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CHEN/RUAN ORBIFOLD COHOMOLOGY OF THE BIANCHI GROUPS

ALEXANDER D. RAHM

Abstract. We give formulae for the Chen / Ruan orbifold cohomology for the orbifolds given
by a Bianchi group acting on a model for its classifying space for proper actions: complex
hyperbolic space.
The Bianchi groups are the arithmetic groups PSL2(O), where O is the ring of integers in an
imaginary quadratic number field. The underlying real orbifolds which help us in our study,
have applications in Physics [2].
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1. Introduction

Denote by Q(
√−m), with m a square-free positive integer, an imaginary quadratic number

field, and by O−m its ring of integers. The Bianchi groups are the groups (P)SL2(O−m). The
Bianchi groups may be considered as a key to the study of a larger class of groups, the Kleinian

groups, which date back to work of Henri Poincaré [15]. In fact, each non-cocompact arithmetic
Kleinian group is commensurable with some Bianchi group [12]. A wealth of information on the
Bianchi groups can be found in the monographs [6, 8, 12]. These groups act in a natural way
on hyperbolic three-space, which is isomorphic to the symmetric space associated to them. The
kernel of this action is the centre {±1} of the groups. Thus it is useful to study the quotient of
SL2(O−m) by its centre, namely PSL2(O−m). In 1892, Luigi Bianchi [3] computed fundamental
domains for some of these groups. Such a fundamental domain has the shape of a hyperbolic
polyhedron (up to a missing vertex at certain cusps, which represent the ideal classes of O−m),
so we will call it the Bianchi fundamental polyhedron.

The orbifold structure obtained by our group action is determined by the Bianchi fundamental
polyhedron and its stabilisers and identifications. The computation of this information has been
implemented for all Bianchi groups [17] in the language Pari/GP [1].
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2 RAHM

We complexify our orbifolds by complexifying the real hyperbolic three-space. We obtain
orbifolds given by the induced action of the Bianchi groups on complex hyperbolic three-space.
Then we compute the Chen/Ruan Orbifold Cohomology for these complex orbifolds. We can
determine its product structure with theorem 5.

As a result of theorems 23 and 24, we can express the vector space structure of the orbifold
cohomology of any Bianchi group Γ := PSL2(O−m) with units {±1} in terms of Krämer’s num-
bers λ4, λ

∗
4, λ6 and λ∗

6 of conjugacy classes of certain finite subgroups of Γ (see section 5 for
details) and the first Betti number β1 of the quotient space H/Γ. The precise expression is

Hd
orb (H//PSL2(O−m)) ∼=































Q, d = 0

Qβ1 , d = 1

Qβ1−1+λ4+2λ6−λ∗

6 , d = 2

Qλ4−λ∗

4
+2λ6−λ∗

6 , d = 3

0 otherwise.

The values which the Krämer numbers take, are given for a range of Bianchi groups in [18], and
the Betti number has been computed in [21] and [10].

Acknowledgements. I would like to thank Martin Deraux, and very specially Fabio Perroni
for helpful discussions.

2. The vector space structure of Chen/Ruan Orbifold Cohomology

Let Γ be a discrete group acting properly, i.e. with finite stabilisers, by diffeomorphisms on
a manifold Y . For any element g ∈ Γ, denote by CΓ(g) the centraliser of g in Γ. Denote by Y g

the subset of Y consisting of the fixed points of g.

Definition 1. Let T ⊂ Γ be a set of representatives of the conjugacy classes of elements of finite

order in Γ. Then we set

H∗
orb(Y//Γ) :=

⊕

g∈T
H∗ (Y g/CΓ(g);Q) .

It can be checked that this definition gives the vector space structure of the orbifold coho-
mology defined by Chen and Ruan [5], if we forget the grading of the latter. We can verify
this analogously to the case where Γ is a finite group, treated by Fantechi and Göttsche [7].
The additional argument needed when considering some element g in Γ of infinite order, is the
following. As the action of Γ on Y is proper, g does not admit any fixed point in Y . Thus,

H∗ (Y g/CΓ(g);Q) = H∗ (∅;Q) = 0.

