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CHEN–RUAN ORBIFOLD COHOMOLOGY OF THE BIANCHI GROUPS

ALEXANDER D. RAHM

Abstract. We give formulae for the Chen–Ruan orbifold cohomology for the orbifolds given
by a Bianchi group acting on a model for its classifying space for proper actions: complex
hyperbolic space.
The Bianchi groups are the arithmetic groups PSL2(O), where O is the ring of integers in an
imaginary quadratic number field. The underlying real orbifolds which help us in our study,
have applications in Physics.

1. Introduction

Recently motivated by string theory in theoretical physics, a stringy geometry and topology of
orbifolds has been introduced in mathematics [1]. Its essential innovations consist of Chen–Ruan
orbifold cohomology [7], [8] and orbifold K–theory. Ruan’s cohomological crepant resolution
conjecture [7] associates Chen–Ruan orbifold cohomology with the ordinary cohomology of a
resolution of the singularities of the given orbifold. In three complex dimensions and outside
the global quotient case, where the conjecture is completely open, we are going to calculate the
Chen–Ruan cohomology of an infinite family of orbifolds in this article; and indicate in section 6
how to obtain the cohomology of their resolution of singularities.

Denote by Q(
√−m), with m a square-free positive integer, an imaginary quadratic number

field, and by O−m its ring of integers. The Bianchi groups are the projective special linear
groups PSL2(O−m). The Bianchi groups may be considered as a key to the study of a larger
class of groups, the Kleinian groups, which date back to work of Henri Poincaré [20]. In fact,
each non-co-compact arithmetic Kleinian group is commensurable with some Bianchi group [15].
A wealth of information on the Bianchi groups can be found in the monographs [9,11,15]. These
groups act in a natural way on hyperbolic three-space, which is isomorphic to the symmetric
space associated to them. This yields orbifolds that are studied in Cosmology [4].

The orbifold structure obtained by our group action is determined by a fundamental domain
and its stabilisers and identifications. The computation of this information has been implemented
for all Bianchi groups [22].

The vector space structure of Chen–Ruan orbifold cohomology. Let Γ be a discrete
group acting properly, i.e. with finite stabilisers, by diffeomorphisms on a manifold Y . For any
element g ∈ Γ, denote by CΓ(g) the centraliser of g in Γ. Denote by Y g the subset of Y consisting
of the fixed points of g.

Definition 1. Let T ⊂ Γ be a set of representatives of the conjugacy classes of elements of finite
order in Γ. Then we set

H∗
orb(Y//Γ) :=

⊕

g∈T
H∗ (Y g/CΓ(g);Q) .
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It can be checked that this definition gives the vector space structure of the orbifold coho-
mology defined by Chen and Ruan [7], if we forget the grading of the latter. We can verify
this analogously to the case where Γ is a finite group, treated by Fantechi and Göttsche [10].
The additional argument needed when considering some element g in Γ of infinite order, is the
following. As the action of Γ on Y is proper, g does not admit any fixed point in Y . Thus,
H∗ (Y g/CΓ(g);Q) = H∗ (∅;Q) = 0.

Statement of the results. We complexify our orbifolds by complexifying the real hyperbolic
three-space. We obtain orbifolds given by the induced action of the Bianchi groups on com-
plex hyperbolic three-space. Then we compute the Chen–Ruan Orbifold Cohomology for these
complex orbifolds. We can determine its product structure with theorem 6.

As a result of theorems 13 and 14, we can express the vector space structure of the orbifold
cohomology in terms of the numbers of conjugacy classes of finite subgroups and the cohomology
of the quotient space, as follows.

Except for the Gaußian and Eisenstein integers, which have to be treated separately, all the
rings of integers of imaginary quadratic number fields admit as only units {±1}. In the latter
case, we call PSL2(O) a Bianchi group with units {±1}.
Corollary 2. Let Γ := PSL2(O−m) be any Bianchi group with units {±1}. Denote by λ2n the
number of conjugacy classes of subgroups of type Z/nZ in Γ. Denote by λ∗

2n the number of
conjugacy classes of those of them which are contained in a subgroup of type Dn in Γ. Then,

Hd
orb (HC//PSL2(O−m)) ∼= Hd

(

HC/PSL2(O−m); Q
)

⊕











Qλ4+2λ6−λ∗

6 , d = 2,

Qλ4−λ∗

4
+2λ6−λ∗

6 , d = 3,

0, otherwise.

The (co)homology of the quotient space HR/Γ has been has been computed numerically for a
large scope of Bianchi groups [30], [26], [24]; and bounds for its Betti numbers have been given
in [13]. Krämer [14] has determined number-theoretic formulae for the numbers λ2n and λ∗

2n
of conjugacy classes of finite subgroups in the Bianchi groups. Krämer’s formulae have been
evaluated for hundreds of thousands of Bianchi groups [23], and these values are matching with
the ones from the orbifold structure computations with [22] in the cases where the latter are
available.

