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Abstract. We consider a class of 3-error-correcting cyclic codes of length
2™ —1 over the two-element field IF2. The generator polynomial of a code
of this class has zeroes «, ot and a2j+17 where « is a primitive ele-
ment of the field Fam. In short, {1,2¢ 41,27 + 1} refers to the zero set of
these codes. Kasami in 1971 and Bracken and Helleseth in 2009, showed
that cyclic codes with zeroes {1,2° + 1,23 + 1} and {1,2¢ +1,2% + 1}
respectively are 3-error correcting, where ged(¢,m) = 1. We present a
sufficient condition so that the zero set {1,2° 41,27 +1}, ged(¢,m) =1
gives a 3-error-correcting cyclic code. The question for p > 3 is open. In
addition, we determine all the 3-error-correcting cyclic codes in the class
{1,2° 41,27 4+ 1} for m < 20. We investigate their weight distribution
via their duals and observe that they have the same weight distribution
as 3-error-correcting BCH codes for m < 14. Further our experiment
shows that these codes are not equivalent to the 3-error-correcting BCH
code in general. We also study the Schaub algorithm which determines
a lower bound of the minimum distance of a cyclic code. We introduce a
pruning strategy to improve the Schaub algorithm. Finally we study the
cryptographic property of a Boolean function, called spectral immunity
which is directly related to the minimum distance of cyclic codes over
Fam. We apply the improved Schaub algorithm in order to find a lower
bound of the spectral immunity of a Boolean function related to the zero
set {1,2° +1,27 +1}.

Keywords: Cyclic codes; Weight enumerator; Zero set; Dual codes; Schaub
algorithm; Cyclotomic cosets; Spectral immunity.

1 Introduction

The family of cyclic codes is a well known class of error-correcting codes. We
deal with 3-error-correcting binary cyclic codes and their duals. Let IFom be the
extension field of degree m of the two-element field IF; and n be an odd integer.
Consider a binary cyclic code C' of length n and let a be a primitive n-th root of



unity in Fom. One can describe C as a principal ideal, in the ring Fo[X]/(X™—1),
with a so-called generator polynomial g over Fy, where n | (2™ — 1). Therefore,
the zeroes of g can be used to define C'. The zero set Z of C'is the set of exponents
i of the primitive element « such that o is a root of g. Note that if 2 is a root of
g, so is 22" for all . In other words, Z is a union of 2-cyclotomic cosets modulo
n. Most of the time, Z is shortly described by the list of distinct representatives
of these cyclotomic cosets. If the length of the code is 2™ —1, i.e. « is a primitive
element of IFom, then the code is said to be primitive.

BCH codes form an important class of cyclic codes. A cyclic code generated
by g(X) = lem({M®(X)}ier) where M (X) is the minimal polynomial of o’
with respect to IFo and where [ is a set of § — 1 consecutive integers is a BCH
code with a designed distance 6. In particular, if I = {1,2,...,§ — 1}, then the
BCH code is said to be narrow sense.

Kasami [Kas71] introduced some classes of primitive binary 3-error-correcting
cyclic codes (i.e. their minimum distance is 7) similar to 3-error-correcting BCH
codes, in the sense that their zero set consists of the union of 3 cyclotomic cosets.
These codes have a dimension k& > n — 3m. This also means that, these codes
asymptotically have a high information rate and moreover, their minimum dis-
tance is optimal. Indeed, Hamming bound implies that long cyclic codes defined
by 7 distinct cyclotomic cosets have an error-correcting capacity ¢ < 7. One of
those classes is {1,2¢+ 1,23 + 1} with ged(¢,m) = 1 and m odd. Later Bracken
and Helleseth in [BHO09] discovered the class {1, 241,224+ 1} with gcd(¢,m) = 1.

In this article, we investigate the class {1,2° + 1,27 4+ 1} for 4, j > 1, i # j.
We attempt to generalize the subclass {1,2¢ 41,23 4+ 1} and {1,2¢+1,22¢ +1}
with ged(¢,m) =1 to {1,2¢ + 1,27 + 1} with ged(¢,m) =1 and p > 1.

Another class of 3-error-correcting cyclic codes with zero set {1,271 4+1,2¢+
1} for m = 20+ 1 was introduced in [MS83]. A question was raised whether these
codes have the same weight distribution as the BCH code. Later it was proved
to be true in [vDV96]. They showed that these dual of these codes have the same
weight distribution as the dual of the BCH codes. This motivates us to study
the weight distribution of the general class {1,2¢ + 1,27 + 1}. By computation
up to m < 14, we check that the dual of all the 3-error-correcting cyclic codes
that has zero {1,2" + 1,27 + 1} and which are not BCH, have the same weight
distribution as the dual of the 3-error-correcting BCH code.

