in Γ , and therefore HS/CΓ(〈S〉) = HS . The A4 ­symmetries enforce all 3­torsion axes passing through

a representative of v or w to admit the same centralizer quotient. Hence also HK/CΓ(〈K〉) = HK and

HMS/CΓ(〈MS〉) = HMS are open geodesic lines starting and ending at cusps.

In contrast, HL is getting reflected onto itself by Γu . But the elements of order 2 in Γu
∼= D3 do not

commute with L , and hence HL = HL/CΓ(〈L〉) is the geodesic line (∞,M · ∞) with the vertex u on its

middle.

Concerning the 2­torsion axes, HM does not get reflected by Γu
∼= D3 . It gets reflected by order­

2­elements in Γw and Γv′ commuting with M (see Figure 5); hence HM/CΓ(〈M〉) ∼= b b . By the

D3 ­symmetry in u, the same happens for HAL : It gets reflected in v and w′′′ by centralizing elements

and not in u; therefore HAL/CΓ(〈AL〉) ∼= b b .

Summing up, and taking into account that H/Γ is contractible, we obtain the CR orbifold cohomology

Hd
orb

([

H3
C/PSL2

(

Z

[
√
−3 − 1

2

])])

∼=















Q, d = 0,

Q10, d = 2,

0, otherwise.
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8.4 The case Γ = PSL2(O−11).

(3)′(6)′

(3) (6)

(8)

(9)

Figure 6: Fundamental domain in the

case m = 11.

Let O−11 be the ring of integers in Q(
√
−11 ).

Then O−11 = Z[ω] with ω =
−1+

√
−11

2
.

A fundamental domain for Γ := PSL2(O−11) in real hyperbolic

3­space H has been found by Luigi Bianchi [5]. Half of its lower

boundary given in Figure 6. The coordinates of the vertices of

Figure 6 in the upper­half space model are (3) = j, (3)′ = 1+ω+ j,

(6) =
1
2
+

√

3
4
j, (6)′ = 1

2
+ ω +

√

3
4
j, (8) = 3

11
+

3
11
ω +

√

2
11

j,

(9) = 8
11

+
5

11
ω +

√

2
11

j. The set of representatives of conjugacy

classes can be chosen

T = {Id, γ, β, β2},

with β = ±
(

0 −1

1 1

)

and γ = ±
(

0 1

−1 0

)

,

so γ is of order 2, and β is of order 3. Using Lemma 21 and

with the help of our Bredon homology computations, we check the

cardinality of T . That we have one less conjugacy class of finite order elements than in the case O−2 ,

comes from the fact that by Remark 19, there is only one conjugacy class of order–2–elements in A4 .

The fixed point sets are then the following subsets of complex hyperbolic space H := H3
C :

HId = H ,

Hγ = the complex geodesic line through (3) and (8),

Hβ = Hβ2
= the complex geodesic line through (6) and (9).

The 2–torsion sub­complex is of homeomorphism type b b and the 3–torsion sub­complex is of homeo­

morphism type b . Therefore, we obtain

Hd
CR

(

[H3
C/PSL2(Z[

√
−11 ])]

) ∼= Hd
(

HC/PSL2(O−11); Q
)

⊕















Q1+2, d = 2,

Q2, d = 3,

0, otherwise.
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8.5 The case Γ = PSL2(O−191).

(179)′(191)′

(683)′

(432)′

(359)′

(299)′

(629)′

(526)′

(240)′

(234)′

(486)′

(215)′

(179) (191)

(215)

(234)

(240)

(299)

(359)

(432)

(486)

(526) (629)(683)

Figure 7: Fundamental domain in the

case m = 191. The coordinates of the

vertices can be displayed by [33].

Let O−191 be the ring of integers in Q(
√
−191 ). Again, the set of

representatives of conjugacy classes can be chosen

T = {Id, γ, β, β2},

with β = ±
(

0 −1

1 1

)

and γ = ±
(

0 1

−1 0

)

, so γ is of order 2, and

β is of order 3. Both the 2– and the 3–torsion sub­complexes are

of homeomorphism type b . Then,

Hd
orb

(

[H3
C/PSL2(Z[

√
−191 ])]

)

∼= Hd
(

HC/PSL2(O−191); Q
)

⊕















Q1+2, d = 2,

Q1+2, d = 3,

0, otherwise.

