A General Flexible Framework for the Handling of Prior Information in Audio Source Separation
Alexey Ozerov, Emmanuel Vincent, Frédéric Bimbot

To cite this version:

HAL Id: hal-00626962
https://hal.science/hal-00626962v4
Submitted on 5 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A General Flexible Framework for the Handling of Prior Information in Audio Source Separation

Alexey Ozerov, Member, IEEE, Emmanuel Vincent, Senior Member, IEEE, and Frédéric Bimbot

Abstract—Most of audio source separation methods are developed for a particular scenario characterized by the number of sources and channels and the characteristics of the sources and the mixing process. In this paper we introduce a general audio source separation framework based on a library of structured source models that enable the incorporation of prior knowledge about each source via user-specifiable constraints. While this framework generalizes several existing audio source separation methods, it also allows to imagine and implement new efficient methods that were not yet reported in the literature. We first introduce the framework by describing the model structure and constraints, explaining its generality, and summarizing its algorithmic implementation using a generalized expectation-maximization algorithm. Finally, we illustrate the above-mentioned capabilities of the framework by applying it in several new and existing configurations to different source separation problems. We have released a software tool named Flexible Audio Source Separation Toolbox (FASST) implementing a baseline version of the framework in Matlab.

Index Terms—Audio source separation, local Gaussian model, nonnegative matrix factorization, expectation-maximization

I. INTRODUCTION

Separating audio sources from multichannel mixtures is still challenging in most situations. The main difficulty is that audio source separation problems are usually mathematically ill-posed and to succeed one needs to incorporate additional knowledge about the mixing process and/or the source signals. Thus, efficient source separation methods are usually developed for a particular source separation problem characterized by a certain problem dimensionality, e.g., determined or under-determined, certain mixing process characteristics, e.g., instantaneous or convolutive, and certain source characteristics, e.g., speech, singing voice, drums, bass or noise [1]. For example, a source separation problem may be formulated as follows:

"Separate bass, drums, melody and the remaining instruments from a stereo professionally produced music recording."

Given a source separation problem, one typically must introduce as much knowledge about this problem as possible into the corresponding separation method so as to achieve good separation performance. However, there is often no common formulation describing methods applied for different problems, and this makes it difficult to reuse a method for a problem it was not originally conceived for. Thus, given a new source separation problem, the common approach consists in (i) model design, taking into account problem formulation, (ii) algorithm design and (iii) implementation (see Fig. 1, top).

Current approach

<table>
<thead>
<tr>
<th>Source separation problem</th>
<th>Model design</th>
<th>Algorithm design</th>
<th>Algorithm implementation</th>
<th>Source separation</th>
</tr>
</thead>
</table>

Proposed flexible framework

<table>
<thead>
<tr>
<th>Source separation problem</th>
<th>Specification from a library</th>
<th>Source separation</th>
</tr>
</thead>
</table>

Fig. 1. Current way of addressing a new source separation problem (top) and the way of addressing it using the proposed flexible framework (bottom).

The motivation of this work is to improve over this time-consuming process by designing a general audio source separation framework that can be applied to virtually any source separation problem by simply selecting from a library of constraints suitable constraints accounting for the available information about that source (see Fig. 1, bottom). More precisely, we wish such a framework to be

- general, i.e., generalizing existing methods and making it possible to combine them,
- flexible, allowing easy incorporation of the a priori knowledge about a particular problem considered.

To achieve the property of generality, we need to find some common formulation for methods we would like to generalize. Many recently proposed methods for audio source separation and/or characterization [2]–[19] (see also [1] and references therein) are based on the same so-called local Gaussian model describing both the properties of the sources and of the mixing process. Thus, we chose this model as the core of our framework. To achieve flexibility, we fix the global structure of Gaussian covariances, and by means of a parametric model allow the introduction of knowledge about each individual source and its mixing characteristics via constraints on individual parameter subsets. The global

A. Ozerov and E. Vincent are with INRIA, Rennes Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes cedex, France (e-mails: alexey.ozerov@inria.fr, emmanuel.vincent@inria.fr).

F. Bimbot is with IRISA, CNRS - UMR 6074, Campus de Beaulieu, 35042 Rennes cedex, France (e-mail: frederic.bimbot@irisa.fr).

This work was partly supported by OSEO, the French State agency for innovation, under the Quaero program, and by the French Ministry of Foreign and European Affairs, the French Ministry of Higher Education and Research and the German Academic Exchange Service under project Procope 20142UD.
structure we consider corresponds to a generative model of the data that is motivated by the physics of the modeled processes, e.g., the source-filter model to represent a sound source and an approximation of the convolutive filter to represent its mixing characteristics. In summary, our framework generalizes the methods from [2]–[19], and, thanks to its flexibility, it becomes applicable in many other scenarios one can imagine.

We implement our framework using a generalized expectation-maximization (GEM) algorithm [20], where the M-step is solved by alternating optimization of different parameter subsets, taking the corresponding constraints into account and using multiplicative update (MU) rules inspired from the nonnegative matrix factorization (NMF) methodology (see, e.g., [9]) to update the nonnegative spectral parameters. Such an implementation is in fact possible thanks to the Gaussianity assumption leading to closed form update equations. The idea of mixing GEM algorithm with MU rules was already reported in [21] in the case of plain NMF spectral models and rank-1 spatial models, and we extend it here to the newly proposed structures. Our algorithmic contribution consists of (i) identifying the GEM-MU approach as suitable thanks to the implementability of the configurable framework, the simplicity of the update rules, the implicit verification of nonnegative constraints and its good convergence speed; and (ii) deriving of the update rules for the new model structures.

Our approach is in line with the library of components by Cardoso et al. [22] developed for the separation of components in astrophysical images. However, we consider advanced audio-specific structures inspired by [1], [23] for source spectral power, as opposed to the unique block structure in [22] based on the assumption that source power is constant in some pre-defined region of time and space. In that sense, our framework is more flexible than [22]. Besides the framework itself, we propose a new structure for NMF-like decompositions of source power spectrograms, where the temporal envelope associated with each spectral pattern is represented as a nonnegative linear combination of time-localized temporal patterns. This structure can be used to ensure temporal continuity, but also to model more complex temporal characteristics, such as the attack or decay parts of a note. In line with time-localized patterns we include in our framework the so-called narrowband spectral patterns that allow constraining spectral patterns to be harmonic, inharmonic or noise-like. These structures were already reported in [14], [15], but only in case of harmonic constraints. Moreover, they were not applied for source separation so far. As compared to [24], where some preliminary aspects of this work were presented, we here present the framework in details, describe its implementation, and extend the experimental part illustrating the framework. Moreover, we propose an original mixing model formulation that allows the representation and the estimation of rank-1 [5] and full-rank [19] (actually any rank) spatial mixing models in a homogeneous way, thus enabling the combination of both models within a given mixture. Finally, we provide a proper probabilistic formulation of local Gaussian modeling for quadratic time-frequency representations [18] that supports and justifies the formulation given in [18].

We have also implemented and released a baseline version of the framework in Matlab. The corresponding software tool named Flexible Audio Source Separation Toolbox (FASST) is available at [25] together with a user guide, examples of usage (where the constraints are specified) and the corresponding audio examples. Given a source separation problem, one can choose one or few suitable constraint combinations based on his/her expertise and on the a priori knowledge, and then test all of them using FASST so as to select the best one.

In summary, the main contributions of this work include

- a general modeling structure,
- a general estimation algorithm,
- new spectral an temporal structures (time-localized patterns, narrowband spectral patterns),
- the implementation and distribution of a baseline version of the framework (the FASST toolbox [25]).

The rest of this paper is organized as follows. In Section II, existing approaches generalized by the proposed framework are discussed and an overview of the framework is given. Sections III and IV provide a detailed description of the framework and its algorithmic implementation. Thus, Section II is devoted to a reader interested in understanding the main principles of the framework and the physical meaning of the objects, and Sections III and IV to one willing to go deeper into the technical details. The results of a few source separation experiments are given in Section V to illustrate the flexibility of our framework and its potential performance improvement compared to individual approaches. Conclusions are drawn in Section VI.

II. RELATED EXISTING APPROACHES AND FRAMEWORK OVERVIEW

Source separation methods based on the local Gaussian model can be characterized by the following assumptions [1], [2], [5], [13], [19]:

1) Gaussianity: in some time-frequency (TF) representation the sources are modeled in each TF bin by zero-mean Gaussian random variables.
2) Independence: conditionally to their covariance matrices, these random variables are independent over time, frequency and between sources.
3) Factorization of spectral and spatial characteristics: for each TF bin, the covariance matrix of each source is expressed as the product of a spatial covariance matrix representing its spatial characteristics and a scalar spectral power representing its spectral characteristics.
4) Linearity of mixing: the mixing process translates into addition in the covariance domain.

A. State-of-the-art approaches based on the local Gaussian model

The state-of-the-art approaches [2]–[19] cover a wide range of source separation problems and models expressed via particular structures of local Gaussian covariances, including:

1) Problem dimensionality: Denoting by I and J, respectively, the number of channels of the observed
mixture and the number of sources to separate, the single-channel ($I = 1$) case is addressed in [6], and underdetermined ($1 < I < J$) and (over-)determined ($I \geq J$) cases are addressed in [5] and [2], respectively.

2) Spatial covariance model: Instantaneous and convolutive mixtures of point sources are modeled by rank-1 spatial covariance matrices in [5] and [3], respectively. In [19] reverberant convolutive mixtures of point sources are modeled by full-rank spatial covariance matrices that, in contrast to rank-1 covariance matrices, can account for the spatial spread of each source induced by the reverberation.