Acknowledgements. I would like to thank Martin Deraux, and very specially Fabio Perroni,
for helpful and motivating discussions, which initiated the present work.
Warmest thanks go to Alessandro Chiodo and Yongbin Ruan for explanations on the coho-
mological crepant resolution conjecture, to José Bertin, Dmitry Kerner, Christian Lehn and
Sergei Yakovenko for answering questions on resolutions of singularities, to John Ratcliffe for
answers on orbifold topology, and to Graham Ellis for support and encouragement.

Organisation of the paper. In section 2, we work out the product structure of Chen-Ruan
orbifold cohomology for arbitrary groups of hyperbolic motions. Then we specialise to the
Bianchi groups, and work out the information that we need about the conjugacy classes of
their finite order elements in section 3. We use this in section 4 to state the main results of
the paper, which imply corollary 2. We illustrate them with the computation of some explicit
examples in section 5. Then we outline in section 6 how our results can be used to check the
cohomological crepant resolution conjecture. Finally, the appendix A provides an alternative
approach to compute subgroups in the centralisers relevant for the determination of the twisted
sectors that are issue of the statements in 4; so it can be used for a check.
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2. The orbifold cohomology product

In order to equip the orbifold cohomology vector space with the Chen–Ruan product structure,
we need an almost complex orbifold structure on Y//Γ.
Let Y be a complex manifold of dimension D with a proper action of a discrete group Γ by
diffeomorphisms, the differentials of which are holomorphic. For any g ∈ Γ and y ∈ Y g, we
consider the eigenvalues λ1, . . . , λD of the action of g on the tangent space TyY . As the action
of g on TyY is complex linear, its eigenvalues are roots of unity.

Definition 3. Write λj = e2πirj , where rj is a rational number in the interval [0, 1[. The degree

shifting number of g in y is the rational number shift(g, y) :=
∑D

j=1 rj .

We see in [10] that the degree shifting number agrees with the one defined by Chen and Ruan.
It is also called the fermionic shift number in [32]. The degree shifting number of an element
g is constant on a connected component of its fixed point set Y g. For the groups under our
consideration, Y g is connected, so we can omit the argument y. Details for this and the explicit
value of the degree shifting number are given in lemma 5. Then we can define the graded vector
space structure of the orbifold cohomology as

(1) Hd
orb(Y//Γ) :=

⊕

g∈T
Hd−2 shift(g) (Y g/CΓ(g);Q) .

Denote by g, h two elements of finite order in Γ, and by Y g,h their common fixed point
set. Chen and Ruan construct a certain vector bundle on Y g,h we call the obstruction bundle.
We denote by c(g, h) its top Chern class. In our cases, Y g,h is a connected manifold. In the
general case, the fibre dimension of the obstruction bundle can vary between the connected
components of Y g,h, and c(g, h) is the cohomology class restricting to the top Chern class of
the obstruction bundle on each connected component. The obstruction bundle is at the heart
of the construction [7] of the Chen–Ruan orbifold cohomology product. In [10], this product,
when applied to a cohomology class associated to Y g and one associated to Y h, is described as
a push-forward of the cup product of these classes restricted to Y g,h and multiplied by c(g, h).
The following statement is made for global quotient orbifolds, but it is a local property, so we
can apply it in our proper actions case.

Lemma 4 (Fantechi–Göttsche). Let Y g,h be connected. Then the obstruction bundle on it is a
vector bundle of fibre dimension

shift(g) + shift(h)− shift(gh) − codimC

(

Y g,h ⊂ Y gh
)

.

In [10], a proof is given in the more general setting that Y g,h needs not be connected.
Examples where the product structure is worked out in the non-global quotient case, are for
instance given in [7, 5.3] and [6].

2.1. Groups of hyperbolic motions. A class of examples with complex structures admitting
the grading (1) is given by the discrete subgroups Γ of the orientation preserving isometry
group PSL2(C) of real hyperbolic 3-space H3

R. The Lobachevsky model of H3
R gives a natural

identification of the orientation preserving isometries of H3
R with matrices in PSO(3, 1). By the

subgroup inclusion PSO(3, 1) →֒ PSU(3, 1), these matrices specify isometries of the complex
hyperbolic space H3

C.
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Lemma 5. The degree shifting number of any non-trivial rotation of H3
C on its fixed points set

is 1.

Proof. For any rotation θ̂ of angle θ around a geodesic line in H3
R, there is a basis for the

construction of the Lobachevsky model such that the matrix of θ̂ takes the shape








cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1









∈ PSO(3, 1).