Further we study the minimum distance of their duals over IF5 and over Fam.
In the literature, numerous theoretical lower bounds on the minimum distance of
cyclic codes are known (e.g. [BR60,HT72,R0083,vLW86,Wol189]). Schaub [Sch88]
has investigated an algorithmic approach to compute a lower bound on the
minimum distance of a given cyclic code. This idea is particularly efficient for
the codes which have few cyclic subcodes. We improve time-complexity of the
Schaub algorithm using a pruning criteria based on BCH bound in order to be
able to manage codes with more cyclic subcodes. We compare the Schaub bound
with the Hartmann-Tzeng bound and the true minimum distance of duals of
codes with the zero set {1,2¢ 41,27 4+ 1}. Augot and Levy-dit-Vehel [AL96] had
also applied the Schaub algorithm to find a lower bound of the minimum distance



of the dual of BCH codes and found this algorithm gives better results than Ross
bound and Weil bound on the dual of BCH codes. Our numerical results show
a similar behavior of the minimum distance of the duals of 3-error-correcting
cyclic codes in the class {1,2° + 1,27 + 1} for i, j > 1, i # j.

In the end we study the spectral immunity of a Boolean function which is
a cryptographic property. High value of spectral immunity is a necessary condi-
tion in order to resist algebraic cryptanalysis of filter generators. In [HR11] the
connection between spectral immunity and minimum distance of a cyclic code
was shown. The spectral immunity of a Boolean function f over Fam (in uni-
variate form) is equal to the minimal weight of the 2™-ary cyclic code of length
n = 2™ —1 generated by ged(f(2),2"+1) or ged(f(2)+1, 2™ +1). In this paper,
we find a lower bound on the spectral immunity of the Boolean function Tr(g)
using the Schaub algorithm, where ¢ is the generator polynomial of the code
with the zero set {1,2¢ + 1,27 + 1}.

In summary, we have two major contributions in this paper. First, we present
a sufficient condition for which the zero set {1,2¢+1,2P/4+1}, where ged(¢,m) = 1
will give a 3-error-correcting code of length 2™ — 1. Secondly, we improve the
Schaub algorithm which determines a lower bound of the minimum distance of
a cyclic code.

2 Triple-error-correcting cyclic code with the zero set

{1,2° +1,27 41}

Let Z = {a,b,c} be the zero set of a cyclic code C, where a,b and ¢ are the
representatives of distinct 2-cyclotomic cosets. Then, the parity check matrix of
C'is a (3m x n) matrix over Iy of form:

1a% a2 ... on-be
H=[1aa® ... oDt |,

1a® a2 ... abe
where each entry in the matrix is represented as an m-bit column vector with
respect to a fixed Fa-basis of Fom. Then, the code corresponding to Z is the
binary kernel of #.

In Table 1, we present the list of known zero sets that correspond to 3-error-

correcting cyclic codes of length 2™ — 1.

2.1 Triple-error-correcting cyclic code with the zero set
{1,2¢ 41,27 41}

The zero sets considered in [Kas71] and [BH09] are of the form {1,2¢ + 1,2P¢ +
1}, where p = 3 and p = 2 respectively. Therefore, it will be interesting to
characterize p for which the zero set {1,2¢ + 1,2P¢ + 1} always gives a 3-error-
correcting cyclic code.

In this section, we present a sufficient condition for the zero set Z = {1, 20 +
1,2P% + 1} with ged(¢,m) = 1 corresponds to a 3-error-correcting cyclic code.



Zero Set Conditions |References

{1,2° 4+ 1,2% +1}  |ged(f,m) = 1| [Kas71]
m odd

{2° 41,23 +1,2% 4 1}{ged(¢,m) = 1| [Kas71]
m odd

{1,2°' +1,2° +1} | m=20+1 | [MS83]
m odd

{1,2° 41,272 +3} | m=20+1 |[[CCGGT00]
m odd

{1,2° +1,2% + 1} |ged(¢,m) = 1| [BHO9]
any m

Table 1. Known classes of 3-error-correcting cyclic codes of length 2™ — 1

Lemma 1. Let d be the minimum distance of the cyclic code C given by the
zero set Z = {1,2° +1,2P% + 1} with ged(¢,m) = 1 of length n = 2™ — 1. Then
d=>5 ord=717 and there exists a codeword of weight d + 1.

