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Critical mass for a Patlak-Keller-Segel model

with degenerate diffusion in higher dimensions

Adrien Blanchet ∗, José A. Carrillo † & Philippe Laurençot ‡

November 7, 2013

Abstract

This paper is devoted to the analysis of non-negative solutions for a generalisation of the
classical parabolic-elliptic Patlak-Keller-Segel system with d ≥ 3 and porous medium-like
non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and
the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions
is decided by the initial mass of the system. Actually, there is a sharp critical mass Mc such
that if M ∈ (0,Mc] solutions exist globally in time, whereas there are blowing-up solutions
otherwise. We also show the existence of self-similar solutions for M ∈ (0,Mc). While
characterising the eventual infinite time blowing-up profile for M =Mc, we observe that the
long time asymptotics are much more complicated than in the classical Patlak-Keller-Segel
system in dimension two.

1 Introduction

In this work, we analyse qualitative properties of non-negative solutions for the Patlak-Keller-
Segel system in dimension d ≥ 3 with homogeneous non-linear diffusion given by























∂u

∂t
(t, x) = div [∇um(t, x)− u(t, x)∇φ(t, x)] t > 0 , x ∈ R

d ,

−∆φ(t, x) = u(t, x) , t > 0 , x ∈ R
d ,

u(0, x) = u0(x) x ∈ R
d .

(1.1)

Initial data will be assumed throughout this paper to verify

u0 ∈ L1(Rd; (1 + |x|2) dx) ∩ L∞(Rd), ∇um0 ∈ L2(Rd) and u0 ≥ 0 . (1.2)

A fundamental property of the solutions to (1.1) is the formal conservation of the total mass of
the system

M :=

∫

Rd

u0(x) dx =

∫

Rd

u(t, x) dx for t ≥ 0 .
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As the solution to the Poisson equation −∆φ = u is given up to an harmonic function, we choose
the one given by φ = K ∗ u with

K(x) = cd
1

|x|d−2
and cd :=

1

(d− 2)σd

where σd := 2πd/2/Γ(d/2) is the surface area of the sphere S
d−1 in R

d. This system has been
proposed as a model for chemotaxis-driven cell movement or in the study of large ensemble of
gravitationally interacting particles, see [17, 12, 4] and the literature therein.

We will concentrate on a particular choice of the non-linear diffusion exponent m in any di-
mension characterised for producing an exact balance in the scaling of diffusion and potential drift
in equation (1.1). To this end we use the by-now classical scaling leading to the nonlinear Fokker-
Planck equation for porous media as in [10], that is, let us define ρ by ρ(s, y) := edtu

(

β(t), etx
)

and c := K ∗ ρ with β strictly increasing to be chosen. Then, it is straightforward to check that























∂ρ

∂s
(s, y) = div

[

yρ(s, y) + β′(t)
{

e−λt∇ρm(s, y)− e−dtρ(s, y)∇c(s, y)
}]

s > 0 , y ∈ R
d ,

−∆c(s, y) = ρ(s, y) , s > 0 , y ∈ R
d ,

ρ(0, y) = u0(y) ≥ 0 y ∈ R
d ,

with λ = d(m−1)+2. From this scaling, the only possible choice of m leading to a compensation
effect between diffusion and concentration is given by λ = d or equivalently

md :=
2 (d − 1)

d
.

In that case, β′(t) = edt determines the change of variables and the final scaled equation reads:























∂ρ

∂s
(s, y) = div [yρ(s, y) +∇ρmd(s, y)− ρ(s, y)∇c(s, y)] s > 0 , y ∈ R

d ,

−∆c(s, y) = ρ(s, y) , s > 0 , y ∈ R
d ,

ρ(0, y) = u0(y) ≥ 0 y ∈ R
d ,

(1.3)

Note that the case d = 2 and m2 = 1 corresponds to the Patlak-Keller-Segel system or to the
classical Smoluchowski-Poisson system in two dimensions with linear diffusion [29, 19]. In this
case, a simple dichotomy result have been shown in [14, 4] improving over previous results in
[18, 26], namely, the behaviour of the solutions is just determined by the initial mass of the system.
More precisely, there exists a critical value of the mass Mc := 8π such that if 0 < M < Mc (sub-
critical case) the solutions exist globally and if M > Mc (super-critical case) the solutions blow
up in finite time. Moreover, in the sub-critical case solutions behave self-similarly as t → ∞
[2, 4]. Finally, the critical case M = Mc was studied in [3] showing that solutions exist globally
and blow up as a Dirac mass at the centre of mass as t → ∞. Solutions have to be understood
as free energy solutions, concept that we will specify below.

In this work, we will show that a similar situation to the classical PKS system in d = 2,
although with some important differences, happens for the critical variant of the PKS model in
any dimension d ≥ 3 reading as:











∂u

∂t
(t, x) = div [∇umd(t, x)− u(t, x)∇(K ∗ u)(t, x)] t > 0 , x ∈ R

d ,

u(0, x) = u0(x) ≥ 0 x ∈ R
d .

(1.4)
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We will simply denote by m the critical exponent

m := md =
2 (d− 1)

d
∈ (1, 2) ,

as long as d ≥ 3, in the rest of the paper for notational convenience. The main tool for the
analysis of this equation is the following free energy functional:

t 7→ F [u(t)] : =

∫

Rd

um(t, x)

m− 1
−

1

2

∫∫

Rd×Rd

K(x− y)u(t, x)u(t, y) dx dy

=

∫

Rd

um(t, x)

m− 1
−
cd
2

∫∫

Rd×Rd

1

|x− y|d−2
u(t, x)u(t, y) dx dy

which is related to its time derivative, the Fisher information, in the following way: given a
smooth positive fast-decaying solution to (1.4), then

d

dt
F [u(t)] = −

∫

Rd

u(t, x)

∣

∣

∣

∣

∇

(

m

m− 1
um−1(t, x)− φ(t, x)

)
∣

∣

∣

∣

2

dx . (1.5)

We will give a precise sense to this entropy/entropy-dissipation relation below.

The system (1.4) can formally be considered a particular instance of the general family of
PDEs studied in [8, 1, 9]. The free energy functional F structurally belongs to the general class
of free energies for interacting particles introduced in [25, 8, 9]. The functionals treated in those
references are of the general form:

E [n] :=

∫

Rd

U [n(x)] dx+

∫

Rd

n(x)V (x) dx+
1

2

∫∫

Rd×Rd

W (x− y)n(x)n(y) dx dy

under the basic assumptions U : R
+ → R is a density of internal energy, V : R

d → R is a
convex smooth confinement potential and W : Rd → R is a symmetric convex smooth interaction
potential. The internal energy U should satisfy the following dilation condition, introduced in
McCann [25]

λ 7−→ λdU(λ−d) is convex non-increasing on R
+.

In our case, the interaction potential is singular and the key tool of displacement convexity of
the functional fails, making the theory in the previous references not useful for our purposes.
Nevertheless, the free energy functional plays a central role for this problem as we shall see
below. Before proceeding further, let us state the notion of solutions we will deal with in the
rest:

Definition 1.1 (Weak and free energy solution) Let u0 be an initial condition satisfying (1.2)
and T ∈ (0,∞].

(i) A weak solution to (1.4) on [0, T ) with initial condition u0 is a non-negative function
u ∈ C([0, T ); L1(Rd)) such that u ∈ L∞((0, t) × R

d)), um ∈ L2(0, t;H1(Rd)) for each
t ∈ [0, T ) and

∫

Rd

u0(x)ψ(0, x) dx =

∫ T

0

∫

Rd

[∇um(t, x)− u(t, x)∇φ(t, x)] · ∇ψ(t, x) dx dt

−

∫ T

0

∫

Rd

u(t, x) ∂tψ(t, x) dx dt (1.6)

for any test function ψ ∈ D([0, T ) × R
d) with φ = K ∗ u.
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(ii) A free energy solution to (1.4) on [0, T ) with initial condition u0 is a weak solution to (1.4)
on [0, T ) with initial condition u0 satisfying additionally: u(2m−1)/2 ∈ L2(0, t;H1(Rd)) and

F [u(t)] +

∫ t

0

∫

Rd

∣

∣

∣

∣

(

2m

2m− 1
∇u(2m−1)/2(s, x)− u1/2(s, x)∇φ(s, x)

)
∣

∣

∣

∣

2

dx ds ≤ F [u0] (1.7)

for all t ∈ (0, T ) with φ = K ∗ u.

In (1.7), we cannot write the Fisher information factorised by u as in (1.5) because of the lack of
regularity of u. We note that both (1.6) and (1.7) are meaningful. Indeed, the regularity required
for u implies that the solution φ = K ∗ u to the Poisson equation satisfies φ ∈ L∞(0, t;H1(Rd))
for all t ∈ (0, T ). In addition, it follows from (1.6) by classical approximation arguments that

‖u(t)‖1 =

∫

Rd

u(t, x) dx =

∫

Rd

u0(x) dx = ‖u0‖1 =M for t ∈ [0, T ) . (1.8)

Let us point out that the existence of free energy solutions for a related problem was essentially
obtained in [30, 31, 27] where the Poisson equation is replaced by −∆φ = u − φ. There, the
authors also show that the mass is the suitable quantity for (1.4) allowing for a dichotomy.
Precisely, the author shows that there exist two masses 0 < M1 < M2 such that if 0 < M < M1

the solutions exist globally in time, while for M > M2 there are solutions blowing up in finite
time. The values of these masses, are related to the sharp constants of the Sobolev inequality.

Here, we will make a fundamental use of a variant to the Hardy-Littlewood-Sobolev (VHLS)
inequality, see Lemma 3.2: for all h ∈ L1(Rd)∩Lm(Rd), there exists an optimal constant C∗ such
that

∣

∣

∣

∣

∫∫

Rd×Rd

h(x)h(y)

|x− y|d−2
dx dy

∣

∣

∣

∣

≤ C∗ ‖h‖
m
m ‖h‖

2/d
1 .

This inequality will play the same role as the logarithmic HLS inequality proved in [6] for the
classical PKS system in d = 2 [14, 4, 3]. The VHLS inequality and the identification of the
equality cases allow us to give the first main result of this work, namely, the following sharp
critical mass

Mc :=

[

2

(m− 1)C∗ cd

]d/2

for equation (1.4). More precisely, we will show that free energy solutions exist globally for

M ∈ (0,Mc] while there are finite time blowing-up solutions otherwise. However, the long time
asymptotics of the solutions is much more complicated compared to the classical PKS system
in two dimensions. The main results of this work and the open problems related to large times
asymptotics can be summarised as follows:

– Sub-critical case: 0 < M < Mc, solutions exist globally in time and there exists a radially
symmetric compactly supported self-similar solution, although we are not able to show that
it attracts all global solutions. See Proposition 4.3, Theorem 5.2 and Corollary 5.7.

– Critical case: M = Mc, solutions exist globally in time, see Proposition 4.6. There are
infinitely many compactly supported stationary solutions. The second moment of solutions
is non-decreasing in time, with two possibilities we cannot exclude: either is uniformly
bounded in time or diverges. Moreover, the Lm-norm of the solution could be divergent as
t → ∞ or a diverging sequence of times could exist with bounded Lm-norm. However, we
show a striking difference with respect to the classical PKS system in two dimensions [3],
namely, the existence of global in time solutions not blowing-up in infinite time. We will
comment further on these issues in Section 4.2.3.