This matrix, considered as an element of PSU(3, 1), performs a rotation of angle θ around the
“complexified geodesic line” with respect to the inclusion H3

R →֒ H3
C. The fixed points of this

rotation are exactly the points p lying on this complexified geodesic line, and the action on their
tangent space TpH3

C
∼= C3 is again a rotation of angle θ. Hence we can choose a basis of this

tangent space such that this rotation is expressed by the matrix




eiθ 0 0
0 e−iθ 0
0 0 1



 ∈ SL3(C).

Therefore the degree shifting number of the rotation θ̂ at p is 1. �

Theorem 6. Let Γ be a group generated by translations and rotations of H3
C. Then all obstruc-

tion bundles of the orbifold H3
C//Γ are of fibre dimension zero.

Proof. Non-trivial obstruction bundles can only appear for two elements of Γ with common
fixed points, and such that one of these is not a power of the other one. The translations of H3

C

have their fixed point on the boundary and not in H3
C. So let b and c be non-trivial hyperbolic

rotations around distinct axes intersecting in the point p ∈ H3
C. Then bc is again a hyperbolic

rotation around a third distinct axis passing through p. Obviously, these rotation axes constitute
the fixed point sets Y b, Y c and Y bc. Hence the only fixed point of the group generated by b
and c is p. Now lemma 4 yields the following fibre dimension for the obstruction bundle on Y b,c:

shift(b) + shift(c)− shift(bc)− codimC

(

Y b,c ⊂ Y bc
)

.

After computing degree shifting numbers using lemma 5, we see that this fibre dimension is
zero. �

Hence the obstruction bundle is trivial, and its top Chern class is the neutral element of the
cohomological cup product. By Fantechi–Göttsche’s description, the Chen–Ruan orbifold coho-
mology product is then a push-forward of the cup product of the cohomology classes restricted
to the intersection of the fixed points sets.
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3. The conjugacy classes of finite order elements in the Bianchi groups

Let Γ = PSL2(O−m) be a Bianchi group. In 1892, Luigi Bianchi [5] computed fundamental
domains for some of these groups. Such a fundamental domain has the shape of a hyperbolic
polyhedron (up to a missing vertex at certain cusps, which represent the ideal classes of O−m),
so we will call it the Bianchi fundamental polyhedron.

It is well-known [12] that any element of Γ fixing a point inside real hyperbolic 3-space H3
R

acts as a rotation of finite order. Hence the induced action of Γ on complex hyperbolic 3-space
H3

C is proper. For the remainder of this section, as well as Theorems 13 and 14, we will reduce
all our considerations to the action on real hyperbolic 3-space H3

R.
Let Z be the refined cellular complex obtained from the action of Γ on hyperbolic 3-space as

described in [21], namely we subdivideH3
R until the stabiliser in Γ of any cell σ fixes σ point-wise.

We achieve this by computing Bianchi’s fundamental polyhedron for the action of Γ, taking as
preliminary set of 2-cells its facets lying on the Euclidean hemispheres and vertical planes of the
upper-half space model for H3

R, and then subdividing along the rotation axes of the elements
of Γ. Let ℓ be a prime number.

Definition 7. The ℓ–torsion sub-complex is the sub-complex of Z consisting of all the cells
which have stabilisers in Γ containing elements of order ℓ.

For ℓ being one of the two occurring primes 2 and 3, the orbit space of this sub-complex is a
finite graph, because the cells of dimension greater than 1 are trivially stabilised in the refined
cellular complex. We reduce this sub-complex with the following procedure, motivated in [23].

Condition A. In the ℓ–torsion sub-complex, let σ be a cell of dimension n − 1, lying in the
boundary of precisely two n–cells τ1 and τ2, the latter cells representing two different orbits.
Assume further that no higher-dimensional cells of the ℓ–torsion sub-complex touch σ; and that
the n–cell stabilisers admit an isomorphism Γτ1

∼= Γτ2 .

Where this condition is fulfilled in the ℓ–torsion sub-complex, we merge the cells τ1 and
τ2 along σ and do so for their entire orbits, if and only if they meet the following additional
condition. We use Zassenhaus’s notion for a finite group to be ℓ–normal, if the centre of one of
its Sylow ℓ–subgroups is the centre of every Sylow ℓ–subgroup in which it is contained.

Condition B. Either Γτ1
∼= Γσ,

or Γσ is ℓ–normal and Γτ1
∼= NΓσ

(center(Sylowℓ(Γσ))).

Here, we write NΓσ
for taking the normaliser in Γσ and Sylowℓ for picking an arbitrary Sylow

ℓ–subgroup. This is well defined because all Sylow ℓ–subgroups are conjugate.
The reduced ℓ–torsion sub-complex is the Γ–complex obtained by orbit-wise merging two n–cells

of the ℓ–torsion sub-complex satisfying conditions A and B.
We use the following classification of Felix Klein [12].