Proof. Tt is known from [Cha98, Theorem 4.2] that cyclic codes with Z = {1, a}
have minimum distance 5 if and only if the mapping x — z® is almost perfect
nonlinear (APN). Consequently, if Z = {1, a, b} and if z — 2% is APN, then the
code has minimum distance at least 5 since it is a subcode of code with zero
set {1,2¢ + 1}. The mapping = 22+l is APN (e.g. [Dob99)) if and only if
ged(¢, m) = 1. Therefore, the minimum distance of C' is at least 5. Further, the
code C' contains the cyclic Reed-Muller code R*(m — 3, m) (cf. [Bla02]). Indeed,
R*(m — 3,m) has zero set U;en{2" + 1}. R*(m — 3, m) has minimum distance
om—(m=3) — 7 Hence, we are ensured that 5 < d < 7.

Moreover, by Corollary 17 of [MS83, page 237], the minimum distance d is
necessarily odd and there is a codeword of weight d + 1. ad

Theorem 1. Consider C, the cyclic code of length 2™ — 1 with zero set Z =
{1,2° + 1,2P% + 1} where ged(¢, m) = 1. The minimum distance of C is 7 if for
all B € F%n,v € Fom,

p—1 .
PN (B2 2y 1)
i=0
have less than or equal to 5 solutions for x in Fi..

The proof is given in Appendix A. We now apply Theorem 1 for p = 2 and
p = 3 to show that {1,2¢+1,22¢ +1} [BH09] and {1,2¢+1,2% +1} [Kas71] are



two zero sets that give 3-error-correcting cyclic code in Theorem 2 and Theorem
3 respectively.

Theorem 1 opens up the scope of getting new p for which {1,2¢+ 1,27/ +1}
gives a 3-error-correcting cyclic code by investigating Equation 1 for p > 3 (see
Remark 1).

Below we present a consequence of a result given in [Blu04].

Lemma 2. The equation of the form 22t g2 Ltz 4+ 5 =0 does not have
more than three solutions when ged(¢,m) =1 for all r,s,t € Fam.

Theorem 2. For p = 2, the code {1,2° 4+ 1,2P* 4+ 1} with ged(f,m) = 1 is a
3-error-correcting cyclic code.

Proof. For p = 2, the equation (1) becomes
N = x22@+1([3x’(2[+1) + [32@:1772@(2%1))
_ /B$22l_22 + /822:171_2£7

_ Bw%(zf—l) +ﬁ2fx—(2f—1)_

Let us remind 3 # 0. Since ged(¢,m) = 1 then ged(2¢ — 1,2™ — 1) = 1 and

thus  — 22 ~! is a bijection. Then transforming z = 22" ~! we get:
Ba” + e =7,
4 Lo g7 =0, (2)
B
Lemma 2 tells that (2) does not have more than three solutions. Therefore,
the zero set {1,2°+ 1,22¢ + 1} gives a 3-error-correcting cyclic code. ad

Theorem 3. {1,2+ 1,2P/ + 1} is a 3-error-correcting cyclic code if p = 3, m
is odd and ged(¢,m) = 1.

Proof. For p = 3, the equation (1) becomes:

N = I23@+1(ﬂ$—(2"+1) + 52@3:72"(2%1)
+ﬂ221$7221(22+1)),
_ ﬂ$2[(22[71) +ﬂ2[x(22[71)(2[71)
+ﬁ22£$€1_22£.

Since m is odd and ged(4,m) = 1, ged(2%¢ —1,2™ —1) = 1 and so x 221

is a bijection. Let us recall 8 # 0. Now replacing = by z2° ~!, we obtain:
sz’f + 62@;6(2@71) + 62”;671 =,
221 +ﬂzf—1xzf + %x +ﬂ22’f—1 -0 (3)

Then, from Lemma 2, we get that (3) can not have more than three solutions.
Therefore, {1,2¢ + 1,23 4 1} is a 3-error-correcting cyclic code. a



Remark 1. Consider m odd. In that case, ged(2° 4+ 1,2™ — 1) = 1 and so x
22+ s a bijection. If we assume p is odd, then applying the transformation
z 2=+ (1) becomes :

p—1

S By = gV T (4)
1=0

Then, it is interesting to find out for which values of p, this equation does
not have more than 5 nonzero solutions in Fom.

2.2 Finding 3-error-correcting cyclic codes with the zero set
{1,2? + 1,27 + 1} by computation

We use an implementation of Chose-Joux-Mitton algorithm [CIJMO02] to look for
words of weight w = 6 in codes with a zero set {1,2°+1,27 + 1} for m < 20 and
for all 4, 7. In Table 4, we provide the exhaustive list of triple-error-correcting
cyclic codes up to m = 13. This algorithm has time complexity O(n?) = O(n?)
and space complexity O(n!%1) = O(n?). From the foundations, this algorithm is
employed to find low-weight polynomial multiples in stream cipher cryptanalysis.
In our context, it is an efficient algorithm to search codewords of weight smaller
than 8. We notice that each of those zero sets {1,2¢+1,27 4+ 1} can be written in
the form {1,2¢ +1,2P° + 1}, where p = 2 or p = 3 up to m < 20. Therefore, the
class {1,2" + 1,27 + 1} of 3-error-correcting cyclic code is completely described
by two known classes [Kas71,BH09] for m < 20.