– Super-critical case: M > Mc, we prove that there exist solutions, corresponding to initial
data with negative free energy, blowing up in finite time, see Proposition 4.2. However,
we cannot exclude the possibility that solutions with positive free energy may be global in
time.
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The results are organised as follows. Section 2 shows a key maximal time of existence criterion
for free energy solutions of equation (1.4). This criterion improves over the results in [30, 31] since
it is only based on the boundedness or unboundedness in time of the Lm-norm of the solutions
and it has to be compared to a similar criterion based on the logarithmic entropy in the classical
PKS system in two dimensions obtained in [3]. Section 3 is devoted to the variational study
of the minimisation of the free energy functional over the set of densities with a fixed mass.
With that aim the proof of the VHLS inequality and the identification of the equality cases are
performed. Section 4 uses this variational information to show the above main results concerning
the dichotomy, the global existence for M < Mc and the characterisation by concentration-
compactness techniques of the nature of the possible blow-up in the critical case leading to the
global existence for this critical value. Finally, the last section is devoted to the study of the free
energy functional in self-similar variables and the proof of the existence of self-similar solutions
in the sub-critical case.

2 Existence criterion

As in [30, 31], we consider the regularised problem























∂uε
∂t

(t, x) = div [∇ (fε◦uε) (t, x)− uε(t, x)∇φε(t, x)] t > 0 , x ∈ R
d ,

φε(t, x) = K ∗ uε(t, x) , t > 0 , x ∈ R
d ,

uε(0, x) = uε0 ≥ 0 x ∈ R
d ,

(2.1)

where fε : [0,∞) −→ R is given by fε(u) := (u + ε)m − εm. Here, uε0 is the convolution of u0
with a sequence of mollifiers and ‖uε0‖1 = ‖u0‖1 =M in particular. This regularised problem has
global in time smooth solutions. This approximation has been proved to be convergent. More
precisely, the result in [31, Section 4] asserts that if we assume that

sup
0<t<T

‖uε(t)‖∞ ≤ κ (2.2)

where κ is independent of ε > 0, then there exists a sub-sequence εn → 0, such that

uεn → u strongly in C([0, T ],Lp
loc(R

d)) and a.e. in (0, T ) × R
d, (2.3)

∇umεn ⇀ ∇um weakly-* in L∞(0, T ; L2(Rd)), (2.4)

φεn(t) → φ(t) strongly in Lr
loc(R

d) a.e. in (0, T ), (2.5)

∇φεn(t) → ∇φ(t) strongly in Lr
loc(R

d) a.e. in (0, T ), (2.6)

for any p ∈ (1,∞) and r ∈ (1,∞], and u is a weak solution to (1.4) on [0, T ) with φ = K ∗ u.
Moreover, the free energy [30, Proposition 6.1] satisfies F [u(t)] ≤ F [u0] for a.e. t ≥ 0. However,
a detailed analysis of the proof in [30, Proposition 6.1] shows that the weak solution is in fact a
free energy solution.

Proposition 2.1 (Existence of free energy solutions) Under assumption (1.2) on the ini-
tial data and (2.2) on the approximation sequence, there exists a free energy solution to (1.4) in
[0, T ).

Proof. The only remaining points not covered by the results in [30, 31] are the lower semi-
continuity of the free energy dissipation and the fact that u(2m−1)/2 belongs to L2(0, t;H1(Rd))
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for t ∈ [0, T ). The latter will actually be shown in the proof of Lemma 2.3, see (2.9) below.
Concerning the former, a careful reading of the proof of [30, Proposition 6.1] gives that

Fε,l[uε(t)]+
3

4

∫ t

0

∫

Rd

[uε(s, x)+ε]

∣

∣

∣

∣

∇

(

m

m− 1
[uε(s, x) + ε]m−1 − φε(s, x)

)
∣

∣

∣

∣

2

ψl(x) dx dt ≤ Fε,l[u0]

for a.e. t ∈ (0, T ) where ψl is a standard cut-off function in R
d for any l ∈ N and

Fε,l[uε(t)] =

∫

Rd

[uε(t, x) + ε]m

m− 1
ψl(x) dx−

1

2

∫∫

Rd×Rd

K(x− y)uε(t, x)uε(t, y) dx dy .

In this regularised setting, we can write that

(uε + ε)

∣

∣

∣

∣

∇

[

m

m− 1
(uε + ε)m−1 − φε

]∣

∣

∣

∣

2

=

∣

∣

∣

∣

2m

2m− 1
∇(uε + ε)(2m−1)/2 − (uε + ε)1/2∇φε

∣

∣

∣

∣

2

.

As proved in [30], we have Fεn,l[uεn(t)] → F [u(t)] as εn → 0 and l → ∞. In addition, it is
straightforward from the convergence properties (2.3)-(2.6) above to pass to the limit as εn → 0
in the free energy dissipation functional with the help of a lower semi-continuity argument. We
leave the details to the reader, see e.g. [28] or [7, Lemma 10]. Hence, passing to the limit as
l → ∞, then u is a free energy solution as it satisfies the free energy inequality (1.7). �

Remark 2.2 The free energy inequality (1.7) can be obtained with constant 3/4 multiplying the
entropy dissipation directly from [30, Proposition 6.1] and the procedure above. This is a technical
issue that can be improved to constant 1 by redoing the proof in [30, Proposition 6.1] treating more
carefully the free energy dissipation term. In fact, the proof in [30, Proposition 6.1] shows that
you can choose the constant as close to 1 as you want.

We are now ready to characterise the maximal time of existence by showing the local in time
boundedness of the Lm-norm independently of the approximation parameter ε > 0 and how this
estimate implies the local in time L∞-estimate (2.2).

Lemma 2.3 (From uniform integrability to L∞-bounds) For any η > 0 there exists τη >
0 depending only on d, M , and η such that, if

sup
ε∈(0,1)

‖uε(t
∗)‖m ≤ η

for some t∗ ∈ [0,∞), then
(i) the family (uε)ε is bounded in L∞(t∗, t∗ + τη; L

m(Rd)).
(ii) Moreover, if (uε(t

∗))ε is also bounded in Lp(Rd) for some p ∈ (m,∞], then (uε)ε is
bounded in L∞(t∗, t∗ + τη; L

p(Rd)).

Proof. To prove this result we need to refine the argument already used in the two-dimensional
situation d = 2 with linear diffusion m = 1 in [4, 3]. We follow a procedure analogous to the ones
in [20, 5, 30, 13].

Step 1 - Lm-estimates: By (2.1) we have

d

dt
‖uε‖

m
m = −m(m− 1)

∫

Rd

um−2
ε ∇uε ·

(

m(uε + ε)m−1 ∇uε − uε∇φε
)

dx

≤ −
4m2(m− 1)

(2m− 1)2

∥

∥

∥
∇u(2m−1)/2

ε

∥

∥

∥

2

2
− (m− 1)

∫

Rd

umε ∆φε dx

= −
4m2(m− 1)

(2m− 1)2

∥

∥

∥
∇u(2m−1)/2

ε

∥

∥

∥

2

2
+ (m− 1) ‖uε‖

m+1
m+1 .
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As

1 <
2m

2m− 1
<

2(m+ 1)

2m− 1
<

2d

d− 2
,

we have the following Gagliardo-Nirenberg-Sobolev inequality: there exists a positive constant C
such that

‖w‖2(m+1)/(2m−1) ≤ C ‖∇w‖
[(2m−1)d]/[(m+1)(2m+d−2)]
2 ‖w‖

2m2/[(m+1)(2m+d−2)]
2m/(2m−1)

which we apply with w = u
(2m−1)/2
ε to obtain

‖uε‖
(2m−1)/2
m+1 ≤ C

∥

∥

∥
∇u(2m−1)/2

ε

∥

∥

∥

[(2m−1)d]/[(m+1)(2m+d−2)]

2
‖uε‖

m2(2m−1)/[(m+1)(2m+d−2)]
m .

It leads to

‖uε‖
m+1
m+1 ≤C

∥

∥

∥
∇u(2m−1)/2

ε

∥

∥

∥

2d/(2m+d−2)

2
‖uε‖

2m2/(2m+d−2)
m

≤
2m2

(2m− 1)2

∥

∥

∥
∇u(2m−1)/2

ε

∥

∥

∥

2

2
+ C ‖uε‖

m2/(m−1)
m .

We thus end up with

d

dt
‖uε‖

m
m +

2m2(m− 1)

(2m− 1)2

∥

∥

∥
∇u(2m−1)/2

ε

∥

∥

∥

2

2
≤ (m− 1)C ‖uε‖

m2/(m−1)
m . (2.7)

In particular, for any t2 ≥ t1 ≥ 0

‖uε(t2)‖
m
m ≤

[

‖uε(t1)‖
−m/(m−1)
m − C (t2 − t1)

]−(m−1)
(2.8)

Taking t1 = t∗ we deduce from (2.8) that

‖uε(t)‖
m
m ≤

(

η−m/(m−1) − C (t− t∗)
)−(m−1)

for t ∈ [t∗, t∗ + 2τη)

with τη = 1/
(

2Cηm/(m−1)
)

. Consequently, ‖uε(t)‖
m
m ≤ (Cτη)

−(m−1) for t ∈ [t∗, t∗ + τη] and the
proof of the first assertion of Lemma 2.3 is complete. In addition, coming back to (2.7), we
further deduce that

∫ t∗+τη

t∗

∥

∥

∥
∇u(2m−1)/2

ε

∥

∥

∥

2

2
≤ C(t∗, η) . (2.9)

Step 2 - Lp-estimates, p ∈ (m,∞): For t ∈ [t∗, t∗ + τη], K ≥ 1, and p > m, we infer from (2.1)
that

d

dt
‖(uε(t)−K)+‖

p
p ≤ −mp (p− 1)

∫

Rd

(uε(t)−K)p−2
+ (uε + ε)m−1 |∇uε|

2 dx

+ p (p− 1)

∫

Rd

[

(uε(t)−K)p−1
+ +K (uε(t)−K)p−2

+

]

∇uε · ∇φε dx

≤ −mp (p− 1)

∫

Rd

(uε(t)−K)m+p−3
+ |∇uε|

2 dx

−

∫

Rd

[

(p− 1) (uε(t)−K)p+ + pK (uε(t)−K)p−1
+

]

∆φε dx

≤ −
4mp (p− 1)

(m+ p− 1)2

∥

∥

∥
∇
[

(uε(t)−K)
(m+p−1)/2
+

]
∥

∥

∥

2

2
+ (I)
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with

(I) := pK2 ‖(uε(t)−K)+‖
p−1
p−1 + (2p − 1)K ‖(uε(t)−K)+‖

p
p + (p− 1) ‖(uε(t)−K)+‖

p+1
p+1 .