Lemma 8 (Klein). The finite subgroups in PSL2(O) are exclusively of isomorphism types the
cyclic groups of orders 1, 2 and 3, the dihedral groups D2 and D3 (isomorphic to the Klein
four-group Z/2× Z/2, respectively the symmetric group on three symbols) and the alternating
group A4.
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Now we investigate the associated normaliser groups. Straight-forward verification using the
multiplication tables of the implied finite groups yields the following.

Lemma 9. Let G be a finite subgroup of PSL2(O−m). Then the type of the normaliser of any
subgroup of type Z/ℓ in G is given as follows for ℓ = 2 and ℓ = 3, where we print only cases with
existing subgroup of type Z/ℓ.

Isomorphism type of G {1} Z/2 Z/3 D2 D3 A4

normaliser of Z/2 Z/2 D2 Z/2 D2

normaliser of Z/3 Z/3 D3 Z/3.

Lemma 10 ([23]). Let v ∈ H3
R be a vertex with stabiliser in Γ of type D2 or A4. Let γ in Γ

be a rotation of order 2 around an edge e adjacent to v. Then the centraliser CΓ(γ) reflects Hγ

— which is the geodesic line through e — onto itself at v.

Let α be any torsion element in Γ. We construct a chain of edges for α as follows. Consider
the edge of the reduced torsion sub-complex to which the edge stabilised by α belongs. By
[23, corollary 22], we can represent our edge of the reduced torsion sub-complex by a chain of
edges on the intersection of one geodesic line with a strict fundamental domain for Γ in H. This
chain is connected in the orbit space. Now, α is conjugate to an element γαγ−1 of the stabiliser
of one of the edges in the chain. By [23, lemma 24], for any elements α and γ of PSL2(C), the
fixed point set in H of α is identified by γ with the fixed point set of γαγ−1. Hence, the element
γ−1 ∈ Γ maps the mentioned geodesic line to the rotation axis of α. The image under γ−1 of
the chain of edges under consideration is the desired chain for α. So the chain of edges for α
exists and is unique up to translation on the rotation axis of α.

Furthermore, the following easy-to-check statement will be useful for our orbifold cohomology
computations.

Lemma 11. There is only one conjugacy class of elements of order 2 in D3 as well as in A4.
In D3, there is also only one conjugacy class of elements of order 3, whilst in A4 there is an
element γ such that γ and γ2 represent the two conjugacy classes of elements of order 3.

Proof. In cycle type notation, we can explicitly establish the multiplication tables of D3 and A4,
and compute the conjugacy classes. �

Corollary 12 (Corollary to lemma 11). Let γ be an element of order 3 in a Bianchi group Γ
with units {±1}. Then, γ is conjugate in Γ to its square γ2 if and only if there exists a group
G ∼= D3 with 〈γ〉 ( G ( Γ.
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4. The orbifold cohomology of the Bianchi groups

Our main results on the vector space structure of the Chen–Ruan orbifold cohomology of the
Bianchi groups are the following.

Theorem 13. For any element γ of order 3 in a Bianchi group Γ with units {±1}, the quotient
space Hγ/CΓ(γ) of the rotation axis modulo the centraliser of γ is homeomorphic to a circle.

Proof. By [23, lemma 27], for any non-trivial torsion element α in a Bianchi group Γ, the Γ–
image of the chain of edges for α contains the rotation axis of α. Therefore, the Γ–image of the
chain of edges for γ contains the rotation axis Hγ . Now we can observe two cases.

b First, assume that the rotation axis of γ does not contain any vertex of stabiliser type D3

(from [23], we know that this gives us a circle as a path component in the quotient of
the 3–torsion sub-complex). Assume that there exists a reflection of Hγ onto itself by an
element of Γ. Such a reflection would fix a point on Hγ . Then the normaliser of 〈γ〉 in
the stabiliser of this point would contain the reflection. This way, lemma 9 tells us that
this stabiliser is of type D3, which we have excluded. Thus, there can be no reflection
of Hγ onto itself by an element of Γ.
As Γ acts by CAT(0) isometries, every element g ∈ Γ sending an edge of the chain for γ
to an edge on Hγ outside the fundamental domain, can then only perform a translation
on Hγ . A translation along the rotation axis of γ commutes with γ, so g ∈ CΓ(γ). Hence
the quotient space Hγ/CΓ(γ) is homeomorphic to a circle.

b b If Hγ contains a point with stabiliser in Γ of type D3, then there are exactly two Γ–orbits
of such points. The elements of order 2 do not commute with the elements of order 3
in D3, so the centraliser of γ does not contain the former ones. Hence, CΓ(γ) does not
contain any reflection of Hγ onto itself. Denote by α and β elements of order 2 of each
of the stabilisers of the two endpoints of a chain of edges for γ. Then αβ performs a
translation on Hγ and hence commutes with γ. A fundamental domain for the action of
〈αβ〉 on Hγ is given by the chain of edges for γ united with its reflection through one of
its endpoints. As no such reflection belongs to the centraliser of γ and the latter endpoint
is the only one on its Γ–orbit in this fundamental domain, the quotient Hγ/CΓ(γ) matches
with the quotient Hγ/〈αβ〉, which is homeomorphic to a circle.

