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A General Flexible Framework for the Handling of
Prior Information in Audio Source Separation

Alexey Ozerov,Member, IEEE Emmanuel VincentSenior Member, IEEEand Frédéric Bimbot

Abstract—Most of audio source separation methods are de- formulation describing methods applied for different devbs,
veloped for a particular scenario characterized by the numler and this makes it difficult to reuse a method for a problem it
of sources and channels and the characteristics of the so®s |\ ac ot originally conceived for. Thus, given a new source

and the mixing process. In this paper we introduce a general fi bl th h istéi
audio source separation framework based on a library of SeParation problem, the common approach consist¢i)n

structured source models that enable the incorporation of gor ~Model design, taking into account problem formulatiéii)
knowledge about each source via user-specifiable constra algorithm design andiii) implementation (see Fig. 1, top).
While this framework generalizes several existing audio sagce

separation methods, it also allows to imagine and implement

new efficient methods that were not yet reported in the lit-  Current approach

erature. We first introduce the framework by describing the

i
model structure and constraints, explaining its generaliy, and & & & ;;;%3
summarizing its algorithmic implementation using a generédized
expectation-maximization algorithm. Finally, we illustrate the ses‘;:‘[;ﬁm_’ Model | | Algorithm | |  Algorithm Source
above-mentioned capabilities of the framework by applyingit pfomem design design implementation | | separation

in several new and existing configurations to different souwe
separation problems. We have released a software tool named
Flexible Audio Source Separation Toolbox (FASSiplementing a Proposed flexible framework
baseline version of the framework in Matlab.

w]
Index Terms—Audio source separation, local Gaussian model, & =
nonnegative matrix factorization, expectation-maximizaion

Source
separation ——————|
problem

Specification of constraints Source
from a library separation

I. INTRODUCTION

Separgting_ audio SOL_Irce&_‘, from mU|tiCha_nne_| miXture_S lis Strj:ig. 1. Current way of addressing a new source separatioblgmo(top)
challenging in most situations. The main difficulty is thaind the way of addressing it using the proposed flexible frarie (bottom).
audio source separation problems are usually mathenigtical
ill-posed and to succeed one needs to incorporate addition

knowledge about the mixing process and/or the source ‘.rxsignaCIaThe motivation of this work is to improve over this time-

Thus, efficient source separation methods are usually devae?:tisgr:n;rrfmper\/c\)/g?l(s?ht;){ gaes'gg'gg ?iegde?gr\‘;’}lrtﬁ:ﬁ'oaiou;iriep'
oped for a particular source separation problem charaetgri PP y any

by a certairproblem dimensionalitye.g., determined or under_separatjon prqblem by simply selecting from a Iibrary of
determined, certaimixing process characteristics.g., instan- ponstramts suitable constraints accouqtmg for the aiotl
taneous or convolutive, and certaource characteristice.g., mfor_ma‘uon abqut that source (see Fig. 1, bottom). More
speech, singing voice, drums, bass or noise [1]. For exampﬁéec'sely’ we wish such a framework to be

a source separation problem may be formulated as follows: ¢ general i.e., generalizing existing methods and making

“Separate bass, drums, melody and the remaining it possible to combine them,

instruments from a stereo professionally produced ° :‘(Iexm:edallovxgng casy .lnclorporatt)llon of th.? prcljon
music recording” nowledge about a particular problem considered.

Given a source separation problem, one typically must intro 10 achieve the property of generality, we need to find
duce as much knowledge about this problem as possible i€ common formulation for methods we would like to
the corresponding separation method so as to achieve g@§geralize. Many recently proposed methods for audio sourc

separation performance. However, there is often no commesParation and/or characterization [2]-{19] (see alsoafid
references therein) are based on the same so-cileal
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structure we consider corresponds to a generative modeeoft We have also implemented and released a baseline version
data that is motivated by the physics of the modeled prosessef the framework in Matlab. The corresponding software tool
e.g., the source-filter model to represent a sound sourcaranchamedFlexible Audio Source Separation Toolbox (FASST)
approximation of the convolutive filter to represent its mg available at [25] together with a user guide, examples ofje@sa
characteristics. In summary, our framework generalizes tfwhere the constraints are specified) and the corresponding
methods from [2]-[19], and, thanks to its flexibility, it bmones audio examples. Given a source separation problem, one can
applicable in many other scenarios one can imagine. choose one or few suitable constraint combinations based on
His/her expertise and on the a priori knowledge, and then tes

we |r_nplemer_1t our framework using - a generahzea" of them using FASST so as to select the best one.
expectation-maximization (GEM) algorithm [20], where thée . oo . .
In summary, the main contributions of this work include

M-step is solved by alternating optimization of different )

parameter subsets, taking the corresponding constraitas i * & 9éneral modeling structure,

account and using multiplicative update (MU) rules inspire * & general estimation algorithm, _ _

from the nonnegative matrix factorization (NMF) methodplo ~ * NeW spectral an temporal structures (time-localized pat-

(see, e.g., [9]) to update the nonnegative spectral pasamet ~ (€7NS, narrowband spectral patterns), _ _

Such an implementation is in fact possible thanks to the Gaus ® the implementation and distribution of a baseline version

sianity assumption leading to closed form update equations ©f the framework (the FASST toolbox [25]).

The idea of mixing GEM algorithm with MU rules was already The rest of this paper is organized as follows. In Section II,

reported in [21] in the case of plain NMF spectral models argkisting approaches generalized by the proposed framework

rank-1 spatial models, and we extend it here to the newsye discussed and an overview of the framework is given.

proposed structures. Our algorithmic contribution cassif  Sections Il and IV provide a detailed description of theniea

(1) identifying theGEM-MU approach as suitable thanks to thavork and its algorithmic implementation. Thus, Section I

implementability of the configurable framework, the sirgjtfi  is devoted to a reader interested in understanding the main

of the update rules, the implicit verification of nonnegativprinciples of the framework and the physical meaning of the

constraints and its good convergence speed;(ajdieriving objects, and Sections Il and IV to one willing to go deeper

of the update rules for the new model structures. into the technical details. The results of a few source sejoer

- : . experiments are given in Section V to illustrate the flexpil

Our approach Is In line with thitbrary of componentdy of our framework and its potential performance improvement

Cardo_soet al [22] .dev.eloped for the separaﬂon.of CompoE:ompared to individual approaches. Conclusions are drawn i
nents in astrophysical images. However, we consider amn%ection Vi

audio-specific structures inspired by [1], [23] for sourpec

tral power, as opposed to the unique block structure in [22]
based on the assumption that source power is constant in sonl1|e
pre-defined region of time and space. In that sense, our frame
work is more flexible than [22]. Besides the framework itself Source separation methods based on the local Gaussian
we propose a new structure for NMF-like decompositiongodel can be characterized by the following assumptions [1]
of source power spectrograms, where the temporal enveldgg [5], [13], [19]:

associated with each spectral pattern is represented as @) Gaussianityin some time-frequency (TF) representation
nonnegative linear combination of time-localized tempped- the sources are modeled in each TF bin by zero-mean
terns. This structure can be used to ensure temporal citgtinu Gaussian random variables.

but also to model more complex temporal characteristiash su  2) Independenceconditionally to their covariance matri-

as the attack or decay parts of a note. In line with time-  ces, these random variables are independent over time,
localized patterns we include in our framework the so-chlle frequency and between sources.

narrowband spectral patterns that allow constrainingtsplec  3) Factorization of spectral and spatial characteristics:
patterns to be harmonic, inharmonic or noise-like. These for each TF bin, the covariance matrix of each source
structures were already reported in [14], [15], but only ase is expressed as the product of spatial covariance

of harmonic constraints. Moreover, they were not applied fo matrix representing its spatial characteristics and aascal
source separation so far. As compared to [24], where some spectral powerepresenting its spectral characteristics.
preliminary aspects of this work were presented, we here4) Linearity of mixing:the mixing process translates into
present the framework in details, describe its implememat addition in the covariance domain.

and extend the experimental part illustrating the framéwor

Moreover, we propose an original mixing model formulatio
that allows the representation and the estimation of rafi{-1
and full-rank [19] (actually any rank) spatial mixing moslel
in a homogeneous way, thus enabling the combination ofThe state-of-the-art approaches [2]-[19] cover a wide eang
both models within a given mixture. Finally, we provide #f source separation problems and models expressed via
proper probabilistic formulation of local Gaussian modgli Particular structures of local Gaussian covariancesuiob:

for quadratic time-frequency representations [18] thapsuts 1) Problem dimensionality:Denoting by I and J, re-

and justifies the formulation given in [18]. spectively, the number of channels of the observed