2.3 The weight distributions of the 3-error-correcting cyclic codes
with the zero set {1,2* + 1,27 + 1}

Weight # Codewords
0 1
N+ V8N| (N? — 3N +2)(N ¥ V8N)
2 96
N+ V2N |(5N? +3N —8)(N F Vv2N)
2 24
N 9N? —3N? + 10N — 16
2 16

Table 2. Weight distribution of dual of 3-error-correcting BCH code of length 2™ — 1,
odd m, N = 2™,

Weight distribution of a linear code C and its dual code C* are related by
the MacWilliams identity [MS83]. Therefore, knowing the weight distribution of



C* one can obtain the weight distribution of C. The dual code C* of the code
C is the annihilator of C. If C is cyclic, then C* is also a cyclic code. We denote
the zero set of C+ as Z*. The generator polynomial of C* is the reciprocal
polynomial of h(X) = (X™ — 1)/g(X). Its roots are the inverses of the roots of
h. In other words, it is established that z € Z+ if and only if n — 2 ¢ Z.

The weight distribution of the dual of 3-error-correcting BCH code for odd
m was determined in [Kas69] and we present it in Table 2. However, for even
m, explicit formula for the weight distribution of the dual of the BCH code
is not known. In [vDV96], it was shown that the dual of the code {1,2¢71 +
1,2% + 1} has the same weight distribution as the dual of BCH code. Then from
the MacWilliams identity, the code {1,2°=% 4 1,2¢ 4+ 1} has the same weight
distribution as the BCH code. This motivated us to find if the code {1,2¢+1,27 +
1} has the same weight distribution as the BCH code. As shown in [vDV96] we
also study the weight distribution of these codes via their duals. Since these
duals have fewer codewords, it is possible to compute the weight distribution
for higher extension degrees. For this we implement a concurrent algorithm.
We first compute the codewords using Gray coding. After that, we determine
their Hamming weights with an hardware-accelerated instruction from the SSE4
instruction set.

For m < 13, we check that duals of the 3-error-correcting cyclic code with
zero set {1,2¢+1,27 4+ 1} have the same weight distribution as the duals of BCH
code as given in Table 2. Therefore, we raise the following question.

Problem 1. Prove or disprove that all the 3-error-correcting cyclic codes with
the zero set {1,2°+ 1,27 + 1} of length 2™ — 1 have the same weight distribution
as the 3-error-correcting BCH code of length 2™ — 1.

2.4 Non-equivalence of the 3-error-correcting cyclic codes with the
zero set {1,2¢ 41,27 4+ 1} with the 3-error-correcting BCH code

In [MS83], it was also asked whether the cyclic code with the zero set {1,2¢71 +
1,2 + 1} is equivalent to the 3-error-correcting BCH code. They conjectured
that they are not. Since our computational result shows that every 3-error-
correcting cyclic codes having the zero set {1,2¢+1,27 +1} with m < 13 have the
same weight distribution as the 3-error-correcting BCH codes, we are interested
in the question whether these codes are equivalent to the BCH code. We use
the MAGMA implementation of Leon’s algorithm [Leo82] to prove the non-
equivalence for m = 7 and m = 8. In particular, for m = 7, the 3-error-correcting
cyclic code with the zero set {1,2¢71+1,2¢41}, for £ = 3 is not equivalent to the
BCH code {1, 3, 5}. This supports the conjecture proposed in [MS83]. We employ
the support splitting algorithm [Sen00] to prove the non-equivalence for m = 10.
The weight enumerator of the hull of a code is an invariant by permutation. The
hull of a linear code is the intersection of the code with its dual. We notice that
the 3-error-correcting cyclic codes with the zero set {1,2¢ 4+ 1,27 + 1} are self-
orthogonal for m < 20, i.e. the hull of the code is the code itself. If we puncture
two equivalent codes in each position, the multiset of weight enumerators of each



punctured code is the same for the two codes. This object is the signature of the
code that we compute to determine the equivalence of two codes. Cyclic codes
have a transitive automorphism group. It implies that if we puncture a cyclic code
in any position, we obtain the same weight enumerator for each punctured code.
Thus, we puncture the dual codes in one fixed position first. Then we puncture
them a second time in each position. We compute the signature of these dual
codes. We obtain signatures which are different from the signature of the dual of
BCH code {1, 3,5} for m = 10. So that we can conclude on the non-equivalence
of non-BCH 3-error-correcting cyclic codes with the zero set {1,2¢ + 1,27 + 1}
with BCH. For m = 9, we get the same signature as that of BCH code {1,3,5}.
This signature is not enough discriminant to collect information on a potential
permutation.