�

Theorem 14. Let γ be an element of order 2 in a Bianchi group Γ with units {±1}. Then, the
homeomorphism type of the quotient space Hγ/CΓ(γ) is

b b an edge without identifications, if 〈γ〉 is contained in a subgroup of type D2 inside Γ and
b a circle, otherwise.

Proof. By [23, lemma 26], for any 2–torsion element α in Γ, the chain of edges for α is a
fundamental domain for the centraliser of α on the rotation axis of α. Thus, the chain of edges
for γ is a fundamental domain for CΓ(γ) on Hγ . Again, we have two cases.

b b If 〈γ〉 is contained in a subgroup of type D2 inside Γ, then any chain of edges for γ admits
endpoints of stabiliser types D2 orA4. As D2 is an Abelian group and the reflections inA4

are contained in the normal subgroup D2, the reflections in these endpoint stabilisers
commute with γ, so the quotient space Hγ/CΓ(γ) can be identified with a chain of edges
for γ. By [23, corollary 22], we know that any edge of the reduced torsion sub-complex
can be represented by a chain of edges on the intersection of one geodesic line with a
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strict fundamental domain for Γ in H. Hence, this chain of edges for γ represents a
reduced edge in the 3–torsion sub-complex with distinct endpoints, so especially there
is no identification on this chain by Γ. So, the homeomorphism type of Hγ/CΓ(γ) is an
edge without identifications.

b The other case is analogous to the first case of the proof of theorem 13, the rôle of D3

being played by D2 and A4.

�

Denote by λ2n the number of conjugacy classes of subgroups of type Z/nZ in a Bianchi group
Γ := PSL2(O−m) with units {±1}. Denote by λ∗

2n the number of conjugacy classes of those of
them which are contained in a subgroup of type Dn in Γ. By corollary 12, there are 2λ6 − λ∗

6

conjugacy classes of elements of order 3. As a result of theorems 13 and 14, the vector space
structure of the orbifold cohomology of HR//Γ is given as

H•
orb(HR//Γ) ∼= H• (HR/Γ;Q)

⊕λ∗

4

H•
(

b b ;Q
)

⊕(λ4−λ∗

4
)
H•

(

b ;Q
)

⊕(2λ6−λ∗

6
)
H•

(

b ;Q
)

.

The (co)homology of the quotient space HR/Γ has been has been computed numerically for a
large scope of Bianchi groups [30], [26], [24]; and bounds for its Betti numbers have been given
in [13]. Krämer [14] has determined number-theoretic formulae for the numbers λ2n and λ∗

2n

of conjugacy classes of finite subgroups in the Bianchi groups. Krämer’s formulae have been
evaluated for hundreds of thousands of Bianchi groups [23], and these values are matching with
the ones from the orbifold structure computations with [22] in the cases where the latter are
available.

When we pass to the complexified orbifold HC//Γ, the real line that is the rotation axis in HR

of an element of finite order, becomes a complex line. However, the centraliser still acts in the

same way by reflections and translations. So, the interval b b as a quotient of the real line yields

a stripe b b ×R as a quotient of the complex line. And the circle b as a quotient of the real line
yields a cylinder b × R as a quotient of the complex line. Therefore, using the degree shifting
numbers of lemma 5, we obtain the result of corollary 2,

Hd
orb (HC//PSL2(O−m)) ∼= Hd

(

HC/PSL2(O−m); Q
)

⊕











Qλ4+2λ6−λ∗

6 , d = 2,

Qλ4−λ∗

4
+2λ6−λ∗

6 , d = 3,

0, otherwise.

As we can calculate the Bredon homology HFin
0 (Γ;RC) of the Bianchi groups with coefficients

in the complex representation ring functor RC, the following lemma provides a check on our
computations.

Lemma 15 (Mislin [17]). Let Γ be an arbitrary group and write FC(Γ) for the set of conjugacy
classes of elements of finite order in Γ. Then there is an isomorphism

HFin
0 (Γ;RC)⊗Z C ∼= C[FC(Γ)].
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5. Sample orbifold cohomology computations for the Bianchi groups

We will carry out our computations in the upper-half space model

{x+ iy + rj ∈ C⊕ Rj | r > 0}
for H3

R. Details on how to compute Chen–Ruan orbifold cohomology can be found in [19].

The case Γ = PSL2(Z[
√
−2 ]). Let ω :=

√
−2 . A fundamental domain for Γ := PSL2(Z[ω])

in real hyperbolic 3-space has been found by Luigi Bianchi [5]. We can obtain it by taking the
geodesic convex envelope of of its lower boundary (half of which is depicted in figure 1) and the
vertex ∞, and then removing the vertex ∞, making it non-compact. The other half of the lower
boundary consists of one isometric Γ–image of each of the depicted 2-cells (in fact, the depicted
2-cells are a fundamental domain for a Γ–equivariant retract of H, which is described in [25]).
The coordinates of the vertices of figure 1 in the upper-half space model are (1) = j, (1)′ = ω+j,

(2) = 1
2ω +

√

1
2j, (7) =

1
2 +

√

3
4j, (7)

′ = 1
2 + ω +

√

3
4j, (8) =

1
2 +

1
2ω +

√

1
4j.