3) Spectral power model: Several models were proposed for the spectral power, e.g., unconstrained models [10], block constant models [5], Gaussian mixture models (GMM) or hidden Markov models (HMM) [2], Gaussian scaled mixture models (GSMM) or scaled HMMs (S-HMM) [13], NMF [4] together with its variants, harmonic NMF [14] or temporal activation constrained NMF [9], and source-filter models [16]. These models are suitable for the representation of different types of sources, for example GSMM is rather suitable for a monophonic source, e.g., speech, and NMF for a polyphonic one, e.g., polyphonic musical instrument, [13].

4) Input representation: While the most of the considered methods use the short time Fourier transform (STFT) as the input TF representation, some of them, e.g., [14], [15], [18], use the auditory-motivated equivalent rectangular bandwidth (ERB) quadratic representation. More generally, we consider here both linear representations, where the signal is represented by a vector of complex-valued coefficients in each TF bin, as well as quadratic representations, where the signal is represented via its local covariance matrix in each TF bin [26].

Table I provides an overview of some of the local Gaussian model-based approaches considered here, where the specificities of each method are marked by crosses \times. We see from Table I that a few of these methods have already been combined together, for example GSMM and NMF were combined in [8], and NMF [9] was combined with rank-1 and full-rank mixing models in [13] and [17], respectively. However, many combinations have not yet been investigated. Indeed, assuming that each source follows one of the 3 spatial covariance models and one of the 8 spectral variance models from Table I, the total number of configurations equals to 2×24^J for J sources (in fact much more since each source can follow several spectral variance models at the same time), while Table I reports only 16 existing configurations.

B. Other related state-of-the-art approaches

While the local Gaussian model-based framework offers maximum of flexibility, there exist some methods that do not satisfy (fully or partially) the aforementioned assumptions and are thus not strictly covered by the framework. Nevertheless, our framework allows the implementation of similar structures. Let us give some examples. Binary masking-based source estimation [27], [28] does not satisfy the source independence assumption. However, it is known to perform poorly compared to local Gaussian model-based separation, as it was shown in [13], [18] for convolutive mixtures and demonstrated through the signal separation evaluation campaigns SiSEC 2008 [30] and SiSEC 2010 [29], where for instantaneous mixtures local Gaussian model-based approaches gave better results than the oracle (using the ground truth) binary masks. The methods proposed in [31], [32] are also based on Gaussian models albeit in the time domain. Notably, time sample-based GMMs and time-varying autoregressive models are considered as source models in [31] and [32], respectively. However, the number of existing time-domain structures is fairly reduced. Our TF domain models make it possible to account for these structures by means of suitable constraints over spectral power, while allowing their combination with more advanced structures. There are also many works on NMF and its extensions [33]–[38] and on GMMs / HMMs [39], [40] based on nongaussian models of the complex-valued STFT coefficients. These models are essentially covered by our framework in the sense that we can implement similar or equivalent model structures, albeit under Gaussian assumptions. The benefit of local Gaussian modeling is that it naturally leads to closed-form expressions in the multichannel case and allows the modeling of diffuse sources [19], contrary to the models in [33]–[40]. Finally, according to Cardoso [41], nongaussianity and nonstationarity are alternative routes to source separation, such that nonstationary nongaussian models would offer little benefit compared to nonstationary Gaussian models in terms of separation performance despite considerably greater computation cost.

C. Framework overview

We now present an overview of the proposed framework focusing on the most important concepts. An exhaustive description is given in Sections III and IV.

The framework is based on a flexible model described by parameters $\theta = \{\theta_j\}_{j=1}^J$, where θ_j are the parameters of the j-th source ($j = 1, \ldots, J$). Each θ_j is split in turn into nine parameter subsets according to a fixed structure, as described below and summarized in Table II.

1) Model structure: The parameters of j-th source include a complex-valued tensor A_j, modeling its spatial covariance, and eight nonnegative matrices $(\theta_{j,2}, \ldots, \theta_{j,9})$ modeling its spectral power over all TF bins.

The spectral power, denoted as V_j, is assumed to be the product of an excitation spectral power V_j^{ex}, representing, e.g., the excitation of the glottal source for voice or the plucking of the string of a guitar, and a filter spectral power V_j^{fil}, representing, e.g., the vocal tract or the impedance of the guitar body [23], [35]. While such a model is usually called source-filter model, we call it here excitation-filter model in order to avoid possible confusions with the “sources” to be separated.

1Binary masking-based approaches can still be quite powerful for convolutive mixtures, as demonstrated in [29]. Thus, a good way to proceed is probably to use them to initialize local Gaussian model-based approaches, as it is done in [13], and as we do in the experimental part.
The excitation spectral power V_{ex}^s is further decomposed as the sum of characteristic spectral patterns E_{ex} modulated by time activation coefficients P_{ex}^s [4], [9]. Each characteristic spectral pattern may be associated with instance with one specific pitch, so that the time activation coefficients denote which pitches are active on each time frame. In order to further constrain the fine structure of the spectral patterns, they are represented as linear combinations of narrowband spectral patterns W_{j}^{ex} [14] with weights U_{j}^{ex}. These narrowband patterns may be for instance harmonic, inharmonic or noise-like and the weights determine the overall spectral envelope. Following the same idea, we propose here to represent the series of time activation coefficients P_{ex}^s as sums of time-localized patterns H_{j}^{ex} with weights G_{j}^{ex}. The time-localized patterns may represent the typical temporal shape of the notes while the weights encode their onset times. Different temporal fine structures such as continuity or specific rhythm patterns may also be accounted for in this way. Note that temporal models of the activation coefficients have been proposed in the state-of-the-art, using probabilistic priors [9], [34], notespecific Gaussian-shaped time-localized patterns [42], or unstructured TF patterns [33]. Our proposition is complementary to [9], [34] in that it accounts for temporal behaviour in the model structure itself in addition to possible priors on the model parameters. Moreover, it is more flexible than [9], [34], [42], since it allows the modeling of other characteristics than continuity or sparsity. Finally, while it can model similar TF patterns to [33], it involves much fewer parameters, which typically leads to more robust parameter estimation.

The filter spectral power V_{j}^{2} is similarly expressed in terms of characteristic spectral patterns E_{j}^{2} modulated by time activation coefficients [16], which are in turn decomposed into narrowband spectral patterns W_{j}^{2} and time-localized patterns H_{j}^{2} with weights G_{j}^{2}, respectively. In the case of speech or singing voice, each characteristic spectral pattern may represent the spectral formants of a given phoneme, while the plosiveness and the sequence of pronounced phonemes may be encoded by the time-localized patterns and the associated weights.

In summary, as it will be explained in details in Section III-E, the spectral power of each source obeys a three-level hierarchical nonnegative matrix decomposition structure (see equations (9), (10), (12), (13) and Figures 3 and 4 below) including at the bottom level the eight parameter subsets W_{j}^{ex}, U_{j}^{ex}, G_{j}^{ex}, H_{j}^{ex}, W_{j}^{2}, U_{j}^{2}, G_{j}^{2} and H_{j}^{2} (see Eq. (13)).

| Parameter subsets $\theta_{j,k}$ (j = 1, . . . , J, k = 1, . . . , 9) encoding the structure of each source. |
|---|---|---|
| $\theta_{1,1}$ = A_{j} | mixing parameters | $I \times R_{j} \times F \times N_{j}$ ∈ R_{+} |
| $\theta_{1,2}$ = W_{j}^{ex} | ex. narrowband spectral patterns | $F \times L_{j}^{ex}$ ∈ R_{+} |
| $\theta_{1,3}$ = U_{j}^{ex} | ex. spectral pattern weights | $L_{j}^{ex} \times K_{j}^{ex}$ ∈ R_{+} |
| $\theta_{1,4}$ = G_{j}^{ex} | ex. time pattern weights | $K_{j}^{ex} \times M_{j}^{ex}$ ∈ R_{+} |
| $\theta_{1,5}$ = H_{j}^{ex} | ex. time-localized patterns | $M_{j}^{ex} \times N_{j}$ ∈ R_{+} |
| $\theta_{j,6} = W_{j}^{2}$ | ft. narrowband spectral patterns | $F \times L_{j}$ ∈ R_{+} |
| $\theta_{j,7} = U_{j}^{2}$ | ft. spectral pattern weights | $L_{j}^{2} \times K_{j}^{2}$ ∈ R_{+} |
| $\theta_{j,8} = G_{j}^{2}$ | ft. time pattern weights | $K_{j}^{2} \times M_{j}^{2}$ ∈ R_{+} |
| $\theta_{j,9} = H_{j}^{2}$ | ft. time-localized patterns | $M_{j}^{2} \times N_{j}$ ∈ R_{+} |

The fixed parameters can be either set manually or learned beforehand from some training data. Learning is equivalent to model parameter estimation over the training data and can thus be achieved using our framework.
a degree of uncertainty about this direction. The rank R_j
($1 \leq R_j \leq I$) of the spatial covariance is specifiable via
the size of tensor A_j (see Table II). Each parameter subset
may also be constrained to have a limited number of nonzero
entries. For instance, every column of G_{j}^{ex} and f / G_{j}^{in}
may also be constrained to have a single nonzero entry accounting for
a GMM / S-HMM structure or a single nonzero entry equal to
1 accounting for a GMM / HMM structure.

