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A General Flexible Framework for the Handling of
Prior Information in Audio Source Separation

Alexey Ozerov,Member, IEEEEmmanuel VincentSenior Member, IEEEand Féderic Bimbot

Abstract—Most of audio source separation methods are de- formulation describing methods applied for different gesbs,
veloped for a particular scenario characterized by the number and this makes it difficult to reuse a method for a problem it
of sources and channels and the characteristics of the sources,as not originally conceived for. Thus, given a new source

and the mixing process. In this paper we introduce a general ti bl th h iStéi
audio source separation framework based on a library of S€Paration problem, the common approach consistgi)n

structured source models that enable the incorporation of prior Model design, taking into account problem formulatiéii)
knowledge about each source via user-specifiable constraints.algorithm design andiii) implementation (see Fig. 1, top).
While this framework generalizes several existing audio source

separation methods, it also allows to imagine and implement

new efficient methods that were not yet reported in the lit-  Current approach

erature. We first introduce the framework by describing the

]
model structure and constraints, explaining its generality, and Q & & _;E}%

summarizing its algorithmic implementation using a generalized

expectation-maximization algorithm. Finally, we illustrate the s;)";;ﬁm__ Model | | Algorithm | |  Algorthm | | Source

above-mentioned capabilities of the framework by applying it problem design design implementation | | separation

in several new and existing configurations to different source
separation problems. We have released a software tool named
Flexible Audio Source Separation Toolbox (FASBplementing a  Proposed flexible framework
baseline version of the framework in Matlab.

.
2
Index Terms—Audio source separation, local Gaussian model, & =z
nonnegative matrix factorization, expectation-maximization Source
separation ————» Specification of constraints Source
pl?oblem from a library separation

I. INTRODUCTION

Separating audio sources from multichannel mixtureslis stFLig. 1. Current way of addressing a new source separatioblg (top)
challenging in most situations. The main difficulty is thaind the way of addressing it using the proposed flexible frasmiefbottom).
audio source separation problems are usually mathemgticall
ill-posed and to succeed one needs to incorporate additiona_l_he motivation of this work is to improve over this time-
knowledge about the mixing process and/or the source signal P

. . consuming process by designing a general audio source sep-
Thus, efficient source separation methods are usually devd] gp y gning a 9 P

oped for a particular source separation problem charaetlarizaratlon _framework that can be apphed.to virtually any seurc
by a certairproblem dimensionalitye.g., determined or under-Separation prqblem by sm_ply selectmg from a I|brar¥ of
determined, certaimixing process characteristics.g., instan- constraints suitable constraints accounting for the sl
taneous or convolutive, and certaource characteristice.g., mfor_mahon ab(_)ut that source (see Fig. 1, bottom). More
speech, singing voice, drums, bass or noise [1]. For exam[ﬁéec'sely' we wish such a framework to be

a source separation problem may be formulated as follows: * general i.e., generalizing existing methods and making

“Separate bass, drums, melody and the remaining it possible to combine them,

instruments from a stereo professionally produced ° :‘(Iemb:e d aIIovxl/)mg easy _|n(:|orporal;||on of th: pr(;orl
music recording” nowledge about a particular problem considered.

Given a source separation problem, one typically must intro 10 achieve the property of generality, we need to find
duce as much knowledge about this problem as possible ifg"€ common formulation for methods we would like to
the corresponding separation method so as to achieve g8§§€ralize. Many recently proposed methods for audio sourc

separation performance. However, there is often no commgfParation and/or characterization [2]-[19] (see alsoajid
references therein) are based on the same so-ciilea
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structure we consider corresponds to a generative modeeoft We have also implemented and released a baseline version
data that is motivated by the physics of the modeled prosessaf the framework in Matlab. The corresponding software tool
e.g., the source-filter model to represent a sound sourcaranchamedFlexible Audio Source Separation Toolbox (FASST)
approximation of the convolutive filter to represent its mg available at [25] together with a user guide, examples of@sa
characteristics. In summary, our framework generalizes tfwhere the constraints are specified) and the corresponding
methods from [2]-[19], and, thanks to its flexibility, it soes audio examples. Given a source separation problem, one can
applicable in many other scenarios one can imagine. choose one or few suitable constraint combinations based on
His/her expertise and on the a priori knowledge, and then test

we |r_nplemer_1t _our framework using a generahzea” of them using FASST so as to select the best one.
expectation-maximization (GEM) algorithm [20], where the . oo . i
In summary, the main contributions of this work include

M-step is solved by alternating optimization of different .

parameter subsets, taking the corresponding constraitis i * & general modellr}g structure,

account and using multiplicative update (MU) rules inspire * @ general estimation algorithm, _ _

from the nonnegative matrix factorization (NMF) methodplo ~ * NeW spectral an temporal structures (time-localized pat-
(see, e.g., [9]) to update the nonnegative spectral parasnete  (€MS, narrowband spectral patterns), . .
Such an implementation is in fact possible thanks to the Gaus® the implementation and distribution of a baseline version
sianity assumption leading to closed form update equations. Of the framework (the FASST toolbox [25]).

The idea of mixing GEM algorithm with MU rules was already The rest of this paper is organized as follows. In Section II,
reported in [21] in the case of plain NMF spectral models arfkisting approaches generalized by the proposed framework
rank-1 spatial models, and we extend it here to the newsye discussed and an overview of the framework is given.
proposed structures. Our algorithmic contribution cassig Sections Il and IV provide a detailed description of thenfea

(4) identifying theGEM-MU approach as suitable thanks to thavork and its algorithmic implementation. Thus, Section II
implementability of the configurable framework, the sirojiji  is devoted to a reader interested in understanding the main
of the update rules, the implicit verification of nonnegativprinciples of the framework and the physical meaning of the

constraints and its good convergence speed;(anderiving objects, and Sections Ill and IV to one willing to go deeper
of the update rules for the new model structures. into the technical details. The results of a few source sejoar
L , ) experiments are given in Section V to illustrate the flexipil

Our approach is in line with thbrary of cor_nponent:by of our framework and its potential performance improvement

Cardo_soet al [22]_dev_e|oped for the separatlon_ of Compo'compared to individual approaches. Conclusions are drawn i

nents in astrophysical images. However, we consider amn%ection VI,

audio-specific structures inspired by [1], [23] for sourpes

tral power, as opposed to the unique block structure in [22]

based on the assumption that source power is constant in sonl1|e

pre-defined region of time and space. In that sense, our frame

work is more flexible than [22]. Besides the framework itself, Source separation methods based on the local Gaussian

we propose a new structure for NMF-like decomposition®odel can be characterized by the following assumptions [1],

of source power spectrograms, where the temporal enveldgk [5], [13], [19]:

associated with each spectral pattern is represented as &) Gaussianityin some time-frequency (TF) representation

nonnegative linear combination of time-localized tempped- the sources are modeled in each TF bin by zero-mean

terns. This structure can be used to ensure temporal cagfinu Gaussian random variables.

but also to model more complex temporal characteristiash su 2) Independenceconditionally to their covariance matri-

as the attack or decay parts of a note. In line with time-  ces, these random variables are independent over time,

localized patterns we include in our framework the so-chlle frequency and between sources.

narrowband spectral patterns that allow constrainingtsglec  3) Factorization of spectral and spatial characteristics:

patterns to be harmonic, inharmonic or noise-like. These for each TF bin, the covariance matrix of each source

structures were already reported in [14], [15], but only ase is expressed as the product of spatial covariance

of harmonic constraints. Moreover, they were not applied fo  matrix representing its spatial characteristics and ascal

source separation so far. As compared to [24], where some spectral powerepresenting its spectral characteristics.

preliminary aspects of this work were presented, we here4) Linearity of mixing:the mixing process translates into

present the framework in details, describe its implememmati addition in the covariance domain.

and extend the experimental part illustrating the framéwor

Moreover, we propose an original mixing model formulatio

that allows the representation and the estimation of rafig-1

and full-rank [19] (actually any rank) spatial mixing moslel

in a homogeneous way, thus enabling the combination ofThe state-of-the-art approaches [2]-[19] cover a wide eang

both models within a given mixture. Finally, we provide #f source separation problems and models expressed via

proper probabilistic formulation of local Gaussian modgli Particular structures of local Gaussian covariancesudio:

for quadratic time-frequency representations [18] thapsuts 1) Problem dimensionality:Denoting by I and J, re-

and justifies the formulation given in [18]. spectively, the number of channels of the observed