The 2-torsion sub-complex ( ) and the 3-torsion sub-complex ( ) are coloured in the figure.

(1)′ (7)′

(1)

(2)

(7)

(8)

Figure 1. Fundamental do-
main in the case m = 2.

The set of representatives of conjugacy classes can be chosen

T = {Id, α, γ, β, β2},

with α = ±
(

1 ω

ω −1

)

, β = ±
(

0 −1
1 1

)

and γ = ±
(

0 1
−1 0

)

, so

α and γ are of order 2, and β is of order 3. Using lemma 15
and with the help of our Bredon homology computations, we
check the cardinality of T . The fixed point sets are then the
following subsets of complex hyperbolic space H := H3

C:

HId = H,
Hα = the complex geodesic line through (2) and (8),
Hγ = the complex geodesic line through (1) and (2),

Hβ = Hβ2

= the complex geodesic line through (7) and (8).

The matrix g = ±
(

1 −ω

0 1

)

performs a translation preserving the j-coordinate and sends

the edge (1)(7) onto the edge (1)′(7)′, so the orbit space HR/Γ is homotopy equivalent to
a circle. Consider the real geodesic line Hγ

R on the unit circle of real part zero. The edge

g−1 · ((2)(1)′) =
(

g−1(2)
)

(1) lies on Hγ
R and is not Γ–equivalent to the edge (1)(2). Because

of lemma 10, the centraliser CΓ(γ) reflects the line Hγ
R onto itself at (2), and again at g−1(2).

Furthermore, none of the four elements of Γ sending (2) to g−1(2) belongs to CΓ(γ) . Hence
the quotient space Hγ

R/CΓ(γ) consists of a contractible segment of two adjacent edges. Thus

Hd−2
(

Hγ
C/CΓ(γ);Q

) ∼=
{

Q, d = 2

0 else
is contributed to the orbifold cohomology.

Next, consider the real geodesic line Hβ
R on the circle of constant real coordinate 1

2 , of

centre 1
2 and radius

√

3
4 . The edge g−1 · ((8)(7)′) =

(

g−1(8)
)

(7) lies on Hβ
R and is not Γ–

equivalent to the edge (7)(8). The centraliser of β contains the matrix V := ±
(

21 − ω

ω − 1 1 + ω

)

of infinite order, which sends the edge
(

g−1(8)
)

(7) to (8)z with z = 1
2 + 3

5ω +
√

3
100j. We

conclude that the translation action of the group 〈V 〉 on the line Hβ
R is transitive, with quo-

tient space represented by the circle
(

g−1(8)
)

(7) ∪ (7)(8), first and last vertex identified. Thus
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Hd−2
(

Hβ
C/CΓ(β);Q

)

∼= Hd−2
(

Hβ2

C /CΓ(β2);Q
)

∼=
{

Q, d = 2, 3

0 else
is contributed to the orbifold co-

homology.
Because of lemma 10, the centraliser CΓ(α) reflects the line Hα

R onto itself at (2), and again at
(8). So, the quotient space Hα

R/CΓ(α) is represented by the single contractible edge (2)(8). This

yields that Hd−2
(

Hα
C/CΓ(α);Q

) ∼=
{

Q, d = 2

0 else
is contributed to the orbifold cohomology.

Summing up over T , we obtain

Hd
orb

(

HC//PSL2(Z[
√
−2 ])

) ∼= Hd
(

HC/PSL2(Z[
√
−2 ]); Q

)

⊕











Q4, d = 2,

Q2, d = 3,

0, otherwise.

The case Γ = PSL2(O−11).

(3)′(6)′

(3) (6)

(8)

(9)

Figure 2. Fundamental do-
main in the case m = 11.

Let O−11 be the ring of integers in Q(
√
−11 ).