We conclude this section with the following explanation why in our

fundamental domain diagrams, there occurs only one representative

per torsion­stabilized edge.

Remark 23 Let e be a non­trivially stabilized edge in the funda­

mental domain for the refined cell complex. Then the fundamental

domain for the 2–dimensional retract can be chosen such that it

contains e as the only edge on its orbit.

Sketch of proof. Observe that the inner dihedral angle 2π
q

of the

Bianchi fundamental polyhedron is 2π
ℓ or π

ℓ at its edges admitting a

rotation of order ℓ from the Bianchi group. We can verify this in the

vertical half­plane where the action of PSL2(Z) is embedded into

the action of the Bianchi group, for the generators of orders ℓ = 2

and ℓ = 3 of PSL2(Z) which fix edges orthogonal to the vertical

half­plane. These angles are transported to all edges stabilized by

Bianchi group elements conjugate under SL2(C) to these two rota­

tions. Poincaré [30] partitions the edges of the Bianchi fundamental

polyhedron into cycles, consisting of the edges on the same orbit, of

length
q
ℓ = 1 or 2. In the case of length 2, Poincaré’s description

implies that each of the two 2–cells separated by the first edge of

the cycle, is respectively on the same orbit as one of the 2–cells

separated by the second edge of the cycle. As the fundamental

domain for the 2–dimensional retract is strict with respect to the

2–cells, it can be chosen such that it contains e as the only edge on

its orbit.

Note that we can check our computations using the algorithm of

[34, Section 5.3] for the computation of subgroups in the centralizers.
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u

u

P

Q

tA1 tA1 tA1

Figure 8: Two singular points P,Q which are analytically isomorphic to the singularity at the origin of C3/D2 .

8.6 The case Γ = PSL2(O−5).

We start by analysing the case where

Γ = PSL2(O−5) .

In this case the singular locus of X has two connected components. One component is a transverse

singularity of type A2 (we write tA2 ). The other component, drawn in Figure 8, contains two singular

points P,Q which are analytically isomorphic to the singularity at the origin of C3/D2 , where

D2 = 〈ξ, η | ξ2
= η2

= (ξη)2
= 1〉 ∼= Z/2 ⊕ Z/2

is the Klein­four­group acting via the standard diagonal representation D2 → SL3(C):

ξ 7→ diag(−1,−1, 1) , η 7→ diag(−1, 1,−1) .

The points P,Q are joined by three curves of transverse singularities of type A1 (tA1 ), which correspond

in a neighbourhood of P (resp. Q) to the image in C3/D2 of the coordinate axes of C3 .

From Corollary 2, we have the following presentation of the Chen–Ruan cohomology:

Hd
CR([H3

C/PSL2(O−5)] , Q) ∼= Hd(H3
C/PSL2(O−5),Q) ⊕

{

Q2 ⊕Q3 d = 2

Q2 ⊕ {0} d = 3

where the first direct summand is the cohomology of the non­twisted sector. The second direct summand
(

Q2

Q2

)

is the cohomology of the 3­torsion twisted sector X(3) whose coarse moduli space is the connected

component of the singular locus of X corresponding to the tA2 ­singularity. Notice that this locus is

topologically isomorphic to S1 × R ∼= C∗ , λ6 = 1 and λ∗
6 = 0, where λ2n, λ

∗
2n are as defined in

Corollary 2. Finally, the third direct summand

(

Q3

{0}

)

is the cohomology of the 2­torsion twisted sector
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X(2) . This sector has three connected components each one homeomorphic to the strip [0, 1] × R and

corresponding to the tA1 ­singularities joining the points P and Q in Figure 8. In the coarse moduli space

X , these components form the configuration in Figure 8. Here we have λ4 = λ∗
4 = 3.

Now we study the Chen–Ruan cup product ∪CR , verifying first that the ordinary cup product on

the non­twisted sector H∗(H3
C/Γ,Q) vanishes. From the explicit description of the quotient space

H3
R/PSL2(O−5) in [37], we get the picture of the Borel–Serre compactification of H3

R/PSL2(O−5)

drawn in Figure 9. Here, we have expanded the singular cusp at
√
−5+1

2
to a fundamental rectangle

(s, s′, s′′, s′′′) for the action of the cusp stabilizer Γ√
−5+1

2

on the plane attached by the Borel–Serre bordifi­

cation. In the same way, we expand the cusp at infinity to a fundamental rectangle (∞,∞′,∞′′,∞′′′) for

the action of the cusp stabilizer Γ∞ on the plane attached there. This is not visible in our 2­dimensional

diagram, but is located above the rectangle (o, o′, o′′, o′′′), where o is of height 1 one above the cusp 0.

