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ABSTRACT the literature: Shannon entropy is applied to evaluatedine c
Change detection within an audio stream is an important taskentration of the representation seen as a probabilityilolist
in several domains, such as classification and segmentatidion, and the derived divergence measures [1] are employed
of a sound or of a music piece, as well as indexing of broadto identify variations within the representation.

cast news or surveillance applications. In this paper we pro  The representation we consider is the spectrogram of
pose two novel methods for spectral change detection withoghe signal: through a normalization which gives a unitary
any assumption about the input sound: they are both base@im, we consider the discrete spectrogram in a finite time
on the evaluation of information measures applied to a timempteryal as a probability distribution, and we can apply-typ
frequency representation of the signal, and in particaléhé  jca| information measures to evaluate its concentration in
spectrogram. The class of measures we consider, the Rényie time-frequency plane. Fixing the signal we write
entropies, are obtained by extending the Shannon entrdpy depg = — {PS¢[m, k], k =1,..., N} to indicate then-th anal-
inition: a biasing of the spectrogram coefficients is realiz ysis frame in the discrete spectrogratfi; of f, where the
through the dependence of such measures on a paramefetT size N is the finite number of sample frequencies con-
which allows refined results compared to those obtained withjdered. Given two normalized analysis franiRsg andPS.,
standard divergences. These methods provide a low compihe Kullback K divergence [1] is usually employed to have
tational cost and are well-suited as a support for highesllev 3 measure of their difference: a spectral change is detected

analysis, segmentation and classification algorithms. wheneverk (PS;, PS,) is larger than a chosen threshold. A
Index Terms— Change detection, spectral entropy, Kull- refinement of this method (see for example [2]) provides a
back divergence, Rényi entropies, segmentation better robustness to false alarms defininmean spectrum
PS,.can @and comparing its divergence with the new analysis
frame.

1. INTRODUCTION

The detection of spectral changes within an audio signal can The first method we propose is a straight extension of
be performed according to many different criteria, dependthe one just described: we consider the divergence measure
ing on the applications; the key point is what kind of spdctraderived from theRényi entropy3] instead of theK directed
change has to be considered significant. A typical problerdivergence, allowing a tuning of the detection criteriantke
in audio classification is to identify signal segments wiilh d to the dependance of the measure on a parameter. The sec-
ferent contents, for example when analyzing a radio strearand method is not based on divergence but on Rényi entropy
to separate speech, music or mix of them; another type dfself, exploiting one of its fundamental property: thereply
problem is speaker change detection, which typically aecurof a union of probability distributions can be evaluated-con
when indexing audio recording of conferences, interviews osidering the entropy values of the individual distribuson
lectures. In either case we have to perform a segmentatiddince we do consider analysis frames as probability distri-
and a classification, but the interesting spectral changes abutions, this property can be used to establish the expected
completely different. The point of view we consider is atentropy value of a certain signal segment when the following
the signal level, since our research is about adaptiveuesolframe is added: if the actual value differs significantlynfro
tion methods for analysis, transformation and re-synghesi the expected one, the last frame is considered to contain a
a sound. spectral change.

The use of information measures to evaluate the features

of a time-frequency representation of a signal is frequent i This kind of algorithm does not need acoustic models to
This work is supported by grants from Region lle-de-France. refer to, nor data training: a certain metric is evaluated in




a given space [4]. The information measures we take intdivergences as for the Kullbadkone, and apply them to the

account can be applied on several different representafion spectrogram frames: as long as we can give an interpretation

the signal: in [5] the/{ divergence is used in a GMM frame- to thea parameter, this class of measures offers a largely more

work instead of on the spectrogram. In several approachietailed information about the time-frequency repregenta

for example in [6], difference measures are calculated as of the signal.

first step which gives a suitable analysis for segmentatioh a

classification purposes: for all these algorithms, thesct's 2 1. Biasing spectral coefficients through the parameter

measures we introduce could ameliorate the detectioniperfo

mances as they allow a further parameter of choice, while sti To show the biasing introduced on the spectral coefficients b

including theK divergence for a given value of the parameter.th€a parameter we consider a simplified model of a spectro-
gram composed by a variable amount of large and small coef-