RELATED EXISTING APPROACHES AND FRAMEWORK
OVERVIEW

A. State-of-the-art approaches based on the local Gaussian
model
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mixture and the number of sources to separate, tbstimation [27], [28] does not satisfy the source indepande
single-channel(/ = 1) case is addressed in [6], andassumption. However, it is known to perform poorly compared
underdeterminedl < I < J) and (over-)determined to local Gaussian model-based separation, as it was shown
(I > J) cases are addressed in [5] and [2], respectivein [13], [18] for convolutive mixtures’ and demonstrated
2) Spatial covariance model: Instantaneoand convolu- through the signal separation evaluation campaigns SISEC
tive mixtures of point sources are modeled @nk-1 2008 [30] and SISEC 2010 [29], where for instantaneous
spatial covariance matrices in [5] and [3], respectivelynixtures local Gaussian model-based approaches gave bette
In [19] reverberant convolutive mixtures of point sourcegesults than theracle (using the ground truth) binary masks.
are modeled byfull-rank spatial covariance matricesThe methods proposed in [31], [32] are also based on Gaussian
that, in contrast to rank-1 covariance matrices, canodels albeit in the time domain. Notably, time sample-tase
account for the spatial spread of each source induc&MMs and time-varying autoregressive models are congidere
by the reverberation. as source models in [31] and [32], respectively. Howeves, th
3) Spectral power modelSeveral models were proposechumber of existing time-domain structures is fairly rediice
for the spectral power, e.gunconstrainednodels [10], Our TF domain models make it possible to account for
block constantmodels [5], Gaussian mixture modelshese structures by means of suitable constraints ovetrapec
(GMM) or hidden Markov models (HMM) [2], Gaus- power, while allowing their combination with more advanced
sian scaled mixture models (GSMM) or scaled HMMstructures. There are also many works on NMF and its exten-
(S-HMM) [13], NMF [4] together with its variants, sions [33]-[38] and on GMMs / HMMs [39], [40] based on
harmonic NMF [14] or temporal activation constraineschongaussian models of the complex-valued STFT coefficients
NMF [9], and source-filter models [16]. These model$hese models are essentially covered by our framework in
are suitable for the representation of different typdabe sense that we can implement similar or equivalent model
of sources, for example GSMM is rather suitable fostructures, albeit under Gaussian assumptions. The befefit
a monophonic source, e.g., speech, and NMF for lacal Gaussian modeling is that it naturally leads to clesed
polyphonic one, e.g., polyphonic musical instrumenform expressions in the multichannel case and allows the
[13]. modeling of diffuse sources [19], contrary to the models in
4) Input representationWhile the most of the considered[33]-[40]. Finally, according to Cardoso [41], nongaussia
methods use the short time Fourier transform (STFT) asd nonstationarity are alternative routes to source sépara
the input TF representation, some of them, e.g., [14uch that nonstationary nongaussian models would offés it
[15], [18], use the auditory-motivated equivalent rectarbenefit compared to nonstationary Gaussian models in terms
gular bandwidth (ERB) quadratic representation. Moref separation performance despite considerably great@r co
generally, we consider here bdihear representations putation cost.
where the signal is represented by a vector of complex-
valued coefficients in each TF bin, as well gsadratic .
. . . . ..C. Framework overview
representationswhere the signal is represented via its
local covariance matrix in each TF bin [26]. We now present an overview of the proposed framework

Table | provides an overview of some of the local GaussidACUSINg on the most important concepts. An exhaustive de-
model-based approaches considered here, where the spadiPtion is given in Sections Il and IV. .
ficities of each method are marked by crossesWe see The framework is based on a flexible model described by
from Table | that a few of these methods have alreadjprameterd = {6;},, wheref; are the parameters of the
been combined together, for example GSMM and NMF wefgth source { = 1,....J). Eachd; is split in turn into nine -
combined in [8], and NMF [9] was combined with rank-Parameter subsets _acco_rdlng to a fixed structure, as dedcrib
and full-rank mixing models in [13] and [17], respectivelyP€low and summarized in Table II. _
However, many combinations have not yet been investigated.l) Model structure:The parameters of-th source |nc;|ude
Indeed, assuming that each source follows one ofithpatial @ COMPplex-valued tensoA; modeling its spatial covariance,
covariance models and one of thespectral variance models@nd €ight nonnegative matriceg;, ..., 0;0) modeling its
from Table I, the total number of configurations equals taPectral power over all TF bins. _

2 x 247 for .J sources (in fact much more since each source The spectral power, denoted &;, is assumed to be the
can follow several spectral variance models at the same tim@roduct of arexcitation spectral poweV3*, representing, e.g.,

while Table | reports onlyL6 existing configurations. the excitation of the glottal source for voice or the plugkin
of the string of a guitar, and &lter spectral powerV?,
representing, e.g., the vocal tract or the impedance ofuftarg
B. Other related state-of-the-art approaches body [23], [35]. While such a model is usually called source-
While the local Gaussian model-based framework offeféter model, we call it hereexcitation-filter modeln order to
maximum of flexibility, there exist some methods that do n@tvoid possible confusions with the “sources” to be sepdrate
satisfy (fully or partially) the aforementioned assumptand
are thus not strictly covered by the framework. Nevertrgles 'Binary masking-based approaches can still be quite powésfutonvo-
. . . lutive mixtures, as demonstrated in [29]. Thus, a good way terd is
our framework allows the implementation of similar struet

i - h probably to use them to initialize local Gaussian model-baggproaches, as
Let us give some examples. Binary masking-based souic® done in [13], and as we do in the experimental part.
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Reference [[[71 6] [81 [16] T[4 T[4 [15] [O [B] [M1] [13] 191 [18 [171 BT [2
Problem single-channel X X X X X X X
h ) . underdetermined X X X X X X
dimensionality (over-)determined X X
Spatial rank-1 instantaneoug X X
covariance rank-1 convolutive X X X
model full-rank X X X
unconstrained X X
block constant X X
Spectral GMM / HMM X X X
- GSMM / S-HMM X X X
variance
model NMF ] X X X X X
harmonic NMF X X
temp. constr. NMF X X
source-filter X X
Input T Tinear [T x X X X X X X X X X X X X
representation | quadratic il X X X
TABLE |

SOME STATE-OF-THE-ART LOCAL GAUSSIAN MODEL-BASED APPROACHES FOR AUDIO SOURCE SEPARATION

The excitation spectral pow&f$* is further decomposed as In summary, as it will be explained in details in Sec-
the sum ofcharacteristic spectral patternE$* modulated by tion IlI-E, the spectral power of each source obeys a three-
time activation coefficient®¢* [4], [9]. Each characteristic level hierarchical nonnegative matrix decomposition citice
spectral pattern may be associated for instance with ofsee equations (9), (10), (12), (13) and Figures 3 and 4 Below
specific pitch, so that the time activation coefficients denoincluding at the bottom level the eight parameter sub¥eéts,
which pitches are active on each time frame. In order to furthU;TX, G¢, HYY, W?, Ugt, th and H§t (see Eg. (13)).
constrain the fine structure of the spectral patterns, they a

represented as linear combinations redrrowband spectral __Parameter subsets | Size | Range
ex ; ; ex 0j1=A, mixing parameters IXR; XxFXN cC
patterns W§* [14] Wlth weights U¢ . These narrowbano_l 7= vd;x ex._nartowband spectral pafterris F L%x e
patterns may be for instance harmonic, inharmonic or Noises, ; = U7 [ ex. spectral pattern weights | Lo° x K= cRy
like and the weights determine the overall spectral enelop 6;.4 = G7* | ex. time pattern weights K X M7~ ERy
; ; a5 = H™ ex. time-localized patterns MS* x N € Ry
Fol!owmg Fhe Sam.e I(.jea' we .p.ropose here to repr_esent " #5,6 =W | ft narrowband spectral patterng F' x LT € Ry
series of time activation coe_fﬂuenlﬁ?" as sums oftlme— 6,7 = U" | T spectral pattern weights T x KT cR,
localized patternsH ™ with welghtsG§X. The time-localized 4, =G | f. time pattern weights KX MY ER,
patterns may represent the typical temporal shape of thesnoté;.o = H | ft time-localized patterns M*x N ERy
while the weights encode their onset times. Different terapo TABLE Il
fine structures such as continuity or specific rhythm pasternParameTer sussetsd, , (j = 1,...,J, k= 1,...,9) ENCODING THE
may also be accounted for in this way. Note that temporal STRUCTURE OF EACH SOURCE