RELATED EXISTING APPROACHES AND FRAMEWORK
OVERVIEW

A. State-of-the-art approaches based on the local Gaussian
model
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mixture and the number of sources to separate, tBstimation [27], [28] does not satisfy the source indepande
single-channel(/ = 1) case is addressed in [6], andassumption. However, it is known to perform poorly compared
underdeterminedl < I < J) and (over-)determined to local Gaussian model-based separation, as it was shown
(I > J) cases are addressed in [5] and [2], respectivein [13], [18] for convolutive mixtures! and demonstrated
2) Spatial covariance model: Instantaneoasd convolu- through the signal separation evaluation campaigns SISEC
tive mixtures of point sources are modeled @nk-1 2008 [30] and SISEC 2010 [29], where for instantaneous
spatial covariance matrices in [5] and [3], respectivelynixtures local Gaussian model-based approaches gave bette
In [19] reverberant convolutive mixtures of point sourcegesults than theracle (using the ground truth) binary masks.
are modeled byfull-rank spatial covariance matricesThe methods proposed in [31], [32] are also based on Gaussian
that, in contrast to rank-1 covariance matrices, canodels albeit in the time domain. Notably, time sample-base
account for the spatial spread of each source induc&MMs and time-varying autoregressive models are congidere
by the reverberation. as source models in [31] and [32], respectively. Howeves, th
3) Spectral power modelSeveral models were proposedumber of existing time-domain structures is fairly rediice
for the spectral power, e.gunconstrainednodels [10], Our TF domain models make it possible to account for
block constantmodels [5], Gaussian mixture modelghese structures by means of suitable constraints ovetrapec
(GMM) or hidden Markov models (HMM) [2], Gaus- power, while allowing their combination with more advanced
sian scaled mixture models (GSMM) or scaled HMMstructures. There are also many works on NMF and its exten-
(S-HMM) [13], NMF [4] together with its variants, sions [33]-[38] and on GMMs / HMMs [39], [40] based on
harmonic NMF [14] or temporal activation constrainechongaussian models of the complex-valued STFT coefficients
NMF [9], and source-filter models [16]. These model$hese models are essentially covered by our framework in
are suitable for the representation of different typabte sense that we can implement similar or equivalent model
of sources, for example GSMM is rather suitable fostructures, albeit under Gaussian assumptions. The benefit
a monophonic source, e.g., speech, and NMF forlacal Gaussian modeling is that it naturally leads to clesed
polyphonic one, e.g., polyphonic musical instrumenform expressions in the multichannel case and allows the
[13]. modeling of diffuse sources [19], contrary to the models in
4) Input representationWhile the most of the considered[33]-[40]. Finally, according to Cardoso [41], nhongaugssia
methods use the short time Fourier transform (STFT) asd nonstationarity are alternative routes to source adpar
the input TF representation, some of them, e.g., [14uch that nonstationary nongaussian models would ofté it
[15], [18], use the auditory-motivated equivalent rectarbenefit compared to nonstationary Gaussian models in terms
gular bandwidth (ERB) quadratic representation. Moref separation performance despite considerably greater co
generally, we consider here bdihear representations putation cost.
where the signal is represented by a vector of complex-
valued coefficients in each TF bin, as well gsadratic .
. . . . ..C. Framework overview
representationswhere the signal is represented via its
local covariance matrix in each TF bin [26]. We now present an overview of the proposed framework

Table | provides an overview of some of the local GaussidACUSING on the most important concepts. An exhaustive de-
model-based approaches considered here, where the spaiPtion is given in Sections lil and V. _
ficites of each method are marked by crossesWe see The framework is based on a flexible model described by
from Table | that a few of these methods have alreadframeters = {6;}7_,, whered, are the parameters of the
been combined together, for example GSMM and NMF we#eth source { = 1,..., J). Eachf; is split in turn into nine -
combined in [8], and NMF [9] was combined with rank-iParameter subsets _accolrdlng to a fixed structure, as dedcrib
and full-rank mixing models in [13] and [17], respectivelyP€low and summarized in Table II. _
However, many combinations have not yet been investigated1) Model structure:The parameters of-th source include
Indeed, assuming that each source follows one oBtagatial & cOmplex-valued tenseh; modeling its spatial covariance,
covariance models and one of tRespectral variance models@nd €ight nonnegative matriced; ¢, ..., 6,9) modeling its
from Table I, the total number of configurations equals tPe€ctral power over all TF bins.

2 x 247 for .J sources (in fact much more since each source 1he spectral power, denoted &;, is assumed to be the
can follow several spectral variance models at the same tim@roduct of arexcitation spectral poweV 7, representing, e.g.,

while Table | reports only6 existing configurations. the excita.tion of the gllottal source for voice or the plugkin
of the string of a guitar, and @&lter spectral powerV?,
representing, e.g., the vocal tract or the impedance ofuitarg
B. Other related state-of-the-art approaches body [23], [35]. While such a model is usually called source-
While the local Gaussian model-based framework offefdter model, we call it hereexcitation-filter modein order to
maximum of flexibility, there exist some methods that do n@void possible confusions with the “sources” to be sepdrate
satisfy (fully or partially) the aforementioned assumpsand
are thus not strictly covered by the framework. NeverthQIesl, !Binary masking-based approaches can still be quite powesfuconvo-
. . . utive mixtures, as demonstrated in [29]. Thus, a good wayruceed is
our framework allows the implementation of similar struets

4 - ! probably to use them to initialize local Gaussian modekbaspproaches, as
Let us give some examples. Binary masking-based souici done in [13], and as we do in the experimental part.
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Reference [ [1 f6] (8] [i16] [4] 1[4 15 [9] [65] [11] [13] [19] T[i8 [17] [3] [2]
Problem single-channgl X X X X X X X
dimensionality underdetermlped X X X X X X
(over-)determined X X
Spatial rank-1 instantaneoug X X
covariance rank-1 convolutive X X X
model full-rank X X X
unconstrained X X
block constant X X
s | GMM / HMM X X X
V;ﬁ;;fe GSMM 7 S-HMM X X X
model NMF _ X X X X X
harmonic NMF X X
temp. constr. NMF X X
source-filter X X
Input [ Tinear T x X X X X X X X X X X X X
representation | quadratic i X X X
TABLE |

SOME STATE-OF-THE-ART LOCAL GAUSSIAN MODEL-BASED APPROACHES FOR AUDIO SOURCE SEPARATION

The excitation spectral pow&f;* is further decomposed as  In summary, as it will be explained in details in Sec-
the sum ofcharacteristic spectral patternE$* modulated by tion IlI-E, the spectral power of each source obeys a three-
time activation coefficient®$* [4], [9]. Each characteristic level hierarchical nonnegative matrix decomposition citice
spectral pattern may be associated for instance with ofsee equations (9), (10), (12), (13) and Figures 3 and 4 Below
specific pitch, so that the time activation coefficients denoincluding at the bottom level the eight parameter sub¥eéts,
which pitches are active on each time frame. In order to &rrthUS*, Go*, HS*, W', U%', G andH'' (see Eq. (13)).
constrain the fine structure of the spectral patterns, they a

represented as linear combinations rafrrowband spectral _Parameter subsets |_Size | Range
ex ex 0,1 =A; mixing parameters I XR; XxFxN cC
patterns W$* [14] with weights Uj*. These narrowband T “;;X o narrowband spectral patiels F ﬁ;x cF;
patterns may be for instance harmomc inharmonic or noises, = U" | ex. spectral pattern weights | L7° x K2 cRy
like and the weights determine the overall spectral ene=lop 9.4 = =G [ex time pattern weights K7 x M ERy
Following the same idea, we propose here to represent tHe:? _Hft ex. time-localized patterns M7 XN € Ry
ox 0,6 = W, ft. narrowband spectral patterng F' x L € Ry
sene_s of time act|vat|o_n coe_fflmentB] as sums oftm_we— 6,7 =U" | f spectral patiern weights LT x KT TR,
localized patternsH$* with weightsG§*. The time-localized ~¢, s = G T time patiemn weignts K % M ER,
patterns may represent the typical temporal shape of thesnoté,,0 = Hft ft. time-localized patterns MP x N ERy
while the weights encode their onset times. Different terapo TABLE Il
fine structures such as continuity or specific rhythm pasternParameTer susseTsd; , (j = 1,...,J,k = 1,...,9) ENCODING THE
may also be accounted for in this way. Note that temporal STRUCTURE OF EACH SOURCE