We conclude this section by stating that every non-BCH 3-error-correcting
code with the zero set {1,2°4+1,274+1} are not equivalent to the 3-error-correcting
BCH code form =7, m =8 and m = 10. The question remains open for m = 9.

3 An algorithmic approach to compute a lower bound on
the minimum distance of cyclic codes

While the weight distribution of the code C and its dual C* are directly related
by the Pless power moment identity, there is as such no theoretical result known
which combines the minimum distance of C' and C*.

In this section we discuss on the minimum distance of the dual of triple-
error-correcting cyclic codes with zero set {1,2¢ 4+ 1,29 + 1} for 4, j > 1 and
1 # j. Note that these duals are also cyclic. If 0 is in the zero set of C', then C
is an even weight code. This implies that dual of the cyclic code with zero set
{1,284+ 1,27 + 1}, has an even minimum distance.

Theoretical lower bounds on the minimum distance of cyclic codes are known
(e.g. [BR60,HT72,R0083,vLW86,Wol89]). They rely either on properties of reg-
ular distribution of certain patterns contained in the zero set, or on the number
of rational points of algebraic curves over finite fields. Schaub [MS86] has in-
vestigated an algorithmic approach to compute a lower bound on the minimum
distance of cyclic codes. This idea is particularly efficient for the codes which
have few cyclic subcodes.

To find a lower bound of the minimum distance of a given dual code, we
apply the Schaub [Sch88] algorithm. We propose an improvement with a pruning
criteria based on BCH bound. Then, we compare the tightness of the Schaub
bound and Hartmann-Tzeng bound.

3.1 Schaub Algorithm Description

In [Sch88], Schaub introduced an algorithm which computes a lower bound of the
minimum distance of a cyclic code. This algorithm iteratively applies a method
called Rank bounding on symbolic matrices. Basically, this method computes
the linear complexity of the infinite periodic sequence derived from the Discrete



Fourier Transform of an n-length word c over IFym , where ¢ is a prime power. The
Rank bounding method is described in Appendix B. In our instance, ¢ = 2 and
n = 2™ — 1. Its time complexity is O(n?) = O(23™). Blahut’s theorem ensures
that this quantity is equal to the Hamming weight of ¢ (e.g. [Mas98]). In matrix
terms, it means that the weight of ¢ is equal to the rank of the circulant matrix
B, of order n,

Ag Ay ... A 2 Apq
Ay Ay A, A
Bc = . . . .

Ap1 A ... Apg Ao

where (A;)o<i<n—1 is the family of coefficients of Mattson-Solomon polyno-
mial of c.

Consider an n-length cyclic code C' over Fy with zero set Z. On the one
hand, the minimum distance d of C is equal to the minimum rank of B, for all
c € C. However, it is impractical to employ Berlekamp-Massey algorithm, whose
time complexity is O(n?), to compute the minimum distance of a cyclic code.
On the other hand, since C' is cyclic, the coeflicients of B, satisfy, for all ¢ € C,
the property: A, = 0 for all z € Z. In addition, for all ¢ € C, the set of integers
i such that A; = 0 forms an union of 2-cyclotomic cosets modulo n. The Schaub
algorithm computes a lower bound on the rank of symbolic matrices that we
describe below.

Schaub [Sch88] defined an arithmetic with three symbols 0, 1 and X. In this
notation, 0 stands for null element of Fom, 1 stands for any nonzero element of
Fom and X stands for any element of Fam whose nullity or non-nullity is not
known.

The commutative semiring ({0, 1, X'}, +, ) is defined with tables:

+]10]1]|X 101 |X
0j]0]1|X 070|010
111 1X|X 110|1]X
X|X|X|X X|0|X|X

If k cyclotomic cosets do not belong to Z, then the Schaub algorithm com-
putes in effect a lower bound on the rank of 2 circulant matrices in M ({0,1}).
These matrices have zero coefficient only in the positions determined by the 2%
corresponding unions of cyclotomic cosets. Thus, the Schaub algorithm has time
complexity O(23m+#).