3. The orbifold cohomology product

In order to equip the orbifold cohomology vector space with the Chen/Ruan product structure,
we need an almost complex orbifold structure on Y//Γ.
Let Y be a complex manifold of dimension D with a proper action of a discrete group Γ by
diffeomorphisms, the differentials of which are holomorphic. For any g ∈ Γ and y ∈ Y g, we
consider the eigenvalues λ1, . . . , λD of the action of g on the tangent space TyY . As the action
of g on TyY is complex linear, its eigenvalues are roots of unity.

Definition 2. Write λj = e2πirj , where rj is a rational number in the interval [0, 1[. The degree

shifting number of g in y is the rational number shift(g, y) :=
∑D

j=1 rj .
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We see in [7] that the degree shifting number agrees with the one defined by Chen and Ruan.
It is also called the fermionic shift number in [22]. The degree shifting number of an element
g is constant on a connected component of its fixed point set Y g. For the groups under our
consideration, Y g is connected, so we can omit the argument y. Details for this and the explicit
value of the degree shifting number are given in lemma 4. Then we can define the graded vector
space structure of the orbifold cohomology as

(1) Hd
orb(Y//Γ) :=

⊕

g∈T
Hd−2 shift(g) (Y g/CΓ(g);Q) .

Denote by g, h two elements of finite order in Γ, and by Y g,h their common fixed point
set. Chen and Ruan construct a certain vector bundle on Y g,h we call the obstruction bundle.
We denote by c(g, h) its top Chern class. In our cases, Y g,h is a connected manifold. In the
general case, the fibre dimension of the obstruction bundle can vary between the connected
components of Y g,h, and c(g, h) is the cohomology class restricting to the top Chern class of
the obstruction bundle on each connected component. The obstruction bundle is at the heart
of the construction [5] of the Chen/Ruan orbifold cohomology product. In [7], this product,
when applied to a cohomology class associated to Y g and one associated to Y h, is described as
a push-forward of the cup product of these classes restricted to Y g,h and multiplied by c(g, h).
The following statement is made for global quotient orbifolds, but it is a local property, so we
can apply it in our proper actions case.

Lemma 3 (Fantechi/Göttsche). Let Y g,h be connected. Then the obstruction bundle on it is a

vector bundle of fibre dimension

shift(g) + shift(h)− shift(gh) − codimC

(

Y g,h ⊂ Y gh
)

.

In [7], a proof is given in the more general setting that Y g,h needs not be connected.
Examples where the product structure is worked out in the non-global quotient case, are for
instance given in [5, 5.3] and [4].

3.1. Groups of hyperbolic motions. A class of examples with complex structures admitting
the grading (1) is given by the discrete subgroups Γ of the orientation preserving isometry
group PSL2(C) of real hyperbolic 3-space H3

R. The Lobachevski model of H3
R gives a natural

identification of the orientation preserving isometries of H3
R with matrices in PSO(3, 1). By the

subgroup inclusion PSO(3, 1) →֒ PSU(3, 1), these matrices specify isometries of the complex
hyperbolic space H3

C.
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Lemma 4. The degree shifting number of any rotation of H3
C on its fixed points set is 1.

Proof. For any rotation θ̂ of angle θ around a geodesic line in H3
R, there is a basis for the

construction of the Lobachevski model such that the matrix of θ̂ takes the shape








cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1









∈ PSO(3, 1).

This matrix, considered as an element of PSU(3, 1), performs a rotation of angle θ around the
“complexified geodesic line” with respect to the inclusion H3

R →֒ H3
C. The fixed points of this

rotation are exactly the points p lying on this complexified geodesic line, and the action on their
tangent space TpH3

C
∼= C3 is again a rotation of angle θ. Hence we can choose a basis of this

tangent space such that this rotation is expressed by the matrix




eiθ 0 0
0 e−iθ 0
0 0 1



 ∈ GL3(C).

Therefore the degree shifting number of the rotation θ̂ at p is 1. �

Theorem 5. Let Γ be a group generated by translations and rotations of H3
C. Then all obstruc-

tion bundles of the orbifold H3
C//Γ are of fibre dimension zero.

Proof. Non-trivial obstruction bundles can only appear for two elements of Γ with common
fixed points, and such that one of these is not a power of the other one. The translations of H3

C
have their fixed point on the boundary and not in H3

C. So let b and c be non-trivial hyperbolic
rotations around distinct axes intersecting in the point p ∈ H3

C. Then bc is again a hyperbolic
rotation around a third distinct axis passing through p. Obviously, these rotation axes constitute
the fixed point sets Y b, Y c and Y bc. Hence the only fixed point of the group generated by b
and c is p. Now lemma 3 yields the following fibre dimension for the obstruction bundle on Y b,c:

shift(b) + shift(c)− shift(bc)− codimC

(

Y b,c ⊂ Y bc
)

.