We now use the following interpolation inequality

‖w‖p+1
p+1 ≤ C(p)

∥

∥

∥
∇
(

w(m+p−1)/2
)
∥

∥

∥

2

2
‖w‖

2/d
1

which is a consequence of the Gagliardo-Nirenberg-Sobolev and Hölder inequalities (see, e.g., [31,
Lemma 3.2]) to obtain

(I) ≤ (p − 1)K2 ‖(uε(t)−K)+‖
p
p +K2 |{x : uε(t, x) ≥ K}|+ (2p − 1)K ‖(uε(t)−K)+‖

p
p

+ C(p)
∥

∥

∥
∇
[

(uε(t)−K)
(m+p−1)/2
+

]
∥

∥

∥

2

2
‖(uε(t)−K)+‖

2/d
1 .

Noting that

‖(uε(t)−K)+‖1 ≤ ‖uε(t)‖m

(

‖uε(t)‖1
K

)(m−1)/m

and recalling that ‖uε(t)‖1 =M we conclude that

(I) ≤ C(p)
‖uε(t)‖

2/d
m

K2(m−1)/m d

∥

∥

∥
∇
[

(uε(t)−K)
(m+p−1)/2
+

]
∥

∥

∥

2

2

+ K [2p − 1 + (p− 1)K] ‖(uε(t)−K)+‖
p
p +KM .

By Step 1, we may choose K = K∗ large enough such that

C
‖uε(t)‖

2/d
m

K
2(m−1)/m d
∗

≤
4mp (p − 1)

(m+ p− 1)2

for all t ∈ [t∗, t∗ + τη] and ε ∈ (0, 1), hence

(I) ≤
4mp (p − 1)

(m+ p− 1)2

∥

∥

∥
∇
[

(uε(t)−K∗)
(m+p−1)/2
+

]∥

∥

∥

2

2
+ C(p, t∗, η)

[

1 + ‖(uε(t)−K∗)+‖
p
p

]

.

Therefore
d

dt
‖(uε(t)−K∗)+‖

p
p ≤ C(p, t∗, η)

[

1 + ‖(uε(t)−K∗)+‖
p
p

]

,

so that
‖(uε(t)−K∗)+‖

p
p ≤ C(p, t∗, η) for t ∈ [t∗, t∗ + τη] and ε ∈ (0, 1) .

As
‖uε(t)‖

p
p ≤ C(p)

(

Kp−m
∗ ‖uε(t)‖

m
m + ‖(uε(t)−K∗)+‖

p
p

)

,

the previous inequality and Step 1 warrant that

‖uε(t)‖p ≤ C(p, t∗, η) for t ∈ [t∗, t∗ + τη] and ε ∈ (0, 1) .

Step 3 - L∞-estimates: As a direct consequence of Step 2 with p = d + 1 and Morrey’s
embedding theorem (∇φε)ε is bounded in L∞((t∗, t∗ + τη) × R

d;Rd). This property in turn
implies that (uε)ε is bounded in L∞((t∗, t∗ + τη) × R

d) and we refer to [5, Lemma 3.2] and [20]
for a proof (see also [31, Section 5] and [30, Theorem 1.2] for alternative arguments). �

As a consequence of the previous lemma, we are able to construct a free energy solution
defined on a maximal existence time.
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Theorem 2.4 (Maximal free energy solution) Under assumption (1.2) on the initial con-
dition there are Tω ∈ (0,∞] and a free energy solution u to (1.4) on [0, Tω) with the following
alternative: Either Tω = ∞ or Tω < ∞ and ‖u(t)‖m → ∞ as t ր Tω. Furthermore there exists
a positive constant C0 depending only on d such that u satisfies

‖u(t2)‖
m
m ≤

(

‖u(t1)‖
−m/(m−1)
m −C0 (t2 − t1)

)−(m−1)
(2.10)

for t1 ∈ [0, Tω) and t2 ∈ (t1, Tω).

Proof. We put ξp(t) = supε∈(0,1) ‖uε(t)‖p ∈ (0,∞] for t ≥ 0 and p ∈ [m,∞] and

T1 = sup {T > 0 : ξm ∈ L∞(0, T )} .

Clearly the definition of the sequence (uε0)ε and (1.2) ensure that ξp(0) is finite for all p ∈ [m,∞].
By Lemma 2.3 there exists t1 > 0 such that ξp is bounded on [0, t1] for all p ∈ [m,∞]. Then (2.2)
is fulfilled for T = t1 and there is a free energy solution to (1.4) on [0, t1) by Proposition 2.1
and (2.9). This ensures in particular that T1 ≥ t1 > 0.

We next claim that
ξ∞ ∈ L∞(0, T ) for any T ∈ [0, T1) . (2.11)

Indeed, consider T∞
1 = sup{T ∈ (0, T1) : ξ∞ ∈ L∞(0, T )} and assume for contradiction that

T∞
1 < T1. Then ξm belongs to L∞(0, T∞

1 ) and we put η = ‖ξm‖L∞(0,T∞
1

) and t
∗ = T∞

1 − (τη/2),
τη being defined in Lemma 2.3. As ξm(t∗) ≤ η and ξ∞(t∗) is finite we may apply Lemma 2.3
to deduce that both ξm and ξ∞ belong to L∞(t∗, t∗ + τη), the latter property contradicting the
definition of T∞

1 as t∗ + τη = T∞
1 + (τη/2).

Now, thanks to (2.11), (2.2) is fulfilled for any T ∈ [0, T1) and the existence of a free energy
solution u to (1.4) on [0, T1) follows from Proposition 2.1 and (2.9). Moreover, either T1 = ∞ or
T1 < ∞ and ‖u(t)‖m → ∞ as t ր T1, and the proof of Theorem 2.4 is complete with Tω = T1.
Or T1 <∞ and

lim inf
t→T1

‖u(t)‖m <∞ .

In that case, there are η > 0 and an increasing sequence of positive real numbers (sj)j≥1 such
that sj → T1 as j → ∞ and ‖u(sj)‖m ≤ η. Fix j0 ≥ 1 such that sj0 ≥ T1 − (τη/2) with τη
defined in Lemma 2.3 and put ũ0 = u(sj0); According to Definition 1.1 and (2.4) ũ0 fulfils (1.2)
and we may proceed as above to obtain a free energy solution ũ to (1.4) on [0, T2) for some
T2 ≥ τη. Setting ū(t) = u(t) for t ∈ [0, sj0 ] and ū(t) = ũ(t − sj0) for t ∈ [sj0 , sj0 + T2) we
first note that ū is a free energy solution to (1.4) on [0, sj0 + T2) and a true extension of u as
sj0 + T2 ≥ T1 − (τη/2) + τη ≥ T1 + (τη/2). We then iterate this construction as long as the
alternative stated in Theorem 2.4 is not fulfilled to complete the proof.

Thanks to the regularity of weak solutions we may next proceed as in the proof of (2.8) to
deduce (2.10). �

Corollary 2.5 (Lower bound on the blow-up time) Let u be a free energy solution to (1.4)
on [0, Tω) with an initial condition u0 satisfying (1.2). If Tω is finite, then

‖u(t)‖m ≥ [C0 (Tω − t)]−(m−1)/m ,

where C0 is defined in Theorem 2.4.

Proof. Let t ∈ (0, Tω) and t2 ∈ (t, Tω). By (2.10), we have

‖u(t2)‖
−m/(m−1)
m ≥ ‖u(t)‖−m/(m−1)

m − C0 (t2 − t) .

Letting t2 going to Tω gives

0 ≥ ‖u(t)‖−m/(m−1)
m − C0 (Tω − t) ,

hence the expected result. �
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3 The free energy functional F

As we have just seen in the existence proof, the existence time of a free energy solution to (1.4)
heavily depends on the behaviour of its Lm-norm. As the free energy F involves the Lm-norm,
the information given F will be of paramount importance. Let us then proceed to a deeper study
of this functional.

Lemma 3.1 (Scaling properties of the free energy) Given h ∈ L1(Rd) ∩ Lm(Rd), let us
define hλ(x) := λdh(λx), then

F [hλ] = λd−2F [h] for all λ ∈ (0,∞) .

Proof. We have

F [hλ] =
1

m− 1

∫

Rd

λ2d−2h(λx)m dx−
cd
2

∫∫

Rd×Rd

λ2d
h(λx)h(λ y)

|x− y|d−2
dx dy

=
λd−2

m− 1

∫

Rd

h(x)m dx−
cd λ

d−2

2

∫∫

Rd×Rd

h(x)h(y)

|x− y|d−2
dx dy

= λd−2F [h] ,

giving the announced scaling property. �

We next establish a variant to the Hardy-Littlewood-Sobolev (VHLS) inequality:

Lemma 3.2 (VHLS inequality) For h ∈ L1(Rd) ∩ Lm(Rd) we put

W(h) :=

∫∫

Rd×Rd

h(x)h(y)

|x− y|d−2
dx dy .

Then

C∗ := sup
h 6=0

{

W(h)

‖h‖
2/d
1 ‖h‖mm

, h ∈ L1(Rd) ∩ Lm(Rd)

}

<∞ . (3.1)

First recall the Hardy-Littlewood-Sobolev (HLS) inequality, see [22, Theorem 4.3], hich states
that if

1

p
+

1

q
+
λ

d
= 2 and 0 < λ < d ,

then for all f ∈ Lp(Rd), g ∈ Lq(Rd), there exists a sharp positive constant CHLS > 0, given
by [21], which only depends on p, q and λ such that

∣

∣

∣

∣

∫∫

Rd×Rd

f(x) g(y)

|x− y|λ
dx dy

∣

∣

∣

∣

≤ CHLS ‖f‖p ‖g‖q . (3.2)

Proof of Lemma 3.2. Consider h ∈ L1(Rd) ∩ Lm(Rd). Applying the HLS inequality (3.2) with
p = q = 2d/(d+ 2) and λ = d− 2, and then the Hölder inequality with 1 < p = 2d/(d+ 2) < m,
we obtain

|W(h)| =

∣

∣

∣

∣

∫∫

Rd×Rd

h(x)h(y)

|x− y|d−2
dx dy

∣

∣

∣

∣

≤ CHLS ‖h‖
2
p ≤ CHLS ‖h‖

2/d
1 ‖h‖mm .

Consequently, C∗ is finite and bounded from above by CHLS. �

We next turn to the existence of maximisers for the VHLS inequality which can be proved
by similar arguments as for the classical HLS inequality in [21, Theorem 2.5].
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Lemma 3.3 (Extremals of the VHLS inequality) There exists a non-negative, radially sym-
metric and non-increasing function P∗ ∈ L1(Rd) ∩ Lm(Rd) such that W(P∗) = C∗ with ‖P∗‖1 =
‖P∗‖m = 1.

Proof. Define

Λ(h) :=
W(h)

‖h‖
2/d
1 ‖h‖mm

for h ∈ L1(Rd) ∩ Lm(Rd) ,

and consider a maximising sequence (pj)j in L1(Rd) ∩ Lm(Rd), that is

lim
j→∞

Λ(pj) = C∗ . (3.3)

Step 1 - We first prove that we may assume that pj is a non-negative, radially symmetric,
non-increasing function such that ‖pj‖1 = ‖pj‖m = 1 for any j ≥ 0. Indeed, Λ(pj) ≤ Λ(|pj |) so
that (|pj |)j is also a maximising sequence. Next, let us introduce p̃j(x) := λj |pj(µjx)| with µj :=

(‖pj‖1/‖pj‖m)m/[d(m−1)] and λj := µdj/‖pj‖1. A direct computation shows that Λ (p̃j) = Λ(|pj |)
and ‖p̃j‖1 = ‖p̃j‖m = 1. Finally, denoting by p∗j the symmetric decreasing rearrangement of p̃j ,
we infer from the Riesz rearrangement properties [21, Lemma 2.1] that

Λ(p∗j ) = W(p∗j ) ≥ W(p̃j) = Λ(p̃j) = Λ(|pj |) .