models of the activation coefficients have been proposed in

the state-of-the-art, using probabilistic priors [9], ]34ote-

specific Gaussian-shaped time-localized patterns [42yiner ~ 2) Constraints: Given the above fixed model structure,
structured TF patterns [33]. Our proposition is compleragnt prior information about each source can now be exploited by
to [9], [34] in that it accounts for temporal behaviour in thé&pecifying deterministic or probabilistic constraintseoeach
model structure itself in addition to possible priors on thparameter subset of Table Il. Examples of such constraints
model parameters. Moreover, it is more flexible than [9]][34are given in Table Ill. Each parameter subset can be fixed
[42], since it allows the modeling of other characteristitan (i.€., unchanged during estimation), adaptive (i.e. yftitted
continuity or sparsity. Finally, while it can model similaF to the mixture) or partially adaptive (only some parameters
patterns to [33], it involves much fewer parameters, whichithin the subset are adaptive). In the latter two cases, a

typically leads to more robust parameter estimation. probabilistic prior, such as a continuity prior [9] or a sgigy-
inducing prior [4], can be specified over the parameters. The

The filter spectral powet’Vﬁ't is similarly expressed in mixing parametersA; can be time-varying or time-invariant
terms of characteristic spectral patteEFﬁ modulated by time (in Table Ill the latter case is only considered), frequency
activation coefficients [16], which are in turn decomposedependent for convolutive mixtures or frequency-indeend
into narrowband spectral patterfwgt with weightsUgt and for instantaneous mixtures. Mixing parametess can be
time-localized patterng{ﬁ,t with weights Gt, respectively. given a probabilistic prior as well. E.g., it can be a Gaussia
In the case of speech or singing voice, each characteriqui¢or with the mean corresponding to the parameters of a pre-
spectral pattern may represent the spectral formants ofskmed direction and with the covariance matrix represgntin

given phoneme, while the plosiveness and the sequence of _
he fixed parameters can be either set manually or learnedebeiod

pronounced phonemes. may be.enCOded by the time'loca”%d; some training data. Learning is equivalent to model patanestimation
patterns and the associated weights. over the training data and can thus be achieved using our Warke
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a degree of uncertainty about this direction. The rddk that covers only the library of constraints summarized in
(1 < R; < I) of the spatial covariance is specifiable vialable Il for mono or stereo recordingd & 1 or I = 2).
the size of tensoA; (see Table IlI). Each parameter subsefhis restriction to up tad = 2 channels enables the use of a
may also be constrained to have a limited number of nonze&xx 2 matrix inversion trick described in [13] that leads to an
entries. For instance, every column Gf* and / orGg-t may efficient implementation in Matlab. However, the framework
be constrained to have a single nonzero entry accounting fizelf is neither restricted to the constraints in Tablenidir to
a GSMM / S-HMM structure or a single nonzero entry equahono / stereo mixtures.
to 1 accounting for a GMM / HMM structure.

I11. DETAILED STRUCTURE AND EXAMPLE CONSTRAINTS

Parameter subsets || Constraint | Value In this section we describe in details the nine parameter

ex Tyex (wex pyex ' fixed . )
sdf,tvgjjﬁ,ggt : gf{ HT, | degree of adaptability| "part adapt™—~  Subsets modellng each source and some example constraints.
i "adapt ' We also introduce the detailed notations to be used in the rest
mixing stationarity ‘time_inv’ of the paper.
A - ‘conv’
mixing type st
TR A. Formulation of the audio source separation problem
G, G} temporal constraint | ' gs\’mvl ’ f"g"xw We assume that the observBaghannel time-domain signal,
’ called mixturg x(t) € R, t = 1,...,T, is the sum ofJ
TABLE 11l multichannel signaly; () € R?, calledspatial source images
EXAMPLES OF USERSPECIFIABLE CONSTRAINTS OVER THE PARAMETER [1] [22] ’
SUBSETS ! ’ 7
x(t) = yi(t). 1
M= _,%® ()

The goal of source separation is to estimate the spatial sourc
3) Estimation algorithm:Given the above model structureimages y;(t) given the mixturex(t). This now common
and constraints, source separation can be achieved in #ggnulation is more general than the convolutive formualati

steps as shown in Fig. 2. First, given initial parameter @su in [13], which is restricted to point sources [1], [22].
the model parameterg are estimated from the mixturX

using an iterative GEM algorithm, where the E-step consisss Input representation

in computing some quantity’ called conditional expectation 5 ,gio signals are usually processed in the TF domain,
of the natural statisticsand the M-step consists in updating theye 1o their sparsity in this domain. Two families of input
parameterg givenT by alternating optimization of each of therepresentations are considered in the literature, nafimegr

J x 9 parameter subsets. This allows taking any combinati?m] and quadratic [18] representations.

of constraints specified by user into account. Second, givery) | inear representationsAfter applying a linear complex-
the mixtureX and the estimated model parametérsource yqjyed TF transform, the mixture (1) becomes:

estimatesY are computed using Wiener filtering. 7
Xfn = Z - Yifn (2)
Parameﬁgr initialization Mixture J=1
8 Sg‘?c'f'ed by user < wherex;,, € C! andy; s, € C! are I-dimensional complex-
it valued vectors of TF coefficients of the corresponding time-
Model estimation Source esfimation domain SignaIS; andf = 1’ o ’F and n = 1’ T N
E-step denote respectively frequency bin and time-frame indexs Th
T S 9 - formulation covers the STFT, that is the most popular TF
p of natural statistics Wiener filtering representation used for audio source separation.
2) Quadratic representationsA few studies have relied on
M-step guadratic representations instead, where the signal isidedc
Update | T [Update | T T [pdae Y in each TF bin by its empirical x I covariance matrix [5],
011 [, 61,2 ;’ 7 01K Estimated [10], [18] R
sources Rx,fn — E[anXJI;InL (3)
\ ’ i 0= {ej,k};*,fil WhereE[-] denotesempirical expectatiorcomputed, e.g., by
& Constraints specified by user Model parameters local averaging of the STFT [5], [10] or of the input of an ERB

filterbank [18]. Note that linear representations are specia
Fig. 2. Overview of the proposed general algorithm for patemestimation cases O_f quadratic r(_epres_entatlons WRb‘f" " xf".XJIg”'
and source separation. Quadratic representations include additional infornratibout
the local correlation between channels which often in@eas
the accuracy of parameters estimation [10]. In the follayin
o ) we use the linear notations;,, andy; r, for simplicity and
D. FASST toolbox: Current baseline implementation include the empirical expectation when appropriate. A more
The FASST toolbox (released and available at [25]) impleigorous derivation of the local Gaussian model for quadrat
ments so far a baseline version of the framework in Matlalepresentations is given in Appendix A.
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C. Local Gaussian model E. Spectral power structure and example constraints

We assume that in each TF bin, each soyrge, € C! is To model spectral power we use nonnegative hierarchical
a proper complex-valued Gaussian random vector with zeaadio-specific decompositions [23], thus all variablesont

mean and covariance matr®y ; s, = v; R 1y duced in this section are assumed to be non-negative.
’ N (0.0 o R 4 1) Excitation-filter model: We first model the spectral
Yign ~ Ne (0,05, Ry fn) ) power v; ¢, as the product of an excitation spectral power

where the matrixR; s, € C/*! called spatial covariance v$%, and a filter spectral power!';,, [23], [35]:

matrix represents the spatial characteristics of the source and ox ft

of the mixing setup, and the non-negative scalaf, € R Uifn = Vi fn X Vj fro ®)

called spectral powerrepresents the spectral characteristiapat can be rewritten as

of the source [1]. Moreover, the random vectorsy, are o N

assumed to be mutually independent give ; r,,. Vj=V; 0Vy, ©)
where © denotes element-wise matrix multiplication and