value 'inst' 'time_inv' GMM part_adapt parameters, and the M-step consists in updating the
using an iterative GEM algorithm, where the E-step consists
\begin{align*}
\text{Parameter subsets} & \quad \text{Constraint} & \quad \text{Value} \\
A_j, W^{\text{ex}}, U^{\text{ex}}, G_{j}^{\text{ex}}, H_{j}^{\text{ex}} & \quad \text{degree of adaptability} & \quad \text{fixed} / \text{part_adapt} / \text{adapt} \\
A_j & \quad \text{mixing stationarity} & \quad \text{time_inv} / \text{conv} / \text{inst} \\
G_{j}^{\text{in}}, G_{j}^{\text{in}} & \quad \text{temporal constraint} & \quad \text{null} / \text{GMM} / \text{S-HMM} / \text{GMM} / \text{S-HMM}
\end{align*}

<table>
<thead>
<tr>
<th>Parameter subsets</th>
<th>Constraint</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_j, W^{\text{ex}}, U^{\text{ex}}, G_{j}^{\text{ex}}, H_{j}^{\text{ex}}$</td>
<td>degree of adaptability</td>
<td>fixed / part_adapt / adapt</td>
</tr>
<tr>
<td>A_j</td>
<td>mixing stationarity</td>
<td>time_inv / conv / inst</td>
</tr>
<tr>
<td>$G_{j}^{\text{in}}, G_{j}^{\text{in}}$</td>
<td>temporal constraint</td>
<td>null / GMM / S-HMM / GMM / S-HMM</td>
</tr>
</tbody>
</table>

3) Estimation algorithm: Given the above model structure
and constraints, source separation can be achieved in two
steps as shown in Fig. 2. First, given initial parameter values,
the model parameters θ are estimated from the mixture X
using an iterative GEM algorithm, where the E-step consists
in computing some quantity $\hat{\theta}$ called conditional expectation
of the natural statistics, and the M-step consists in updating
the parameters θ given $\hat{\theta}$ by alternating optimization of each of the
$J \times 9$ parameter subsets. This allows taking any combination
of constraints specified by user into account. Second, given
the mixture X and the estimated model parameters θ, source
estimates \hat{Y} are computed using Wiener filtering.

\begin{align*}
\text{Parameter initialization} & \quad \text{specified by user} \\
\text{Mixtures} & \quad \text{specified by user} \\
\text{Model estimation} & \quad \text{M-step} \quad \hat{\theta} \quad \text{E-step} \quad \theta \\
\text{Compute conditional expectation of natural statistics} & \\
\text{Update} \quad \hat{\theta}_{1,1} & \quad \text{Update} \quad \hat{\theta}_{1,2} & \quad \text{Update} \quad \hat{\theta}_{j,k} \\
\text{Source estimation} & \quad \text{Wiener filtering} \quad \hat{Y} \\
\text{Estimated sources} & \\
\text{Model parameters} \quad \theta = \{\theta_{j,k}\}_{j,k=1}^{J,K}
\end{align*}

Fig. 2. Overview of the proposed general algorithm for parameter estimation
and source separation.

D. FASST toolbox: Current baseline implementation

The FASST toolbox (released and available at [25]) imple-
ments so far a baseline version of the framework in Matlab

that covers only the library of constraints summarized in
Table III for mono or stereo recordings ($I = 1$ or $I = 2$).
This restriction up to $I = 2$ channels enables the use of a
2×2 matrix inversion trick described in [13] that leads to an
efficient implementation in Matlab. However, the framework
itself is neither restricted to the constraints in Table III nor to
mono / stereo mixtures.

III. DETAILED STRUCTURE AND EXAMPLE CONSTRAINTS

In this section we describe in details the nine parameter
subsets modeling each source and some example constraints.
We also introduce the detailed notations to be used in the rest
of the paper.

A. Formulation of the audio source separation problem

We assume that the observed I-channel time-domain signal,
called mixture, $x(t) \in \mathbb{R}^I$, $t = 1, \ldots, T$, is the sum of J
multichannel signals $y_j(t) \in \mathbb{R}^I$, called spatial source images
[1], [22]:

$$
\hat{x}(t) = \sum_{j=1}^{J} \hat{y}_j(t).
$$

The goal of source separation is to estimate the spatial source images $\hat{y}_j(t)$ given the mixture $x(t)$. This now common
formulation is more general than the convolutive formulation in
[13], which is restricted to point sources [1], [22].

B. Input representation

Audio signals are usually processed in the TF domain,
due to their sparsity in this domain. Two families of input
representations are considered in the literature, namely linear

1) Linear representations: After applying a linear complex-
valued TF transform, the mixture (1) becomes:

$$
x_{f,n} = \sum_{j=1}^{J} y_{j,f,n},
$$

where $x_{f,n} \in \mathbb{C}^I$ and $y_{j,f,n} \in \mathbb{C}^I$ are I-dimensional complex-
valued vectors of TF coefficients of the corresponding time-
domain signals; and $f = 1, \ldots, F$ and $n = 1, \ldots, N$
denote respectively frequency bin and time-frame index. This
formulation covers the STFT, that is the most popular TF
representation used for audio source separation.

2) Quadratic representations: A few studies have relied on
quadratic representations instead, where the signal is described
in each TF bin by its empirical $I \times I$ covariance matrix [5],
[10], [18]

$$
\hat{R}_{x,f,n} = \hat{E}[x_{f,n}x_{f,n}^H],
$$

where $\hat{E}[\cdot]$ denotes empirical expectation computed, e.g., by
local averaging of the STFT [5], [10] or of the input of an ERB
filterbank [18]. Note that linear representations are special
cases of quadratic representations with $\hat{R}_{x,f,n} = x_{f,n}x_{f,n}^H$.
Quadratic representations include additional information about
the local correlation between channels which often increases
the accuracy of parameters estimation [10]. In the following,
we use the linear notations $x_{f,n}$ and $y_{j,f,n}$ for simplicity and
include the empirical expectation when appropriate. A more
rigorous derivation of the local Gaussian model for quadratic
representations is given in Appendix A.
C. Local Gaussian model

We assume that in each TF bin, each source \(y_{j,f,n} \in \mathbb{C}^I \) is a proper complex-valued Gaussian random vector with zero mean and covariance matrix \(\Sigma_{y_{j,f,n}} = v_{j,f,n} R_{j,f,n} \)

\[
y_{j,f,n} \sim \mathcal{N}_C(0, v_{j,f,n} R_{j,f,n}),
\]

where the matrix \(R_{j,f,n} \in \mathbb{C}^{I \times I} \) called spatial covariance matrix represents the spatial characteristics of the source and of the mixing setup, and the non-negative scalar \(v_{j,f,n} \in \mathbb{R}_+ \) called spectral power represents the spatial characteristics of the source [1]. Moreover, the random vectors \(y_{j,f,n} \) are assumed to be mutually independent given \(\Sigma_{y_{j,f,n}} \).

D. Spatial covariance structure and example constraints

1) Structure: In the case of audio, it is mostly interesting to consider either rank-1 spatial covariances representing instantaneously or convolutively mixed point sources with low reverberation [13] or full-rank spatial covariances modeling diffuse or reverberated sources [19]. More generally, we assume covariances of any positive rank. Let \(0 < R_j \leq I \) be the rank of covariance \(R_{j,f,n} \). This matrix can then be non-uniquely represented as

\[
R_{j,f,n} = A_{j,f,n} A_{j,f,n}^H,
\]

where \(A_{j,f,n} \) is an \(I \times R_j \) complex-valued matrix of rank \(R_j \). Moreover, for every source \(j \) and for every TF bin \(f,n \) we introduce \(R_j \) independent Gaussian random variables \(s_{j,r,f,n} \) \((r = 1, \ldots, R_j)\) distributed as

\[
s_{j,r,f,n} \sim \mathcal{N}(0, v_{j,r,f,n}).
\]

With these notations the model defined by (2) and (4) is equivalent to the following mixture of \(R_j \) point sub-sources \(s_{j,r,f,n} \):

\[
x_{f,n} = A_{f,n} s_{f,n},
\]

where \(s_{f,n} = [s_{1,f,n}^T, \ldots, s_{R_j,f,n}^T]^T \) is an \(R_j \times I \) vector of sub-source coefficients with \(s_{j,f,n} = [s_{j,1,f,n}, \ldots, s_{j,R_j,f,n}]^T \), and \(A_{f,n} = [A_{1,f,n}, \ldots, A_{R_j,f,n}] \) is an \(I \times R_j \) mixing matrix. Thus, for a given TF bin \((f,n)\) our model is equivalent to a complex-valued linear mixture of \(R_j \) sub-sources (7), where the sub-sources \(s_{j,r,f,n} \) \((r = 1, \ldots, R_j)\) associated with the same source \(j \) share the same spectral power (6). We suppose that the rank \(R_j \) is specified for every source \(j \).

2) Example constraints: In our baseline implementation we assume that the spatial covariances are time-invariant, i.e., \(A_{j,f,n} = A_{j,f} \). Moreover, we assume that for every source \(j \) the spatial parameters \(A_{j} \) can be either instantaneous (i.e., constant over frequency and real-valued: \(A_{j,f,n} = A_{j,f} \in \mathbb{R}^{I \times R_j} \)) or convolutive (i.e., frequency-dependent), and either fixed, adaptive or partially adaptive. Some examples of constraints are given in Table III.