models of the activation coefficients have been proposed in
the state-of-the-art, using probabilistic priors [9], [34ote-
specific Gaussian-shaped time-localized patterns [42jiner ~ 2) Constraints: Given the above fixed model structure,
structured TF patterns [33]. Our proposition is compleragnt prior information about each source can now be exploited by
to [9], [34] in that it accounts for temporal behaviour in thépecifying deterministic or probabilistic constraintseoeach
model structure itself in addition to possible priors on thearameter subset of Table Il. Examples of such constraints
model parameters. Moreover, it is more flexible than [9]][34are given in Table Ill. Each parameter subset can be fixed
[42], since it allows the modeling of other characteristltan (i.€., unchanged during estimation), adaptive (i.e. yftitted
continuity or sparsity. Finally, while it can model similaF to the mixture) or partially adaptive (only some parameters
patterns to [33], it involves much fewer parameters, whichithin the subset are adaptive). In the latter two cases, a
typically leads to more robust parameter estimation. probabilistic prior, such as a continuity prior [9] or a sgigy-
inducing prior [4], can be specified over the parameters. The
The filter spectral powel’Vft is similarly expressed in mixing parametersA; can be time-varying or time-invariant
terms of characteristic spectral patteE% modulated by time (in Table Il the latter case is only considered), frequency
activation coefficients [16], which are in turn decomposediependent for convolutive mixtures or frequency-indeged
into narrowband spectral patter®W’* with weights Uf* and for instantaneous mixtures. Mixing parametets can be
time-localized patternstt with We|ghts G,ft respectwely given a probabilistic prior as well. E.g., it can be a Gaussia
In the case of speech or singing voice, each characterigaitor with the mean corresponding to the parameters of a pre-
spectral pattern may represent the spectral formants ofs@med direction and with the covariance matrix represgntin

iven phoneme, while the plosiveness and the sequence aof
9 P P q 9 he fixed parameters can be either set manually or learneutebeind

pronounced phonemes_may be_enCOded by the t'me'loca“% some training data. Learning is equivalent to modeapeater estimation
patterns and the associated weights. over the training data and can thus be achieved using ourefrani.
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a degree of uncertainty about this direction. The rddk that covers only the library of constraints summarized in
(1 < R; < I) of the spatial covariance is specifiable vialable 1l for mono or stereo recordings (< 1 or I = 2).
the size of tensoA; (see Table II). Each parameter subsefhis restriction to up td = 2 channels enables the use of a
may also be constrained to have a limited humber of nonz&« 2 matrix inversion trick described in [13] that leads to an
entries. For instance, every columnGf* and / orG§.t may efficient implementation in Matlab. However, the framework
be constrained to have a single nonzero entry accounting fizelf is neither restricted to the constraints in Tablenidr to

a GSMM / S-HMM structure or a single nonzero entry equahono / stereo mixtures.

to 1 accounting for a GMM / HMM structure.
I1l. DETAILED STRUCTURE AND EXAMPLE CONSTRAINTS

Parameter subsets ||_Constraint | V?‘!”e : In this section we describe in details the nine parameter
ex pIex (nex fyex i xed . R
‘x};ka{VJjﬁ,ggt ; Ifﬂ’ "HT || degree of adaptabiity| "part _adapt” —  Subsets modeling each source and some example constraints.
Rt R [ adapt’ We also introduce the detailed notations to be used in the res
mixing stationarity “time_inv’ of the paper.
A . conv’
mixing type Thst”
T A. Formulation of the audio source separation problem
G§*, G} temporal constraint | ' %"&'M ’ H’;"ﬁw We assume that the observEd¢hannel time-domain signal,
’ called mixturg %(t) € R, t = 1,...,T, is the sum ofJ
TABLE Il multichannel signalg; (¢) € R’, calledspatial source images
EXAMPLES OF USERSPECIFIABLE CONSTRAINTS OVER THE PARAMETER [1] [22]
SUBSETS ’ ’ J
x(t) = yi(t). 1
M=>_,%® (1)

The goal of source separation is to estimate the spatiateour
3) Estimation algorithm:Given the above model structureimages y;(t) given the mixturex(¢). This now common
and constraints, source separation can be achieved in #@nulation is more general than the convolutive formwiati

steps as shown in Fig. 2. First, given initial parameteresJu in [13], which is restricted to point sources [1], [22].
the model parameterg are estimated from the mixturX

using an iterative GEM algorithm, where the E-step consiss Input representation

in computing some quantity called conditional expectation 4o signals are usually processed in the TF domain,
of the natural statisticsand the M-step consists in updating theye to their sparsity in this domain. Two families of input
parameterg givenT by alternating optimization of each of therepresentations are considered in the literature, nafimeyr

J x 9 parameter subsets. This allows taking any combinatit{:jb] and quadratic[18] representations.

of constraints specified by user into account. Second, givenl) Linear representationsAfter applying a linear complex-
the mixtureX and the estimated model parametérsource g ed TF transform, the mixture (1) becomes:

estimatesY are computed using Wiener filtering. J

S Xfn = Zj:l Yi.fns (2)
Parame_tt_er initialization Mixture
& szj’c""ed by user X wherex;,, € C! andy; f, € C! areI-dimensional complex-
init valued vectors of TF coefficients of the corresponding time-
Model estimation Source estimation domain Slgnals; andf - 17 T F anq no= ]": T N
E-step denote respectively frequency bin and time-frame indexs Th
T " . 9 formulation covers the STFT, that is the most popular TF
Compute conditional expectation Wi filteri i X N
p of natural statistics ST representation used for audio source separation.
2) Quadratic representationsA few studies have relied on
M-step quadratic representations instead, where the signal @itled
Update | T [[Update | T T [ Update Y in each TF bin by its empirical x I covariance matrix [5],
0171 1 91,2 ;’ 7 eJ,K Estimated [10], [18] R R
\ ’ i R fn = Elxax]l, (3)
0 =101} 1y where E[] denotesempirical expectatiortomputed, e.g., by
& Constraints specified by user Model parameters local averaging of the STFT [5], [10] or of the input of an ERB

filterbank [18]. Note that linear representations are speci
Fig. 2. Overview of the proposed general algorithm for paEmestimation cases O.f quadratic re.presfematlons v}m’f”. N Xf”?(?"'
and source separation. Quadratic representations include additional infornragibout
the local correlation between channels which often in@gas
the accuracy of parameters estimation [10]. In the follgyin
o ) we use the linear notationsy,, andy; r, for simplicity and
D. FASST toolbox: Current baseline implementation include the empirical expectation when appropriate. A more
The FASST toolbox (released and available at [25]) impleigorous derivation of the local Gaussian model for quadrat
ments so far a baseline version of the framework in Matlalepresentations is given in Appendix A.
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C. Local Gaussian model E. Spectral power structure and example constraints

We assume that in each TF bin, each sowrgg, € C! is To model spectral power we use nonnegative hierarchical
a proper complex-valued Gaussian random vector with zesadio-specific decompositions [23], thus all variablesant
mean and covariance matr®y ; 1, = vj o R tn duced in this section are assumed to be non-negative.

_ 1) Excitation-filter model: We first model the spectral

Yifn ~ Ne (0,0 R gn) ) power v; s, as the product of an excitation spectral power
where the matrixR; ;, € C/*! called spatial covariance v$%, and a filter spectral power’ ;, [23], [35]:
matrix represents the spatial characteristics of the source and ox it
of the mixing setup, and the non-negative scalaf, € R Visfn = Yj.fn > Vj fro )
called spectral powerrepresents the spectral characteristiapat can be rewritten as
of the source [1]. Moreover, the random vectgrsy, are o e
assumed to be mutually independent givep ; 7. V=V oVy, ©)

where ©® denotes element-wise matrix multiplication and

D. Spatial covariance structure and example constraints  V; = [vj tulf.n, V£ [0, 150, VI 2 0 1700

1) Structure: In the case of audio, it is mostly interesting 19ure 3 gives an example of the excitation-filter decompo-
to consider either rank-1 spatial covariances repreggitin Sition (9) as applied to the s_pectfral_ power of several guitar
stantaneously or convolutively mixed point sources witw lo"0tes. In this example the filteV is time-invariant with
reverberation [13] or full-rank spatial covariances maugl 0WPass characteristics, and the excitatisfy* is a time-
diffuse or reverberated sources [19]. More generally, we a@rYing combination of few characteristic spectral paer
sume covariances of any positive rank. llek R; < I be However, in the most of realistic situations both the exitta

the rank of covarianc®,. ;,,. This matrix can then be non-and the filter are time-varying. Thus, the excitation-filter
VRN

uniquely represented &s mod_el with time—ve_lrying excitation_ and _filter is a physigall _
motivated generative model that is suitable for many audio
Rjn= Aj,anffn, (5) sources. While time-invariant filters were considered,, érg

[7], [35], some approaches consider time-varying filter§][1
[43]. We believe that our framework opens a door for further
investigation of time-varying filters.