Consequently,
(

p∗j

)

j
is also a maximising sequence and the first step is proved.

Step 2 - Let us now prove that the supremum is achieved. For k ∈ {1,m}, the monotonicity
and the non-negativity of pj imply that

1 = ‖pj‖
k
k = d |B(0, 1)|

∫ ∞

0
rd−1pkj (r) dr ≥ d |B(0, 1)| pkj (R)

∫ R

0
rd−1 dr ≥ |B(0, 1)|Rd pkj (R) .

So that
0 ≤ pj(R) ≤ b(R) := C1 inf{R−d/m; R−d} for R > 0 . (3.4)

Now, we use once more the monotonicity of the pj’s and their boundedness in (R,∞) for any
R > 0 to deduce from Helly’s theorem that there are a sub-sequence of (pj)j (not relabelled) and
a non-negative and non-increasing function P∗ such that (pj)j converges to P∗ point-wisely. In
addition, as 1 < 2d/(d + 2) < m, x 7→ b(|x|) belongs to L2d/(d+2)(Rd) while the HLS inequality
(3.2) warrants that

(x, y) 7→ b(|x|) b(|y|) |x − y|−(d−2) ∈ L1(Rd × R
d) .

Together with (3.4) and the point-wise convergence of (pj)j , this implies that

lim
j→∞

W(pj) = W(P∗)

by the Lebesgue dominated convergence theorem. Consequently, W(P∗) = C∗ and thus P∗ 6= 0. In
addition, the point-wise convergence of (pj)j and Fatou’s lemma ensure ‖P∗‖1 ≤ 1 and ‖P∗‖m ≤ 1.
Therefore Λ(P∗) ≥ C∗ and using (3.3) we conclude that Λ(P∗) = C∗. This in turn implies that
‖P∗‖1 = ‖P∗‖m = 1. �

We are now in a position to begin the study of the free energy functional F . To this end, let
us define the critical mass Mc by

Mc :=

[

2

(m− 1)C∗ cd

]d/2

. (3.5)
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Next, for M > 0, we put

µM := inf
h∈YM

F [h] where YM := {h ∈ L1(Rd) ∩ Lm(Rd) : ‖h‖1 =M} ,

and first identify the values of µM as a function of M > 0.

Proposition 3.4 (Infimum of the free energy) We have

µM =

{

0 if M ∈ (0,Mc],

−∞ if M > Mc.
(3.6)

Moreover,

C∗ cd
2

(

M2/d
c −M2/d

)

‖h‖mm ≤ F [h] ≤
C∗ cd
2

(

M2/d
c +M2/d

)

‖h‖mm (3.7)

for h ∈ YM . Furthermore, the infimum µM is not achieved if M < Mc while there exists one
minimiser of F in YMc.

Proof. Consider h ∈ L1(Rd) ∩ Lm(Rd). By the VHLS inequality (3.1),

F [h] ≥

(

1

m− 1
−
C∗ cd
2

M2/d

)

‖h‖mm ≥
C∗ cd
2

(

M2/d
c −M2/d

)

‖h‖mm ,

and

F [h] ≤

(

1

m− 1
+
C∗ cd
2

M2/d

)

‖h‖mm ≤
C∗ cd
2

(

M2/d
c +M2/d

)

‖h‖mm ,

hence (3.7).

Case M ≤Mc - By (3.7), F is non-negative, so that µM ≥ 0. Choosing

h∗(t, x) =
M

(2π t)d/2
e−|x|2/(4t) ,

then
‖h∗(t)‖1 =M and ‖h∗(t)‖

m
m = O

(

t−d(m−1)/2
)

.

Therefore h∗(t) belongs to YM for each t > 0 and it follows from (3.7) that F [h∗(t)] → 0 as
t→ ∞. The infimum µM of F on YM is thus non-positive, hence µM = 0.

Finally, in the case M < Mc, µM = 0 and (3.7) imply that the infimum of F in YM is not

achieved. If M =Mc and p ∈ L1(Rd)∩ Lm(Rd) satisfies W(p) = C∗ ‖p‖
m
m ‖p‖

2/d
1 (such a function

exists by Lemma 3.3), then

p̃(x) :=M−d/(d−2)
c p

(

xM−m/(d−2)
c

)

belongs to YMc with ‖p̃‖m = 1 and W(p̃) = C∗M
2/d
c . Therefore, F [p̃] = 0 and we have thus

proved that suitably rescaled extremals of the VHLS inequality (3.1) are minimisers for F in
YMc .

Case M > Mc - This part of the proof is based on arguments in [32]. Fix θ ∈
(

(Mc/M)2/d, 1
)

.
By the VHLS inequality (3.1), there exists a non-zero function h∗ ∈ L1(Rd) ∩ Lm(Rd), such that

θ C∗ ≤
|W(h∗)|

‖h∗‖mm‖h∗‖
2/d
1

≤ C∗ . (3.8)
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Since |W(h∗)| ≤ W(|h∗|) we may assume without loss of generality that h∗ is non-negative. Let

λ > 0 and consider the function hλ(x) := λdh∗
(

λ ‖h∗‖
1/d
1 M−1/dx

)

. Then, hλ ∈ YM and it

follows from the definition of Mc and (3.8) that

F [hλ] = λd−2

[

M

(m− 1) ‖h∗‖1
‖h∗‖mm −

cd
2

(

M

‖h∗‖1

)(d+2)/d

W(h∗)

]

≤ λd−2

[

M

(m− 1) ‖h∗‖1
‖h∗‖mm −

cd
2

(

M

‖h∗‖1

)(d+2)/d

θ C∗ ‖h
∗‖mm ‖h∗‖

2/d
1

]

= λd−2

(

M

‖h∗‖1

)(d+2)/d ‖h∗‖mm
m− 1

[

(

Mc

M

)2/d

− θ

]

.

Owing to the choice of θ we may let λ go to infinity to obtain that µM = −∞, thus completing
the proof. �

Let us now describe the set of minimisers of F in YMc .

Proposition 3.5 (Identification of the minimisers) Let ζ be the unique positive radial clas-
sical solution to

∆ζ +
m− 1

m
ζ1/(m−1) = 0 in B(0, 1) with ζ = 0 on ∂B(0, 1) .

If V is a minimiser of F in YMc there are R > 0 and z ∈ R
d such that

V (x) =















1

Rd

[

ζ

(

x− z

R

)]d/(d−2)

if x ∈ B(z,R),

0 if x ∈ R
d \B(z,R).

Proof. We have already shown in Proposition 3.4 that the function F has at least a minimiser in

YMc . Let V be a minimiser of F in YMc , and define Ṽ (x) := ‖V ‖
−m/(m−1)
m V

(

x ‖V ‖
−m/(d(m−1))
m

)

for x ∈ R
d. We have ‖Ṽ ‖1 = Mc, ‖Ṽ ‖m = 1 and F [Ṽ ] = 0, so that Ṽ is also a minimiser

of F in YMc . We next denote by W the symmetric rearrangement of Ṽ . Then ‖W‖1 = Mc,
‖W‖m = ‖Ṽ ‖m = 1 andW(W ) ≥ |W(Ṽ )| by the Riesz rearrangement properties [21, Lemma 2.1].
Therefore, F [W ] ≤ F [Ṽ ] = 0 and thus F [W ] = 0 since W ∈ YMc . This in turn implies that
W(W ) = |W(Ṽ )|. Again by [21, Lemma 2.1] there is y ∈ R

d such that Ṽ (x) = W (x − y) for
y ∈ R

d.
We next derive the Euler-Lagrange equation solved by W and first point out that a difficulty

arises from the non-differentiability of the L1-norm. Nevertheless, we introduce Σ0 := {x ∈ R
d :

W (x) = 0}, Σ+ := {x ∈ R
d : W (x) > 0} and consider ϕ ∈ C∞

0 (Rd) and ε > 0. The perturbation
Mc ‖W + εϕ‖−1

1 (W + εϕ) belongs to YMc and is such that

F

[

Mc

‖W + εϕ‖1
(W + εϕ)

]

≥ F [W ] ≥ 0 .

After a few computations that we omit here we may let ε→ 0, and conclude that

2

∫∫

Rd×Rd

W (x)ϕ(y)

|x− y|d−2
dy dx

≤ C∗M
2/d
c m

∫

Rd

Wm−1(x)ϕ(x) dx+
2

d
C∗M

(2−d)/d
c

(
∫

Σ+

ϕ(x) dx+

∫

Σ0

|ϕ(x)| dx

)

.
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Using the definition of Mc and K, the above formula also reads

∫

Rd

(

m

m− 1
Wm−1 −K ∗W +

2−m

m− 1

1

Mc

)

ϕ dx ≥
2−m

m− 1

1

Mc

∫

Σ0

(ϕ− |ϕ|) dx (3.9)

for all ϕ ∈ C∞
0 (Rd). On the one hand, the right-hand side of (3.9) vanishes for any non-negative

ϕ ∈ C∞
0 (Rd), so that

m

m− 1
Wm−1 −K ∗W +

2−m

m− 1

1

Mc
≥ 0 a.e. in R

d .

Therefore, for almost every x ∈ Σ0, we have 0 ≥ K ∗W (x)− (2−m)/[(m − 1)Mc] so that

m

m− 1
Wm−1(x) = 0 =

(

K ∗W (x)−
2−m

m− 1

1

Mc

)

+

for almost every x ∈ Σ0 . (3.10)

On the other hand, if ψ ∈ C∞
0 (Rd), a standard approximation argument allows us to take ϕ =

1Σ+
ψ in (3.9) and deduce that

∫

Σ+

(

m

m− 1
Wm−1 −K ∗W +

2−m

m− 1

1

Mc

)

ψ dx ≥ 0 .

This inequality being also valid for −ψ, we conclude that the left-hand side of the above inequality
vanishes for all ψ ∈ C∞

0 (Rd), whence

m

m− 1
Wm−1 = K ∗W −

2−m

m− 1

1

Mc
a.e. in Σ+ . (3.11)

Combining (3.10) and (3.11) gives

m

m− 1
Wm−1 =

(

K ∗W −
2−m

m− 1

1

Mc

)

+

a.e. in R
d .

Now, since W is radially symmetric and non-increasing there exists ρ ∈ (0,∞] such that

Σ+ ⊂ B(0, ρ) and Σ0 ⊂ R
d \B(0, ρ) ,

and we infer from (3.11) that

m

m− 1
Wm−1 = K ∗W −

2−m

m− 1

1

Mc
for a.e. x ∈ B(0, ρ) . (3.12)

SinceW ∈ Lr(Rd) for each r ∈ (1,m] it follows from the HLS inequality (3.2) that K∗W ∈ Lr(Rd)
for each r ∈

(

d/(d− 2),m/(m − 1)2
]

, see [22, Theorem 10.2]. In particular, K ∗W and Wm−1

both belong to Lm/(m−1)(Rd). This property and (3.12) then exclude that ρ = ∞ as Mc > 0.
Therefore ρ <∞ and

m

m− 1
Wm−1(x) =











K ∗W (x)−
2−m

m− 1

1

Mc
if |x| < ρ ,

0 if |x| > ρ .