In the next section we give the essential properties anfcients. We realize a vectdr of length/V = 100 generating

definitions of the measures considered, then we describe tfigimbers between 0 and 1 with a normal random distribution;

biasing obtained with the parameter introduced. Finally wéhen we consider the vectot,, 1 < M < N such that

present our algorithms and give some examples: we use a UK it k< M

speech fragment to compare the detection with the one given Unlk] = { Ul g

by the K divergence measure; we take as a reference the S0 FE>M

segmentation given on the same signal by an HMM-basegnd then normalize to obtain a unitary sum. We then apply

phoneme segmentation method [7], and the voiced-unvoice®ényi entropy measures withvarying between 0 and 30: as

classification obtained with a PSOLA-based algorithm [8].we see from figure 1, there is a relation betwédrand the

Our results are interesting as the methods provide a refin@ope of the entropy curves for the different valuesof

adjustable detection, despite of their substantial pssrand

low computational cost.

2. RENYI ENTROPIES AND INFORMATION
MEASURES

entropy

Given a finite probability density and a rational number >
0, the Rényi entropy of is defined as follows,
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wherep is in square brackets as we are considering the r
sure on discrete densities; @asends to one this measure con- Fig. 1. Rényi entropy evaluations of tHg,; vectors with
verges to the Shannon entropy, which is therefore included ivaryinga.
this larger class. General properties of Rényi entropiasea
found in [3], [9] and [10]; in particularH, (P) is a non in- Fora = 0, Ho[Uy] is the logarithm of the number of
creasing function ofy, soa; < az = Ha, (P) 2 Ha,(P) . non-zero coefficients and it is therefore constant; wheén-
Moreover, for every order the Rényi entrop,, is maxi-  creases, we see that densities with a small amount of large
mum whenP is uniformly distributed, while it is minimum  gefficients gradually decrease their entropy. This mefats t
and equal to zero wheR has a single non-zero value. As We jhcreasinga we emphasize the difference between the en-
are working with finite discrete densities we can also caarsid tropy values of a peaky distribution and that of a nearly flat
the casex = 0 which is simply the logarithm of the number gne. |n the next section we will give an example of the ex-
of elements irp; as a consequend#[p] > Ha[p] for every  pioiting of this important property, but care should be take
admissible ordetv. Given a second finite probability density \yhen applying this criterium: small coefficients in a speetr
q of the same length, i andq have exactly the same zeros gram include signal components of weak amplitude as well
theReényi informatiorj3] is defined as follows, as noise; choosing an extremely smathe change detection
robustness to noise level significantly decreases.

q“[K] @)

p k]

N
1
Io(q,p) = ——log
a—-1 """ ; 2.2. The entropy prediction method

and it tends to the Kullbackdivergence [1] as. tends to one. The second method we introduce is not based on a divergence
We can thus consider this class of measures to obtain differecriterium, but on entropy itself. We first give the definition



of Rényi entropy for the case of distribution obtained with 3. ALGORITHMS AND EXAMPLES
a discretization of their continuous version [11]: % be
a normalization with unitary sum of a discrete spectrogramyVe show here an application of the detection algorithms with
then the Rényi entropy dtS; is the measures defined: the first algorithm we analyze has the
. same operations for th& divergence and Rényi informa-
_ @ tion (2): we calculate the spectrogram of a signal with a
Ha[PS/] = -« logs ;(Psf[n’ K)* +logy(ab) . (3) 1024-samples Hamming window, 768-samples overlap and
2048-points FFT size; we obtain a mean spectrum taking the