D. Spatial covariance structure and example constraints  V; £ [v; nlf.n, VS £ [0, 5.0, VIS I 1700

. ; J LA
1) Structure: In the case of audio, it is mostly interesting Figure 3 gives an example of the excitation-filter decompo-

to consider either rank-1 spatial covariances represgiitin Sition (9) as applied to the stpectfral- power of several guitar
stantaneously or convolutively mixed point sources with lo"0tes. In this example the filteW is time-invariant with
reverberation [13] or full-rank spatial covariances maugl '0WPass characteristics, and the excitatisiy* is a time-
diffuse or reverberated sources [19]. More generally, we a&@'Ying combination of few characteristic spectral patern
sume covariances of any positive rank. etk R; < I be However, in the most_ of realls_tlc situations both th_e e_mm_a
the rank of covarianc&®,. ;,,. This matrix can then be non- and the_ f||t(-_3r are tl_me—varymg. Thus,_the. excnauon-ﬂlter
uniquely represented ds model with time-varying excitation and filter is a physigall
motivated generative model that is suitable for many audio
Rj = Aj,anffm (5) sources. While time-invariant filters were considered,, émg.
[7], [35], some approaches consider time-varying filtei§],[1
[43]. We believe that our framework opens a door for further
investigation of time-varying filters.
2) Excitation power structure: The excitation spectral
power [v5%. |7 is modeled as the sum df5* characteristic
Sjirfn ~ Ne (0,05 ) - (6) spectral patetxernétejj‘fk]f modulated in time byp$s,, ie.,

ex _ Kj eX ex i i £
With these notations the model defined by (2) and (4) & fn = 2ok—1 Dj knC5.fk [9]. Introducing the matrice®; =
equivalent to the following mixture oR = Z}']:1 R; point  [P{nlkn andEF = [e9%, ] it can be rewritten as

whereA; r, is anl x R; complex-valued matrix of rank;.
Moreover, for every sourcg and for every TF binf,n) we
introduce R; independent Gaussian random varialdesy,
(r=1,..., R;) distributed as

sub-sources ;. ¢y: Ve = ES*PSX, (10)

Xfn = AfnSfn, (™ 1n order to further constrain the spectral fine structure of
wheres;,, = [slem o 7S§fn]T is an R x 1 vector of sub- the_ spectral patterns, they are represented as linear eombi
source coefficients withs; ;, = [s;1/n,- -, 551, /n]"> and nations of L7* narrowband spectral patteris$, |, [14],

] ; T ! . Le* ;
Ajn=[A1n,.., Ay pa]is @anl x R mixing matrix. Thus, ie., e, = 3,7 u$,ws,, whereu, are non-negative

for a given TF bin(f, n) our model is equivalent to a complex-weights. The series of fime activation coefficients,, are
valued linear mixture ofR sub-sources (7), where the subalso represented as sums > time-localized patterns, i.e.,

. — . i I Mex

SOUrCess;r, n (r 1,...,R;) associated with the samelgg?X = SN hex gex. Altogether we have:

sourcej share the same spectral power (6). We suppose th& I

the rankR; is specified for every sourcg o ZKj-x ZM;X heX gex ZLEX w, w, (1)
2) Example constraintstn our baseline implementation we 7/ k=1 Lam=1 DIIRM L gy g TR

Zssume tjk;at thl\i spatial covariances ahre tf|me-|nvar|ant, i€d, introducing matricesH A B,y G A
ifn = Aj s. Moreover, we assume that for every sourc A A ;
j.fn 3. y B mlim, U 2 [uS]ix and WS 2 [ws ]y, this

j the spatial parameterd; can be either instantaneous (i.e
constant over frequency and real-valuedl; s, = A;, €

R>*F3) or convolutive (i.e., frequency-dependent), and either V5 = WU G HS™. (12)
fixed, adaptive or partially adaptive. Some examples of con-
straints are given in Table IlI.

‘equation can be rewritten in matrix form as

Figure 4 shows an example of the excitation structure

V= WU G HS™, as applied to six notes played on a
3Such anR;-rank covariance matrix parametrization was inspired by,[22KYlophone. In this example, the narrowband spectral pattern

whereR;, ,,, intended to model correlated or multi-dimensional compor,lentﬁ?\/';:X include66 harmonic patterns modeling the harmonic part

h : _ ) H i - i
is parametrized aR; ;= Aj nPj pnAj g, where Py, is afull-  of 71 notes and) smooth patterns modeling the attacks, and
rank R; x R; positive matrix. However, our parametrization (5) is les

redundant and it is applied for audio source separationnanhdor separation ihe matrix Of ngghtSU?X is very sparse so as to eliminate
of components in astrophysical images, as in [22]. invalid combinations of narrowband spectral patterns.{(&g
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characteristic spectral pattern should not be a combimatio Pham et al [3] assume rank-1 spatial covariances and
of narrowband spectral patterns with different pitched)e T constant spectral power over time-frequency regions @& %iz
time-localized patternBl* include decreasing exponentials tdrequency binx L frames. This structure can be implemented
model the decay part of the notes and discrete Dirac furstion our framework by choosing rank-1 adaptive spatial time-
to model note attacks, and the matrix of weiglt$* is sparse invariant covariances, i.eA; is an adaptive tensor of size
so as not to allow the attacks (smooth spectral patterns)2tox 1 x F' x N subject to the time-invariance constraint, and
be modulated by exponential temporal patterns and not donstraining the spectral power0; = W¢* G5* H}* 5 with
allow harmonic note parts (harmonic spectral patterns)eto BV$* being the " x I’ identity matrix, G a F' x [N/L]
modulated by Dirac temporal patterns. Such a structure isadaptive matrix, andi$* the [N/L] x N fixed matrix with
simplified version of the conventional attack-decay-susta entriesh$%,, = 1 for n € L, andh$s,,, = 0 for n ¢ L,
release model (see, e.g., [44]). More sophisticated strest where £,,, is the set of time frames belonging to the-th
where, e.g., the sustain and release parts are modeledblmck.
exponentials with different decrease rates can be impleaden Multichannel NMF structures with point source (rank-1)
as well within our framework. [13] or diffuse source (full-rank) [17] models can be rep-

3) Filter power structure:The filter spectral powelv}’;, ]  resented within our framework a¥; = W GS* 5 with
is represented using exactly the same structure as in (11). W$* and G$* being adaptive matrices of sizé x K$* and

4) Total power structure:Altogether the spectral power K§* x N, respectively, andA; being an adaptive tensor of
structure can be represented by the following nonnegatigge2 x 1 x F' x N or 2 x 2 x F x N, respectively, subject
matrix decomposition (see also Table II) to the time-invariance constraint.

V, = (WU GFHS) @ (Wﬁt U;t Gg_t Hgt) . (13) Excitation-filter model-based separation of the main mjelod

vs. the background music from single-channel recordings by

Each matrix in this decomposition is subject to specific cofyyrriey et al. [16] can be represented within our framework
straints presented below. _ _as follows. Mixing parameterd,; (j = 1,2) are assumed to

5) Example constraintsEach matrixd; x (k =2,...,9) N form a tensor of sizd x 1 x F x N with all the entries fixed
(13) can be fixed, adaptive or .par.tially. fixed (see Tab. IM). lig 1. The background music spectral pow®r is modeled
the latter two cases, a probabilistic prief; x[n;.1), SUCh @S exactly as in the case of the multichannel NMF described in
a time continuity prior [9] or a sparsity-inducing prior [84n  the previous paragraph. The main melody spectral power is
be set. We d_enote by; 1 t_he hyperparameterf the prior  constrained tov, — (WS GS9) © (WL GE) 5 with W
that can be fixed or adaptive as well. being fixed andGS*, W and G being adaptive. Without

To coverdiscrete state-based modeisch as GMM, HMM, - 5y sypplementary constraints this model is equivalenbéo t
and their scaled versions GSMM, S-HMM, every columf,sqe| referred asnstantaneous mixture model [16], and
85 = 957k ]k Of matrix G$* (and similarly for matrixGJ)  applving GSMM constraints to both the matric€s* and

may further be constrained to have either a single nonz%%t this model is equivalent to the model referred@SMM
entry (for GSMM, S-HMM) or a single nonzero entry equal tg, [16].