2) Excitation power structure: The excitation spectral
power [v$%,,|; is modeled as the sum of7* characteristic
Sjrfn ~ Ne (0,05 fn) - (6) spectral patetxemsffejj‘fk]f modulated in time byp% , i.e.,

whereA; ¢, is anl x R; complex-valued matrix of rank;.
Moreover, for every sourcg and for every TF bin(f,n) we
introduce R; independent Gaussian random variables,
(r=1,..., R;) distributed as

7,kn?
ex — Kj exX ex i i =
With these notations the model defined by (2) and (4) 1§%n = >ok1 PSincS e [9]- Introducing the matrice®; <

equivalent to the following mixture oR = Z}]:l R; point [P, ]kn andESS 2 e, 1. it can be rewritten as

sub-sources;,. 1, Ve = E& P (10)

Xfn = AfnSfn, (") In order to further constrain the spectral fine structure of
wheres;, = [S1T,fn7 . ,7s§fn]T is an R x 1 vector of sub- the. spectral patterns, they are represented as linear eombi
source coefficients withs; s, = [sj1,7n.- -, 5;r,.7n)”, and Nations of L3 narrowband spectral patteris (|, [14],
Agn = [Arfn, .., Ay ] isanl x R mixing matrix. Thus, ie., e, = Zfzflujj;kwjj}l, where uS%, are non-negative

for a given TF bin( £, n) our model is equivalent to a complex-weights. The series of time activation coefficiepts,,, are
valued linear mixture offz sub-sources (7), where the subalso represented as sums/of* time-localized patterns, i.e.,

sourcess;rfn (r = 1,...,R;) associated with the same o _ M ox  ex  Ajtogether we have:
source;j share the same spectral power (6). We suppose that” Lot W5 9o g '
the rankR; is specified for every sourcg ox KM o ex LT ex  ex
2) Example constraintstn our baseline implementation we 7/ Zkzl Zmzl dimng,km lel ik (1)

assume that the spatial covariances are time-invariaat, iand, introducing matricesH‘;X vy [h?'(rnn]’m#’“ G A
A]-,fn = A, ;. Moreover, we assume th_at for every SOWCEJ@M ks US 2 [, ], and Wex I [wS) 74, this
Jj the spatial parameterA; can be either instantaneous ("e'ecj{hation can be rewritten in matrix form as

constant over frequency and real-value; , = A;, €

R*%:) or convolutive (i.e., frequency-dependent), and either Vi = WU G HS™ (12)
fixed, adaptive or partially adaptive. Some examples of con-
straints are given in Table lll.

Figure 4 shows an example of the excitation structure
V= WU G HS™, as applied to six notes played on a

3Such anR;-rank covariance matrix parametrization was inspired 18,2 xylophone. In this example, the narrowband spectral pater

whereR ¢, intended to model correlated or multi-dimensional congmts, ‘WS> include66 harmonic patterns modeling the harmonic part
. : o o : !

is parametrized aR; ;, = Aj rnPj rnAj g, wherePj , is a full- — of 71 notes and) smooth patterns modeling the attacks, and
rank R; x R; positive matrix. However, our parametrization (5) is les

redundant and it is applied for audio source separationnandor separation ihe r_natr'x Of_ W@ghtSU?x is very sparse so as to eliminate
of components in astrophysical images, as in [22]. invalid combinations of narrowband spectral patterns.(eg
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characteristic spectral pattern should not be a combimatio Pham et al [3] assume rank-1 spatial covariances and
of narrowband spectral patterns with different pitched)e T constant spectral power over time-frequency regions & iz
time-localized patternBl}* include decreasing exponentials tdrequency binx L frames. This structure can be implemented
model the decay part of the notes and discrete Dirac furgtian our framework by choosing rank-1 adaptive spatial time-
to model note attacks, and the matrix of weiglt$* is sparse invariant covariances, i.eA; is an adaptive tensor of size
so as not to allow the attacks (smooth spectral patterns)2ex 1 x F' x N subject to the time-invariance constraint, and
be modulated by exponential temporal patterns and not donstraining the spectral power ¥, = W G H* 5 with
allow harmonic note parts (harmonic spectral patterns)eto BV$* being the " x F' identity matrix, G™ a F' x [N/L]
modulated by Dirac temporal patterns. Such a structure isadaptive matrix, andi$* the [N/L] x N fixed matrix with
simplified version of the conventional attack-decay-suostaentriesh$,, = 1 forn € L, andh§s,,, = 0 for n & Ly,
release model (see, e.g., [44]). More sophisticated siresf where £, is the set of time frames belonging to the-th
where, e.g., the sustain and release parts are modeledblpck.
exponentials with different decrease rates can be implesden Multichannel NMF structures with point source (rank-1)
as well within our framework. [13] or diffuse source (full-rank) [17] models can be rep-

3) Filter power structure:The filter spectral powe[rvjffn] r resented within our framework a¥; = W G$* ° with
is represented using exactly the same structure as in (11).W§X and G$* being adaptive matrices of sizé x K¢* and

4) Total power structure:Altogether the spectral power K§* x N, respectively, andA; being an adaptive tensor of
structure can be represented by the following nonnegati@e2 x 1 x F' x N or 2 x 2 x F x N, respectively, subject
matrix decomposition (see also Table I) to the time-invariance constraint.

V; = (WU G H(;x) ® (Wﬁt Uip Gﬁp Hft) . (13) Excitation-filter model—pased separation of the main r_melod

vs. the background music from single-channel recordings by

Each matrix in this decomposition is subject to specific cofyyrrieu et al. [16] can be represented within our framework
straints presented below. . ~as follows. Mixing parameterd; (j = 1,2) are assumed to

5) Example constraintsEach matrx;  (k =2,...,9) N form a tensor of sizd x 1 x F' x N with all the entries fixed
(13) can be fixed, adaptive or partially fixed (see Tab. ). I;5 1 The background music spectral powir is modeled
the latter two cases, a probabilistic priaft; |7, k), SUCh @S exactly as in the case of the multichannel NMF described in
a time continuity prior [9] or a sparsity-inducing prior [64n  the previous paragraph. The main melody spectral power is
be set. We d_enote by; « t_he hyperparametersf the prior constrained tov, — (WS GS¥) & (W GE) ® with W§
that can be fixed or adaptive as well. being fixed andGS*, W and G being adaptive. Without

To coverdiscrete state-based modetsch as GMM, HMM, - gy supplementary constraints this model is equivaleniiéo t
and their scaled versions GSMM, S-HMM, every columf,qqe| referred agnstantaneous mixture model [16], and
85 = 95k )k Of matrix G (and similarly for matrixG")  applving GSMM constraints to both the matricés* and

may further be constrained to have either a single NONZ&ED! this model is equivalent to the model referred@SMM
entry (for GSMM, S-HMM) or a single nonzero entry equal tgy, [16].
1 (for GMM, HMM). Let ¢35, € {1,..., K$*} be the index

of the corresponding nonzero entry aqef = [¢j7, ] the

resultingstate sequenck The prior distribution of); 4 = G~ IV. ESTIMATION ALGORITHM

with hyperparameterg; , = A7 is defined as In this section we describe in details the proposed algorith
M for the estimation of the model parameters and subsequent
X ex X .
p(Oralnia) = p(aIAT) =TT 7 A5es e . (14)  source separation.
where AT* = AP0 ke (A5 = P53y, = K'la5,—1 = k)

denotes thd( $Ox K$* state transition probability matrix with A, Model estimation criterion
ATk being independent ok (i.e., A7, = A7) in the case

of GMM or GSMM. As discussed in [12], the discrete state- To estl_mate the m‘?d‘?' parameters, we use Fhe stan-
s : dard maximuma posteriori (MAP) where the log-likelihood
based models are rather suitable for monophonic sourags (e.

singing voice or wind instruments), while the unconstrelineng(xf’”.|9)AIn every TF point 'S replaced by ItS empirical
" ) expectatiori|log p(x,|0)] according to the empirical expec-

NMF decompositions are more appropriate for polyphon{ct, o] introduced in Section 111-B2 1101, 118

sources (e.g., piano or guitar). ation operatorE[-] introduced in Section I1I-B2 [10], [18].