After computing degree shifting numbers using lemma 4, we see that this fibre dimension is
zero. �

Hence the obstruction bundle is trivial, and its top Chern class is the neutral element of the
cohomological cup product. By Fantechi/Göttsche’s description, the Chen/Ruan orbifold coho-
mology product is then a push-forward of the cup product of the cohomology classes restricted
to the intersection of the fixed points sets.
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4. The conjugacy classes of finite order elements in the Bianchi groups

Let Γ = PSL2(O−m) be a Bianchi group. Then any element of Γ fixing a point inside real
hyperbolic 3-space H3

R acts as a rotation of finite order. Hence the induced action of Γ on
complex hyperbolic 3-space H3

C is proper. For the remainder of this article, we will reduce all
our considerations to the action on real hyperbolic 3-space H3

R.
Let Z be the refined cellular complex obtained from the action of Γ on hyperbolic 3-space as

described in [16], namely we subdivideH3
R until the stabiliser in Γ of any cell σ fixes σ pointwise.

We achieve this by computing Bianchi’s fundamental polyhedron for the action of Γ, taking as
preliminary set of 2-cells its facets lying on the Euclidean hemispheres and vertical planes of the
upper-half space model for H3

R, and then subdividing along the rotation axes of the elements of
Γ. Let ℓ be a prime number.

Definition 6. The ℓ-torsion subcomplex is the subcomplex of Γ\Z consisting of all the cells, the

pre-images of which have stabilisers in Γ containing elements of order ℓ.

For ℓ being one of the two occurring primes 2 and 3, this subcomplex is a finite graph, because
the cells of dimension greater than 1 are trivially stabilised in the refined cellular complex. We
reduce this subcomplex with the procedure of [16], which consists in taking the pairs of edges
with a common endpoint such that no further edge is adjacent to this endpoint, and replacing
them together with this endpoint by a single edge.

We make the following group-theoretic construction in order to build a bridge between the
ℓ–torsion subcomplexes and the Krämer numbers of section 5. For a circle to become a graph,
we identify the two endpoints of a single edge.

Definition 7. The ℓ–conjugacy classes graph of an arbitrary group Γ is given by the following

construction.

• We take as vertices the conjugacy classes of finite subgroups G of Γ containing elements
γ of order ℓ such that the normaliser of 〈γ〉 in G is not 〈γ〉 itself.

• We connect two vertices by an edge if and only if they admit representatives sharing a
common subgroup of order ℓ.

• For every pair of subgroups of order ℓ in G, which are conjugate in Γ but not in G, we
draw a circle attached to the vertex labelled by G.

• For every conjugacy class of subgroups of order ℓ which are not properly contained in
any finite subgroup of Γ, we add a disjoint circle.

Except for the Gaußian and Eisenstein integers, which have to be treated separately, all the
rings of integers of imaginary quadratic number fields admit as only units {±1}. In the latter
case, we call PSL2(O) a Bianchi group with units {±1}.

Theorem 8 ([18]). Let Γ be any Bianchi group with units {±1} and ℓ any prime number. Then

the ℓ–conjugacy classes graph and the reduced ℓ–torsion subcomplex of Γ are isomorphic graphs.

We recall the lemmata which have been used for the proof of this theorem. The first ingredient
is the following classification of Felix Klein [9].

Lemma 9 (Klein). The finite subgroups in PSL2(O) are exclusively of isomorphism types the

cyclic groups of orders one, two and three, the Klein four-group D2
∼= Z/2× Z/2, the symmetric

group S3 and the alternating group A4.
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Lemma 10 ([16]). Let v be a non-singular vertex in the refined cell complex. Then the num-

ber n of orbits of edges in the refined cell complex adjacent to v, with stabiliser in PSL2(O−m)
isomorphic to Z/ℓ, is given as follows for ℓ = 2 and ℓ = 3.

Isomorphism type of the vertex stabiliser {1} Z/2 Z/3 D2 S3 A4

n for ℓ = 2 0 2 0 3 2 1
n for ℓ = 3 0 0 2 0 1 2.