3.2 An improved Schaub algorithm

Each matrix can be identified with a non-linear subcode of C'. This code is defined
by the codewords of C having zeroes only in the form «f, where i belongs to
the set of positions of zeroes coefficients in the first row of the matrix. Each
of these codes is of the form D\ £, where D is a cyclic subcode of C' and & is



the union of all strict cyclic subcodes of D. Let us denominate these non-linear
subcodes as constant-zero codes of C, since their codewords (as polynomials) all
have the same zeroes. Constant-zero codes form a partition of C'. In addition, we
can associate to each constant-zero subcode of C, the cyclic subcode of C with
corresponding zero set. Rank bounding method consists in constructing a set
of necessarily independent rows of the matrix and returns its cardinality. This
cardinality is a lower bound on the minimum distance of a constant-zero code
of C'. Thus, the Schaub bound is the minimum cardinality computed among all
the considered subcodes.

Note that each circulant matrix of order n over {0, 1} can be identified by the
integer between 0 and 2" — 1 whose binary representation is the first row of the
matrix. We assume that the integers are distinct from 2" — 1. If two integers are
in the same cyclotomic coset modulo (2" — 1), then the corresponding matrices
are row equivalent and thus have the same rank. Thus, it is only necessary to
consider one representative of each cyclotomic coset modulo (2" — 1). Further,
if the cyclotomic coset modulo (2™ — 1) of the integer contains p elements, then
we have only to consider the submatrix containing the first p rows of the matrix
instead of the whole circulant matrix. Indeed, the circulant matrix is a block
matrix and can be split by horizontal lines into n/p blocks where each block is
the submatrix described above. Note that p necessarily divides n.

A natural data structure to represent the set of the considered subcodes is
the tree. A node A of the tree corresponds to a constant-zero code of C or
equivalently to a cyclic subcode of C' with zero set denoted Z 4. For our purpose,
the root node corresponds to the subcode of C' which contains the codewords with
zeroes exactly in the positions given by Z. A node C'is the child of a parent node
P if and only if Zc D Zp and |Z¢| = |Zp|+ 1. The number of studied subcodes
grows exponentially in the number of cyclotomic cosets which are not in Z. In
order to reduce time complexity, our strategy is to prune the tree using the BCH
bound which is easily computable. One can think to introduce Hartmann-Tzeng
bound in the pruning. However, our empirical analysis shows that Hartmann-
Tzeng bound slows down the process and does not give better results than BCH.
If, in a node, the Schaub bound is found to be smaller than BCH bound of the
associated cyclic subcode of C, it becomes pointless to apply Rank bounding
method to the subtree whose root is the considered node. Indeed, in each node
of the pruned tree, BCH bound is always greater than Schaub bound and thus
the Schaub bound is not be updated in this subtree.

3.3 Schaub algorithm and algebraic cryptanalysis

Boolean functions are important building blocks in the design of stream ciphers.
High algebraic immunity [CMO03] is a necessary condition to protect the stream
cipher from algebraic attack. Spectral immunity is a related concept to algebraic
immunity [HR11]. If the spectral immunity of a Boolean function is small, then
one can find the initial state of a filter generator in which that Boolean function
is used. In [HR11] the connection between spectral immunity and minimum
distance of a cyclic code was shown which is as follows. The spectral immunity of



a Boolean function f over Fam (in univariate form) is equal to the minimal weight
of the 2™-ary cyclic codes of length n = 2™ — 1 generated by the polynomials
ged(f(2), 2™+ 1) and ged(f(2) + 1, 2™ + 1). Therefore, we need an algorithm to
efficiently estimate the minimum distance of a cyclic code over Fom.

We apply the improved Schaub algorithm on cyclic codes of length n over
Fom with a zero set derived from triple-error-correcting cyclic codes with zero
set {1,2°+ 1,27 +1}.

We define the Trace function as Tr(:) : Fam — Fa,

Tr(z) == 2z + 2° +2% 2

In Table 3, we provide a lower bound on the spectral immunity of the boolean
function Tr(g(.)) in univariate form over IFom, where g is the generator polyno-
mial of a triple-error-correcting cyclic code with zero set {1,2% + 1,27 + 1} for
m < 9. We denote G and H, the generator polynomials of the cyclic codes over
Fom upon which we apply the Schaub algorithm,

G(2) = ged(Tr(g(2)), 2" + 1),

2"+ 1
G(2)

Note that the zero set of G contains the zero set of g since g(z) divides both
Tr(g(z)) and 2" + 1. In addition, H(z) = ged(Tr(g(z))+ 1, 2™+ 1), since Tr(g(.))
is a boolean function.

The polynomial g has coefficients over IFs since it is the product of minimal
polynomials with respect to Fy. Therefore, the boolean function Tr(g(.)) and
the generator polynomials G and H have binary coefficients. From Theorem
9 in [vLW86], the minimum distance of these codes over Fam is the same as
that of their subfield subcodes over 5. As a consequence, we apply the Schaub
algorithm on their binary subfield subcodes, since these one have much less cyclic
subcodes.