Mathematically rigorous derivation of this criterion isvgn
F. Generality in Appendix A. This criterion consists in maximizing the
' , .,_modified log-posterior(d,1|X) £ E[logp(6,n|X)], where
1 L0, easly shoun ht he moce) Siuctres consOeR ()., over the model paramettsand e e
B J,9 - . ;
. . rameters) = {n; . }+:_.. Thi nti n rewritten
formulation. Let us give some examples. ameters) = {1} k=1 S quantity can be rewritten,

“Note that we consider here the state sequeyfeas a parameter to be °Note that any set of matrices can be virtually removed frore th
estimated, and not as a latent variable one integrates aset, is usually spectral power decomposition (13). For example, one camiro¥, =
done for GMM / HMM parameter estimation. This is indeed toiaoh the WS GS* HS* by assuming that the matrica& ', U™, G!* and HI are
goal of generality by making the E-step of the GEM algorithmdgépendent of sizesF x 1,1 x 1,1 x 1, and1 x N, and that all their entries are fixed
of the specified constraints. to 1, and thatU$* = IK;X is the K$* x K5 identity matrix.
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(A) Source spectral power

250 (B) Model spectral power V; =V5 o VY
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(D) Filter spectral power ¥/
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Fig. 3. Excitation-filter decomposition as applied to theecpal power of several guitar note@): source spectral powe(B): model spectral power
V, = Vj" ® V§“, (C): excitation spectral poweV;?x, (D): filter spectral powervgﬁ.

(B) Excitation spectral power VI’* = E"‘ P‘ex
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(C) Characteristic spectral patterns EI’”‘ = Wle>€ U‘e>€ (D) Spectral patterns activations P‘E>< = GI”‘ H‘EK
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Fig. 4. Excitation power decompositioi$* = W= U G HS* as applied to the spectral power of several xylophone nG#ssource spectral power,
(B): excitation spectral powe j" = E;?x ;", (C): characteristic spectral patteris™ = W;’:"Ue.", (D): spectral pattern activatiorBS* = G‘?XH?‘, (E):
narrowband spectral patteriVy/ ., (F): spectral pattern WeightU?x, (G): temporal7 pattern weighté;?x, (H): time-localized patterni{?".
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using (2) and (4), as: b) Complete data log-posterior and natural statistics:
We choseZ = {X,S} as the complete data, whe®e =
L(0,7X) £ L(X|6) + log p(6]n) = {syn} .., and the modified log-posterior of the complete data

~ can be written as:
Zf.n E[log NC(Xf’rL'O) Ex,fn)] + 1ng(9|77)7 (15)

L(6,7|X,S) = L(X|S;0) + L(S]6) + log p(6]n)

J ~ ™
where 3, 1, £ 327 v taRy pny L(X]60) £ Ellog p(X]0)] c_ St {gglfn (R, pn — AR 4,
is the modified log-likelihoodand “C» denotes equality up to Fn ’ ’
a constant. Using (3), the resulting criterion can be e)xqaeés

as [13], [18]: Rus fnAJ, + AmRs AL )] fz log [ S, |

J,9
* ok : -1 BB
0*,n" = arglalsl Zﬁn {tr (Ex7fnRx7fn) + log |Ex,fn|:| — ZR]- Zdls(gj,fnmfn) + Z log p(0; xm;,k), (18)
J fin

7,9 j.k=1
— | 0; k). (16
Zj,kzl 08 POyklnsk). (1) wheredys(zly) = & —log 7 — 1 is the Itakura-Saito (IS)

We see that this criterion does not rely any more on the Iinedl}/ergence [Pl are the entries of matrix’; specified by

. : . o 3), andRx sn, R , R, and¢; r, are defined as:
mixture representatio, but only on the resulting empirical ) x.fns Roxs, s R, jn @NAGG, 1
mixture covariance$Rx fn} ¢ n. Ry fn

(1>

ﬁ'x,fn = E[Xf7LXgL]; Rxs, fn = E[Xf7LS§€L]a (19)

~ R, ~
Rs,f’n £ E[anS?nL Ej,fn = Ri 27‘;1 E[|Sj7~7f'rz|2]- (20)
B. Model estimation via a GEM algorithm ’
. 79 o It can be easily shown from (18) that the family of functions

Given the model parametets= {0}, specified in oy, £(X S|0)1, forms anexponential family7], [20], and
Table Il and the hyperparametens= {nﬁk};{?,‘jzl together the setT(X,S) = {ijmRxs7mes7f,n}f_n is a natural
with user-defined constraints and initial values, we migeni (sufficient) statistic§7] for this family. Given this result, we
the criterion (16) using a GEM algorithm [20] that consists iderive a GEM algorithm that is summarized below.

iterating the following expectation (E) and maximizatiol)(  2) Conditional expectation of the natural statistics (Bt

steps (see Fig. 2): The conditional expectations of the natural statisti¢X, S)
« E-step: Compute the conditional expectation of the scare computed as follows:
callednatural (sufficient) statisticgiven the observations 5 ~ o
Rx n - Rx nﬂ ) 21
X and the current parametefsr. s f I s, fn . (21)
« M-step:Given the expectation of the natural statistics, up-Rs,fn = = Qs tnRu, n Qs 1 + (Ir — Qs pn A pn) X5 (22)

date the parametefsn so as to increase the conditional
expectation of the modified log-posterior of the so-called
complete datg20]. This step is implemented via a loop Qefn = ES,f’rLAff_InE;_lfl,” (23)
over all J x 9 parameter subsefs ;. specified in Table I1. /

here

— H
Each subset, depending whether it is adaptive (partially Pogn = AgndsnAyy + X ns (24)
adaptive) or fixed, is updated (partially updated) or not 3o fn = diag ([@7 f,,L]f‘zl) , (25)
in turn using suitable update rules inspired by [9], [13],
[14]. and ¢, r, = v; s if and only if » € R;, whereR; denotes

the set of sub-source indices associated with soyritethe

" . : ) ) vectorsy, (see section IlI-D).
a) Additive noise and simulated annealings explained 3) Update of the spatial covariances (M-step):

in [13], where a similar GEM algorithr_n Is _used, the mi_xing a) Unconstrained time-invariant mixing parameters:
parameters , (see_ Eq. (7)) “pdi“ed via this GEM algorlthnwe first consider the case where there are no probabilistic
can become stuck into a suboptimal vqlue. To overcome ﬂb'ﬁors specified for the mixing parametefd\,}; and these
issue, we use a form aimulated annealingroposed in [13], parameters are time-invariant. Let  {1,...,R} be a
which consists in adding to (7) a noise term whose variancedsyset of indices of sized — £(A). Belé)w ;/ve denote
decreased by a fixed amount at each iteration. Thus, we assyne, 4 RA . andRA, the matrices of respective sizes

H R : _ H . H fn? xs,fn s, fn .
that _there Is a/ + 1 th source2 with full-rank time invariant ;~ D. I xD andD x D, that consist of the correspond-
spatial covarianc&y, r, = 0% I; = Ryyq1 4 and trivial P 5

ing entries of the matriceAs,, R and Rs ¢, i.€.,
spectral power«(;.1 s, = 1) that represents a controllable 94 (A r)]! ﬁAf” f&{” (i T)S]’f”

additive isotropic noisi s, = y.+1,f,. Introducing this noise = /n~ S T imlredr B fn T e S =1 e
component leads to considering the noise covari@igg,, as 2NAR&fn = Resn(r.1)lrcames. We also denote byl =

part of the model parametefisand to adding it to the mixing {1,...,R}\A the Complementary set. L&t C {1., ..., R}
equation (7): (resp.Z C {1,..., R}) be the indices of convolutively (resp.

instantaneously) mixed sources with adaptive mixing param
Xfn = AfnSin +byn. (17)  ters. With these conventions the mixing parameters aretagda

1) Preliminaries:
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as follows®:

-1

~ (26)

[13].
AC

10

to converge much more quickly than the GEM algorithm in

b) Discrete state-based constraintset us now assume
thatd; 4 = G;“.X is subject to a discrete state-based constraint
(similarly for 6,

G?). Note that when time-localized

~1 patterns H$* (or H?) have non-zero overlaps in time of

Af =m0 {RL, ;, - AZLRZ | % SRT
f,n fn (27)

maximum lengthL (see, e.g., Fig. 4) the model becomes
equivalent to an HMM of the ordek (in case of GMMSs) or
of the orderL + 1 (in case of HMMSs). In order to avoid the

complications of requiring consistency of overlapping@ats
b) Other constraints: Estimating time-varying mixing (which would introduce temporal constraints somewhat rem-
parameters without any priors does not make much sensqrgcent of an HMM), in our baseline implementation and in
practice due to highly unconstrained nature of such thenesti the updates described below we only consider non-overigppi
tion. If the miXing parameters are given some GaUSSianﬁriOﬁmeJocanzed pattern}l?x = Iy in case of discrete state-
closed-form updates similar to (26), (27) can be still detiiv hased constraints. The updates are performed as follows:

since the modified log-posterior (18) will be a quadratiaior
with respect to the mixing parameters. In case of nongaussia
priors some Newton-like updates [22] can be derived.