Now we investigate the associated normaliser groups. Straight-forward verification using the
multiplication tables of the implied finite groups yields the following.

Lemma 11. Let G be a finite subgroup of PSL2(O−m). Then the type of the normaliser of any

subgroup of type Z/ℓ in G is given as follows for ℓ = 2 and ℓ = 3, where we print only cases with

existing subgroup of type Z/ℓ.

Isomorphism type of G {1} Z/2 Z/3 D2 S3 A4

normaliser of Z/2 Z/2 D2 Z/2 D2

normaliser of Z/3 Z/3 S3 Z/3.

The final ingredient in the proof of theorem 8 is the following.

Theorem 12 ([18]). There is a natural bijection between conjugacy classes of subgroups of

PSL2(O−m) of order ℓ and edges of the reduced ℓ–torsion subcomplex. It is given by considering

the stabiliser of a representative edge in the refined cell complex.

In order to prove the latter theorem, we need several lemmata, and we recall them now.

Lemma 13 ([18]). Consider two adjacent edges E, E′ of the non-reduced torsion subcomplex.

Then for any representative e of E, there is an adjacent representative e′ of E′ on the same

geodesic line as e.

Corollary 14 ([18]). Any edge of the reduced torsion subcomplex can be represented by a chain

of edges on the intersection of one geodesic line with a strict fundamental domain for Γ in H.

Corollary 15. Any edge of the reduced torsion subcomplex admits only representatives with

stabiliser in the same conjugacy class.

Lemma 16 ([18]). Let α and γ be elements of PSL2(C). Then the fixed point set in H of α is

identified by γ with the fixed point set of γαγ−1.

Lemma 17 ([18]). Let v ∈ H3
R be a vertex with stabiliser in Γ of type D2 or A4. Let γ in Γ

be a rotation of order 2 around an edge e adjacent to v. Then the centraliser CΓ(γ) reflects Hγ

— which is the geodesic line through e — onto itself at v.

Let α be any torsion element in Γ. We construct a chain of edges for α as follows. Consider
the edge of the reduced torsion subcomplex to which the edge stabilised by α belongs. Use
corollary 14 to represent it by a connected chain of edges on a geodesic line. Now, α is conjugate
to an element γαγ−1 of the stabiliser of one of the edges in the chain. By lemma 16, the element
γ−1 ∈ Γ maps the mentioned geodesic line to the rotation axis of α. The image under γ−1 of
the chain of edges under consideration is the desired chain for α. So the chain of edges for α
exists and is unique up to translation on the rotation axis of α.
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Lemma 18 ([18]). Let α be any 2–torsion element in Γ. Then the chain of edges for α is a

fundamental domain for the centraliser of α on the rotation axis of α.

Lemma 19 ([18]). Let α be any non-trivial torsion element in a Bianchi group Γ. Then the

Γ–image of the chain of edges for α contains the rotation axis of α.

This completes the tools for proving theorem 12 and hence theorem 8.

Furthermore, the following easy-to-check statement will be useful for our orbifold cohomology
computations.

Lemma 20. There is only one conjugacy class of elements of order 2 in S3 as well as in A4.

In S3, there is also only one conjugacy class of elements of order 3, whilst in A4 there is an

element γ such that γ and γ2 represent the two conjugacy classes of elements of order 3.

Proof. In cycle type notation, we can explicitly establish the multiplication tables of S3 and A4,
and compute the conjugacy classes. �

Corollary 21 (Corollary to lemma 20). Let γ be an element of order 3 in a Bianchi group Γ
with units {±1}. Then, γ is conjugate in Γ to its square γ2 if and only if there exists a group

G ∼= S3 with 〈γ〉 ( G ( Γ.

5. The Krämer numbers and orbifold cohomology of the Bianchi groups

Krämer [11] has determined number-theoretic formulae for the numbers of conjugacy classes of
finite subgroups in the Bianchi groups. These formulae apply to the following types of subgroups,
where the symbols in the first row are Krämer’s notations for the number of their conjugacy
classes:

µ2 µT µ3 λ2n λT
4 = lT4 λ∗

4 λ∗
6 µ−

2

D2 A4 S3 Z/n Z/2 →֒ A4 Z/2 →֒ D2 Z/3 →֒ S3 D2 * A4

Here, the inclusion arrows mean that we only consider copies of Z/n admitting the specified
inclusion in the given Bianchi group and D2 * A4 means that we only consider copies of D2 not
admitting any inclusion into a subgroup of type A4 of the Bianchi group. The values given by
Krämer’s formulae are matching with the values computed with [17].