H(z) =

3.4 Computational results

In Table 4, we give the Hartmann-Tzeng bound and the Schaub bound of every
dual codes of triple-error-correcting cyclic codes of length 2™ —1 with 5 <m < 13
and Z = {1,2°+ 1,27 +1}. Some subclasses of codes of this form are well known.
We observe the Schaub bound is sharper than Hartmann-Tzeng bound on this
class of codes.

Remark 2. As well, we consider the dual of triple-error-correcting cyclic codes
defined with the same zero set {1,2?+1,27+1} over the alphabet Fom for m < 9.
It is interesting to note that we obtain the same bound for the codes over Fom
and their subfield subcodes over IFo with the Schaub algorithm.



Code | Zero | Lower Bound for
Length| Set [Spectral Immunity
31 |{1,3,5} 2
63 [{1,3,5} 8
127 |{1,3,5} 11
{1,3,9} 13
{1,5,9} 12
255 [{1,3,5} 14
{1,5,9} 14

Table 3. Lower bound for spectral immunity of Boolean functions Tr(g(.)) where
g is the generator polynomial of binary 3-error-correcting cyclic codes with zero set
{1,2°+1,27 + 1}

4 Conclusions

In this work we have discussed on the 3-error-correcting cyclic code that has zero
set of the form {1,2° + 1,27 + 1}. We have presented a sufficient condition so
that {1,2°+1,2P¢ 41} corresponds to a 3-error-correcting cyclic code. Although
p =2 and p = 3 are known, our result opens the window to obtain a zero set of
the form {1,2¢+1,2P" + 1} for p > 3. For this one needs to find p > 3 such that
Equation (1) does not have more than 5 solutions. Remark 1 highlights some
reduced form of this equation when p is odd, which may be easier to handle
with.

Our experimental result shows that {1,2? + 1,27 4+ 1} has the same weight
distribution as that of 3-error-correcting BCH code. However, these codes are
not equivalent to the BCH code in general, this supports the conjecture proposed
by Sloane and MacWilliams [MS83].

We have improved the Schaub algorithm that finds a lower bound of the
minimum distance of a cyclic code. We have used this algorithm to find a lower
bound of the spectral immunity of Boolean function Tr(g), where g is the gen-
erator polynomial of the code with the zero set {1,2¢+ 1,27 + 1}. We would like
to see the deployment of this algorithm to find a lower bound of the minimum
distance of some other class of cyclic codes in future.
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Code Dual |Hartmann-Tzeng|Schaub|Minimum
Length| Zero Set Bound Bound | Distance
31 {1,3,5} 8 8 8
63 {1,3,5} 16 16 16
127 | {1,3,5} 32 48 48
{1,3,9} 32 48 48
{1,5,9} 48 48 48
255 | {1,3,5} 64 96 96
{1,5,9} 96 96 96
511 | {1,3,5} 128 216 224
{1,3,9} 128 212 224
{1,3,17} 128 210 224
{1,5,9} 192 218 224
{1,5,17} 192 212 224
{1,9,17} 224 224 224
1023 | {1,3,5} 256 446 448
{1,9,17} 448 448 448
2047 | {1,3,5} 512 930 960
{1,3,9} 512 906 960
{1,3,17} 512 906 960
{1,3,33} 512 876 960
{1,5,9} 768 936 960
{1,5,17} 768 872 960
{1,5,33} 768 916 960
{1,9,17} 896 902 960
{1,9,33} 896 902 960
{1,17,33} 960 960 960
4095 | {1,3,5} 1024 1886 1920
{1,5, 33} 1536 1814 1920
8191 | {1,3,5} 2048 3110 3968
{1,3,9} 2048 3588 3968
{1,3,17} 2048 3643 3968
{1,3,65} 2048 3668 3968
{1,5,17} 3072 3594 3968
{1,5,33} 3072 3678 3968
{1,5,65} 3072 3802 3968
{1,9,17} 3584 3912 3968
{1,9,33} 3584 3718 3968
{1,9,65} 3584 3722 3968
{1,17,33} 3840 3844 3968
{1, 33,65} 3968 3968 3968

Table 4. Bounds on the minimum distance of the dual of the 3-error-correcting cyclic
code over I3 of length 2™ — 1 with zero set {1,2° + 1,27 + 1}
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A Proof of Theorem 1

The parity check matrix of C' is of the form:

1 « a? ... )
#=11 a2t 422041 (n=1)(20+D)
1 a2P 1 o207 41) 4 (n=1)(2P 1)