4) Update of the spectral power parameters (M-step):

a) Unconstrained nonnegative matriceket C; = 6;
(k = 2,...,9) an adaptive or partially adaptive nhonnegative
matrix (see Tab IlI) with a uniform priop(0; |1, %) = 1.
Whatever the matrixC;, it can be shown that the decomposi-
tion (13) can be rewritten 8€; = (B;C;D,;)®E;, whereB;,
D; and E; are some nonnegative matrices that are assumea)
to be fixed whileC; is updated. For example, €; = Hgﬁ
in (13), one can choosB; = WU G, D; = Iy and
E; = WU GS H;*. With these notations it can be
shown that the conditional expectation of the modified log-
posterior (18) of the complete data is non-decreasing wien t  4)
corresponding update fdC; does not increase the following
cost function:
drs([

Dys(Cj) = Zf . ilrnl[Vilen),

Wherer = (BJCJDJ) @E] andéj = [gj,fn]f,n with éj,fn
computed as follows:

a 1 ~
Ejofn = R_] ZTE’Rj RS,f’rL(T7 7")7

1)

2)

[

(28)

5)
(29)

6)
whereﬁsm is computed in (22) an®; is defined at the end
of Section IV-B2. Applying some standard derivations (see,
e.g., [9]), one can obtain the following nonnegative MU r(le
B][E, ©E, ©{(B,C,D;) O E,;}*D]

C; =C;0 (30)

Seté‘r;x = G, and fill each entry of each column of
G?X with the nonzero entry of the respective column of
GS~.
If jG?" is adaptive, do for every = 1,..., K™

o SetC; = f}‘;", and set all the elements &, to

zero, except thé-th row.

« UpdateC; using several iterations of (36)

« Set thek-th row of G equal to that ofC;.
For every k L...,K§* andm = 1,..., M
set C; G?X, set all the elements o€; to zero,
except thgk, m)-th one, and compute the IS divergence
Dys(k, m) betweenV; = (B;C,;D;) © E; andE;, as
in (28).
Update the state sequeng€* using the Viterbi algo-
rithm [45] to minimize the following criterion:

I\/I;X
> Dis(qs,,m) —log p(af*|ASY),

q;" = argmin
i m=2

wherep(q5*|AS*) is computed as in (14).

SetGH* = G?X and set to zero all the entries G},
except those corresponding ¢§*.

If AS* is adaptive, update the transition probabilities as

ox

Plo (a5 1 =ha5 =k
MEX

(M7 =1) 320 W51 =h)

S-HMM or asxyy,, = st Sy (g%, = ) in
case of GMM or GSMM.

Aok = in case of HMM or

c) Other constraints:We here discuss the updates that

BT[E; © {(B,;C,;D;) ® E;}-~!|D] : : > HIS :
i ) are not yet included in our current baseline implementation
that guarantees non-increase of the cost function (28)tfarel (see Sec. 11-D).

non-decre_ase of the conditional expectation of the modifiedpn gp algorithm update rules for time pattern weiglig*

log-posterior (18) of the complete data. These update raes o gt yith time continuity priors, such as inverse-Gamma or
applied to multlcha_nnel audio, are in fact a generalizatbn 5mma Markov chain priors, can be found in [9]. However,
the GEM-MU algorithm proposed in [21], that has been showghe cannot use these rules within our GEM algorithm, since

5We see that the mixing parameters for different sources datad jointly we use a different, reduced, complete data set, as Compared

by Egs. (26), (27), while we have claimed in the beginning efti®dn 1V that

they will be updated in an alternated manner. However, simeecan here 8Several iterations of update rule (30) are needed becalismntales of

update parameters jointly without loss of flexibility, we do, since joint G¢* are initialized in step 1 from a particular sequence of gamsied by

optimization, as compared to the alternated one, leadsnergeto a faster G 7 and optimized for the current state sequengg. Performing only one

convergence. update of (30) would unfavor state sequence evaluation. edery to avoid
“In the case of partially adaptive mati@;, only the adaptive matrix entries all these issues, in our implementation we just keep ma&X in memory,

are updated with rule (30). skip step 1, and do only one iteration of (30).
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to the one used in [9]. Nevertheless, one can always use sofmeNon-blind separation of one music recording
Newton-like updates [22] for these priors.

If a matrix6, ;. (k = 2, ...,9) is constrained with a sparsity- 1) Data: As an example stereo music recording to separate
inducing prior [4], such as a Laplacian prior (correspogdim We took the 23-second snip of the song “Que pena tanto
anl; norm penalty), it can be updated using the multiplicativi@z” by Tamy from the test dataset of the SISEC 2008 [30]
updates described in [46], [47]. However, in such a case tffarofessionally produced music recordings” task. We know
renormalization described in the subsection below could nabout this recording that there are two sources, a female
be applied, since it would change the value of the optimiz&#hging voice and a guitar, that the voice is instantangousl
criterion (16). At the same time, without any renormaliaati Mixed (panned) in the middIg and the guitar is possibly a
the sparsity-inducing prior would loose its influence. Toidv Nnon-point convolutive source.

that, all the other parameter subséts (I # k) should be  2) Constraint specification and parameter initializatiofo
constrained, e.g., to have a unitary (day norm, which can account for this information within our framework, we have
be handled using the gradient descent updates from [46] ®bfosen the following constraints. The singing voice mixing
the modified multiplicative updates from [47]. parametersA; form a fixed tensor of siz€ x 1 x F x N
5) Renormalization:At the end of each GEM iteration, with all entries equal tol. The guitar mixing parameters
in order to avoid numerical (under/over-flow) problems, &, form an adaptive tensor of sizex 2 x F x N subject
renormalization of some parameters is done if needed, i®, the time-invariance constraint. The spectral pow®fs
if these parameters are not already constrained by somesprig = 1,2) are constrained to&v; = W UGS HS* °
that are not scale-invariant. This procedure is similarhe twith W¢* and H$* being fixed, andU$* and G§* being
one described in [13], and it does not change the value afaptive. The narrowband spectral patteéWi$* include6 x L
the optimized criterion (16). For example, the columns dfarmonic patterns modeling the harmonic parLqfitches and
matrix U$* can be divided by their energies, and the rows smooth patterns (see Fig. 4 (E) and [14]). Thepitches
of G§* scaled accordingly (see (13)). Similar renormalizatioare chosen to cover the range of 77 - 1397 Hz (39 - 89 on
is applied in turn to each patameter subsets pgifsf; 11 the MIDI scale), which is enough for both the guitar and
(k=1,...,8), and at the end of this operation the total energiis particular singing. The time-localized patter$* and
is relegated intd; . H$* are different. The singing voice time-localized patterns
H$* include half-Gaussians truncated at the left, i.e., only
the right half is kept. The guitar time-localized pattedi§*
include decreasing exponentials to model the decay pahieof t
Given the estimated model parametérshe sources can benotes and discrete Dirac functions to model note attackes (se
estimated in the minimum mean square error (MMSE) senki@g. 4 (H)). All adaptive parameters are initialized witmdom