Observation 22. The Krämer numbers determine the 3-conjugacy classes graph and hence the
reduced 3–torsion subcomplex for all Bianchi groups with units {±1}, as we can see immediately
from the description of the reduced 3–torsion subcomplex in [16].
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Our main results on the vector space structure of the Chen/Ruan orbifold cohomology of the
Bianchi groups are the following.

Theorem 23. For any element γ of order 3 in a Bianchi group Γ with units {±1}, the quotient

space Hγ/CΓ(γ) of the rotation axis modulo the centraliser of γ is homeomorphic to a circle.

Proof. By lemma 19, the Γ–image of the chain of edges for γ contains the rotation axis Hγ . Now
we can observe two cases.

b First, assume that the rotation axis of γ does not contain any vertex of stabiliser type S3.
Then in the 3-conjugacy classes graph, the class of 〈γ〉 is represented by a disjoint circle.
And by theorem 8 we know that this gives us a circle in the 3-torsion subcomplex. There
can be no reflection of Hγ onto itself by an element of Γ, because such a reflection would
fix a point on Hγ and so this point would have a stabiliser of type S3 (the normaliser
of 〈γ〉 in this stabiliser would contain the reflection, which we can exclude by lemma 11
for the other types). As Γ acts by CAT(0) isometries, every element g ∈ Γ sending an
edge of the chain for γ to an edge on Hγ outside the fundamental domain, must perform
a translation on Hγ . A translation along the rotation axis of γ commutes with γ, so
g ∈ CΓ(γ). Hence the quotient space Hγ/CΓ(γ) is homeomorphic to a circle.

b b If Hγ contains a point with stabiliser in Γ of type S3, then there are exactly two Γ-orbits
of such points. The elements of order 2 do not commute with the elements of order 3
in S3, so the centraliser of γ does not contain the former ones. Hence, CΓ(γ) does not
contain any reflection of Hγ onto itself. Denote by α and β elements of order 2 of each
of the stabilisers of the two endpoints of a chain of edges for γ. Then αβ performs a
translation on Hγ and hence commutes with γ. A fundamental domain for the action of
〈αβ〉 on Hγ is given by the chain of edges for γ united with its reflection through one of
its endpoints. As no such reflection belongs to the centraliser of γ and the latter endpoint
is the only one on its Γ-orbit in this fundamental domain, the quotient Hγ/CΓ(γ) matches
with the quotient Hγ/〈αβ〉, which is homeomorphic to a circle.

�

Theorem 24. Let γ be an element of order 2 in a Bianchi group Γ with units {±1}. Then, the

homeomorphism type of the quotient space Hγ/CΓ(γ) is

b b an edge without identifications, if there exists a finite group G such that 〈γ〉 ( G ( Γ
and

b a circle, otherwise.

Proof. By lemma 18, the chain of edges for γ is a fundamental domain for CΓ(γ) on Hγ . Again,
we have two cases.

b b If there exists a finite groupG such that 〈γ〉 ( G ( Γ, then any chain of edges for γ admits
endpoints of stabiliser types D2 orA4. As D2 is an Abelian group and the reflections inA4

are contained in the normal subgroup D2, the reflections in these endpoint stabilisers
commute with γ, so the quotient space Hγ/CΓ(γ) can be identified with a chain of edges
for γ. By corollary 14, this chain of edges for γ represents a reduced edge in the 3-torsion
subcomplex with distinct endpoints, so especially there is no identification on this chain
by Γ. So, the homeomorphism type of Hγ/CΓ(γ) is an edge without identifications.

b The other case is analogous to the first case of the proof of theorem 23, the rôle of S3

being played by D2 and A4.

�
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As a result of theorems 23 and 24, the orbifold cohomology of any Bianchi group
Γ := PSL2(O−m) with units {±1} is (abbreviating conjugacy class as “c.c.”) given as

Hd
orb(H//Γ) ∼= Hd (H/Γ;Q)

⊕

g c.c. of order 2

Hd−2 (Hg/CΓ(g);Q)
⊕

c.c.′s of order 3

Hd−2( b ;Q).