Since K∗W ∈ Lm/(m−1)2(Rd), the above inequality allows us to conclude thatW ∈ Lm/(m−1)(Rd).
We now improve the regularity of W by classical elliptic estimates. Introduce θ := Wm−1 and
note that

m

m− 1
θ(x) =

∫

Rd

K(x− y)W (y) dy +
m− 1

m− 2

1

Mc

14



for x ∈ B(0, ρ) and W ∈ Lm/(m−1)(Rd). By [16, Theorem 9.9], we have θ ∈W 2,m/(m−1)(B(0, ρ)).
A bootstrap argument then ensures that θ and W both belong to W 2,r(B(0, ρ)) for every r ∈
(1,∞). It then follows from [16, Lemma 4.2] that θ ∈ C2(B(0, ρ)) with −∆θ = (m−1)θm/(m−1)/m
in B(0, ρ) while [16, Lemma 4.1] warrants that θ ∈ C1(Rd). Then θ(x) = 0 if |x| = ρ and θ is
thus a classical solution to −∆θ = (m−1)θm/(m−1)/m in B(0, ρ) with θ = 0 on ∂B(0, ρ). By [15,
Lemma 2.3], there is a unique positive solution to this problem. In fact, a simple scaling argument
shows that

θ(x) = ρ2(m−1)/(m−2)ζ

(

x

ρ

)

for x in B(0, ρ)

and then

W (x) =
1

ρd

[

ζ

(

x

ρ

)]d/(d−2)

for x in B(0, ρ) .

Coming back to V , we have

V (x) =



















λdW (λx− y) = 0 if x ∈ R
d \B

(y

λ
,
ρ

λ

)

,

(

λ

ρ

)d [

ζ

(

(

x−
y

λ

)(ρ

λ

)−1
)]d/(d−2)

if x ∈ B
(y

λ
,
ρ

λ

)

,

which is the desired result with R = ρ/λ and z = y/λ. �

Remark 3.6 As a consequence of the identification of the minimisers given in Proposition 3.5,
C∗ < CHLS. Otherwise any minimiser V of F is YMc would also be an extremum for the HLS
inequality (3.2) and thus be equal to

V (x) =
a

(1 + |x|2)(d+2)/2
,

for some a > 0, see [21, Theorem 3.1]. This contradicts Proposition 3.5.

Lemma 3.7 (Unboundedness of F) For each M > 0 we have

sup
h∈YM

F [h] = +∞ . (3.13)

If M ∈ (0,Mc) the claim (3.13) is actually a straightforward consequence of (3.7).

Proof. Let M > 0 and assume for contradiction that

A := sup
h∈YM

F [h] <∞ .

Consider h ∈ L1(Rd)∩Lm(Rd) and define hλ(x) := Mλdh(λx)/‖h‖1 for x ∈ R
d and λ > 0. Then

‖hλ‖1 =M so that hλ ∈ YM with

‖hλ‖
m
m = λd−2

(

M

‖h‖1

)m

‖h‖mm and W(hλ) = λd−2

(

M

‖h‖1

)2

W(h) .

Since hλ ∈ YM we have F [hλ] ≤ A, hence

‖hλ‖
m
m ≤ (m− 1)

(

A+
cd
2
W(hλ)

)

15



from which we deduce

‖h‖mm ≤ (m− 1)

(

Aλ2−d

(

‖h‖1
M

)m

+
cd
2

(

M

‖h‖1

)2/d

W(h)

)

≤ (m− 1)Aλ2−d

(

‖h‖1
M

)m

+
1

C∗M
2/d
c

(

M

‖h‖1

)2/d

W(h) .

This inequality being valid for all λ > 0 we let λ→ ∞ and use the HLS inequality (3.2) to obtain

‖h‖mm ≤
1

C∗M
2/d
c

(

M

‖h‖1

)2/d

W(h) ≤

(

M

Mc

)2/d CHLS

C∗

‖h‖22d/(d+2)

‖h‖
2/d
1

.

Consequently,

‖h‖mm ‖h‖
2/d
1 ≤

(

M

Mc

)2/d CHLS

C∗
‖h‖22d/(d+2) (3.14)

for all h ∈ L1(Rd) ∩ Lm(Rd).
Now, as 2d/(d + 2) < m, we may choose γ ∈ ((d + 2)/d, d/m) and put bδ(x) := (δ +

|x|)−γ 1lB(0,1)(x) for x ∈ R
d and δ ∈ [0, 1]. Clearly bδ belongs to L1(Rd) ∩ Lm(Rd) with ‖bδ‖1 ≥

‖b1‖1 > 0 and ‖bδ‖2d/(d+2) ≤ ‖b0‖2d/(d+2) < ∞ for each δ ∈ (0, 1]. These properties and (3.14)

readily imply that (bδ)δ∈(0,1] is bounded in Lm(Rd) which is clearly not true according to the
choice of γ. Therefore A cannot be finite and Lemma 3.7 is proved. �

4 Critical threshold

It turns out that the critical mass Mc arising in the study of the free energy functional and
defined in (3.5) plays also an important role in the dynamics of (1.4). In the next sections we
will distinguish the three cases M > Mc (super-critical case), M < Mc (sub-critical case), and
M =Mc (critical case), M denoting the L1(Rd)-norm of the initial condition u0.

4.1 Finite time blow-up in the super-critical case

We start with the case M > Mc in which we use the standard argument relying on the evolu-
tion of the second moment of solutions as originally done in [18] for the PKS system corresponding
to d = 2 and m = 1.

Lemma 4.1 (Virial identity) Under assumption (1.2), let u be a free energy solution to (1.4)
on [0, T ) with initial condition u0 for some T ∈ (0,∞]. Then

d

dt

∫

Rd

|x|2 u(t, x) dx = 2 (d − 2)F [u(t)] , t ∈ [0, T ) .

Proof. Here, we show the formal computation leading to this property, the passing to the limit
from the approximated problem (2.1) can be done by adapting the arguments in [30, Lemma 6.2]
and [4, Lemma 2.1] without any further complication. By integration by parts in (1.4) and
symmetrising the second term, we obtain

d

dt

∫

Rd

|x|2 u(t, x) dx = 2 d

∫

Rd

um(t, x) dx+ 2

∫∫

Rd×Rd

[x · ∇K(x− y)]u(t, x)u(t, y) dy dx

= 2 d

∫

Rd

um(t, x) dx+

∫∫

Rd×Rd

[(x− y) · ∇K(x− y)]u(t, x)u(t, y) dy dx

= 2 (d− 2)F [u(t)] ,
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giving the desired identity. �

Let us mention that a similar argument can be found in [30, Lemma 6.2] and [31] in the
present situation where the Poisson equation is substituted by −∆φ = u − φ. The previous
evolution for the second moment is simpler in our case than the one in [31] and resembles that
arising in the study of critical nonlinear Schrödinger equations [11].

Let us also emphasise that this second moment evolution is more complicated than in the
classical PKS system corresponding to d = 2 and m = 1 where the time derivative of the second
moment is a constant.

An easy consequence of the previous lemma is the following blow-up result.

Proposition 4.2 (Blowing-up solutions) If M > Mc, then there are initial data u0 satisfy-
ing (1.2) with ‖u0‖1 = M and negative free energy F [u0]. Moreover, if u0 is such an initial
condition and u denotes a free energy solution to (1.4) on [0, Tω) with initial condition u0, then
Tω <∞ and the Lm-norm of u blows up in finite time.

Proof. The proof is based on the idea of Weinstein [32]. By the identification of the minimisers
for the critical mass given in Proposition 3.5, ũ := ζd/(d−2) satisfies (1.2) as well as ‖ũ‖1 =Mc and
F [ũ] = 0. For M > Mc, the initial condition u0 = (M/Mc)ũ also satisfies (1.2) with ‖u0‖1 = M
and

F [u0] =
1

m− 1

(

M

Mc

)m

‖ũ‖mm −

(

M

Mc

)2 cd
2
W(ũ)

=
1

m− 1

[

(

M

Mc

)m

−

(

M

Mc

)2
]

‖ũ‖mm ,

is negative as M > Mc and m < 2.

Consider next an initial condition u0 satisfying (1.2) as well as ‖u0‖1 > Mc and F [u0] < 0.
Denoting by u a corresponding free energy solution to (1.4) on [0, T ), we infer from the time
monotonicity of F and Lemma 4.1 that

d

dt

∫

Rd

|x|2 u(t, x) dx = 2 (d − 2)F [u(t)] ≤ 2 (d − 2)F [u0] < 0 .

This implies that the second moment of u(t) will become negative after some time and contradicts
the non-negativity of u. Therefore, Tω is finite and ‖u‖m blows up in finite time. �

4.2 Global existence

Proposition 4.3 (Global existence in the subcritical case) Under assumption (1.2), there
exists a free energy solution to (1.4) in [0,∞) with initial condition u0.

Proof. By Theorem 2.4 there are Tω and a free energy solution to (1.4) in [0, Tω) with initial
condition u0. We then infer from (1.7), (1.8), and (3.7) that u(t) belongs to YM for all t ∈ [0, Tω)
and

C∗ cd
2

(

M2/d
c −M2/d

)

‖u(t)‖mm ≤ F [u(t)] ≤ F [u0] .

As M < Mc, we deduce from the previous inequality that u lies in L∞(0,min {T, Tω}; L
m(Rd))

for every T > 0 which implies that Tω = ∞ by Theorem 2.4. �

Let us now discuss the critical case.
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4.2.1 How would it blow-up?

Proposition 4.4 (Nature of the blow-up) Let u0 be an initial condition satisfying (1.2) with
‖u0‖1 = Mc and consider a free energy solution u to (1.4) on [0, Tω) with initial condition u0
and Tω ∈ (0,∞] and such that ‖u(t)‖m → ∞ as t ր Tω. If (tk)k is a sequence of positive real
numbers such that tk → Tω as k → ∞, there are a sub-sequence (tkj )j of (tk)k and a sequence

(xj)j in R
d such that

lim
j→∞

∫

Rd

∣

∣

∣

∣

∣

u(tkj , x+ xj)−
1

λdkj
V

(

x

λkj

)

∣

∣

∣

∣

∣

dx = 0 ,

where λk := ‖u(tk)‖
−m/(d−2)
m and V is the unique radially symmetric minimiser of F in YMc such

that ‖V ‖m = 1. Assume further that

M2 := sup
t∈[0,T )

∫

Rd

|x|2 u(t, x) dx <∞ ,

then

lim
j→∞

xj = x̄ where x̄ :=
1

Mc

∫

Rd

xu0(x) dx . (4.1)

Since µM1+M2
= µM1

+ µM2
for M1 ≤ Mc and M2 ≤ Mc, the concentration compactness result

as stated by P.-L. Lions [24] does not seem to apply directly. However, we follow the approach
of M. Weinstein [33] to prove that the conclusion still holds true.