wherek varies between 1 and the FFT sixewhile n varies  first 20 analysis frames, and calculate the divergence of the
in the time interval where the evaluation has to be performedext frame with respect to the mean spectrum. Once we have
according to the time grid. The terfiog,(ab) takes into  the first divergence value, we shift the mean spectrum of one
account the time and frequency stepandb of the lattice  analysis frame and consider the following 20 frames, then
A used to sample the continuous spectrogram: this guacalculate the divergence between the new mean spectrum and
antees the stability of the discrete entropy when changinthe following frame. At this point, if the ratio between tlzest
the hop and the FFT sizes, as long as the sampling grid @ivergence value and the previous exceeds a certain thresh-
dense enough in the time-frequency plane. For the entropyld, a change is detected at the incoming frame; otherwise
of a single analysis frame we writé,[PS;] = H,[PS,,] as  the procedure goes on. The second algorithm is a variation of
above, wheren is the time index of the analysis frame con- the first one based on entropy prediction: once obtained the
sidered; forL different analyses frames, we writg, [PS;] =  spectrogram of the signal, we calculate the Rényi entropy of
H,[PSy, ..., PS4+ 1] to focus on the individual vectors. The the vector composed of its first 6 analysis frames; then we
following properties are straightforward by the definison consider the next frame and set the predicted entropy value
according to (6). We calculate the actual entropy of theorect
obtained adding the new frame to the previous ones, and if
the ratio between this value and the predicted one exceeds a
(i) Let PS,, be an analysis frame i®S;; if PS; is ob- certain threshold, a change is detected. Then the procedure

Proposition 2.1(Rényi entropy prediction)Consider a spec-
trogramPS; and a rational numbee: > 0.

tained rearranging the elements BS,,,, then goes on as in the previous case.
H,[PS,,] = Ho[PSk] = H, 4) The Rényi prediction shows a slightly better accuracy at
the price of a higher computational cost; this is due to the
Huo[PS,,PSp] =H+1. (5) larger dimensions of the vectors managed in the entropy cal-

culus. The tuning of thex parameter gives interesting re-

sults: as seen in figure 1, higher values rise the difference
between the entropies of a peaky distribution and a flat one;
thus we expect in general a more refined detection increasing
«, leaving the threshold unchanged. The signal we analyze is

. a speech fragment of a mail voice in French langus@eijti-
As arearrangementwe mean a reordering of the frame C®nne et Iui suce la bouche un quart d’heuvle assume two

effici_ents, thus including the case C.)f equality between &am references: an automatic phoneme segmentation for French
The |<_jea of our method is that given the eniropy of a CerTanguage based on Hidden Markow Model [7], and a voiced-
tain _S|gnal ?egmenHa(PSm, ""E%m“) composed byl ;nypiced classification obtained with a PSOLA-based algo-
contiguous frames, we can pre L(PSm, -, PSmrp41) rithm [8]: they identify the major spectral changes in this
supposing the- new framg to be spectrally coherent and th nd of signal, so we expect our detection to confirm them.
iso-entropic with the previous ones. If on the other hand th%e are not interested in whether a marker belongs to one se-

ent:jo_py (\j/alule of the new Segrr]‘nent Ia][gely d'ﬁirs _fromh theIection or the other, as this could be established in a |dsF c
predicted value, we assume the new frame to be inconeregl;. .o, step. As we see at the top of figure 2, the Rényi

with the previous and so a spectral change is detected. The fediction witha = 0.2 identifies all the voiced-unvoiced

is here a strong assumption concerning the equivalence b ansitions in both senses except at time 2.5, and a large par

tween the concept of spectral coherence and the fact that W phonemes. If we need a less refined detection, setting the

framej_ are obr;talned \{\f/.'th a rzar_rank?emenl_t of _the|r (;Ier’gentgz' parameter to 0.05 (bottom of figure 2) preserves the detec-
according to the specific needs in the applications, thecdete ot || the unvoiced-voiced transitions, while discagl

tion criteria can be based on variations of the propertyd6) Lall the phonemes and the voiced-unvoiced transitions. Both

take into account different definitions of spectral cohegen the measures provide a better detection with respect to the

forexa_mple, c_o_nS|de.r|ng aget of_adm|SS|bIe operat_lonhent K divergence, which shows a higher number of unexpected
analysis coefficients in relation with the entropy variatibat markers

they provide.

(i) In general, if PS,,+1, ..., PS,,+1 are obtained rear-
ranging the elements &fS,,,, than

Ho[PSh, ..., PSpqr] =H+logy(L+1) . (6)
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Fig. 2. Detections obtained with different methods on a speechrfeaq in French languagesross markers: Rényi entropy
prediction method, on top withh = 2, at the bottom with = 1.1; square markers. K divergence;diamond markers:
HMM-based phoneme segmentation mettmmt] line: PSOLA voiced-unvoiced classification, 0 is unvoiced.
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