C. Source estimation

via the Wiener filtering: values. Finally, we used the ERB quadratic representation
described in [18] as signal representation.
Vifn =05 iRy X x (31) L
Jofn = B3R S, 3) Results: After 500 iterations of the proposed GEM

where 33 — Y v, ;uRy . The counterpart of this algorithm the separation results, measured in terms of the
S X fn = Lyj=1 0 fn it e ) crpa . source to distortion ratio (SDR) [48], were 7.2 and 8.9 dB for
equation for quadratic TF representations is given in Ap-. . :
endix A voice and guitar, respectively. We have also separatedithe s
P ' mixture using all the blind settings described in the folitogy
section. The best results of 5.5 and 7.1 dB SDR were obtained
V. EXPERIMENTAL |ILLUSTRATIONS by the unconstrained NMF spectral power model with the
instantaneous rank-1 mixing, i.e., by the multichannel NMF

The goals of this experimental part are to illustrate o((aJr instantaneous mixtures [13].

some examples how to specify the prior information in th _ _ ) _
framework, given a particular source separation problemd, a 4) Discussion:We see that our informed setting outper-

to demonstrate that we can implement the existing and néyms any blind setting by at least 1.7 dB SDR. This im-
methods within the framework. For that we first give aRrovement is essentially due to the combination of rank-1
example of application of the framework to a music recordiri§Stantaneous and full-rank convolutive mixing models tred

in a non-blind setting, i.e., when different sources are givelfiformation about the position of one source. Moreoverlevhi
different models according to the prior information. Setton it iS common in professionally produced music recordings th

we consider a few blind framework instances, correspondifi§me sources are mixed instantaneously (panned) and others
to existing and new methods, and apply them for separatigfnvolutively (e.g., live-recorded tracks or some ardfici
of underdetermined speech and music mixtures. Third, WRverberation is added), in our best knowledge such hybrid
describe how to apply the framework to solve the sourdB0dels were not yet proposed for audio source separation,
separation problem mentioned in the beginning of the intrgPd it now becomes possible to implement them within our
duction, i.e., the separation of bass, drums and melody f[mework.

music recordings. Finally, we briefly mention our applioati

of the framework for speech separation in the context ofe0is othis information can be for example obtained by subtracting left
robust speech recognition. channel from the right one and checking that the voice is el
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B. Blind separation of underdetermined speech and music4) Discussion: As expected, in most cases rank-1 spatial
mixtures covariances perform the best for instantaneous mixturds an

full-rank spatial covariances perform the best for syrithet

1) Data: Here we evaluate several settings of our frameqnolutive and live recorded mixtures. Moreover, in ak th
work on the development dataset of the SISEC 2010 [28)ses there is at least one of the six new methods that

“Underdetermined-speech and music mixtures” task. Thigmerforms the state-of-the-art methods [13] and [17]e On
dataset include 10-seconds length instantaneous, cdivdlucan note that for music sources constraining the spectral
and live-recorded stereo mixtures of three or four music aQg,cture does not improve the separation performafice
speech sources (see [29] for more details). however, constraining the temporal structure does improve
2) Constraint specification and parameter initialization: jt. For speech sources constraining both the spectral and th
We consider eight blind settings of the framework that atemporal structures improves the separation performamce i
specified by the following constraints. For all settings &md most cases. This is probably because the unconstrained NMF
all sourcesA; forms an adaptive tensor of sizZex R; X is a poor model for speech. Indeed, as compared to simple
F x N subject to the time-invariance constraint and subject tausic, speech includes much more different spectral pestter
the frequency invariance constraint for instantaneousurgs notably due to a more pronounced vibrato effect (varying
only. The spectral power of each source is structure¥ as=  pitch). As a consequence, the unconstrained NMF model needs
E$*P$* °. The eight settings are generated by all possiblfuch more components to describe this variability, thus it
combinations of the following possibilities (see also EBl):  cannot be estimated in a robust way from these quite short
« Rank:The rankR; is either1 or 2 (full-rank). 10-second length mixtures. Introducing spectral and teaipo

. Spectral structure:The characteristic spectral pattern§onstraints makes model estimation more robust.
E$* are eitherunconstrained i.e., Ef* = W$* with
adaptive W5, or constrained i.e., Ef* = WU ¢ geparation of bass, drums and melody in music recordings
with fixed W¢* being composed of harmonic and noise-

like and smooth narrowband spectral patterns (see Fig. 41€7€ we describe how to apply our framework to the
(E) and [14]), and adaptiv&I°* (see Fig. 4 (F)) that separation of the bass, the drums, the melody and the remain-
L ‘7 .

is very sparse so as to eliminate invalid combinations {9 instruments from a stereo professionally produced enusi

narrowband spectral patterns (e.g., patterns Correspgnoriecording. This source separation problem is of great jmalct
to different pitches should not be combined together). interest for music information retrieval and remasteriagy(,

. Temporal structureThe time activation coefficient® karaoke) appllcat|on§.
are eitherunconstrainegdi.e., E* = G with adaptive _ 1) _State—of-the—art.The state—of-the—qrt appr_oaf:hes target-
G, or constrainedi.e., ES* = Go* HS* with fixed HS* ing thIS problem suffer from the followmg_llmltatlo_ns. Bir
being composed of decreasing exponentials, as those€5ting drum [52] and melody [16] separation algorithmeeha
Fig. 4 (H), and adaptivee*. bgen designed for single-channel (mono) recordmg; and may
J
) ) . fail to segregate the melody from the other harmonic sources
The two settings with’z; = 1 and2, and unconstrainefl?™  gespite the fact that they have different spatial direation
and P§* correspond to the state-of-the-art methods [13] angkcond, blind source separation methods relying on joiet us
[17], respectively (see Section IlI-F), while the rema@isix  of spatial and spectral diversity, such as, e.g., the nhaticel
settings are new. NMF [13], need some user input to label separated signals
In line with [13], parameter estimation via GEM is sensitiv21] and cannot separate sources mixed in the same direction
to initialization for all the settings we consider. To préeiour which is a very common situation, e.g., for singing melody
GEM algorithm with a “good initialization” we used for thegnd drums. Finally, no state-of-the-art approach treais th
instantaneous mixtures the DEMIX mixing matrix estimatioprob|em in a joint fashion and cascading the methods (e.g.,
algorithm [49] to initialize mixing parameters;, followed by  separating the drums, then separating the melody, etc.) is
lo norm minimization (see e.g., [1]) and Kullback-Leibler (KL clearly suboptimal. Thus, it is clear that an efficient siolit
divergence minimization (see [13]) to initialize the saeircto this problem should rely on:
power spectrdV ;. For synthetic convolutive and live recorded
mixtures we first estimated the time differences of arrival teristics (to label the sources automatically),
(TDOAs) using the MVDRW estimation algorithm proposed the spatial diversity of different sources,
in [50], that is based on a variance distortionless response  ¢;me model describing harmonicity, and
(MVDR) beamformer. The estimated TDOAs were then used joint modeling of all sources.
to initialize anechoic mixing parameterd ;, followed by _ . o
binary masking and KL divergence minimization (see [13]) to 2) Constraint specification, parameter initialization and

initialize the source power spect¥;. As signal representationreCOnStrUCt'on: Our framework_ S?t'Sf'eS t_hese requirements,
we used the STET. and in order to account for this information we have chosen

. . the following constraints. The two-channel mixture is miede
3) Results: Source separation results in terms of avera

£ a sum of 12 sources: 4 sourcgs=(1, ..., 4) representin
SDR after 200 iterations of the proposed GEM algorithm are g1, 4) rep g

Summar'z_e_d_ |n Ta_ble IV together with results of thaseline  10rhe resuits for synthetic convolutive mixtures of music rees are not
used for initialization. very informative because of the poor overall performance.