1 (for GMM, HMM). Let ¢5%, € {1,..., K5*} be the index
of the corresponding nonzero entry and = [q57, ] the

resultingstate sequenck The prior distribution of); , = G* IV. ESTIMATION ALGORITHM

with hyperparameters; , = A is defined as In this section we describe in details the proposed algorith
M for the estimation of the model parameters and subsequent
p(O5alnja) = p(aIAT) =TT 7 A ee . (14)  source separation.
where A" = A% lkrr (A5 = P(g5, = K655, 1 = k)

denotes the{;* x K> state transition probability matrix with A, Model estimation criterion

ex 1 1 i ex — \ex 1
A?”Eé“i\ﬂtﬂ/?mg gg&p&nien;_% (ie., é\ykklg /\tjﬁk/) dm thet ca?et To estimate the model parameters, we use the stan-
0 or - As discussed in [12], the discrete sta €dard maximuma posteriori (MAP) where the log-likelihood

based models are rather suitable for monophonic sourags (Eibgp(xfn\ﬁ) in every TF point is replaced by its empirical

,S\:nMg;n%e\gffpg;ixgg :;[rl:nrgigtzbg\rlggﬁ;g € fg?csgligﬁ?%xpectatio@[105 p(xyn|0)] according to the empirical expec-
sources (e.g., piano or guitar). ation operatorE[-] introduced in Section 1I-B2 [10], [18].

Mathematically rigorous derivation of this criterion isvgn
F. Generality in Appendix A. This criterion consists in maximizing the

) _,_modified log-posteriorZ(#,7|X) = E[log p(d,n|X)], where

It can be easily shown that the model structures considergd__ {Xn}.n, OVer the model parameteésand the hyper-

in [2]—[1.9] are partlc.ular instances of the proposed gdner, rameters) — {Uj,k}j’;f:l- This quantity can be rewritten,
formulation. Let us give some examples. ’

“Note that we consider here the state sequefteas a parameter to be  °Note that any set of matrices can be virtually removed from the
estimated, and not as a latent variable one inteégrates owdt, ig usually SPectral power decomposition (13). For example, one can robigi =
done for GMM / HMM parameter estimation. This is indeed to aohithe ~W$* GS* H* by assuming that the matrica® i, U, GI* and H' are
goal of generality by making the E-step of the GEM algorithrdeipendent Of SizesF" x 1, 1 x 1, 1 x 1, and1 x N, and that all their entries are fixed
of the specified constraints. to 1, and thatUjX = IK?X is the K]e.X X K]e.X identity matrix.
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Fig. 3. Excitation-filter decomposition as applied to thectf@ power of several guitar note6A): source spectral powe(B): model spectral power
V, = V;x ® V§t, (C): excitation spectral poweV;X, (D): filter spectral power§°.
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Fig. 4. Excitation power decompositidvi¢* = Wj.x U;X G?x Hj" as applied to the spectral power of several xylophone n@#gssource spectral power,
(B): excitation spectral powe Je.x = E;:X j.x, (C): characteristic spectral patteris* = ijU;’fx, (D): spectral pattern activatiol3<* = G;XHjx, (B):
narrowband spectral patterfW;X, (F): spectral pattern Weigh[@?x, (G): temporal7 pattern weight@;x, (H): time-localized pattern ;X.
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using (2) and (4), as: b) Complete data log-posterior and natural statistics:
We choseZ = {X,S} as the complete data, whefe =
L(0,7]X) < L(X|0) + log p(6]n) = {sfn};,,» and the modified log-posterior of the complete data

- can be written as:
>, Ellog Ne(xgn[0, B )] + log p(0]n),  (15)

. R R L(0,[X,8) = L(X|S;6) + L(S6) + log p(0]n)
where By pn £ 3771 0 iRy pns CE(X|e) £ Ellog p(X]6)] c Yt [gglfn (Ro.jn — AR ()
is the modified log-likelihoodand “=" denotes equality up to n ’

a constant. Using (3), the resulting criterion can be exqa@s

H H
as [13], [18]: ~Ruxs, fnAf, + ApnRs pnAY, )| — fz 10g | S, fn|

J,9
* ok . -1
0* n* = argr%lzm [tr (zx, fnRx,fn) +10g|2x,fn|} _ZijZdIS(gj,fn\vj,fn) + ) logp(0;klnk), (18)
J ,T
where d;s(zly) = y —log ¥ — 1 is the lItakura-Saito (IS)

J,9 Jk=1
- Zm:l log p(0,k[nj,k).  (16)
We see that this criterion does not rely any more on the Iinedl}/ergence [Plv;.r» are the entries of matri¥; specified by

. . : g 3), andRy ., R 'R and¢; s, are defined as:
mixture representatio, but only on the resulting empirical ) g Boxs,fns R, pn @A o
mixture covariance$Rx ¢y} f.n- Ry fn 2 Ru fn = E[anX?nL Rys fn = E[ansfn], (19)

~ R; ~
Ropn £ Elspnsfn), & % > Ellsjrpnl?). (20)
B. Model estimation via a GEM algorithm /
_ Jo o It can be easily shown from (18) that the family of functions

Given the model parametets = {ej,k}j,’kﬂ(SpeC'f'Gd N fexp £(X,8]0)}s forms anexponential family[7], [20], and
Table Il and the hyperparametens= {T;j,k}i’,ﬁ:l together the setT(X,S) = {Rox,fn, Rxs,fns R fn} 4, 1S @ natural
with user-defined constraints and initial values, we migéni (sufficient) statistic§7] for this family. Given this result, we
the criterion (16) using a GEM algorithm [20] that consists iderive a GEM algorithm that is summarized below.
iterating the following expectation (E) and maximizatid)(  2) Conditional expectation of the natural statistics (Egt

steps (see Fig. 2): The conditional expectations of the natural statisii¢X, S)
« E-step: Compute the conditional expectation of the scare computed as follows:
callednatural (sufficient) statisticgjiven the observations 5 5 H
xs,fn = X ‘ILQ ’ 21
X and the current parametefis. RAS’f Rocs ~osfn . (1)
« M-step:Given the expectation of the natural statistics, up- Rs,jn = = Qs tnRux 1n Qs + (Ir — Qs A 1) s (22)

date the parametetsn so as to increase the conditional

expectation of the modified log-posterior of the s;o—calle\ghere

complete datg20]. This step is implemented via a loop Q - 3. . A1 (23)
over all.J x 9 parameter subsefs ;. specified in Table II = S

X ke . o H
Each subset, depending whether it is adaptive (partially Txopn = AgnZspnApn + 2o, fns (24)
adaptive) or fixed, is updated (partially updated) or not 3sn = diag ([¢,.,fn]f:1) , (25)
in turn using suitable update rules inspired by [9], [13],
[14]. and ¢, r, = v, pn if and only if » € R;, whereR; denotes

the set of sub-source indices associated with sogritethe

. . _ _ i vectorsy,, (see section IlI-D).
a) Additive noise and simulated annealinds explained 3) Update of the spatial covariances (M-step):

in [13], where a similar GEM algorithm IS .used, the mixing a) Unconstrained time-invariant mixing parameters:
paratr)netersxfn (seke. Eq. (7)) gpdgtedl V'alth'stM algorithMye first consider the case where there are no probabilistic
can become stuck into a suboptimal value. To overcome trﬂ)'ﬁors specified for the mixing parametefd\ ;},; and these
issue, we use a form aimulated annealingroposed in [13], parameters are time-invariant. Let c {1 R} be a
which consists in adding to (7) a noise term whose varianced§yset of indices of sized _ #(A) BeIéJ;A./.;/ve denote
decreased by a fixed amount at each iteration. Thus, we assyme, 4 ©4 SA e . :

X . Lo , R and R the matrices of respective sizes
that there is aJ + 1-th source with full-rank time-invariant fnr T oxs, g s,/ P

. . 5 AMaNt 1« D, I x D and D x D, that consist of the correspond-
spatial covarianc&, , = oyl; = Ryi1,p, and trivial ing entries of the matricesA ;,,, ﬁxsin and Rq s, ie.,
spectral power«(;+1 ., = 1) that represents a controllable,; _ (A (i, 7)) RA _ [R (i 7“)]71
additive isotropic nois®,, =y ji1,r»- Introducing this noise f”AA AL i=Lredr Thxs, fn xs,fril Hli=1,reAr
component leads to considering the noise covaridhgg,, as and Ry, = [Rs pn(r,r")]rrea. We also denote byd =

s, fn
part of the model parametefisand to adding it to the mixing 11+ -+ {t}\A the complementary set. Leét C {L...., R}
equation (7):

(resp.Z C {1,..., R}) be the indices of convolutively (resp.
instantaneously) mixed sources with adaptive mixing param
Xfn = AfnSin +byn. (17)  ters. With these conventions the mixing parameters aretegda