Proof. We set vk(x) := λdk u(tk, λk x) and aim at proving that (vk)k converges strongly in L1(Rd).
For this purpose we employ in Step 1 the concentration-compactness principle [24, Theorem II.1]
to show that (vk)k is tight up to translations. We argue in Step 2 as in [33, Theorem 1] to
establish that (vk)k has a limit in L1(Rd) and identify the limit. In the last step we use the
additional bound on the second moment to show that the dynamics does not escape at infinity.
Step 1 - Tightness. Obviously,

‖vk‖1 =Mc and ‖vk‖m = 1 for k ≥ 1 . (4.2)

The concentration-compactness principle [24] implies that there exists a sub-sequence (not rela-
belled) satisfying one of the three following properties:

(Compactness) There exists a sequence (ak)k in R
d such that (vk(·+ ak))k ∈ R

d is tight, that
is, for each ε > 0 there is Rε > 0 such that

∫

B(ak ,Rε)
vk(x) dx ≥Mc − ε . (4.3)

(Vanishing) For all R ≥ 0

lim
k→∞

sup
y∈Rd

∫

B(y,R)
vk(x) dx = 0 . (4.4)

(Dichotomy) There exists µ ∈ (0,Mc) such that for all ε > 0, there exist k0 ≥ 1 and three
sequences of non-negative, integrable and compactly supported functions (yεk)k, (z

ε
k)k, and

(wε
k)k satisfying vk = wε

k + yεk + zεk,







∣

∣‖yεk‖1 − µ
∣

∣ ≤ ε ,
∣

∣‖zεk‖1 − (Mc − µ)
∣

∣ ≤ ε , ‖wε
k‖1 ≤ ε ,

lim
k→∞

dist (supp yεk, supp z
ε
k) = ∞ ,

(4.5)

for any k ≥ k0.
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As usual we shall rule out the possible occurrence of vanishing and dichotomy. To this end
we argue as in [24, Theorem II.1]. Let us first notice that by the scaling and non-negativity
properties of the free energy, (2.10) and (3.6), F [u(tk)] ∈ [0,F [u0]] and

lim
k→∞

F [vk] = lim
k→∞

‖u(tk)‖
−m
m F [u(tk)] = 0 . (4.6)

Consequently, since ‖vk‖m = 1 by the definition of λk, we have

lim
k→∞

W(vk) = lim
k→∞

2

cd

(

1

m− 1
‖vk‖

m
m −F [vk]

)

=
2

cd (m− 1)
> 0 . (4.7)

• Let us first show that vanishing does not take place and argue by contradiction. We split
the non-local term W(vk) in three parts. If |x − y| is small, we control the corresponding term
by the bound in L1 ∩ Lm of vk. If |x − y| is large the corresponding term is controlled by the
L1-bound of vk. And the remaining term converges to zero if we assume that vanishing occurs
which contradicts (4.7). Indeed, if q ∈ ((d− 1)/(d − 2), d/(d − 2)) and R > 0, it follows from the
Hölder and Young inequalities that

W(vk) =

∫∫

Rd×Rd

vk(x) vk(y)

|x− y|d−2
1l[0,1/R](|x− y|) dy dx+

∫∫

Rd×Rd

vk(x) vk(y)

|x− y|d−2
1l(1/R,R)(|x− y|) dy dx

+

∫∫

Rd×Rd

vk(x) vk(y)

|x− y|d−2
1l[R,∞)(|x− y|) dy dx

≤ ‖vk‖
2
2q/(2q−1)

(
∫

Rd

|x|−q(d−2)1l[0,1/R](|x|) dx

)1/q

+Rd−2

∫

Rd

vk(x)

∫

B(x,R)
vk(y) dy dx

+
1

Rd−2

(
∫

Rd

vk(x) dx

)2

≤ ‖vk‖
m/[q(m−1)]
m ‖vk‖

[(2q−1)/q]−[d/(q(d−2))]
1

(

dσd

∫ 1/R

0
rd−1−q(d−2) dr

)1/q

+Rd−2Mc sup
x∈Rd

∫

B(x,R)
vk(y) dy dx+

M2
c

Rd−2

≤ C(q)
1

R[d−q(d−2)]/q
+Rd−2Mc sup

x∈Rd

∫

B(x,R)
vk(y) dy dx+

M2
c

Rd−2

We let k → ∞ in the above inequality and use the vanishing assumption (4.4) to obtain that

lim sup
k→∞

W(vk) ≤ C(q)
(

R2−d +R−(d−q(d−2))/q
)

.

We next let R to infinity to conclude that W(vk) converges to zero as k → ∞ which contra-
dicts (4.7).

• Let us next assume for contradiction that dichotomy takes place. We have

W(vk)−W(yεk)−W(zεk) = −W(wε
k) + I1 + I2 ,

where

I1 := 2

∫∫

Rd×Rd

yεk(x) z
ε
k(y) |x− y|2−d dx dy and I2 := 2

∫∫

Rd×Rd

vk(x)w
ε
k(y) |x− y|2−d dx dy .
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On the one hand, setting dεk := dist(supp yεk, supp z
ε
k), we have

|I1| ≤

∫∫

Rd×Rd

yεk(x) z
ε
k(y) 1l(0,dεk)(|x− y|) |x− y|2−d dx dy

+

∫∫

Rd×Rd

yεk(x) z
ε
k(y) 1l[dεk,∞)(|x− y|) |x− y|2−d dx dy .

Thanks to the definition of dεk the first integral vanishes and we arrive at

|I1| ≤M2
c (d

ε
k)

2−d .

On the other hand it follows from (4.2), (4.5), the HLS inequality (3.2) applied to f = vk, g = wε
k,

λ = d− 2 and p = q = 2d/(d + 2), and the Hölder inequality with 1 < 2d/(d + 2) < m that

|I2| ≤ CHLS ‖vk‖2d/(d+2) ‖w
ε
k‖2d/(d+2) ≤ CHLS ‖vk‖

m/2
m ‖vk‖

1/d
1 ‖wε

k‖
m/2
m ‖wε

k‖
1/d
1

≤ CHLSM
1/d
c ‖wε

k‖
m/2
m ε1/d ,

and 0 ≤ wε
k ≤ vk and (4.2) imply that ‖wε

k‖m ≤ 1. Similarly by the variant of the HLS inequality
(3.1), we obtain

|W(wε
k)| ≤ C∗ ‖w

ε
k‖

m
m ε

2/d ≤ C∗ ε
2/d .

Combining these estimates, we have thus shown that, given ε ∈ (0, 1), there exists kε ≥ ε−1 such
that

|W(vkε)−W(yεkε)−W(zεkε)| ≤ ε1/d . (4.8)

Since wε
kε

is non-negative and the supports of yεkε and zεkε are disjoint we have

‖yεkε + zεkε + wε
kε‖

m
m ≥ ‖yεkε + zεkε‖

m
m = ‖yεkε‖

m
m + ‖zεkε‖

m
m ,

and we deduce from (4.8) that

F [vkε ] =
1

m− 1
‖yεkε + zεkε + wε

kε‖
m
m −

cd
2
W(vkε)

≥
1

m− 1

(

‖yεkε‖
m
m + ‖zεkε‖

m
m

)

−
cd
2
W(yεkε)−

cd
2
W(zεkε)−

cd
2
ε1/d

≥ F [yεkε ] + F [zεkε ]−
cd
2
ε1/d .

The above inequality, (4.5), (4.6), and the non-negativity of F for functions with L1-norm lower
or equal to Mc then entail that

lim
ε→0

F [yεkε ] = lim
ε→0

F [zεkε ] = 0 . (4.9)

Now, (3.7) and (4.5) imply

0 = lim
ε→0

F [yεkε ] ≥ lim
ε→0

C∗ cd
2

(

M2/d
c − ‖yεkε‖

2/d
1

)

‖yεkε‖
m
m ≥

C∗ cd
2

(

M2/d
c − µ2/d

)

lim
ε→0

‖yεkε‖
m
m ,

and a similar inequality for zεkε (with Mc − µ instead of µ), hence

lim
ε→0

‖yεkε‖
m
m = lim

ε→0
‖zεkε‖

m
m = 0 . (4.10)

Combining (4.9) and (4.10) gives

lim
ε→0

W(yεkε) = lim
ε→0

W(zεkε) = 0 ,
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which, together with (4.8), implies that (W(vkε))ε goes to 0 as ε goes to infinity and contra-
dicts (4.7).

Having excluded the vanishing and dichotomy phenomena we thus conclude that there exists
a sequence (ak)k in R

d such that (vk(·+ ak))k is tight, that is, satisfies (4.3).

Step 2 - Compactness in Lm. We now aim at showing that a sub-sequence of (vk(· + ak))k
converges in L1(Rd) ∩ Lm(Rd) towards a minimiser of F in YMc. We set Vk(x) := vk(x+ ak) for
x ∈ R

d and k ≥ 1. By virtue of (4.2) we may assume (after possibly extracting a sub-sequence)
that there is a non-negative V∞ ∈ Lm(Rd) such that

Vk ⇀ V∞ weakly in Lm(Rd) . (4.11)

By (4.2), (4.3), and (4.11) we have V∞ is non-negative with ‖V∞‖1 =Mc and ‖V∞‖m ≤ 1.
To prove the convergence of W(Vk) to W(V∞), we proceed as in Step 1 and split Rd × R

d in
three parts. If q ∈ ((d− 1)/(d − 2), d/(d − 2)) we have

|W(Vk)−W(V∞)| ≤
2M2

c

Rd−2
+ C(q)R[q(2−d)+d]/q

+

∣

∣

∣

∣

∫∫

Rd×Rd

[Vk(x)Vk(y)− V∞(x)V∞(y)]
1l(1/R,R)(|x− y|)

|x− y|d−2
dy dx

∣

∣

∣

∣

.

Since x 7→ 1l(1/R,R) (|x|)|x|
2−d ∈ L1(Rd) ∩ L∞(Rd), the weak convergence (4.11) ensures that

(x, y) 7→ Vk(x)Vk(y) converges weakly toward (x, y) 7→ V∞(x)V∞(y) in Lm(Rd ×R
d) so that the

last term of the right-hand side converges to zero as k → ∞. Therefore

lim sup
k→∞

|W(Vk)−W(V∞)| ≤ C(q)
(

R2−d +R−[d−q(d−2)]/q
)

.

We then let R→ ∞ to obtain
lim
k→∞

W(Vk) = W(V∞) .

Owing to the lower semi-continuity of the Lm-norm and (4.6) we have

F [V∞] ≤
1

m− 1
lim inf
k→∞

‖Vk‖
m
m −

cd
2

lim
k→∞

W(Vk) ≤ lim
k→∞

F [Vk] = 0 ,

while Proposition 3.4 warrants that F [V∞] ≥ 0 as V∞ ∈ YMc . Consequently, F [V∞] = 0 and the
strong convergence of (Vk)k to V∞ in Lm(Rd) readily follows: indeed,

1

m− 1
‖V∞‖mm = F [V∞] +

cd
2
W(V∞) = lim

k→∞

(

F [Vk] +
cd
2
W(Vk)

)

=
1

m− 1
lim
k→∞

‖Vk‖
m
m .