E. Spectral power structure and example constraints

To model spectral power we use nonnegative hierarchical audio-specific decompositions [23], thus all variables introduced in this section are assumed to be non-negative.

1) Excitation-filter model: We first model the spectral power \(v_{j,f,n} \) as the product of an excitation spectral power \(v_{j}^{ex} \) and a filter spectral power \(v_{f,n}^{fl} \) [23], [35]:

\[
v_{j,f,n} = v_{j}^{ex} \times v_{f,n}^{fl},
\]

that can be rewritten as

\[
V_j = V_j^{ex} \odot V_j^{fl},
\]

where \(\odot \) denotes element-wise matrix multiplication and \(V_j \triangleq [v_{j,f,n}]_{f,n} \), \(V_j^{ex} \triangleq [v_{j}^{ex}]_{f,n} \), and \(V_j^{fl} \triangleq [v_{f,n}^{fl}]_{f,n} \).

Figure 3 gives an example of the excitation-filter decomposition (9) as applied to the spectral power of several guitar notes. In this example the filter \(\Sigma_{fl} \) is time-invariant with lowpass characteristics, and the excitation \(\Sigma^{ex} \) is a time-varying combination of few characteristic spectral patterns. However, in the most of realistic situations both the excitation and the filter are time-varying. Thus, the excitation-filter model with time-varying excitation and filter is a physically-motivated generative model that is suitable for many audio sources. While time-invariant filters were considered, e.g., in [7], [35], some approaches consider time-varying filters [16], [43]. We believe that our framework opens a door for further investigation of time-varying filters.

2) Excitation power structure: The excitation spectral power \(v_{j}^{ex} \) is modeled as the sum of \(K_j^{ex} \) characteristic spectral patterns \(v_{j,k}^{ex} \) modeled in time by \(p_{j,k}^{fl} \), i.e.,

\[
v_{j}^{ex} = \sum_{k=1}^{K_j^{ex}} h_{j,k}^{ex} u_{j,k}^{ex},
\]

where \(h_{j,k}^{ex} \) and \(u_{j,k}^{ex} \) are non-negative weights. The series of time activation coefficients \(p_{j,k}^{fl} \) are also represented as sums of \(M_j^{fl} \) time-localized patterns, i.e.,

\[
p_{j,k}^{fl} = \sum_{m=1}^{M_j^{fl}} G_{j,m}^{ex} v_{j,m}^{ex}.
\]

Altogether we have:

\[
v_{j}^{ex} = \sum_{k=1}^{K_j^{ex}} \sum_{m=1}^{M_j^{fl}} h_{j,k}^{ex} u_{j,k}^{ex} v_{j,m}^{ex} w_{j,k}^{ex},\]

and, introducing matrices \(H_j^{ex} \triangleq [h_{j,k}^{ex}]_{k,m} \), \(G_j^{ex} \triangleq [v_{j,m}^{ex}]_{k,m} \), \(U_j^{ex} \triangleq [u_{j,k}^{ex}]_{k} \) and \(W_j^{ex} \triangleq [w_{j,k}^{ex}]_{f,l} \), this equation can be rewritten in matrix form as

\[
V_j^{ex} = W_j^{ex} U_j^{ex} G_j^{ex} H_j^{ex}.
\]

Figure 4 shows an example of the excitation structure \(V_{ex} = W_j^{ex} U_j^{ex} G_j^{ex} H_j^{ex} \), as applied to six notes played on a xylophone. In this example, the narrowband spectral patterns \(W_j^{ex} \) include 66 harmonic patterns modeling the harmonic part of 11 notes and 9 smooth patterns modeling the attacks, and the matrix of weights \(U_j^{ex} \) is very sparse so as to eliminate invalid combinations of narrowband spectral patterns (e.g., a
characteristic spectral pattern should not be a combination of narrowband spectral patterns with different pitches). The time-localized patterns H_{ex} include decreasing exponentials to model the decay part of the notes and discrete Dirac functions to model note attacks, and the matrix of weights G_{ex} is sparse so as not to allow the attacks (smooth spectral patterns) to be modulated by exponential temporal patterns and not to allow harmonic note parts (harmonic spectral patterns) to be modulated by Dirac temporal patterns. Such a structure is a simplified version of the conventional attack-decay-sustain-release model (see, e.g., [44]). More sophisticated structures, where, e.g., the sustain and release parts are modeled by exponentials with different decrease rates can be implemented as well within our framework.

3) Filter power structure: The filter spectral power $[v_5^\text{ex}(t,f,n)]_f$ is represented using exactly the same structure as in (11). And as follows. Mixing parameters A_j (1, 2) are assumed to form a tensor of size $1 \times 1 \times F \times N$ with all the entries fixed to 1. The background music spectral power V_1 is modeled exactly as in the case of the multichannel NMF described in the previous paragraph. The main melody spectral power is constrained to $V_2 = (W_{\text{ex}}^2 G_{\text{ex}}^2) \odot (W_{\text{ex}}^2 G_{\text{ex}}^2)$ with W_{ex} and G_{ex} being adaptive matrices of size $F \times K_{\text{ex}}$ and $K_{\text{ex}} \times N$, respectively, and A_j being an adaptive tensor of size $2 \times 1 \times F \times N$ or $2 \times 2 \times F \times N$, respectively, subject to the time-invariance constraint.

Excitation-filter model-based separation of the main melody vs. the background music from single-channel recordings by Durrieu et al. [16] can be represented within our framework as follows. Mixing parameters A_j (1, 2) are assumed to form a tensor of size $1 \times 1 \times F \times N$ with all the entries fixed to 1. The background music spectral power V_1 is modeled exactly as in the case of the multichannel NMF described in the previous paragraph. The main melody spectral power is constrained to $V_2 = (W_{\text{ex}}^2 G_{\text{ex}}^2) \odot (W_{\text{ex}}^2 G_{\text{ex}}^2)$ with W_{ex} and G_{ex} being adaptive matrices of size $F \times K_{\text{ex}}$ and $K_{\text{ex}} \times N$, respectively, and A_j being an adaptive tensor of size $2 \times 1 \times F \times N$ or $2 \times 2 \times F \times N$, respectively, subject to the time-invariance constraint.

Excitation-filter model-based separation of the main melody vs. the background music from single-channel recordings by Durrieu et al. [16] can be represented within our framework as follows. Mixing parameters A_j (1, 2) are assumed to form a tensor of size $1 \times 1 \times F \times N$ with all the entries fixed to 1. The background music spectral power V_1 is modeled exactly as in the case of the multichannel NMF described in the previous paragraph. The main melody spectral power is constrained to $V_2 = (W_{\text{ex}}^2 G_{\text{ex}}^2) \odot (W_{\text{ex}}^2 G_{\text{ex}}^2)$ with W_{ex} and G_{ex} being adaptive matrices of size $F \times K_{\text{ex}}$ and $K_{\text{ex}} \times N$, respectively, and A_j being an adaptive tensor of size $2 \times 1 \times F \times N$ or $2 \times 2 \times F \times N$, respectively, subject to the time-invariance constraint.

IV. ESTIMATION ALGORITHM

In this section we describe in details the proposed algorithm for the estimation of the model parameters and subsequent source separation.

A. Model estimation criterion

To estimate the model parameters, we use the standard maximum a posteriori (MAP) where the log-likelihood $\log p(x_{f,n}|\theta)$ in every TF point is replaced by its empirical expectation $\tilde{E}[\log p(x_{f,n}|\theta)]$ according to the empirical expectation operator $\tilde{E}[]$ introduced in Section III-B2 [10], [18]. Mathematically rigorous derivation of this criterion is given in Appendix A. This criterion consists in maximizing the modified log-posterior $\mathcal{L}(\theta, \eta|X) \triangleq \tilde{E}[\log p(\theta, \eta|X)]$, where $X = \{x_{f,n}\}_{f,n}$, over the model parameters θ and the hyperparameters $\eta = \{\eta_{j,k}\}_{j,k=1}^{19}$. This quantity can be rewritten,
Fig. 3. Excitation-filter decomposition as applied to the spectral power of several guitar notes. (A): source spectral power, (B): model spectral power $V_j = V_j^s \odot V_j^f$, (C): excitation spectral power V_j^e, (D): filter spectral power V_j^f.

Fig. 4. Excitation power decomposition $V_j^{ex} = W_j^{ex} U_j^{ex} G_j^{ex} H_j^{ex}$ as applied to the spectral power of several xylophone notes. (A): source spectral power, (B): excitation spectral power $V_j^{ex} = E_j^{ex} P_j^{ex}$, (C): characteristic spectral patterns $E_j^{ex} = W_j^{ex} U_j^{ex}$, (D): spectral pattern activations $P_j^{ex} = G_j^{ex} H_j^{ex}$, (E): narrowband spectral patterns W_j^{ex}, (F): spectral pattern weights U_j^{ex}, (G): temporal pattern weights G_j^{ex}, (H): time-localized patterns H_j^{ex}.

$$V_j = V_j^s \odot V_j^f$$

$$V_j^e$$

$$V_j^f$$

$$W_j^{ex} U_j^{ex} G_j^{ex} H_j^{ex}$$

$$E_j^{ex} P_j^{ex}$$

$$W_j^{ex} U_j^{ex}$$

$$G_j^{ex} H_j^{ex}$$

$$W_j^{ex}$$

$$U_j^{ex}$$

$$G_j^{ex}$$

$$H_j^{ex}$$
using (2) and (4), as:
\[
\hat{L}(\theta, \eta | X) \leq \hat{L}(X | \theta) + \log p(\theta | \eta) = \sum_{f,n} \hat{E} \log N_c(x_{fn} | 0, \Sigma_{x,f_n}) + \log p(\theta | \eta),
\]
where \(\Sigma_{x,f_n} \triangleq \sum_{j=1}^{J} \nu_{f_n} R_{j,f_n} \) is the modified log-likelihood and \(\hat{L}(X | \theta) \) is the log-likelihood.