With the above Krämer numbers and β1 the first Betti number of the quotient space H/Γ, we
can state the above term more explicitly as

Hd
orb (H//PSL2(O−m)) ∼=































Q, d = 0

Qβ1 , d = 1

Qβ1−1+λ4+2λ6−λ∗

6 , d = 2

Qλ4−λ∗

4
+2λ6−λ∗

6 , d = 3

0 otherwise,

where we use that by corollary 21, there are 2λ6 − λ∗
6 conjugacy classes of elements of order 3.

The values which the Krämer numbers take, are given for a range of Bianchi groups in [18], and
the Betti number has been computed in [21] and [10].

As we can calculate the Bredon homology HFin
0 (G;RC) of the Bianchi groups, the following

lemma provides a check on our computations.

Lemma 25 (Mislin [13]). Let G be an arbitrary group and write FC(G) for the set of conjugacy

classes of elements of finite order in G. Then there is an isomorphism

HFin
0 (G;RC)⊗Z C ∼= C[FC(G)].

6. Sample orbifold cohomology computations for the Bianchi groups

We will carry out our computations in the upper-half space model

{x+ iy + rj ∈ C⊕ Rj | r > 0}
for H3

R. Details on how to compute Chen/Ruan orbifold cohomology can be found in [14].

The case Γ = PSL2(Z[
√
−2 ]). Let ω :=

√
−2 . A fundamental domain for Γ := PSL2(Z[ω])

in real hyperbolic 3-space has been found by Luigi Bianchi [3]. We can obtain it by taking the
geodesic convex envelope of of its lower boundary (half of which is depicted in figure 1) and the
vertex ∞, and then removing the vertex ∞, making it noncompact. The other half of the lower
boundary consists of one isometric Γ-image of each of the depicted 2-cells (in fact, the depicted
2-cells are a fundamental domain for a Γ-equivariant retract of H, which is described in [19]).
The coordinates of the vertices of figure 1 in the upper-half space model are (1) = j, (1)′ = ω+j,

(2) = 1
2ω +

√

1
2j, (7) =

1
2 +

√

3
4j, (7)

′ = 1
2 + ω +

√

3
4j, (8) =

1
2 +

1
2ω +

√

1
4j.

The 2-torsion subcomplex ( ) and the 3-torsion subcomplex ( ) are coloured in the figure.

(1)′ (7)′

(1)

(2)

(7)

(8)

Figure 1. Fundamental do-
main in the case m = 2.

The set of representatives of conjugacy classes can be chosen

T = {Id, α, γ, β, β2},
with α = ±

(

1 ω

ω −1

)

, β = ±
(

0 −1
1 1

)

and γ = ±
(

0 1
−1 0

)

, so

α and γ are of order 2, and β is of order 3. Using lemma 25
and with the help of our Bredon homology computations, we
check the cardinality of T . The fixed point sets are then the
following subsets of complex hyperbolic space H := H3

C:

HId = H,
Hα = the complex geodesic line through (2) and (8),
Hγ = the complex geodesic line through (1) and (2),

Hβ = Hβ2

= the complex geodesic line through (7) and (8).
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The matrix g = ±
(

1 −ω

0 1

)

performs a translation preserving the j-coordinate and sends the

edge (1)(7) onto the edge (1)′(7)′, so the orbit space H/Γ is homotopy equivalent to a circle and
we obtain

Hd−0
(

HId
C /CΓ(Id);Q

)

= Hd (HC/Γ;Q) ∼= Q for d = 0, 1; and zero otherwise.

Consider the real geodesic line Hγ
R on the unit circle of real part zero. The edge g−1 · ((2)(1)′)

=
(

g−1(2)
)

(1) lies on Hγ
R and is not Γ–equivalent to the edge (1)(2). Because of lemma 17,

the centralizer CΓ(γ) reflects the line Hγ
R onto itself at (2), and again at g−1(2). Further-

more, none of the four elements of Γ sending (2) to g−1(2) belongs to CΓ(γ) . Hence the
quotient space Hγ

R/CΓ(γ) consists of a contractible segment of two adjacent edges. Thus

Hd−2
(

Hγ
C/CΓ(γ);Q

) ∼=
{

Q, d = 2

0 else
is contributed to the orbifold cohomology.