Then O−11 = Z[ω] with ω = −1+
√
−11

2 .
A fundamental domain for Γ := PSL2(O−11) in real hy-

perbolic 3-space has been found by Luigi Bianchi [5]. Half
of its lower boundary given in figure 2. The coordinates of
the vertices of figure 2 in the upper-half space model are

(3) = j, (3)′ = 1+ω+ j, (6) = 1
2 +

√

3
4j, (6)

′ = 1
2 + ω +

√

3
4j,

(8) = 3
11 +

3
11ω +

√

2
11j, (9) = 8

11 + 5
11ω +

√

2
11j. The set of

representatives of conjugacy classes can be chosen

T = {Id, γ, β, β2},
with β = ±

(

0 −1
1 1

)

and γ = ±
(

0 1
−1 0

)

,

so γ is of order 2, and β is of order 3. Using lemma 15 and
with the help of our Bredon homology computations, we check
the cardinality of T . That we have one less conjugacy class of finite order elements than in the
case O−2, comes from the fact that by lemma 11, there is only one conjugacy class of order–2–
elements in A4.

The fixed point sets are then the following subsets of complex hyperbolic space H := H3
C:

HId = H,
Hγ = the complex geodesic line through (3) and (8),

Hβ = Hβ2

= the complex geodesic line through (6) and (9).

The 2–torsion sub-complex is of homeomorphism type b b and the 3–torsion sub-complex is
of homeomorphism type b . Therefore, we obtain

Hd
orb (HC//PSL2(O−11)) ∼= Hd

orb

(

HC/PSL2(O−11);Q
)

⊕











Q1+2, d = 2,

Q2, d = 3,

0, otherwise.
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The case Γ = PSL2(O−191).

(179)′(191)′

(683)′

(432)′

(359)′

(299)′

(629)′

(526)′

(240)′

(234)′

(486)′

(215)′

(179) (191)

(215)

(234)

(240)

(299)

(359)

(432)

(486)

(526) (629)(683)

Figure 3. Fundamental do-
main in the case m = 191. The
coordinates of the vertices can
be displayed by [22].

Let O−191 be the ring of integers in Q(
√
−191 ). Again, the

set of representatives of conjugacy classes can be chosen

T = {Id, γ, β, β2},
with β = ±

(

0 −1
1 1

)

and γ = ±
(

0 1
−1 0

)

, so γ is of order 2, and

β is of order 3. Both the 2– and the 3–torsion sub-complexes
are of homeomorphism type b . Then,

Hd
orb (HC//PSL2(O−191))

∼= Hd
orb

(

HC/PSL2(O−191); Q
)

⊕











Q1+2, d = 2,

Q1+2, d = 3,

0, otherwise.

We conclude this section with the following explanation
why in our fundamental domain diagrams, there occurs only
one representative per torsion-stabilised edge.

Remark 16. Let e be a non-trivially stabilised edge in the
fundamental domain for the refined cell complex. Then the
fundamental domain for the 2–dimensional retract can be cho-
sen such that it contains e as the only edge on its orbit.

Sketch of proof. Observe that the inner dihedral angle 2π
q

of

the Bianchi fundamental polyhedron is 2π
ℓ

or π
ℓ
at its edges

admitting a rotation of order ℓ from the Bianchi group. We
can verify this in the vertical half-plane where the action of
PSL2(Z) is embedded into the action of the Bianchi group, for
the generators of orders ℓ = 2 and ℓ = 3 of PSL2(Z) which fix
edges orthogonal to the vertical half-plane. These angles are
transported to all edges stabilised by Bianchi group elements
conjugate to these two rotations. Poincaré [20] partitions the
edges of the Bianchi fundamental polyhedron into cycles, con-
sisting of the edges on the same orbit, of length q

ℓ
= 1 or 2. In

the case of length 2, Poincaré’s description implies that each
of the two 2–cells separated by the first edge of the cycle, is
respectively on the same orbit as one of the 2–cells separated
by the second edge of the cycle. As the fundamental domain
for the 2–dimensional retract is strict with respect to the 2–
cells, it can be chosen such that it contains e as the only edge
on its orbit. �
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6. Cohomology of the crepant resolution of the singularities

Perroni [19] has shown that the cohomological crepant resolution conjecture cannot hold in
the original form; and has suggested some little modifications that, together with the sign modi-
fication already introduced by Fantechi and Göttsche [10] make the conjecture robust enough to
support all the known examples. We now give a very coarse sketch of how the conjectured asso-
ciation between the Chen–Ruan orbifold cohomology and the ordinary cohomology of a crepant
resolution of the singularities of the quotient spaces could possibly be checked for the Bianchi
groups.

(1) Mennicke and Grunewald [16] provide a structure as a topological manifold for the quo-
tient of real hyperbolic space by a Bianchi group. In order to get such a structure also
for complexified hyperbolic space, we could take Armstrong’s triangulations [2], [3] and
follow Woodruff’s way of studying angular sectors [31] in order to check Seifert and
Threlfall’s conditions [27] for the triangulated orbit space to be a topological manifold.

(2) By the theorems of Nash [18] and Tognoli [29], compact real manifolds are diffeomorphic
to classical real algebraic varieties. So there exist algebraic varieties that are homeomor-
phic to the quotient of compactified complex hyperbolic space by the Bianchi groups.