(b) Complete data log-posterior and natural statistics:
We chose \(Z = \{X, S\} \) as the complete data, where \(S = \{s_{fn}\}_{f,n} \), and the modified log-posterior of the complete data can be written as:
\[
\hat{L}(\theta, \eta | X, S) \leq \hat{L}(X | S; \theta) + \hat{L}(S | \theta) + \log p(\theta | \eta) \\
\leq - \sum_{f,n} \text{tr} \left[\Sigma_{b,f_n}^{-1} \left(R_{x,f_n} - A_{fn} R_{xs,f_n}^H \right) \right] - \sum_{f,n} \log |\Sigma_{b,f_n}|
\]
where \(d_{IS}(x|y) = \frac{x}{y} - \log \frac{x}{y} - 1 \) is the Itakura-Saito (IS) divergence.

B. Model estimation via a GEM algorithm
Given the model parameters \(\theta = \{\theta_{j,k}\}_{j,k=1}^{J} \) specified in Table II and the hyperparameters \(\eta = \{\eta_{j,k}\}_{j,k=1}^{J} \) together with user-defined constraints and initial values, we minimize the criterion (16) using a GEM algorithm [20] that consists in iterating the following expectation (E) and maximization (M) steps (see Fig. 2):

- **E-step:** Compute the conditional expectation of the so-called natural (sufficient) statistics, given the observations \(X \) and the current parameters \(\theta, \eta \).
- **M-step:** Given the expectation of the natural statistics, update the parameters \(\theta, \eta \) so as to increase the conditional expectation of the modified log-posterior of the so-called complete data [20]. This step is implemented via a loop over all \(J \times 9 \) parameter subsets \(\eta_{j,k} \) specified in Table II.

1) Preliminaries:
 - **Additive noise and simulated annealing:** As explained in [13], where a similar GEM algorithm is used, the mixing parameters \(A_{fn} \) (see Eq. (7)) updated via this GEM algorithm can become stuck in a suboptimal value. To overcome this issue, we use a form of simulated annealing proposed in [13], which consists in adding to (7) a noise term whose variance is decreased by a fixed amount at each iteration. Thus, we assume that there is a \(J \times 1 \) source with full-rank time-invariant spatial covariance \(\Sigma_{b,f_n} = \sigma_b^2 I_J = R_{b,f_n+1,f_n} \) and trivial spectral power \(\nu_{b,f_n} = 1 \) that represents a controllable additive isotropic noise \(b_{fn} = y_{f_n+1,f_n} \). Introducing this noise component leads to considering the noise covariance \(\Sigma_{b,f_n} \) as part of the model parameters \(\theta \) and to adding it to the mixing equation (7):
 \[
x_{fn} = A_{fn}s_{fn} + b_{fn}.
 \]

2) Conditional expectation of the natural statistics (E-step):
 The conditional expectations of the natural statistics \(\mathcal{T}(X, S) \) are computed as follows:
 \[
 \hat{R}_{xs,f_n} = \hat{R}_{xs,f_n} \Omega_{s,f_n}^H, \\
 \Omega_{s,f_n} = \Omega_{s,f_n} \Omega_{s,f_n}^H + (I_R - \Omega_{s,f_n} A_{fn}) \Sigma_x(s_{fn}^2),
 \]
 where
 \[
 \Omega_{s,f_n} = \Sigma_{s,f_n} A_{fn}^H \Sigma_b^{-1}_{f_n}, \\
 \Sigma_x(s_{fn}^2) = A_{fn} \Sigma_{s,f_n} A_{fn}^H + \Sigma_{b,f_n}, \\
 \Sigma_x(s_{fn}^2) = \text{diag} \left(\phi_{r,f_n} \right),
 \]
 and \(\phi_{r,f_n} = v_{j,f_n} \) if and only if \(r \in R_j \), with \(R_j \) denotes the set of sub-source indices associated with source \(j \) in the vector \(s_{fn} \) (see section III-D).
3) Update of the spatial covariances (M-step):
 Unconstrained time-invariant mixing parameters:
 We first consider the case where there are no probabilistic priors specified for the mixing parameters \(\{A_{j}\} \) and these parameters are time-invariant. Let \(A, A' \subset \{1, \ldots, R\} \) be subsets of indices of sizes \(D = \#(A) \) and \(D' = \#(A') \), respectively. Below we denote by \(A_{fn}^A, R_{xs,f_n}^A, \) and \(R_{xs,f_n}^{A,A'} \) the matrices of respective sizes \(I \times D \), \(I 	imes D \), and \(I 	imes D' \), that consist of the corresponding entries of the matrices \(A_{fn}, R_{xs,f_n} \), and \(R_{xs,f_n}^{A,A'} \), i.e.,
 \[
 A_{fn}^A = [A_{fn}(i,r)]_{i=1,r \in A}, \\
 R_{xs,f_n}^A = [R_{xs,f_n}(i,r)]_{i=1,r \in A}, \quad \text{and} \quad R_{xs,f_n}^{A,A'} = [R_{xs,f_n}(r,r')]_{r \in A, r' \in A'}.\]
with adaptive mixing parameters. With these conventions the mixing parameters are updated as follows:

\[
A_{fn}^C = \left[\sum_{n} \left(\hat{R}_{xs,fn}^C - A_{fn}^C \hat{R}_{sn,fn}^C \right) \right]^{-1} \left[\sum_{n} \hat{R}_{sn,fn}^C \right]^{-1},
\]

(26)

\[
A_{fn}^T = \Re \left[\sum_{r,n} \left(\hat{R}_{xs,fn}^T - A_{fn}^T \hat{R}_{sn,fn}^T \right) \right] \Re \left[\sum_{n} \hat{R}_{sn,fn}^T \right]^{-1},
\]

(27)

b) Other constraints: Estimating time-varying mixing parameters without any priors does not make much sense in practice due to highly unconstrained nature of such estimation. If the mixing parameters are given some Gaussian priors, closed-form updates similar to (26), (27) can be still derived, since the modified log-posterior (18) will be a quadratic form with respect to the mixing parameters. In case of non-gaussian priors some Newton-like updates [22] can be derived.

4) Update of the spectral power parameters (M-step):

a) Unconstrained nonnegative matrices: Let \(C_j = \theta_{j,k} \) \((k = 2, \ldots, 9)\) an adaptive or partially adaptive nonnegative matrix (see Tab II) with a uniform prior \(p(\theta_{j,k}|y_{j,k}) = 1 \). Whatever the matrix \(C_j \), it can be shown that the decomposition (13) can be rewritten as \(V_j = (B_j C_j D_j) \odot E_j \), where \(B_j \), \(D_j \) and \(E_j \) are some nonnegative matrices that are assumed to be fixed while \(C_j \) is updated. For example, if \(C_j = H_{j}^{\theta} \) in (13), one can choose \(B_j = W_{j}^{H_1} U_{j}^{H_2} G_{j}^{H_1} \), \(D_j = I_N \) and \(E_j = W_{j}^{H_2} U_{j}^{H_2} G_{j}^{H_2} H_{j}^{\theta} \). With these notations it can be shown that the conditional expectation of the modified log-posterior (18) of the complete data is non-decreasing when the corresponding update for \(C_j \) does not increase the cost function:

\[
D_{IS}(C_j) = \sum_{f,n} d_{IS}(\hat{E}_j[f,n]|V_j[f,n]),
\]

(28)

where \(V_j = (B_j C_j D_j) \odot E_j \) and \(\hat{E}_j = [\hat{\xi}_j,f,n] \) with \(\hat{\xi}_j,f,n \) computed as follows:

\[
\hat{\xi}_j,f,n = \frac{1}{R_j} \sum_{r \in R_j} \hat{R}_{sn,f,n}(r,r),
\]

(29)

where \(\hat{R}_{sn,f,n} \) is computed in (22) and \(R_j \) is defined at the end of Section IV-B2. Applying some standard derivations (see, e.g., [9]), one can obtain the following nonnegative MU rule \(^7\)

\[
C_j = C_j \odot \frac{B_j \hat{E}_j \odot E_j \odot \{(B_j C_j D_j) \odot E_j\}^{-1} D_j^T}{B_j \hat{E}_j \odot \{(B_j C_j D_j) \odot E_j\}^{-1} D_j^T},
\]

(30)

that guarantees non-increase of the cost function (28), and thus non-decrease of the conditional expectation of the modified log-posterior (18) of the complete data. These update rules, as applied to multichannel audio, are in fact a generalization of

the GEM-MU algorithm proposed in [21], that has been shown to converge much more quickly than the GEM algorithm in [13].

b) Discrete state-based constraints: Let us now assume that \(\theta_{j,k} = G_{j}^{\theta} \) is subject to a discrete state-based constraint (similarly for \(\theta_{j,k} = G_{j}^{\theta} \)). Note that when time-localized patterns \(H_{j}^{\theta} \) (or \(H_{j}^{\theta} \)) have non-zero overlaps in time of maximum length \(L \) (see, e.g., Fig. 4) the model becomes equivalent to an HMM of the order \(L \) (in case of GMMS) or of the order \(L + 1 \) (in case of HMMs). In order to avoid the complications of requiring consistency of overlapping patterns (which would introduce temporal constraints somewhat reminiscent of an HMM), in our baseline implementation and in the updates described below we only consider non-overlapping time-localized patterns \(H_{j}^{\theta} = I_N \) in case of discrete state-based constraints. The updates are performed as follows:

1) Set \(G_{j}^{\theta} = G_{j}^{\theta} \), and fill each entry of each column of \(G_{j}^{\theta} \) with the nonzero entry of the respective column of \(G_{j}^{\theta} \).