Suppose, for a contradiction, that the minimum distance is five. From Lemma
1, we can consider a codeword of weight six. Thus, there exists a set of six
dependent columns over F5 in H. In other words, there exist six distinct elements
x,Y, 2, u,v,w in F5,, such that:

r+y+ztutov+w =0,
$2‘+1+y2‘+1+_,_+v2e+1 + 2t =0, (5)
g2 L2 2 2 ),

These equations are symmetric in variables x,y, z, u, v, w. Thus, the system (5)
can be written as:

rT+Yy—+z =u+v+w =a,
£ £ £ £ 14 £

$2+1+y2+1+22+1 =2 2 42—,
pl pl pe pe pl pl

22 +1+y2 H1 g p2P L = 2P0 g 2P0 2P

where a, b, c € Fam. Note that b # a2£+1, otherwise we would have:

r+y+z+a=0,

0 0 e 0
:172+1+y2+1+22+1+a2+1:(),

which means there is a codeword of weight 4 in the code with zero set {1,2¢+1}
where ged(¢,m) = 1. This is impossible since this code has minimum distance 5



from the proof of Lemma 1. Now we consider the equations:

r+y+z=a,
22+ y2f+1 42 = b,

2Pty +y2P@+1 +22P@+1

x = C.

We substitute x with = + a, y with y 4+ a and z with z + a.
z+y+z=0,
(z+a) 4 (y+ )+ (2 +a)? M =0,
z+a) M+ (y+a) N+ (z+a)P M =0

Then, expanding the second and third equations and using the relation x+y-+z =
0 we obtain the following:

z+y+2z=0,
22+ y2£+1 42—y a2£+1,

L =14 pL pl
p27 L 2L 2 2

Next, we replace z = ¢ + y and we get:

2

‘ ‘

{$2y+y2x - (6)
pl opt

5 y+yt r=7,

where 8 = b+ a2+ and v = ¢ + a2 1. Note z # 0, since 8 # 0. We replace y
by zy. (6) become:
e £
2 y+y7) =5, (7)
14 £
2T Y+ ) = 8)
From (7), we get:
y+y? = B2,
and raising to the power 2¢ repeatedly, we obtain:
vy = (B @)Y

222 23[ 22[

v 4y = (Ba D)2

(p—1)¢ pL _ (ot (p—1)¢
y? 2 = (B @D '
Adding them all, we get:

p—1 )
vy =Y (B +0y2",

i=0



Then, we get from (8):

p—1 .
227+ Z (ﬂx—(2@+1))2w — .
i=0

If this equation does not have more than 5 solutions over IF3.., then for all
distinct elements x,y, 2z, u, v, w in 5., (5) is not satisfied. Hence there is no word
of weight 6. Then, Lemma 1 implies that the minimum distance is 7. O

B Rank Bounding method (Schaub, 1988)

Cases|Sum Terms ' Conclusion
1 0| 0..X...0 | coeff, =0
2 0 (11 ..0 |independent
3 | 0o X...1..0] coeffy =1
4 1 ..0...0 |independent
5 | 1] 0...X...0 | coeff, =1

Fig. 1. Description of fives cases which enable to determine either unknown coefficients,
or the independence of considered row, in Rank Bounding method.

! The superscripts indicate the position of the element in the table of terms.



Algorithm 1 Rank Bound
Input: a nonzero matrix M of size n X n,
with coefficients over {0, 1}.
QOutput: a lower bound on the rank of M.

» Initialization step
{The first row of M is regarded as independent.}
indep-row[1] «+ M][1];
{RankBound is the number of ensured independent rows.}
RankBound + 1;
» Search of necessarily independent rows in M
for 1 <j<ndo
for 1 < i < RankBound do
{We suppose the current row M[j] is a linear combination of the certified inde-
pendent rows of M.}
coeff[i] + X
end for
{From now, we try to derive a contradiction on the dependence of M[j] with the
ensured independent rows.}
repeat
k < 1; change <« false; independent <+ false;
while k£ < n and independent=false do
» Construction of the table of terms
for 1 < i < RankBound do
term[i] < coeff[i]* indep-row[i][5];
end for
{The coefficient M|j][k] is the sum of terms.}
sum <+ M[j][k]
if sum= 0 then
{The 5 cases are described in Figure 1.}
case 1: coeff[a] < 0; change < true;
case 2: independent < true;
case 3: coeff[b] < 1; change <+ true;
else
case 4: independent <— true;
case b: coeff[a] < 1; change <« true;
end if
k< k+1;
end while
until change=false or independent=true
if independent=true then
RankBound <+ RankBound+1;
indep-row[RankBound] < M[j];
end if
end for
return RankBound;