Next, consider the real geodesic line Hβ
R on the circle of constant real coordinate 1

2 , of

center 1
2 and radius

√

3
4 . The edge g−1 · ((8)(7)′) =

(

g−1(8)
)

(7) lies on Hβ
R and is not Γ–

equivalent to the edge (7)(8). The centraliser of β contains the matrix V := ±
(

21 − ω

ω − 1 1 + ω

)

of infinite order, which sends the edge
(

g−1(8)
)

(7) to (8)z with z = 1
2 + 3

5ω +
√

3
100j. We

conclude that the translation action of the group 〈V 〉 on the line Hβ
R is transitive, with quo-

tient space represented by the circle
(

g−1(8)
)

(7) ∪ (7)(8), first and last vertex identified. Thus

Hd−2
(

Hβ
C/CΓ(β);Q

)

∼= Hd−2
(

Hβ2

C /CΓ(β
2);Q

)

∼=
{

Q, d = 2, 3

0 else
is contributed to the orbifold

cohomology.
Because of lemma 17, the centralizer CΓ(α) reflects the line Hα

R onto itself at (2), and again
at (8). So, the quotient space Hα

R/CΓ(α) is the single contractible edge (2)(8). This yields that

Hd−2 (Hα
C/CΓ(α);Q) ∼=

{

Q, d = 2

0 else
is contributed to the orbifold cohomology.

Summing up over T , we obtain

Hd
orb (HC//PSL2(Z[ω])) ∼=































Q, d = 0

Q, d = 1

Q4, d = 2

Q2, d = 3

0 otherwise.

The case Γ = PSL2(O−11).

(3)′(6)′

(3) (6)

(8)

(9)

Figure 2. Fundamental do-
main in the case m = 11.

Let O−11 be the ring of integers in Q(
√
−11 ).

Then O−11 = Z[ω] with ω = −1+
√
−11

2 .
A fundamental domain for Γ := PSL2(O−11) in real hy-

perbolic 3-space has been found by Luigi Bianchi [3]. Half
of its lower boundary given in figure 2. The coordinates of
the vertices of figure 2 in the upper-half space model are

(3) = j, (3)′ = 1+ω+ j, (6) = 1
2 +

√

3
4j, (6)

′ = 1
2 + ω +

√

3
4j,
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(8) = 3
11 +

3
11ω +

√

2
11j, (9) = 8

11 + 5
11ω +

√

2
11j. The set of

representatives of conjugacy classes can be chosen

T = {Id, γ, β, β2},
with β = ±

(

0 −1
1 1

)

and γ = ±
(

0 1
−1 0

)

,

so γ is of order 2, and β is of order 3. Using lemma 25 and with the help of our Bredon homology
computations, we check the cardinality of T . That we have one less conjugacy class of finite
order elements than in the case O−2, comes from the fact that by lemma 20, there is only one
conjugacy class of order–2–elements in A4.

(179)′(191)′

(683)′

(432)′

(359)′

(299)′

(629)′

(526)′

(240)′

(234)′

(486)′

(215)′

(179) (191)

(215)

(234)

(240)

(299)

(359)

(432)

(486)

(526) (629)(683)

Figure 3. Fundamental do-
main in the case m = 191.

The fixed point sets are then the following subsets of com-
plex hyperbolic space H := H3

C:

HId = H,
Hγ = the complex geodesic line through (3) and (8),

Hβ = Hβ2

= the complex geodesic line through (6) and (9).

The 2–torsion subcomplex is of homeomorphism type b b

and the 3–torsion subcomplex is of homeomorphism type b .
Therefore, we obtain

Hd
orb (H//PSL2(O−11)) ∼=































Q, d = 0

Q, d = 1

Q1+2, d = 2

Q2, d = 3

0 otherwise.

The case Γ = PSL2(O−191).
Let O−191 be the ring of integers in Q(

√
−191 ). Again, the

set of representatives of conjugacy classes can be chosen

T = {Id, γ, β, β2},
with β = ±

(

0 −1
1 1

)

and γ = ±
(

0 1
−1 0

)

, so γ is of order 2, and

β is of order 3. Both the 2– and the 3–torsion subcomplexes
are of homeomorphism type b . Then,

Hd
orb (H//PSL2(O−191)) ∼=































Q, d = 0

Q15, d = 1

Q14+1+2, d = 2

Q1+2, d = 3

0 otherwise.
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The author would like to add the following explanation why in our fundamental domain
diagrams, there occurs only one representative per torsion-stabilised edge.