1) Preliminaries:
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as follows®: to converge much more quickly than the GEM algorithm in
—1 [13].
AS, = Z {R)C(s P Aaﬁﬁgfﬁ} Zﬁg 4 b) Discrete state-based constraintset us now assume
7 " - 7 that; , = G$* is subject to a discrete state-based constraint

(26) (similarly for 0,5 = G?). Note that when time-localized
~1 patterns H* (or Hg-t) have non-zero overlaps in time of
AZ — Z{ﬁz _ _AZR? } R ZAI maximum lengthL (see, e.g., Fig. 4) the model becomes
s equivalent to an HMM of the ordek (in case of GMMSs) or
27) of the orderL + 1 (in case of HMMSs). In order to avoid the
complications of requiring consistency of overlappingt@ats
b) Other constraints: Estimating time-varying mixing (which would introduce temporal constraints somewhat rem-
parameters without any priors does not make much sensqrgcent of an HMM), in our baseline implementation and in
praCtice due to h|gh|y unconstrained nature of such thenesti the updates described below we 0n|y consider non-ovengppi
tion. If the mixing parameters are given some Gaussian priofgne-localized patterndI* = Iy in case of discrete state-
closed-form updates similar to (26), (27) can be still d&iiv pased constraints. The updates are performed as follows:
since the modified Iog—_postenor (18) will be a quadraucmor_ 1) SetGe* = G, and fill each entry of each column of
with respect to the mixing parameters. In case of nongaussia ~ J. J .
) X . GS* with the nonzero entry of the respective column of
priors some Newton-like updates [22] can be derived. Gg,x
4) Update of the spectral power parameters (M-step): 2) If jG'e_x is adaptive, do for everg — 1 oo
a) Unconstrained nonnegative matriceset C; = 6, 1, J ' T

(k = 2,...,9) an adaptive or partially adaptive nonnegative o SetC; = G7*, and set all the elements &; to
matrix (see Tab Il) with a uniform priop(6; 1|n;.) = 1. zero, except thé-th row.
Whatever the matrixC;, it can be shown that the decomposi- « UpdateC; using several iterations of (36)
tion (13) can be rewritten & ; = (B;C,;D;)®E;, whereB;, « Set thek-th row of G§* equal to that ofC;.
D; and E; are some nonnegative matrices that are assume®) For everyk = L...,K$* andm = 1,..., M
to be fixed whileC; is updated. For example, €; = ij-t setC; = C‘.;X, set all the elements o€; to zero,
in (13), one can choosB; = Wi U G, D; = Iy and except thgk, m)-th one, and compute the IS divergence
E; = WU G H;X With thes_e notations it can be Drs(k,m) betweenV; = (B;C,D;) © E; andéj, as
shown that the conditional expectation of the modified log-  in (28).
posterior (18) of the complete data is non-decreasing whent 4) Update the state sequenqg* using the Viterbi algo-
corresponding update fdC; does not increase the following rithm [45] to minimize the following criterion:
cost function:
IVI;X
D;s(Cj) = me d1s([Bjlr.allVilsm), (28) q;" = argmin > Dis(q,,m) —log p(af*|ASY),
I m=2

whereV; = (B;C,;D;) © E; and&; = £, su] . With & 1s

ex ex\ H
computed as follows: wherep(q$*|AS) is computed as in (14).

5) SetG{* = G;X and set to zero all the entries G},

Ejfn = L Z Re (7, 7), (29) except those corresponding ¢
” Rj &=rer; 777 6) If A" is adaptive, update the transition probabilities as

Whereﬁsvfn is computed in (22) an®; is defined at the end xS, = D omls 1(43};;1:’“‘15,’?”:”) in case of HMM or
of Section IV-B2. Applying some standard derivations (see, 7 (Me*=1) 3" 7, 1(q,,_,=k)
e.g., [9]), one can obtain the following nonnegative MU rlle S-HMM or as A%, = 1 M 1(g5%, = k') in
- ’ i m= o
B]-T[Ej ©E; ®{(B;C,D,) & Ej}"Q]DjT case of GMM or GSMM.
C; =G0 (30) c) Other constraints:We here discuss the updates that

B[E; © {(B,;C,;D;) ® E;}-~!|D] \ h > MG :
i ] are not yet included in our current baseline implementation
that guarantees non-increase of the cost function (28)tfardd (see Sec. 11-D).

non-decrease of the conditional expectation of the modifiedpn gm algorithm update rules for time pattern weiglg§*
log-posterior (18) of the complete data. These update rakes,, it yith time continuity priors, such as inverse-Gamma or

applied to mult|cha}nnel audio, are in fact a generalizatén G5mma Markov chain priors, can be found in [9]. However,
the GEM-MU algorithm proposed in [21], that has been showg,e cannot use these rules within our GEM algorithm, since
SWe see that the mixing parameters for different sources arateg@gointly we use a different, reduced, complete data set, as compared
by Egs. (26), (27), while we have claimed in the beginning dfti®e IV that
they will be updated in an alternated manner. However, sineecan here 8Several iterations of update rule (30) are needed becalsmtales of
update parameters jointly without loss of flexibility, we do, since joint G¢* are initialized in step 1 from a particular sequence of gamsied by
optimization, as compared to the alternated one, leads inrgleteea faster ij and optimized for the current state seququé. Performing only one
convergence. update of (30) would unfavor state sequence evaluation.evewy to avoid
7In the case of partially adaptive mati@;, only the adaptive matrix entries all these issues, in our implementation we just keep ma&RX in memory,
are updated with rule (30). skip step 1, and do only one iteration of (30).
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to the one used in [9]. Nevertheless, one can always use sofneNon-blind separation of one music recording
Newton-like updates [22] for these priors.

If a matrix; , (k = 2,...,9) is constrained with a sparsity- 1) Data: As an example stereo music recording to separate
inducing prior [4], such as a Laplacian prior (correspogdim  We took the 23-second snip of the song “Que pena tanto
anl; norm penalty), it can be updated using the multiplicativigz” by Tamy from the test dataset of the SiISEC 2008 [30]
updates described in [46], [47]. However, in such a case tffarofessionally produced music recordings” task. We know
renormalization described in the subsection below could n@out this recording that there are two sources, a female
be applied, since it would change the value of the optimiz&#nging voice and a guitar, that the voice is instantangousl
criterion (16). At the same time, without any renormalizatio mixed (panned) in the middI& and the guitar is possibly a
the sparsity-inducing prior would loose its influence. Toigv Nnon-point convolutive source.

that, all the other parameter subséfs (I # k) should be  2) Constraint specification and parameter initializatiofio
constrained, e.g., to have a unitary (day norm, which can account for this information within our framework, we have
be handled using the gradient descent updates from [46] hlosen the following constraints. The singing voice mixing
the modified multiplicative updates from [47]. parametersA; form a fixed tensor of siz& x 1 x F x N

5) Renormalization: At the end of each GEM iteration, with all entries equal tol. The guitar mixing parameters
in order to avoid numerical (under/over-flow) problems, &, form an adaptive tensor of sizex 2 x F x N subject
renormalization of some parameters is done if needed, i®,the time-invariance constraint. The spectral powsfs
if these parameters are not already constrained by somesprig = 1,2) are constrained t&v; = W U G HS™ °
that are not scale-invariant. This procedure is similarh®e t with Wex and HS* being fixed, andU?X and G§* being
one described in [13], and it does not change the value adaptive. The narrowband spectral pattewis* include6 x L
the optimized criterion (16). For example, the columns dfarmonic patterns modeling the harmonic parLgditches and
matrix U$* can be divided by their energies, and the rows smooth patterns (see Fig. 4 (E) and [14]). Thepitches
of G§* scaled accordingly (see (13)). Similar renormalizatioare chosen to cover the range of 77 - 1397 Hz (39 - 89 on
is applied in turn to each patameter subsets pgifs0; .1 the MIDI scale), which is enough for both the guitar and
(k=1,...,8), and at the end of this operation the total energjis particular singing. The time-localized pattefH§* and
is relegated intd, . HS* are different. The singing voice time-localized patterns
H{* include half-Gaussians truncated at the left, i.e., only
the right half is kept. The guitar time-localized pattedd§*
include decreasing exponentials to model the decay pareof th

Given the estimated model parametérshe sources can benotes and discrete Dirac functions to model note attacks (se
estimated in the minimum mean square error (MMSE) seng&@. 4 (H)). All adaptive parameters are initialized witmdam