We have thus shown that V∞ is a minimiser of F in YMc with the additional property ‖V∞‖m =
1. Furthermore, according to the characterisation of the minimisers given in Proposition 3.5,
there exists y0 ∈ R

d such that V∞(· + y0) =: V is the unique radially symmetric minimiser
of F in YMc with ‖V ‖m = 1. Coming back to the original variables we have proved that
(

x 7→ λdk u(tk, λk (x+ ak + y0))
)

k
converges to V in L1(Rd) and Lm(Rd). Setting xk = λk (ak+y0)

gives

lim
k→∞

∫

Rd

∣

∣

∣

∣

u(tk, x+ xk)−
1

λdk
V

(

x

λk

)
∣

∣

∣

∣

dx = 0 , (4.12)

and thus the first assertion of Proposition 4.4.

Step 3 - Convergence of (xk)k. We first note that
∫

Rd

xu(t, x) dx =

∫

Rd

xu0(x) dx
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for t ∈ [0, Tω) so that we have also

x̄ =
1

Mc

∫

Rd

xu(t, x) dx

for t ∈ [0, Tω) by (1.8). Next, for ε ∈ (0, 1), we have
∣

∣

∣

∣

∣

(x̄− xk)

∫

B(xk,ε)
u(tk, x) dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

B(xk ,ε)
(x̄− x)u(tk, x) dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

B(xk ,ε)
(x− xk)u(tk, x) dx

∣

∣

∣

∣

∣

≤

∫

{|x−xk|≥ε}
|x̄− x|u(tk, x) dx+ εMc

≤

∫

{|x−xk|≥ε , |x−x̄|≤1/ε}
|x̄− x|u(tk, x) dx

+

∫

{|x−xk|≥ε , |x−x̄|>1/ε}
|x̄− x|u(tk, x) dx+ εMc

≤
1

ε

∫

{|x−xk|≥ε}
u(tk, x) dx+ ε (M2 +Mc)

≤
1

ε

∫

Rd

∣

∣

∣

∣

u(tk, y + xk)−
1

λdk
V

(

y

λk

)∣

∣

∣

∣

dy

+
1

ε

∫

{|x|≥ε/λk}
V (y) dy + ε (M2 +Mc) .

Since λk → 0 as k → ∞ we infer from (4.12) and the integrability of V that

lim sup
k→∞

∣

∣

∣

∣

∣

(x̄− xk)

∫

B(xk,ε)
u(tk, x) dx

∣

∣

∣

∣

∣

≤ ε (M2 +Mc) .

Using once more (4.12) we readily deduce that

lim
k→∞

∫

B(xk ,ε)
u(tk, x) dx =

∫

Rd

V (x) dx =Mc .

Combining the previous two limits gives

Mc lim sup
k→∞

|x̄− xk| ≤ ε (M2 +Mc) ,

whence the last assertion of Proposition 4.4 by letting ε→ 0. �

For radially symmetric solutions we can remove the additional assumption on the second
moment.

Corollary 4.5 (Radially symmetric blow-up) Let u0 be a radially symmetric initial condi-
tion satisfying (1.2) with ‖u0‖1 = Mc and consider a radially symmetric free energy solution u
to (1.4) on [0, Tω) with initial condition u0 and Tω ∈ (0,∞] and such that ‖u(t)‖m → ∞ as
t ր Tω. If (tk)k is a sequence of positive real numbers such that tk → Tω as k → ∞, there is a
sub-sequence (tkj)j of (tk)k such that

lim
j→∞

∫

Rd

∣

∣

∣

∣

∣

u(tkj , x)−
1

λdkj
V

(

x

λkj

)

∣

∣

∣

∣

∣

dx = 0 ,

where λk := ‖u(tk)‖
−m/(d−2)
m and V is the unique radially symmetric minimiser of F in YMc such

that ‖V ‖m = 1.
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Proof. The only modification of the proof of Proposition 4.4 is to show that we can choose ak = 0
for all k at the end of Step 1. Indeed, we claim that if ε ∈ (0,Mc/4) we have |ak| ≤ Rε, where
ak and Rε are defined in (4.3). Otherwise B(ak, Rε) and B(−ak, Rε) are disjoint and the radial
symmetry of vk and (4.3) imply that

Mc ≥

∫

B(ak ,Rε)∪B(−ak ,Rε)
vk(x) dx = 2

∫

B(ak ,Rε)
vk(x) dx ≥ 2 (Mc − ε) ≥

3Mc

2

and a contradiction. Therefore B(ak, Rε) ⊂ B(0, 2Rε) and thus
∫

B(0,2Rε)
vk(x) dx ≥Mc − ε

by (4.3). �

4.2.2 When would it blow-up?

Proposition 4.6 (Global existence in the critical case) Let u0 be an initial condition sat-
isfying (1.2) with ‖u0‖1 =Mc and consider a free energy solution u to (1.4) on [0, Tω) with initial
condition u0 and Tω ∈ (0,∞]. Then Tω = ∞.

The proof of this proposition relies on Proposition 4.4 and the following control of the behaviour
of free energy solutions for large x:

Lemma 4.7 (Control of the tail) Consider a free energy solution u to (1.4) on [0, Tω) with
initial condition u0 satisfying (1.2) and Tω ∈ (0,∞]. If t 7−→ F [u(t)] is bounded from below in
[0, T ) for some T ≤ Tω then

lim
R→∞

sup
t∈[0,T )

∫

{|x|>R}
|x|2 u(t, x) dx = 0 .

Proof. Consider a non-decreasing function ξ ∈ C∞(R) such that ξ(r) = 0 for |r| ≤ 1 and ξ(r) = 1
for |r| ≥ 2 and define

ΦR(r) = r ξ4
( r

R

)

for r ∈ R and R > 0 .

The support of ΦR is included in R
d \B(0, R) and, introducing

IR(t) :=

∫

{|x|>R}

∣

∣

∣

∣

(

2m

2m− 1
∇u(2m−1)/2 − u1/2 ∇φ

)

(t, x)

∣

∣

∣

∣

2

dx ,

we have

d

dt

∫

Rd

ΦR

(

|x|2
)

u(t, x) dx

= −

∫

Rd

2xΦ′
R

(

|x|2
)

(

2m

2m− 1
∇u(2m−1)/2 − u1/2 ∇φ

)

(t, x) dx

≤ 2

(
∫

Rd

|x|2
∣

∣Φ′
R

(

|x|2
)
∣

∣

2
u(t, x) dx

)1/2

IR(t)
1/2 .

By the definition of ΦR, we have

|Φ′
R(r)|

2 ≤
∣

∣

∣
ξ4
( r

R

)

+ 4
r

R
ξ3
( r

R

)

ξ′
( r

R

)
∣

∣

∣

2
≤ 2 ξ8

( r

R

)

+ 32
( r

R

)2
ξ6
( r

R

)
∣

∣

∣
ξ′
( r

R

)
∣

∣

∣

2

≤ ξ4
( r

R

)

(

2 + 32 sup
z∈R

∣

∣z ξ′ (z)
∣

∣

2
)

,
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so that r |Φ′
R(r)|

2 ≤ C ΦR(r) for r ∈ R. Therefore, for any t ∈ [0, T ),

d

dt

∫

Rd

ΦR

(

|x|2
)

u(t, x) dx ≤ C

(
∫

Rd

ΦR

(

|x|2
)

u(t, x) dx

)1/2

IR(t)
1/2 ,

hence

(
∫

Rd

ΦR

(

|x|2
)

u(t, x) dx

)1/2

≤

(
∫

Rd

ΦR

(

|x|2
)

u0(x) dx

)1/2

+
C

2

∫ t

0
I
1/2
R (s) ds .

Now, since F [u(t)] is bounded from below in [0, T ), we have

∫ T

0

∫

Rd

∣

∣

∣

∣

(

2m

2m− 1
∇u(2m−1)/2 − u1/2 ∇φ

)

(s, x)

∣

∣

∣

∣

2

dx ds ≤ sup
t∈[0,T )

{F [u0]−F [u(t)]} <∞ ,

so that

lim
R→∞

∫ T

0
I
1/2
R (s) ds = 0

by the Lebesgue dominated convergence theorem. Therefore,

lim sup
R→∞

sup
t∈[0,T )

∫

Rd

ΦR

(

|x|2
)

u(t, x) dx = 0 ,

from which the lemma follows. �

Proof of Proposition 4.6. Assume for contradiction that Tω is finite and let (tk)k be a sequence
of positive real numbers such that tk → Tω as k → ∞. Observe that Theorem 2.4 entails that
‖u(t)‖m → ∞ as t → Tω. On the one hand we infer from the nature of the blow-up given in
Proposition 4.4 that there are a sub-sequence of (tk)k (not relabelled) and a sequence (xk)k in
R
d such that

lim
k→∞

xk = x̄ :=
1

Mc

∫

Rd

xu0(x) dx , (4.13)

lim
k→∞

∫

Rd

∣

∣

∣

∣

u(tk, x+ xk)−
1

λdk
V

(

x

λk

)
∣

∣

∣

∣

dx = 0 (4.14)

with λk := ‖u(tk)‖
−m/(d−2)
m . On the other hand it follows from Proposition 3.4 and Lemma 4.1

that F [u(t)] ≥ 0 for t ∈ [0, Tω) so that

∫

Rd

|x− x̄|2 u(t, x) dx =

∫

Rd

|x− x̄|2 u0(x) dx+ 2(d− 2)

∫ t

0
F [u(s)] ds

≥

∫

Rd

|x− x̄|2 u0(x) dx > 0 , (4.15)

and Lemma 4.7 may be applied to obtain

lim
R→∞

sup
t∈[0,Tω)

∫

{|x|>R}
|x|2 u(t, x) dx = 0 . (4.16)
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Now, for k ≥ 1 and R ≥ |x̄| we have

∫

Rd

|x− x̄|2 u(tk, x) dx ≤ 2

∫

{|x−x̄|≥2R}

(

|x|2 + |x̄|2
)

u(tk, x) dx

+

∫

{|x−x̄|<2R}
|x− x̄|2

[

u(t, x)−
1

λdk
V

(

x− xk
λk

)]

dx

+

∫

{|x−x̄|<2R}

|x− x̄|2

λdk
V

(

x− xk
λk

)

dx

≤ 4

∫

{|x|≥R}
|x|2 u(tk, x) dx+R2

∫

Rd

∣

∣

∣

∣

u(t, x)−
1

λdk
V

(

x− xk
λk

)∣

∣

∣

∣

dx

+

∫

Rd

|λk x+ xk − x̄|2 V (x) dx

≤ 4 sup
t∈[0,Tω)

∫

{|x|≥R}
|x|2 u(t, x) dx+R2

∫

Rd

∣

∣

∣

∣

u(t, x)−
1

λdk
V

(

x− xk
λk

)
∣

∣

∣

∣

dx

+ 2 |xk − x̄|2 Mc + 2λ2k

∫

Rd

|x|2 V (x) dx .

Owing to (4.13), (4.14), and the convergence of (λk)k to zero we may let k → ∞ in the previous
inequality to obtain

lim sup
k→∞

∫

Rd

|x− x̄|2 u(tk, x) dx ≤ 4 sup
t∈[0,Tω)

∫

{|x|≥R}
|x|2 u(t, x) dx .