Remark 26. Let e be a non-trivially stabilised edge in the fundamental domain for the refined
cell complex. Then the fundamental domain for the 2–dimensional retract can be chosen such
that it contains e as the only edge on its orbit.

Sketch of proof. Observe that the inner dihedral angle 2π
q
of the Bianchi fundamental polyhedron

is 2π
ℓ
or π

ℓ
at its edges admitting a rotation of order ℓ from the Bianchi group. We can verify this

in the vertical half-plane where the action of PSL2(Z) is embedded into the action of the Bianchi
group, for the generators of orders ℓ = 2 and ℓ = 3 of PSL2(Z) which fix edges orthogonal to
the vertical half-plane. These angles are transported to all edges stabilised by Bianchi group
elements conjugate to these two rotations. Poincaré [15] partitions the edges of the Bianchi
fundamental polyhedron into cycles, consisting of the edges on the same orbit, of length q

ℓ
= 1

or 2. In the case of length 2, Poincaré’s description implies that each of the two 2–cells separated
by the first edge of the cycle, is respectively on the same orbit as one of the 2–cells separated
by the second edge of the cycle. As the fundamental domain for the 2–dimensional retract is
strict with respect to the 2–cells, it can be chosen such that it contains e as the only edge on its
orbit. �

7. Appendix: Computation of subgroups in the centralisers

We can check our computations using the following algorithm for the computation of sub-
groups in the centralisers. We start by computing a subgroup in the centraliser of β, for β
running through the representatives of conjugacy classes of elements of finite order in Γ. For

an arbitrary matrix

(

e f
g h

)

= β, the centraliser elements are of the form

(

a b
g
f
b a+ bh−e

f

)

,

and the determinant 1 equation splits as follows into real and imaginary part. Assume that m
is congruent to 1 or 2 mod 4, so the ring of integers of Q(

√−m) is given by Z[
√−m ]. Let

ω :=
√−m, and write a =: j + kω, b =: ℓ+ nω with j, k, ℓ, n ∈ Z, and set g

f
=: R+ ωJ as well

as h−e
f

=: ρ+ ωι. Then

(Re) : j2 −mk2 + (jℓ−mkn)ρ− (jn + kℓ)mι+ (−l2 +mn2)R+ 2mJln = 1,

(Im) : 2jk + (jn − kℓ)ρ+ (jℓ −mkn)ι− 2Rℓn− Jℓ2 + Jmn2 = 0.

In the special case of β =
(

0 −1
1 1

)

, a matrix which is contained in all the Bianchi groups via the

inclusion PSL2(Z) < Γ, these equations reduce to

(Re) : j2 −mk2 + ℓ2 −mn2 − jℓ+mkn = 1,

(Im) : (2k − n)j + 2ℓn− kℓ = 0.

First case: n = 2k. The equation (Im) yields kℓ = 0. If k = 0, we obtain the matrix group
〈β〉 ∼= Z/3 generated by our centralised matrix β.
Otherwise ℓ = 0, and equation (Re) gives

(2) j2 = 3mk2 + 1.
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Second case: n 6= 2k. This means that we can transform the equation (Im) into

j = ℓ
k − 2n

2k − n
,

which we insert into the equation (Re):

ℓ2
(

k − 2n

2k − n

)2

−mk2 + ℓ2 −mn2 − ℓ2
k − 2n

2k − n
+mkn = 1.

We solve for ℓ2 and find

(3) ℓ2 =
mk2 +mn2 −mkn+ 1

1 + k−2n
2k−n

(

k−2n
2k−n

− 1
) .

As m is fixed, we can numerically compute the integer solutions of equations (2) and (3), up
to a chosen bound for the absolute value of k, which shall also bound the absolute value of n in
the second equation. We obtain a subset S of CΓ(β) that contains all the matrices in CΓ(β) the
entries of which have absolute value at most the chosen bound. Then we calculate the group
〈S〉 generated by S. Once the quotient space Hβ/〈S〉 contains no more than one representative
for any Γ-orbit of cells, we know that we have obtained the quotient space Hβ/CΓ(β), because
of the subgroup inclusions 〈S〉 < CΓ(β) < Γ.
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