C. Source estimation

via the Wiener filtering: values. Finally, we used the ERB quadratic representation
R ) described in [18] as signal representation.
Yiofn = V5B, i X, (31) 3) Results: After 500 iterations of the proposed GEM

where £, , — Z‘] v, nR;jn. The counterpart of this algorithm the sgparati'on results, measured in terms of the
equation for quadrjz;tic TE répresentations is given in agource to d|s_tort|on ratlo_(SDR) [48], were 7.2 and 8.9 dB for
pendix A. voice and gunar, respegtlvely. We have al_so se_paratedathe s
mixture using all the blind settings described in the follogy
section. The best results of 5.5 and 7.1 dB SDR were obtained
V. EXPERIMENTAL |LLUSTRATIONS by the unconstrained NMF spectral power model with the
instantaneous rank-1 mixing, i.e., by the multichannel NMF

The goals of this experimental part are to illustrate oeor instantaneous mixtures [13].

some examples how to specify the prior information in th
framework, given a particular source separation problemd, a 4) Discussion:We see that our informed setting outper-

to demonstrate that we can implement the existing and néms any blind setting by at least 1.7 dB SDR. This im-
methods within the framework. For that we first give aRrovement is essentially due to the combination of rank-1
example of application of the framework to a music recordingStantaneous and full-rank convolutive mixing models tred

in a non-blind setting, i.e., when different sources are give}pformation about the position of one source. Moreover,lavhi
different models according to the prior information. Set,ont iS common in professionally produced music recording th

we consider a few blind framework instances, correspondifi§Me sources are mixed instantaneously (panned) and others
to existing and new methods, and apply them for separatignvolutively (e.g., live-recorded tracks or some artfici

of underdetermined speech and music mixtures. Third, Weverberation is added), in our best knowledge such hybrid
describe how to apply the framework to solve the souréBodels were not yet proposed for audio source separation,
separation problem mentioned in the beginning of the intr@Nd it now becomes possible to implement them within our
duction, i.e., the separation of bass, drums and melody flgmework.

music recordings. Finally, we briefly mention our applioati

of the framework for speech separation in the context of noiserpis information can be for example obtained by subtracting left
robust speech recognition. channel from the right one and checking that the voice is el
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B. Blind separation of underdetermined speech and music4) Discussion: As expected, in most cases rank-1 spatial
mixtures covariances perform the best for instantaneous mixturds an

full-rank spatial covariances perform the best for synthet

1) Data: Here we evaluate several settings of our frameyqnojutive and live recorded mixtures. Moreover, in ak th
work on the development dataset of the SISEC 2010 [28lses there is at least one of the six new methods that

“Underdetermined-speech and music mixtures” task. Thigperforms the state-of-the-art methods [13] and [17]e On
dataset include 10-seconds length instantaneous, cdiweolucan note that for music sources constraining the spectral
and live-recorded stereo mixtures of three or four music aecture does not improve the separation performatice
speech sources (see [29] for more details). however, constraining the temporal structure does improve
2) Constraint specification and parameter initialization: it. For speech sources constraining both the spectral amd th
We consider eight blind settings of the framework that atemporal structures improves the separation performance in
specified by the following constraints. For all settings &md most cases. This is probably because the unconstrained NMF
all sourcesA; forms an adaptive tensor of sizex R; x is a poor model for speech. Indeed, as compared to simple
F x N subject to the time-invariance constraint and subject tausic, speech includes much more different spectral pestter
the frequency invariance constraint for instantaneoudurgs notably due to a more pronounced vibrato effect (varying
only. The spectral power of each source is structure¥ as=  pitch). As a consequence, the unconstrained NMF model needs
ES*P¢* °. The eight settings are generated by all possiblfauch more components to describe this variability, thus it
combinations of the following possibilities (see also BalM):  cannot be estimated in a robust way from these quite short
« Rank:The rankR; is either1 or 2 (full-rank). 10-second length mixtures. Introducing spectral and teaipo

. Spectral structure:The characteristic spectral pattern§onstraints makes model estimation more robust.
E$* are eitherunconstrained i.e., E* = W$* with
adaptive W7, or constrained i.e., E* = WU ¢ geparation of bass, drums and melody in music recordings
with fixed W¢* being composed of harmonic and noise-

like and smooth narrowband spectral patterns (see Fig. 4Here_we describe how to apply our framework to the_
(E) and [14]), and adaptivdJe* (see Fig. 4 (F)) that separation of the bass, the drums, the melody and the remain-

is very sparse so as to eliminate invalid combinations §}9 instruments from a stereo professionally produced eusi

narrowband spectral patterns (e.g., patterns corresppndificording. This source separation problem is of great jaict
to different pitches should not be combined together). interest for music information retrieval and remasteriagy(,

« Temporal structureThe time activation coefficient®;* karaoke) applications.
are eitherunconstrainedi.e., ES* = G with adaptive 1) State-of-the-art:The state-of-the-art approaches target-
€., g

G®*, or constrainedi.e., ES* = G HS* with fixed H¢* ing this problem suffer from the foIIowing. Iimitatiops. Bir
being composed of decréasing exponentials, as those€@fsting drum [52] and melody [16] separation algorithmeeha
Fig. 4 (H), and adaptive&e®. bgen designed for single-channel (mono) recordmg; and may
J
_ ) ) fail to segregate the melody from the other harmonic sources
The two settings with?; = 1 and2, and unconstraineli™  gegpite the fact that they have different spatial direstion
and P7* correspond to the state-of-the-art methods [13] angbcond, blind source separation methods relying on joint use
[17], respectively (see Section IlI-F), while the rema@six  f spatial and spectral diversity, such as, e.g., the nhatioel
settings are new. NMF [13], need some user input to label separated signals
In line with [13], parameter estimation via GEM is sensitivg21] and cannot separate sources mixed in the same direction
to initialization for all the settings we consider. To prd&iour which is a very common situation, e.g., for singing melody
GEM algorithm with a “good initialization” we used for theand drums. Finally, no state-of-the-art approach treais th
instantaneous mixtures the DEMIX mixing matrix estimatioproblem in a joint fashion and cascading the methods (e.g.,
algorithm [49] to initialize mixing parameters ;, followed by  separating the drums, then separating the melody, etc.) is

lo norm minimization (see e.g., [1]) and Kullback-Leibler (KL clearly suboptimal. Thus, it is clear that an efficient santi
divergence minimization (see [13]) to initialize the saaircto this problem should rely on:

power spectraV ;. For synthetic convolutive and live recorded
mixtures we first estimated the time differences of arrival teristics (to label the sources automatically)
(TDOAs) using the MVDRW estimation algorithm proposed the spatial diversity of different sources,

in [50], that is based on a variance distortionless response, some model describing harmonicity, and
(M\_/E_)R)_beamforme_r. Th_e_estlmated TDOAs were then used joint modeling of all sources.

tq initialize _anech0|c ing paramgtgrAj ’ _followed by 2) Constraint specification, parameter initialization and
binary masking and KL divergence minimization (see [13]) to '

initialize the source power specfid. As signal representation reconstruction: Our framework satisfies these requirements,
we used the STET and in order to account for this information we have chosen

the following constraints. The two-channel mixture is mede
a sum of 12 sources: 4 sourcgs=(1,...,4) representing

« some prior knowledge about the source spectral charac-

3) Results: Source separation results in terms of avera
SDR after 200 iterations of the proposed GEM algorithm are
Summar'zleld. in Ta.ble IV together with results of thaseline  1o1¢ resuyits for synthetic convolutive mixtures of music sesrare not
used for initialization. very informative because of the poor overall performance.
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Mixing instantaneous synthetic convolutive live recorded
Sources speech| music speech music speech music
Microphone spacing - - 5cm|Im|[5cm | Im | 5cm | 1Im|5cm| 1m
Number of 10 second-length mixtures 6 4 10 10 4 4 10 10 4 4
baseline {y minimization [51] or binary masking) [ 86 [ 124 ][ 10 14 09 [ -07] 11 [14] 25 03