(3) We want to show that the homology of the twisted sectors equals the homology of
the corresponding ADE singularities of the variety once they are replaced by a crepant
resolution.

(4) We might be able to assemble the local evidence for Ruan’s conjecture produced in
step (3) together to the whole orbifold, using the results of [19].

The crucial part is step (3), on which we give some details now.
Let us consider for instance the singularity obtained by locally passing to the quotient of

the action of a group with two elements which is contained in a group of type D2 inside Γ.
This singularity is a product of a complex line segment and a singularity of type A1. We can
think of the A1-singularity as a cone, and we obtain a crepant resolution for it by taking a
complex cylinder surface and pinching a diametral circle off into a single point. On cohomology,
the complex cylinder contributes a generator to H2, and the Chen–Ruan cohomology has an

isomorphic contribution H•
(

b b ;Q
)

. This occurs λ∗
4 times, where we denote by λ2n the number

of conjugacy classes of subgroups of type Z/nZ in Γ; and by λ∗
2n the number of conjugacy classes

of those of them which are contained in a subgroup of type Dn in Γ. Furthermore, we obtain
the following contributions.

Multiplicity λ∗
4 λ4 − λ∗

4 λ∗
6 λ6 − λ∗

6

Orbifold cohomology
contributed

H•
(

b b ;Q
)

H•
(

b ;Q
)

H•
(

b ;Q
) (

H•
(

b ;Q
))2

Quotient singularity A1 × ( b b × R) A1 × ( b ×R) A2 × ( b b ×R) A2 × ( b × R)

Concerning the 3-torsion, a small smoothing deformation of the singularity of type A2 creates
in a neighbourhood of the singular point two cocycles in H2, i.e. the cohomology group H2 of
the crepant resolution grows by Q2 compared with the quotient space containing the singularity.
Recall also that the conjugacy classes of subgroups with three elements which are not contained
in a subgroup of type D3 in Γ have their generator not conjugate to its square, so to contribute
(

H•
(

b ;Q
))2

to the Chen–Ruan orbifold cohomology.
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Appendix A. Computation of subgroups in the centralisers

We can check our computations using the following algorithm for the computation of sub-
groups in the centralisers. We start by computing a subgroup in the centraliser of β, for β
running through the representatives of conjugacy classes of elements of finite order in Γ. For

an arbitrary matrix

(

e f
g h

)

= β, the centraliser elements are of the form

(

a b
g
f
b a+ bh−e

f

)

,

and the determinant 1 equation splits as follows into real and imaginary part. Assume that m
is congruent to 1 or 2 mod 4, so the ring of integers of Q(

√−m) is given by Z[
√−m ]. Let

ω :=
√−m, and write a =: j + kω, b =: ℓ+ nω with j, k, ℓ, n ∈ Z, and set g

f
=: R+ ωJ as well

as h−e
f

=: ρ+ ωι. Then

(Re) : j2 −mk2 + (jℓ−mkn)ρ− (jn + kℓ)mι+ (−l2 +mn2)R+ 2mJln = 1,

(Im) : 2jk + (jn − kℓ)ρ+ (jℓ −mkn)ι− 2Rℓn− Jℓ2 + Jmn2 = 0.

In the special case of β =
(

0 −1
1 1

)

, a matrix which is contained in all the Bianchi groups via the

inclusion PSL2(Z) < Γ, these equations reduce to

(Re) : j2 −mk2 + ℓ2 −mn2 − jℓ+mkn = 1,

(Im) : (2k − n)j + 2ℓn− kℓ = 0.

First case: n = 2k. The equation (Im) yields kℓ = 0. If k = 0, we obtain the matrix group
〈β〉 ∼= Z/3 generated by our centralised matrix β.
Otherwise ℓ = 0, and equation (Re) gives

(2) j2 = 3mk2 + 1.

Second case: n 6= 2k. This means that we can transform the equation (Im) into

j = ℓ
k − 2n

2k − n
,

which we insert into the equation (Re):

ℓ2
(

k − 2n

2k − n

)2

−mk2 + ℓ2 −mn2 − ℓ2
k − 2n

2k − n
+mkn = 1.

We solve for ℓ2 and find

(3) ℓ2 =
mk2 +mn2 −mkn+ 1

1 + k−2n
2k−n

(

k−2n
2k−n

− 1
) .

As m is fixed, we can numerically compute the integer solutions of equations (2) and (3), up
to a chosen bound for the absolute value of k, which shall also bound the absolute value of n in
the second equation. We obtain a subset S of CΓ(β) that contains all the matrices in CΓ(β) the
entries of which have absolute value at most the chosen bound. Then we calculate the group
〈S〉 generated by S. Once the quotient space Hβ/〈S〉 contains no more than one representative
for any Γ-orbit of cells, we know that we have obtained the quotient space Hβ/CΓ(β), because of
the subgroup inclusions 〈S〉 < CΓ(β) < Γ.
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