2) If \(G_{j}^{\theta} \) is adaptive, do for every \(k = 1, \ldots, K_{j}^{\theta} \):

- Set \(C_j = G_{j}^{\theta} \), and set all the elements of \(C_j \) to zero, except the \(k \)-th row.
- Update \(C_j \) using several iterations of (30) \(^8\).
- Set the \(k \)-th row of \(G_{j}^{\theta} \) equal to that of \(C_j \).

3) For every \(k = 1, \ldots, K_{j}^{\theta} \) and \(m = 1, \ldots, M_{j}^{\theta} \) set \(C_j = G_{j}^{\theta} \), set all the elements of \(C_j \) to zero, except the \((k,m) \)-th one, and compute the IS divergence \(D_{IS}(k,m) \) between \(V_j = (B_j C_j D_j) \odot E_j \) and \(\hat{E}_j \), as in (28).

4) Update the state sequence \(q_{j}^{\theta} \) using the Viterbi algorithm (45) to minimize the following criterion:

\[
q_{j}^{\theta} = \arg \min_{q_{j}^{\theta}} \sum_{m=2}^{M_{j}^{\theta}} D_{IS}(q_{j,m}, m) - \log p(q_{j,m}^{\theta}|A_{j}^{\theta}),
\]

where \(p(q_{j,m}^{\theta}|A_{j}^{\theta}) \) is computed as in (14).

5) Set \(G_{j}^{\theta} = G_{j}^{\theta} \) and set to zero all the entries of \(G_{j}^{\theta} \), except those corresponding to \(q_{j}^{\theta} \).

6) If \(A_{j}^{\theta} \) is adaptive, update the transition probabilities as

\[
\lambda_{j,k,k'}^{\theta} = \frac{\sum_{m=1}^{M_{j}^{\theta}-1} 1(g_{j,m-1}^{\theta}=k,g_{j,m}^{\theta}=k')}{(M_{j}^{\theta}-1) \sum_{m=1}^{M_{j}^{\theta}-1} 1(q_{j,m-1}^{\theta}=k)} \text{ in case of HMM or}
\]

\[
S-HMM \text{ or as } \lambda_{j,k,k'}^{\theta} = \frac{1}{M_{j}^{\theta}} \sum_{m=2}^{M_{j}^{\theta}-1} 1(q_{j,m}^{\theta}=k') \text{ in case of GMMS or GSMM.}
\]

c) Other constraints: We here discuss the updates that are not yet included in our current baseline implementation (see Sec. II-D).

An EM algorithm update rules for time pattern weights \(G_{j}^{\theta} \) or \(G_{j}^{\theta} \) with time continuity priors, such as inverse-Gamma or Gamma Markov chain priors, can be found in [9]. However, one cannot use these rules within our GEM algorithm, since we use a different, reduced, complete data set, as compared

\(^8\)Several iterations of update rule (30) are needed because all entries of \(G_{j}^{\theta} \) are initialized in step 1 from a particular sequence of gains carried by \(G_{j}^{\theta} \) and optimized for the current state sequence \(q_{j}^{\theta} \). Performing only one update of (30) would unfavor state sequence evaluation. However, to avoid all these issues, in our implementation we just keep matrix \(G_{j}^{\theta} \) in memory, skip step 1, and do only one iteration of (30).
Newton-like updates [22] for these priors. Nevertheless, one can always use some Newton-like updates [22] for these priors. If a matrix $\theta_{j,k}$ ($k = 2, \ldots, 9$) is constrained with a sparsity-inducing prior [4], such as a Laplacian prior (corresponding to an l_1 norm penalty), it can be updated using the multiplicative updates described in [46], [47]. However, in such a case the renormalization described in the subsection below could not be applied, since it would change the value of the optimized criterion (16). At the same time, without any renormalization, the sparsity-inducing prior would loose its influence. To avoid that, all the other parameter subsets $\theta_{j,l}$ ($l \neq k$) should be constrained, e.g., to have a unitary (say l_1) norm, which can be handled using the gradient descent updates from [46] or the modified multiplicative updates from [47].

5) Renormalization: At the end of each GEM iteration, in order to avoid numerical (under/over-flow) problems, a renormalization of some parameters is done if needed, i.e., if these parameters are not already constrained by some priors that are not scale-invariant. This procedure is similar to the one described in [13], and it does not change the value of the optimized criterion (16). For example, the columns of matrix U_{j}^ex can be divided by their energies, and the rows of G_{j}^ex scaled accordingly (see (13)). Similar renormalization is applied in turn to each parameter subsets pairs $\theta_{j,k}, \theta_{j,k+1}$ ($k = 1, \ldots, 8$), and at the end of this operation the total energy is relegated into $\theta_{j,9}$.

C. Source estimation

Given the estimated model parameters θ, the sources can be estimated in the minimum mean square error (MMSE) sense via the Wiener filtering:

$$\hat{y}_{j,fn} = v_{j,fn} R_{j,fn} \Sigma_{x,fn}^{-1} x_{fn},$$

where $\Sigma_{x,fn} = \sum_{j=1}^{J} v_{j,fn} R_{j,fn}$. The counterpart of this equation for quadratic TF representations is given in Appendix A.

V. EXPERIMENTAL ILLUSTRATIONS

The goals of this experimental part are to illustrate on some examples how to specify the prior information in the framework, given a particular source separation problem, and to demonstrate that we can implement the existing and new methods within the framework. For that we first give an example of application of the framework to a music recording in a non-blind setting, i.e., when different sources are given different models according to the prior information. Second, we consider a few blind framework instances, corresponding to existing and new methods, and apply them for separation of underdetermined speech and music mixtures. Third, we describe how to apply the framework to solve the source separation problem mentioned in the beginning of the introduction, i.e., the separation of bass, drums and melody in music recordings. Finally, we briefly mention our application of the framework for speech separation in the context of noise robust speech recognition.

A. Non-blind separation of one music recording

1) Data: As an example stereo music recording to separate we took the 23-second snip of the song “Que pena tanto faz” by Tamy from the test dataset of the SiSEC 2008 [30] “Professionally produced music recordings” task. We know about this recording that there are two sources, a female singing voice and a guitar, that the voice is instantaneously mixed (panned) in the middle 9 and the guitar is possibly a non-point convolutive source.

2) Constraint specification and parameter initialization: To account for this information within our framework, we have chosen the following constraints. The singing voice mixing parameters A_1 form a fixed tensor of size $2 \times 1 \times F \times N$ with all entries equal to 1. The guitar mixing parameters A_2 form an adaptive tensor of size $2 \times 2 \times F \times N$ subject to the time-invariance constraint. The spectral powers V_j ($j = 1, 2$) are constrained to $V_j = W_j^{ex} U_j^{ex} G_j^{ex} H_j^{ex}$ with W_j^{ex} and H_j^{ex} being fixed, and U_j^{ex} and G_j^{ex} being adaptive. The narrowband spectral patterns W_j^{ex} include 6 × L harmonic patterns modeling the harmonic part of L pitches and 9 smooth patterns (see Fig. 4 (E) and [14]). The L pitches are chosen to cover the range of 77 - 1397 Hz (39 - 89 on the MIDI scale), which is enough for both the guitar and this particular singing. The time-localized patterns H_j^{ex} are different. The singing voice time-localized patterns H_j^{ex} include half-Gaussians truncated at the left, i.e., only the right half is kept. The guitar time-localized patterns H_j^{ex} include decreasing exponentials to model the decay part of the notes and discrete Dirac functions to model note attacks (see Fig. 4 (H)). All adaptive parameters are initialized with random values. Finally, we used the ERB quadratic representation described in [18] as signal representation.

3) Results: After 500 iterations of the proposed GEM algorithm the separation results, measured in terms of the source to distortion ratio (SDR) [48], were 7.2 and 8.9 dB for voice and guitar, respectively. We have also separated the same mixture using all the blind settings described in the following section. The best results of 5.5 and 7.1 dB SDR were obtained by the unconstrained NMF spectral power model with the instantaneous rank-1 mixing, i.e., by the multichannel NMF for instantaneous mixtures [13].

4) Discussion: We see that our informed setting outperforms any blind setting by at least 1.7 dB SDR. This improvement is essentially due to the combination of rank-1 instantaneous and full-rank convolutive mixing models and the information about the position of one source. Moreover, while it is common in professionally produced music recordings that some sources are mixed instantaneously (panned) and others convolutively (e.g., live-recorded tracks or some artificial reverberation is added), in our best knowledge such hybrid models were not yet proposed for audio source separation, and it now becomes possible to implement them within our framework.

*This information can be for example obtained by subtracting the left channel from the right one and checking that the voice is cancelled.
B. Blind separation of underdetermined speech and music mixtures

1) Data: Here we evaluate several settings of our framework on the development dataset of the SiSEC 2010 [29] “Underdetermined-speech and music mixtures” task. This dataset include 10-seconds length instantaneous, convolutive and live-recorded stereo mixtures of three or four music and speech sources (see [29] for more details).