We next pass to the limit as R→ ∞ with the help of (4.16) to conclude that

lim
k→∞

∫

Rd

|x− x̄|2 u(tk, x) dx = 0 ,

which contradicts (4.15). �

4.2.3 Does it blow-up?

Let us first note that Proposition 4.4 allows us to describe the nature of the blow-up when it
occurs. We define the two following statements:

There exists (tk)k ր ∞ such that (‖u(tk)‖m)k is bounded (S1)

M∞
2 := lim

t→∞

∫

Rd

|x|2u(t, x) dx <∞ (S2)

– If [not (S1)] and (S2): By Proposition 4.4, the solution blows up as a Dirac mass at the
centre of mass as t goes to infinity. Moreover, the blow-up profile is described by the
minimisers of F for the critical mass.

– If (S1) and (S2): By the virial identity Lemma 4.1, F [u(tk)] → 0 so that (u(tk))k is a
minimising sequence for F in YMc . We expect that it converges to the minimiser of F in
YMc with centre of mass x̄ defined in (4.1) and second moment M∞

2 .
– If [not (S1)] and [not (S2)]: By Proposition 4.4, the solution blows up as a Dirac mass.
However, we cannot prevent the escape at infinity of the Dirac mass.

– If (S1) and [not (S2)]: No precise information can be deduced in this case. We cannot even
rule out the possibility of the existence of another sequence of times for which the Lm-norm
diverges.
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In the radially symmetric case, if the initial condition is less concentrated than one of the
stationary solutions, then we strongly believe that such a property remains true for all times,
thus excluding the formation of a Dirac mass. According to the above discussion this prevents
the blow-up of the Lm-norm in infinite time and give an example where (S1) and (S2) hold true.
This is in sharp contrast with the two-dimensional PKS case where infinite time blow-up always
occurs, see [2, 3].

5 Sub-critical self-similar solutions

The aim of this section is to prove the existence of self-similar solution by variational tech-
niques. Actually, it is equivalent to show the existence of minimisers for the free energy G
associated to the rescaled problem (1.3) given by

G[h] := F [h] +
1

2
M2[h] with M2[h] :=

∫

Rd

|x|2 |h(x)| dx

for h ∈ L1(Rd; (1 + x2) dx) ∩ Lm(Rd). For M > 0, we define

νM := inf{G[h] : h ∈ ZM} with ZM := {h ∈ YM : M2[h] <∞} .

We first establish the following analogue of Proposition 3.4.

Proposition 5.1 (Infimum of the rescaled free energy) For M > 0 and h ∈ ZM we have

G[h] ≥
C∗ cd
2

(

M2/d
c −M2/d

)

‖h‖mm +
1

2
M2[h] . (5.1)

In addition,














νM > 0 if M <Mc ,

νMc = 0 ,

νM = −∞ if M >Mc .

Proof. The inequality (5.1) readily follows from (3.7) and the definition of G. Consider next
M ≥Mc and put

hR(x) :=











M

Mc

1

Rd
ζd/(d−2)

( x

Rd

)

if x ∈ B(0, R) ,

0 if x ∈ R
d \B(0, R) ,

where the function ζ is defined in Proposition 3.5 and R > 0. We compute G[hR] and use the
property F [ζd/(d−2)] = 0 to obtain

νM ≤ G[hR] =

(

M

Mc

)2

R2−d

[

Mc

2M
RdM2

[

ζd/(d−2)
]

−

(

1−

(

Mc

M

)2−m
)

‖ζd/(d−2)‖mm
m− 1

]

.

Now, either M > Mc and the right-hand side of the above inequality diverges to −∞ as R → 0
since d > 2 and m < 2. Consequently νm = −∞ in that case. OrM =Mc and we may let R→ 0
in the above inequality to obtain that νMc ≤ 0. Since G is non-negative by Proposition 3.4, we
conclude that νMc = 0.

Finally, assume for contradiction that νM = 0 for someM <Mc and let (hk)k be a minimising
sequence for G in ZM . Since G[hk] ≥ G[|hk|], (|hk|)k is also a minimising sequence for G in ZM

and we infer from (5.1) that
lim
k→∞

(‖hk‖m +M2[hk]) = 0 .
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By Vitali’s theorem (|hk|)k converges towards zero in L1(Rd) which contradicts the fact that
‖hk‖L1 = M for all k ≥ 1. Therefore νM 6= 0 and the non-negativity of G in ZM entails that
νM > 0. �

We next identify the minimisers of G in ZM for M ∈ (0,Mc).

Theorem 5.2 (Identification of minimisers) If M ∈ (0,Mc) there is a unique minimiser
WM of G in ZM . In addition, WM is non-negative radially symmetric and non-increasing and
there is a unique ̺M > 0 such that WM (x) = 0 for |x| ≥ ̺M and ξM :=Wm−1

M solves

∆ξM +
m− 1

m

(

ξ
1/(m−1)
M + d

)

= 0 in B(0, ̺M ) with ξM = 0 on ∂B(0, ̺M ) .

Several steps are required to perform the proof of Theorem 5.2 which borrows several arguments
from [21, 23]. We first establish the existence of minimisers of G in ZM for M ∈ (0,Mc).

Lemma 5.3 (Existence of minimisers) Consider M ∈ (0,Mc). The functional G has at least
a minimiser in ZM . In addition, every minimiser of G in ZM is non-negative radially symmetric
and non-increasing.

Proof. We first recall that, if h ∈ L1(Rd; (1 + |x|2) dx) and h∗ denotes its symmetric decreasing
rearrangement, then M2[h

∗] ≤ M2[h]. Thanks to this property, we may next argue as in the
proof of Lemma 3.3 to conclude that there is at least a minimiser of G in ZM .

Next, let W be a minimiser of G in ZM and denote by W ∗ its symmetric decreasing rear-
rangement. As

‖W ∗‖1 = ‖W‖1 , ‖W ∗‖m = ‖W‖m , and M2[W
∗] ≤M2[W ] ,

W ∗ belongs to ZM . In addition, by Riesz’s rearrangement inequality [21, Lemma 2.1], W(W ) ≤
W(W ∗). Consequently, νM = G[W ] ≥ G[W ∗] and W ∗ is also a minimiser of G in ZM . This last
property entails that

M2[W
∗] =M2[W ] and W(W ∗) = W(W ) .

Using once more [21, Lemma 2.1 (ii)] we deduce from W(W ∗) = W(W ) that there is y ∈ R
d such

that W (x) =W ∗(x+y) for x ∈ R
d. Then M2[W

∗] =M2[W ] implies that y = 0, which completes
the proof. �

We are thus left with the uniqueness issue to complete the proof of Theorem 5.2. To this end
we adapt the proof in [23, Section IV.B] and first proceed as in the proof of Proposition 3.5 to
identify the Euler-Lagrange equation satisfied by the minimisers of G in ZM .

Lemma 5.4 Consider M ∈ (0,Mc) and let W be a minimiser of G in ZM . Then there is
̺ > 0 such that W (x) = 0 if |x| ≥ ̺ and ξ := Wm−1 is a non-negative radially symmetric and
non-increasing classical solution to

∆ξ +
m− 1

m

(

ξ1/(m−1) + d
)

= 0 in B(0, ̺) with ξ = 0 on ∂B(0, ̺) .

In addition,

m

m− 1
Wm−1 =

(

K ∗W −
|x|2

2
+

1

2
+

m

m− 1
Mm−1 −

cd
M

W(W )

)

+

a.e. in R
d . (5.2)

Additional properties of minimisers of G in ZM can be deduced from Lemma 5.4.
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Lemma 5.5 Consider M ∈ (0,Mc) and let W be a minimiser of G in ZM . Then

M2[W ] = (d− 2)F [W ] = 2(m− 1) νM , (5.3)

2m

m− 1
‖W‖mm +M2[W ] =

2m

m− 1
Mm +M . (5.4)

Proof. We proceed as in [23, Lemma 6]. By Lemma 5.4 we have

−
d

dr

(

rd−1 dξ

dr
(r)

)

=
m− 1

m

(

rd−1W (r) + d rd−1
)

for r ∈ (0, ̺) ,

where ̺ denotes the radius of the support of W and ξ :=Wm−1. Introducing

Q(r) :=

∫

B(0,r)
W (x) dx = σd

∫ r

0
W (z) zd−1 dz for r ∈ (0, ̺) ,

we integrate the previous differential equation to obtain

−mrd−1W (r)m−2 dW

dr
(r) =

Q(r)

σd
+ rd for r ∈ (0, ̺) .

Multiplying the above identity by σd rW (r) and integrating over (0,∞) then lead us to the
formula

d ‖W‖mm =

∫ ∞

0
r Q(r)W (r) dr +M2[W ] .

As

2σd

∫ ∞

0
r Q(r)W (r) dr = W(W )

by Newton’s theorem [22, Theorem 9.7], we end up with the identity (d − 2)F [W ] = M2[W ]
and (5.3) follows by the definition of νM and G. We next multiply (5.2) by 2W and integrate
over Rd to obtain (5.4). �

We next prove the following comparison result.

Lemma 5.6 Consider M1 ∈ (0,Mc) and M2 ∈ (0,Mc). For i = 1, 2 let Wi be a minimiser of G
in ZMi

and denote by ̺i the radius of its support (which is finite according to Lemma 5.4). If
W1(0) > W2(0) then Q1(r) > Q2(r) for r ∈ (0,max {̺1, ̺2}) where

Qi(r) :=

∫

B(0,r)
Wi(x) dx for r ∈ (0,max {̺1, ̺2}) and i = 1, 2 .

Owing to Lemma 5.3 and Lemma 5.4, the proof of Lemma 5.6 is similar to that of [23,
Lemma 10] to which we refer.

Proof of Theorem 5.2. Consider M ∈ (0,Mc) and assume for contradiction that G has two
minimisers W1 and W2 in ZM with W1(0) > W2(0). Denoting by ̺i the radius of the support of
Wi and introducing

Qi(r) :=

∫

B(0,r)
Wi(x) dx

for r ∈ [0,max {̺1, ̺2}] and i = 1, 2, we infer from Lemma 5.6 that Q1(r) > Q2(r) for all
r ∈ (0,max {̺1, ̺2}). Then ̺1 ≤ ̺2 and (5.3) warrants that

2 (m− 1) νM = σd

∫ ∞

0
r2

d

dr
(Qi −M) (r) dr =

∫ ∞

0
2 r (M −Qi(r)) dr
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for i = 1, 2. Consequently,
∫ ̺2

0
2 r (Q1 −Q2) (r) dr = 0 ,

which implies that ̺1 = ̺2 and Q1 = Q2, hence a contradiction. �

Corollary 5.7 If M ∈ (0,Mc) there exists a self-similar solution UM to (1.4) given by

UM (t, x) =
1

1 + dt
WM

(

x

(1 + dt)1/d

)

,

where WM is the unique minimiser of G in ZM given in Theorem 5.2.

Remark 5.8 Given M ∈ (0,Mc), we expect that this self-similar solution attracts the dynamics
of (1.4) for large times. Although we can prove that the ω-limit set of the rescaled equation (1.3)
consists of stationary solutions, we are yet lacking a uniqueness result to identify them as WM .
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to Pierre Raphaël for stimulating discussions. AB acknowledges the support of bourse Lavoisier.
JAC acknowledges the support from DGI-MEC (Spain) project MTM2005-08024. AB and JAC
acknowledge partial support of the Acc. Integ./Picasso program HF2006-0198. We thank the
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