« some prior knowledge about the source spectral charac-
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Mixing instantaneous synthetic convolutive live recorded
Sources speech| music speech music speech music
Microphone spacing - - 5cm | Im | 5cm | 1Im | 5cm|1Im|5cm| 1m
Number of 10 second-length mixtures 6 4 10 10 4 4 10 10 4 4
baseline {y minimization [51] or binary masking) [ 86 [ 124 ]] 10 [ 14 ] 09 [ 07 11 [ 14 ] 25 ] 03
Method [ rank R; [ spectral struct.] temporal struct.||
[13] 1 unconstrained | unconstrained 8.8 17.2 1.6 2.1 -11 | -1.2 2.2 25 3.2 0.4
[17] 2 unconstrained | unconstrained 8.9 17.0 1.8 2.7 -0.5 | -0.2 2.0 3.0 3.5 0.8
new 1 constrained unconstrained 10.5 13.6 1.9 25 -0.5 | -0.5 2.2 2.8 3.0 0.5
new 2 constrained unconstrained 10.4 13.0 2.1 3.1 -0.7 | -04 2.3 3.2 3.2 0.8
new 1 unconstrained constrained 8.9 18.6 15 2.2 -0.8 | -0.5 2.4 2.6 3.4 0.9
new 2 unconstrained constrained 8.7 15.4 1.8 2.6 -0.4 0.0 2.1 2.9 4.5 1.8
new 1 constrained constrained 10.5 15.7 2.1 2.9 -1.2 0.3 2.5 3.9 3.2 0.4
new 2 constrained constrained 10.2 13.8 2.1 4.5 0.0 -0.3 2.3 5.0 3.7 1.0
TABLE IV

AVERAGE SDRS ON SUBSETS OFSISEC 2010 “UINDERDETERMINED SPEECH AND MUSIC MIXTURES TASK DEVELOPMENT DATASET.

the bass, 4 sourceg & 5, ...,8) representing the drums,
and the remaining 4 sourceg & 9,...,12) representing
the melody and the other instruments. Each set of mixifg separation of speech in multi-source environment foseoi
parameters\; (j = 1,...,12) form an adaptive tensor of sizerghyst speech recognition

2 x 2 x F' x N subject to the time-invariance constraint. The
spectral powerd/; of the bass and the drumg € 1,...,8)

piano).

We have also applied the framework for the problem of
are constrained 7 — wex ng 5 with Gix being adaptive speech separation in reverberant noisy multi-source @mvir

and We* being fixed and pre-trained (using our frameworkg]em' This was done for our submission to the 2011 CHIME

rom ot bass and dm samples rom the RWC mugESh SCPAreien €14 Recounion Cheleoehe core
database [53]. The spectral poweys; of the melody and P 9 P P

the remaining instrumentg & 9,...,12) are constrained to examples are available from a demo web pag¥at

V; = WU GS* ° with W being fixed, andU$* and VI. CONCLUSION
G$* being adaptive. The narrowband spectral patteWwig _ ' _ _

(j = 9,...,12) include 3 x L harmonic patterns modeling We have introduced a general flexible audio source sep-
the harmonic part of. pitches (see [14]). Thé& pitches are aration framework that generalizes several existing sourc
chosen to cover the range of 27 - 4186 Hz (21 - 108 gieparation methods, brings them into a common framework,
the MIDI scale), which is enough to cover the pitch range @nd allows to imagine and implement new efficient methods,
most instruments. All adaptive parameters are initialiwétth ~given the prior information about a particular source sapar
random values, except the mixing paramet®rg(2x2x F'x N tion problem. Besides the framework itself, we proposed a
tensors) that are initialized with the same (rand@m)2 x N New temporal structure for NMF-like decompositions and an
tensor for all frequency bins. We used the ERB quadra@éiginal mixing model formulation combining rank-1 andIful
representation in [18] as signal representation due tdgtsen fank spatial mixing models in a homogeneous way. Finally, we
low-frequency resolution than the STFT, which is desirabrovided a proper probabilistic formulation of local Gaass

for the modeling of bass sounds. Once the GEM algorithfiodeling for quadratic time-frequency representations.

has run, thel2 sources are estimated via Wiener filtering. In the experimental part we have illustrated how to specify
The bass and the drums are reconstructed by summing th@ prior information about a particular source separation
Corresponding source estimates, the meiody is reconed‘w prOblem within the framework, and we have shown that the

choosing the most energetic source among the correspondii@gnework allows implementing existing and new efficient
four (j — 97 ce 12) sources, and the remaining instrumentgource Separation methods. We have also demonstrated that i

by summing the other three sources. some situations our new propositions can improve the source
3) Results:The corresponding source separation script t§eParation performance, as compared to the state-ofithasa
gether with one separation example are available from tRECh combining instantaneous rank-1 and and convolutie fu
FASST web page [25]. Note that this example is a difficulfank can be useful for separation of professionally produce
real-world mixture, which involves several sources mixad imusic recordings, and the newly proposed temporal strectur
the center (bass, singing voice, certain drums) and sevéfy] NMF-like decompositions brings some improvement for

harmonic sources with comparable pitch range (singinga(oi(p"”q separation of underdetermined mixtures of speech and
music sources.

11The bass is modeled as a sum of 4 sources to facilitate inéfain, As for further research, the following extensions could
since we do not know a priori its spatial direction. The drume modeled be introduced to the framework. In a similar fashion as for
as a sum of 4 sources for the same reason, but also becauseirhérack is

often composed of several sources (e.g., snare, hi-hatyalgmetc) that can
be mixed in different directions.

L2http:/ispandh.dcs.shef.ac.uk/projects/chime/chgéemntml
L3http://www.irisa.fr/metiss/ozerov/chimesep demo.html
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spectral power, a flexible structure can be specified for tipeecisely, the joint probability density function é¥ ...}, is
mixing parameters. E.g., the time-varying mixing paramgetedefined as
could be represented in terms of time-localized and locally
time-invariant mixing parameter patterns, thus allowihg t
modeling of moving sources. Another interesting extension
would be to introduce possible coupling between param-
eter subsets, thus allowing, e.g., the representation ef th o o
characteristic spectral patterns of different sourcesiresat C: Model estimation criterion
combinations of eigenvoices [55] or eigeninstruments .[56] Under the above-presented assumptions (see (32) and (35)),
In fact, some parameter subsets corresponding to differéime log-posteriotog p(6,n|X), maximized by the MAP crite-
sources can share common properties, and introducing suicim, writes
a coupling would make the estimation of these parameters c

log p(6,n|X) = log p(X|[0) + log p(0|n) =

more robust.
> log Y (wih,) Ne(Xim: 0, B, pn) + log p(0]n),  (36)
fin

L

p(yl,mv cee 7y.],m>
an(w?rrfmf Hj N, (yj,m; (_)7 vj,fnRj,fn) . (35)

m

APPENDIXA
PROBABILISTIC FORMULATION OF THE LOCAL GAUSSIAN

J . .
where X c_,vi Ry rn. LOg-posterior (36) is
MODEL FOR QUADRATIC REPRESENTATIONS x/n =1 VisfnRy.pn. LOGP (36)

difficult to optimize, due to summations in log-domain. Thus
Here we give a proper probabilistic formulation of the locéollowing the EM methodology [20], we repladeg p(6, 7|X)
Gaussian model (4) for quadratic representations, exptginby its lower bound

the exact meaning of the empirical covariance (3) and aZZ(wana

2 .N
justification of the criterion (16). Frim) 108 Ne(Xm; 0, B n) +log p(0]n),  (37)

fin m

_ using Jensen’s inequality [20], and we get the criterion) (16

A. Input representation with empirical covarianceR . ;,, computed as in (33). Thus,

Following [10], [18], we assume that the considerethe criterion (16) maximizes a lower bound of the log-paster
quadratic TF representation is computed by local averagif@p)-
of a linear TF representation such as a STFT or an ERBNote, that with this formulation we could obtain exactly the
filterbank. We assume that the indexing of the consideré@me updates as those presented in Section IV-B by deriving
linear TF complex-valued representation, hereafter nated 8@ GEM algorithm for the MAP criterion (36). This is because
m=1,..., M, can be in general different from the indexinghe computing of the lower bound (37) is based on the EM
f.n of the quadratic representation (3). Such a formulatigRethodology. However, we prefer to keep the criterion (16),
allows considering linear and quadratic representatioitis wsince it makes the formulation more compact and links it to
different TF resolutions, but also using linear TF reprémen quadratic representations and to the existing works [1I]. [
tions that do not allow any uniform TF indexing, e.g., an ERB
representation with different sampling frequencies iffiedé@nt D. Source estimation

frequency bands or a signal-adapted multiple-window STFTThe sources can be estimated as follows [10], [18]:
[57]. The mixing equation (1) now writes as

N Sy T ana —1
J Yim = Zf n w}};z,lmw}?:’mvjaf”LRj7f7LEx,f'rLX7”’ (38)
Xm = Z"—l Yim; (32) syn . L. . .
J= Wherewﬁ = = 0 is a so-calledsynthesiswindow satisfying
and we re-define the empirical covariance (3) as > fn WinmWinty, = 1. This estimator becomes the MMSE
. _ estimator whenoy" | = wii?, .
Rx,f’n — Z'rn (w?;fm) XmXm» (33)
e ana \2 ACKNOWLEDGMENTS
wherew$)® > 0, satisfyingy_ ,  (w¥)?,,)? = 1, are the coef-
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a neighbourhood of the TF poiry, n) [10], [18].
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