2) Constraint specification and parameter initialization:
We consider eight blind settings of the framework that are specified by the following constraints. For all settings and for all sources \(A_j \) forms an adaptive tensor of size \(2 \times R_j \times F \times N \) subject to the time-invariance constraint and subject to the frequency invariance constraint for instantaneous mixtures only. The spectral power of each source is structured as \(V_j = E^{\text{ex}}_j P^{\text{ex}}_j \). The eight settings are generated by all possible combinations of the following possibilities (see also Table IV):

- **Rank**: The rank \(R_j \) is either 1 or 2 (full-rank).
- **Spectral structure**: The characteristic spectral patterns \(E^{\text{ex}}_j \) are either unconstrained, i.e., \(E^{\text{ex}}_j = W^{\text{ex}}_j \) with adaptive \(W^{\text{ex}}_j \), or constrained, i.e., \(E^{\text{ex}}_j = W^{\text{ex}}_j U^{\text{ex}}_j \) with fixed \(W^{\text{ex}}_j \) being composed of harmonic and noise-like and smooth narrowband spectral patterns (see Fig. 4 (E) and [14]), and adaptive \(U^{\text{ex}}_j \) (see Fig. 4 (F)) that is very sparse so as to eliminate invalid combinations of narrowband spectral patterns (e.g., patterns corresponding to different pitches should not be combined together).
- **Temporal structure**: The time activation coefficients \(P^{\text{ex}}_j \) are either unconstrained, i.e., \(E^{\text{ex}}_j = G^{\text{ex}}_j \) with adaptive \(G^{\text{ex}}_j \), or constrained, i.e., \(E^{\text{ex}}_j = G^{\text{ex}}_j H^{\text{ex}}_j \) with fixed \(H^{\text{ex}}_j \) being composed of decreasing exponentials, as those on Fig. 4 (H), and adaptive \(G^{\text{ex}}_j \).

The two settings with \(R_j = 1 \) and 2, and unconstrained \(E^{\text{ex}}_j \) and \(P^{\text{ex}}_j \) correspond to the state-of-the-art methods [13] and [17], respectively (see Section III-F), while the remaining six settings are new.

In line with [13], parameter estimation via GEM is sensitive to initialization for all the settings we consider. To provide our GEM algorithm with a “good initialization” we used for the instantaneous mixtures the DEMIX mixing matrix estimation algorithm [49] to initialize mixing parameters \(A_j \), followed by \(l_0 \) norm minimization (see e.g., [1]) and Kullback-Leibler (KL) divergence minimization (see [13]) to initialize the source power spectra \(V_j \). For synthetic convolutive and live recorded mixtures we first estimated the time differences of arrival (TDOAs) using the MVDRW estimation algorithm proposed in [50], that is based on a variance distortionless response (MVDR) beamformer. The estimated TDOAs were then used to initialize anechoic mixing parameters \(A_j \), followed by binary masking and KL divergence minimization (see [13]) to initialize the source power spectra \(V_j \). As signal representation we used the STFT.

3) Results: Source separation results in terms of average SDR after 200 iterations of the proposed GEM algorithm are summarized in Table IV together with results of the baseline used for initialization.

4) Discussion: As expected, in most cases rank-1 spatial covariances perform the best for instantaneous mixtures and full-rank spatial covariances perform the best for synthetic convolutive and live recorded mixtures. Moreover, in all the cases there is at least one of the six new methods that outperforms the state-of-the-art methods [13] and [17]. One can note that for music sources constraining the spectral structure does not improve the separation performance, however, constraining the temporal structure does improve it. For speech sources constraining both the spectral and the temporal structures improves the separation performance in most cases. This is probably because the unconstrained NMF is a poor model for speech. Indeed, as compared to simple music, speech includes much more different spectral patterns, notably due to a more pronounced vibrato effect (varying pitch). As a consequence, the unconstrained NMF model needs much more components to describe this variability, thus it cannot be estimated in a robust way from these quite short 10-second length mixtures. Introducing spectral and temporal constraints makes model estimation more robust.

C. Separation of bass, drums and melody in music recordings

Here we describe how to apply our framework to the separation of the bass, the drums, the melody and the remaining instruments from a stereo professionally produced music recording. This source separation problem is of great practical interest for music information retrieval and remastering (e.g., karaoke) applications.

1) State-of-the-art: The state-of-the-art approaches targeting this problem suffer from the following limitations. First, existing drum [52] and melody [16] separation algorithms have been designed for single-channel (mono) recordings and may fail to segregate the melody from the other harmonic sources despite the fact that they have different spatial directions. Second, blind source separation methods relying on joint use of spatial and spectral diversity, such as, e.g., the multichannel NMF [13], need some user input to label separated signals [21] and cannot separate sources mixed in the same direction, which is a very common situation, e.g., for singing melody and drums. Finally, no state-of-the-art approach treats this problem in a joint fashion and cascading the methods (e.g., separating the drums, then separating the melody, etc.) is clearly suboptimal. Thus, it is clear that an efficient solution to this problem should rely on:

- some prior knowledge about the source spectral characteristics (to label the sources automatically),
- the spatial diversity of different sources,
- some model describing harmonicity, and
- joint modeling of all sources.

2) Constraint specification, parameter initialization and reconstruction: Our framework satisfies these requirements, and in order to account for this information we have chosen the following constraints. The two-channel mixture is modeled as a sum of 12 sources: 4 sources \(j = 1, \ldots, 4 \) representing

\[10\] The results for synthetic convolutive mixtures of music sources are not very informative because of the poor overall performance.
the bass, 4 sources \((j = 5, \ldots, 8)\) representing the drums \(^{11}\), and the remaining 4 sources \((j = 9, \ldots, 12)\) representing the melody and the other instruments. Each set of mixing parameters \(A_j\) \((j = 1, \ldots, 12)\) form an adaptive tensor of size \(2 \times 2 \times F \times N\) subject to the time-invariance constraint. The spectral powers \(V_j\) of the bass and the drums \((j = 1, \ldots, 8)\) are constrained to \(V_j = W_j^{ex} G_j^{ex} 5\) with \(G_j^{ex}\) being adaptive and \(W_j^{ex}\) being fixed and pre-trained (using our framework) from isolated bass and drum samples from the RWC music database \([53]\). The spectral powers \(V_j\) of the melody and the remaining instruments \((j = 9, \ldots, 12)\) are constrained to \(V_j = W_j^{ex} U_j^{ex} G_j^{ex} 5\) with \(W_j^{ex}\) being fixed, and \(U_j^{ex}\) and \(G_j^{ex}\) being adaptive. The narrowband spectral patterns \(W_j^{ex}\) \((j = 9, \ldots, 12)\) include 3 \(L\) harmonic patterns modeling the harmonic part of \(L\) pitches (see \([14]\)). The \(L\) pitches are chosen to cover the range of 27 - 4186 Hz \((21 - 108\) on the MIDI scale), which is enough to cover the pitch range of most instruments. All adaptive parameters are initialized with random values, except the mixing parameters \(A_j\) \((2 \times 2 \times F \times N\) tensors\) that are initialized with the same (random) \(2 \times 2 \times N\) tensor for all frequency bins. We used the ERB quadratic representation in \([18]\) as signal representation due to its higher low-frequency resolution than the STFT, which is desirable for the modeling of bass sounds. Once the GEM algorithm has run, the 12 sources are estimated via Wiener filtering. The bass and the drums are reconstructed by summing the corresponding source estimates, the melody is reconstructed by summing the other three sources.

3) Results: The corresponding source separation script together with one separation example are available from the FASST web page \([25]\). Note that this example is a difficult, real-world mixture, which involves several sources mixed in the center (bass, singing voice, certain drums) and several harmonic sources with comparable pitch range (singing voice, piano).

D. Separation of speech in multi-source environment for noise robust speech recognition

We have also applied the framework for the problem of speech separation in reverberant noisy multi-source environment. This was done for our submission to the 2011 CHiME Speech Separation and Recognition Challenge \(^{12}\). The corresponding description can be found in \([54]\) and some separation examples are available from a demo web page at \(^{13}\).

VI. Conclusion

We have introduced a general flexible audio source separation framework that generalizes several existing source separation methods, brings them into a common framework, and allows to imagine and implement new efficient methods, given the prior information about a particular source separation problem. Besides the framework itself, we proposed a new temporal structure for NMF-like decompositions and an original mixing model formulation combining rank-1 and full-rank spatial mixing models in a homogeneous way. Finally, we provided a proper probabilistic formulation of local Gaussian modeling for quadratic time-frequency representations.

In the experimental part we have illustrated how to specify the prior information about a particular source separation problem within the framework, and we have shown that the framework allows implementing existing and new efficient source separation methods. We have also demonstrated that in some situations our new propositions can improve the source separation performance, as compared to the state-of-the-art. As such combining instantaneous rank-1 and and convolutive full-rank can be useful for separation of professionally produced music recordings, and the newly proposed temporal structure for NMF-like decompositions brings some improvement for blind separation of underdetermined mixtures of speech and music sources.

As for further research, the following extensions could be introduced to the framework. In a similar fashion as for

\(^{11}\)The bass is modeled as a sum of 4 sources to facilitate initialization, since we do not know a priori its spatial direction. The drums are modeled as a sum of 4 sources for the same reason, but also because the drum track is often composed of several sources (e.g., snare, hi-hat, cymbals, etc) that can be mixed in different directions.