The fundamental polyhedron for the Γ­action is then spanned by the rectangle (∞,∞′,∞′′,∞′′′) and

the polygons of Figure 9. The face identifications of the fundamental polyhedron are

(∞, o, t, o′,∞′) ∼ (∞′′′, o′′′, t′, o′′,∞′′),(3)

(∞, o, b, u, o′′′ ,∞′′′) ∼ (∞′, o′, b′, u′, o′′,∞′′),(4)

(a′′′, s′′′, s′′, a′′, v′) ∼ (a, s, s′, a′, v),(5)

(u, a′′′, s′′′, s, a, b) ∼ (u′, a′′, s′′, s′, a′, b′),(6)

(o, t, v, a, b) ∼ (o′, t, v, a′, b′),(7)

(o′′′, t′, v′, a′′′, u) ∼ (o′′, t′, v′, a′′, u′).(8)

Here, we did not respect the orientation of the 2­cells, but have written them in the way in which their

vertices are identified.

It is well known that the Borel–Serre compactification of H3
R/PSL2(O−m) is homotopy equivalent

to H3
R/PSL2(O−m) itself, and it has been worked out in [31] how the boundary is attached in the

compactification.

So we can describe the cohomology cocycles of H3
R/PSL2(O−5) in terms of the above fundamental

polyhedron and face identifications. By [18][section 9.3], H3
C admits a fundamental polyhedron PC for

Γ with the interior of its top­dimensional facets (called sides) being open smooth submanifolds. This

yields a Γ­equivariant cell structure on H3
C . The natural map H3

R →֒ H3
C → H3

R induces a map of the

sides with respect to the fundamental polyhedron PR for Γ on H3
C ,

sides(PR) →֒ sides(PC) → sides(PR),

which respects the side identifications (side pairings). All of the side pairings of PC are detected this

way, because they generate the group Γ (see [18][section 9.3]), and so do already the side pairings of

PR . Hence there are no additional identifications when complexifying the orbifold, and thus there are no

additional cohomology cocycles on H3
C/PSL2(O−5). Generators for H1(H3

R/PSL2(O−5),Q) are, with

reference to the above numbering of the identifications, obtained from

(∞,∞′′′) under (1) and (s, s′′′) under (3).

Both (∞,∞′) under (2) and (s, s′) under (4) yield trivial cocycles because of the identifications (5) and

(6).
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Figure 9: Fundamental domain for the Borel­Serre compactification in the case m = 5.
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For instance using the arc method introduced in [20][section 3.2], we can now check explicitly that the

cup product of the two cocycles obtained from (∞,∞′′′) under (1) and (s, s′′′) under (3) vanishes.

As further to the two 1­dimensional cocycles, H3
R/Γ only admits a 0­ and a 2­dimensional cocycle,

and as there are no further identifications when complexifying, we arrive at the claimed vanishing of the

ordinary cup product on the non­twisted sector H∗(H3
C/Γ,Q).

The cup product of two classes coming from the twisted sectors would be a class in dimension > 4,

where the twisted sectors vanish, and by the above calculation, so does the non­twisted sector.

Therefore, the Chen–Ruan cup product ∪CR is trivial on [H3
C/PSL2(O−5)].
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76–102.

[9] Weimin Chen and Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1–31.

MR2104605 (2005j:57036), Zbl 1063.53091

[10] , Orbifold Gromov­Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math.,

vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 25–85, DOI 10.1090/conm/310/05398. MR1950941 (2004k:53145)

[11] Jiun­Cheng Chen and Hsian­Hua Tseng, A note on derived McKay correspondence, Mathematical Research Letters 15

(2008), no. 3, 435–445.

[12] Tom Coates and Yongbin Ruan, Quantum cohomology and crepant resolutions: a conjecture, Ann. Inst. Fourier (Grenoble)

63 (2013), no. 2, 431–478.

[13] Jürgen Elstrodt, Fritz Grunewald, and Jens Mennicke, Groups acting on hyperbolic space, Springer Monographs in

Mathematics, Springer­Verlag, Berlin, 1998. MR1483315 (98g:11058), Zbl 0888.11001
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