Method | rank R; [ spectral struct.] temporal struct.[[

[13] 1 unconstrained| unconstrained 8.8 17.2 1.6 2.1 -11 | -1.2 2.2 25 3.2 0.4
[17] 2 unconstrained| unconstrained 8.9 17.0 1.8 27 | -05 | -0.2 2.0 3.0 35 0.8
new 1 constrained unconstrained 10.5 13.6 1.9 2.5 -05 | -0.5 2.2 2.8 3.0 0.5
new 2 constrained unconstrained 10.4 13.0 2.1 3.1 -0.7 | -0.4 2.3 3.2 3.2 0.8
new 1 unconstrained constrained 8.9 18.6 15 2.2 -0.8 | -0.5 2.4 2.6 3.4 0.9
new 2 unconstrained constrained 8.7 15.4 1.8 2.6 -0.4 0.0 2.1 2.9 4.5 1.8
new 1 constrained constrained 10.5 15.7 2.1 2.9 -1.2 0.3 2.5 3.9 3.2 0.4
new 2 constrained constrained 10.2 13.8 2.1 4.5 0.0 -0.3 2.3 5.0 3.7 1.0
TABLE IV

AVERAGE SDRS ON SUBSETS OFSISEC 2010 “UNDERDETERMINED SPEECH AND MUSIC MIXTURES TASK DEVELOPMENT DATASET.

the bass, 4 sourceg & 5, ...,8) representing the drums,

and the remaining 4 sourceg & 9,...,12) representing

the melody and the other instruments. Each set of mixig separation of speech in multi-source environment foseoi
parameters\; (j = 1,...,12) form an adaptive tensor of sizeygpyst speech recognition

2 x 2 x F' x N subject to the time-invariance constraint. The
spectral powerd/; of the bass and the drumg £ 1,...,8)

are constrained t%; = W$* G$* ° with G$* being adaptive
and W¢* being fixed and pre-trained (using our frameworkg]
from isolated bass and drum samples from the RWC musi
database [53]. The spectral poweVs; of the melody and
the remaining instrumentg & 9,...,12) are constrained to

Vj = WU GS* ° with WS being fixed, andU$* and
G$* being adaptive. The narrowband spectral patteWig*

(G =

piano).

VI. CONCLUSION

We have also applied the framework for the problem of
speech separation in reverberant noisy multi-source @mvir
ent. This was done for our submission to the 2011 CHIME
geech Separation and Recognition Challettgérhe corre-
sponding description can be found in [54] and some separatio
examples are available from a demo web pag&.at

9,...,12) include 3 x L harmonic patterns modeling We have introduced a general flexible audio source sep-

the harmonic part of. pitches (see [14]). Thé& pitches are aration framework that generalizes several existing sourc
chosen to cover the range of 27 - 4186 Hz (21 - 108 cﬁf,'paration methOdS, brings them into a common frameWOfk,
the MIDI scale), which is enough to cover the pitch range @nd allows to imagine and implement new efficient methods,

most instruments. All adaptive parameters are initialiadth
random values, except the mixing paramefig(2 x2x F'x N
tensors) that are initialized with the same (rand@w)2 x N

given the prior information about a particular source sapar
tion problem. Besides the framework itself, we proposed a
new temporal structure for NMF-like decompositions and an

tensor for all frequency bins. We used the ERB quadrat®¥iginal mixing model formulation combining rank-1 andlful

representation in [18] as signal representation due tagtsehn

rank spatial mixing models in a homogeneous way. Finally, we

low-frequency resolution than the STFT, which is desirabRrovided a proper probabilistic formulation of local Gaass

for the modeling of bass sounds. Once the GEM algorithfodeling for quadratic time-frequency representations.

has run, thel2 sources are estimated via Wiener filtering. In the experimental part we have illustrated how to specify
The bass and the drums are reconstructed by summing #@ prior |_nfc_erat|on about a particular source separation
corresponding source estimates, the melody is reconsttipgt Problem within the framework, and we have shown that the

choosing the most energetic source among the correspondfiggnework allows implementing existing and new efficient -
four (j = 9,...,12) sources, and the remaining instrument8ource separation methods. We have also demonstrated that in

some situations our new propositions can improve the source

by summing the other three sources.

3) Results:The corresponding source separation script t§&Paration performance, as compared to the state-ofrth@sa
gether with one separation example are available from tRECh combining instantaneous rank-1 and and convolutike fu
FASST web page [25]. Note that this example is a difficulf,a”k_ can be _useful for separation of professionally produce
real-world mixture, which involves several sources mixed iftusIC recordings, and the newly proposed temporal streictur
the center (bass, singing voice, certain drums) and sevef] NMF-like decompositions brings some improvement for

harmonic sources with comparable pitch range (singingamic,b”nq separation of underdetermined mixtures of speech and
music sources.

11The bass is modeled as a sum of 4 sources to facilitate inétigi,

As for further research, the following extensions could

since we do not know a priori its spatial direction. The drurms modeled be introduced to the framework. In a similar fashion as for
as a sum of 4 sources for the same reason, but also becausenhérack is

often composed of several sources (e.g., snare, hi-hat, ¢yngie) that can

be mixed in different directions.

L2http://spandh.dcs.shef.ac.uk/projects/chime/chadigml

Bnttp://www.irisa.fr/metiss/ozerov/ichimesep demo.html
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spectral power, a flexible structure can be specified for tipeecisely, the joint probability density function é¥ ..}, is
mixing parameters. E.g., the time-varying mixing paramsetedefined as
could be represented in terms of time-localized and locally

time-invariant mixing parameter patterns, thus allowihg t PVt Yam) =
modeling of moving sources. Another .|nterest|ng extension Z (w?l;fm)inNc (¥5m: 0,05 Ry pn) . (35)
would be to introduce possible coupling between param- fn J

eter subsets, thus allowing, e.g., the representation ef th o o

characteristic spectral patterns of different sourcesiremat C- Model estimation criterion

combinations of eigenvoices [55] or eigeninstruments .[56] Under the above-presented assumptions (see (32) and (35)),
In fact, some parameter subsets corresponding to differéimé log-posteriotog p(6, n|X), maximized by the MAP crite-
sources can share common properties, and introducing sticim, writes

a coupling would make the estimation of these parameters c

more robust. log p(0,n|X) = log p(X|0) + log p(f|n) =

> log ) (win®, )2 Ne(xm; 0, By pn) + log p(0]n),  (36)
APPENDIXA fin m
PROBABILISTIC FORMULATION OF THE LOCAL GAUSSIAN

J . .
where X = > _,v; mRjsn. LOg-posterior (36) is
MODEL FOR QUADRATIC REPRESENTATIONS /n j=1 03I, e LOGP (36)

difficult to optimize, due to summations in log-domain. Thus,
Here we give a proper probabilistic formulation of the locdpllowing the EM methodology [20], we repladeg p(6, 7| X)

Gaussian model (4) for quadratic representations, exptin by its lower bound
the exact meaning of the empirical covariance (3) and a ana \2 ~
justification of the criterion (16).IO ;;(wmm) log Ne(xm3 0, B, n) + log p(f]n),  (37)

_ using Jensen’s inequality [20], and we get the criterion) (16
A. Input representation with empirical covariance®., 7, computed as in (33). Thus,

Following [10], [18], we assume that the considerethe criterion (16) maximizes alower bound of the log-pdster
quadratic TF representation is computed by local averagi(%ﬁ)-
of a linear TF representation such as a STFT or an ERBNOte, that with this formulation we could obtain exaCtly the
filterbank. We assume that the indexing of the consideré@me updates as those presented in Section IV-B by deriving
linear TF complex-valued representation, hereafter nated 8@ GEM algorithm for the MAP criterion (36). This is because
m =1,..., M, can be in general different from the indexingh€ computing of the lower bound (37) is based on the EM
f,n of the quadratic representation (3). Such a formulatidgRethodology. However, we prefer to keep the criterion (16),
allows considering linear and quadratic representatioits wsince it makes the formulation more compact and links it to
different TF resolutions, but also using linear TF représen quadratic representations and to the existing works [1G]. [
tions that do not allow any uniform TF indexing, e.g., an ERB
representation with different sampling frequencies ifiedént D. Source estimation
frequency b_a_nds or a _signal-adapteo_l multiple-window STFT The sources can be estimated as follows [10], [18]:
[57]. The mixing equation (1) now writes as
) Vim =D Vs R B X, (38)
Xm = Zj:l Yim; (32)

wherew?" > 0 is a so-calledsynthesiswindow satisfying

Jn,m
syn ana

and we re-define the empirical covariance (3) as D fn YinmWin, = 1. This estimator becomes the MMSE
_ estimator wheno" = w?, .
Rx,fn = Zm(w??ﬁm)mexgv (33)
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