\(^{12}\)http://spandh.dcs.shef.ac.uk/projects/chime/challenge.html

\(^{13}\)http://www.irisa.fr/metiss/ozerov/chime_ssep_demo.html

<table>
<thead>
<tr>
<th>Source</th>
<th>instantaneous</th>
<th>synthetic convolutive</th>
<th>live recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone spacing</td>
<td>speech</td>
<td>music</td>
<td>5 cm</td>
</tr>
<tr>
<td>Number of 10 second-length mixtures</td>
<td>6</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>baseline ((l_j,\text{ minimization}) [31] or binary masking)</td>
<td>8.6</td>
<td>12.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Method</td>
<td>rank (R_j)</td>
<td>spectral struct.</td>
<td>temporal struct.</td>
</tr>
<tr>
<td>[13]</td>
<td>1</td>
<td>unconstrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>[17]</td>
<td>2</td>
<td>unconstrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>new</td>
<td>unconstrained</td>
<td>unconstrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>new</td>
<td>constrained</td>
<td>unconstrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>new</td>
<td>unconstrained</td>
<td>constrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>new</td>
<td>unconstrained</td>
<td>unconstrained</td>
<td>constrained</td>
</tr>
<tr>
<td>new</td>
<td>constrained</td>
<td>constrained</td>
<td>unconstrained</td>
</tr>
<tr>
<td>new</td>
<td>constrained</td>
<td>constrained</td>
<td>constrained</td>
</tr>
</tbody>
</table>

TABLE IV

AVERAGE SDRs on subsets of SiSEC 2010 “Underdetermined speech and music mixtures” task development dataset.
spectral power, a flexible structure can be specified for the mixing parameters. E.g., the time-varying mixing parameters could be represented in terms of time-localized and locally time-invariant mixing parameter patterns, thus allowing the modeling of moving sources. Another interesting extension would be to introduce possible coupling between parameter subsets, thus allowing, e.g., the representation of the characteristic spectral patterns of different sources as linear combinations of eigenvoices [55] or eigeninstruments [56]. In fact, some parameter subsets corresponding to different sources can share common properties, and introducing such a coupling would make the estimation of these parameters more robust.

APENDIX A

PROBABILISTIC FORMULATION OF THE LOCAL GAUSSIAN MODEL FOR QUADRATIC REPRESENTATIONS

Here we give a proper probabilistic formulation of the local Gaussian model (4) for quadratic representations, explaining the exact meaning of the empirical covariance (3) and a justification of the criterion (16).

A. Input representation

Following [10], [18], we assume that the considered quadratic TF representation is computed by local averaging of a linear TF representation such as a STFT or an ERB filterbank. We assume that the indexing of the considered linear TF complex-valued representation, hereafter noted as \(m = 1, \ldots, M \), can be in general different from the indexing \(f, n \) of the quadratic representation (3). Such a formulation allows considering linear and quadratic representations with different TF resolutions, but also using linear TF representations that do not allow any uniform TF indexing, e.g., an ERB representation with different sampling frequencies in different frequency bands or a signal-adapted multiple-window STFT [57]. The mixing equation (1) now writes as

\[
x_m = \sum_{j=1}^{J} y_{j,m},
\]

and we re-define the empirical covariance (3) as

\[
\hat{R}_{x,fn} = \sum_m (\omega_{fn,m}^{\text{ana}})^2 x_m x_H^H,
\]

where \(\omega_{fn,m}^{\text{ana}} \geq 0 \), satisfying \(\sum_f (\omega_{fn,m}^{\text{ana}})^2 = 1 \), are the coefficients of a local bi-dimensional analysis window specifying a neighbourhood of the TF point \((f,n)\) [10], [18].

B. Local Gaussian model

In this setting the local Gaussian model (4) is re-defined as follows. Each vector \(y_{j,m} \) is assumed to be distributed as

\[
y_{j,m} \sim \mathcal{N}_c(0, v_{j,fn} R_{j,fn})
\]

with probability \((\omega_{fn,m}^{\text{ana}})^2\). In other words, \(y_{j,m} \) is a realization of a GMM. Moreover, the vectors \(\{y_{j,m}\}_j \) are assumed to be independent only conditionally on the same GMM state. More precisely, the joint probability density function of \(\{y_{j,m}\}_j \) is defined as

\[
p(y_{1,m}, \ldots, y_{J,m}) \propto \prod_j (\omega_{fn,m}^{\text{ana}})^2 \mathcal{N}_c(y_{j,m}; 0, v_{j,fn} R_{j,fn}).
\]

C. Model estimation criterion

Under the above-presented assumptions (see (32) and (35)), the log-posterior \(\log p(\theta, \eta|X) \), maximized by the MAP criterion, writes

\[
\log p(\theta, \eta|X) \geq \log p(X|\theta) + \log p(\theta|\eta) = \sum_{f,n} \log \sum_m (\omega_{fn,m}^{\text{ana}})^2 \mathcal{N}_c(x_m; 0, \Sigma_{x,fn}) + \log p(\theta|\eta),
\]

where \(\Sigma_{x,fn} = \sum_{j=1}^{J} v_{j,fn} R_{j,fn} \). Log-posterior (36) is difficult to optimize, due to summations in log-domain. Thus, following the EM methodology [20], we replace \(\log p(\theta, \eta|X) \) by its lower bound

\[
\sum_{f,n} \sum_m (\omega_{fn,m}^{\text{ana}})^2 \log \mathcal{N}_c(x_m; 0, \Sigma_{x,fn}) + \log p(\theta|\eta),
\]

using Jensen’s inequality [20], and we get the criterion (16) with empirical covariances \(\hat{R}_{x,fn} \), computed as in (33). Thus, the criterion (16) maximizes a lower bound of the log-posterior (36).

Note, that with this formulation we could obtain exactly the same updates as those presented in Section IV-B by deriving a GEM algorithm for the MAP criterion (36). This is because the computing of the lower bound (37) is based on the EM methodology. However, we prefer to keep the criterion (16), since it makes the formulation more compact and links it to quadratic representations and to the existing works [10], [18].

D. Source estimation

The sources can be estimated as follows [10], [18]:

\[
y_{j,m} = \sum_{f,n} \omega_{fn,m}^{\text{syn}} \omega_{fn,m}^{\text{ana}} y_{j,fn} R_{j,fn} \Sigma_{x,fn}^{-1} x_m
\]

where \(\omega_{fn,m}^{\text{syn}} \geq 0 \) is a so-called synthesis window satisfying \(\sum_{f,n} \omega_{fn,m}^{\text{syn}} = 1 \). This estimator becomes the MMSE estimator when \(\omega_{fn,m}^{\text{syn}} = \omega_{fn,m}^{\text{ana}} \).

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments.

REFERENCES

Emmanuel Vincent (M’07 - SM’10) is a Research Scientist with the French National Institute for Research in Computer Science and Control (INRIA, Rennes, France). Prior to that he received the Ph.D. degree in music signal processing from IRCAM (Paris, France) in 2004 and worked as a Research Assistant with the Centre for Digital Music at Queen Mary, University of London (London, U.K.) from 2004 to 2006. His research focuses on probabilistic machine learning for speech and audio signal processing, with application to real-world audio source localization and separation, noise-robust speech recognition and music information retrieval. He is the founding chair of the annual Signal Separation Evaluation Campaign (SiSEC). Dr. Vincent is an Associate Editor for the IEEE Transactions on Audio, Speech and Language Processing.

Frédéric Bimbot received in 1988 a PhD in signal processing (speech synthesis using temporal decomposition), after graduating as a telecommunication engineer in 1985 (ENST, Paris, France). He also obtained in 1987 a B.A. in Linguistics (Sorbonne Nouvelle University, Paris III).

In 1990, he joined CNRS (French National Center for Scientific Research) as a permanent researcher, worked with ENST for 7 years and then moved to IRISA (CNRS & INRIA), in Rennes. He also repeatedly visited AT&T – Bell Laboratories between 1990 and 1999. He is now a Senior Researcher with CNRS.

He is heading the (IRISA/CNRS & INRIA/Rennes) METISS research group, dedicated to selected topics in speech and audio processing and his research is focused on speech and audio analysis, speaker recognition, music content modeling and audio source separation. He is also in charge of the coordination of D5 Department (Digital Signals and Images, Robotics) at IRISA.

He has been involved in a number of research projects, among which the ongoing QUAERO project in multimedia information retrieval.

Alexey Ozerv holds a Ph.D. in Signal Processing from the University of Rennes 1 (France). He worked towards this degree from 2003 to 2006 in the labs of France Telecom R&D and in collaboration with the IRISA institute. Earlier, he received an M.Sc. degree in Mathematics from the Saint-Petersburg State University (Russia) in 1999 and an M.Sc. degree in Applied Mathematics from the University of Bordeaux 1 (France) in 2003. From 1999 to 2002, Alexey worked at Terayon Communications Systems (USA) as a R&D software engineer, first in Saint-Petersburg and then in Prague (Czech Republic). He was for one year (2007) in Sound and Image Processing Lab at KTH (Royal Institute of Technology), Stockholm, Sweden, and for one year and half (2008-2009) in TELECOM ParisTech / CNRS LTCI - Signal and Image Processing (TSD) Department. Now he is with METISS team of IRISA / INRIA - Rennes as a Post-Doc researcher. His research interests include audio source separation, source coding, and automatic speech recognition.