
HAL Id: hal-00626927
https://hal.science/hal-00626927

Submitted on 27 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HostView: Annotating end-host performance
measurements with user feedback

Diana Zeaiter Joumblatt, Renata Teixeira, Jaideep Chandrashekar, Nina Taft

To cite this version:
Diana Zeaiter Joumblatt, Renata Teixeira, Jaideep Chandrashekar, Nina Taft. HostView: Annotating
end-host performance measurements with user feedback. ACM HotMetrics Workshop, Jun 2010, New
York, NY, United States. �hal-00626927�

https://hal.science/hal-00626927
https://hal.archives-ouvertes.fr


HostView: Annotating end-host performance
measurements with user feedback

Diana Joumblatt, Renata Teixeira Jaideep Chandrashekar, Nina Taft
CNRS and UPMC Sorbonne Universités Intel Labs Berkeley

1. INTRODUCTION
Network disruptions can adversely impact a users’ web

browsing, cause video/audio interruptions, or render web
sites and services unreachable. Such problems are frustrat-
ing to Internet users, who are oblivious to the underlying
problems, but completely exposed to the service degrada-
tions. Ideally users’ end systems would have diagnostic tools
that can automatically detect, diagnose and possibly repair,
performance degradations. Hopefully, this can be done with-
out user intervention. Clearly, the first step for any such
(end-host) diagnostic tool is a methodology to automati-
cally detect performance degradations in the network that
can affect a user’s perception of application performance.

While empirical network performance studies have been
carried out in the past, the bulk of these have focused on well
established performance metrics– delay, loss rate, through-
put. Very little attention has been devoted to how these
metrics affect end-users’ interactions with applications that
rely on the network. Understanding the more subjective
quality of experience has been limited to a few niche appli-
cations, for instance VoIP [1], online-gaming [2], and video
playback [3, 4]. Building such application specific models
are useful in improving the specific application, but cannot
be easily generalized to capture a particular user’s “online
experience”, which is likely to span a number of different
applications. Moreover, building application-specific mod-
els requires a great deal of domain knowledge.

We argue for building a general purpose tool that can
detect network performance degradations that affect users’
quality of experience. Moreover, we wish to carry out this
detection with the user’s mix of applications and working en-
vironment. This tool is fundamentally hard to build. First,
perception of performance varies dramatically across users
and even for the same user according to her mood and ex-
pectations. A user is more likely to expect better perfor-
mance from her network at work, than from a free wireless
at a coffee shop. Second, the quality of experience is very
tightly coupled to the application. For instance, a sudden
increase in round-trip times (RTTs) may have no discern-
able impact on a video connection (playback buffers mask
jitter), but it can make a remote login session unusable.
These factors clearly imply that we cannot really study net-
work performance (or its degradation) without taking into
account the application, the end-user, and the environment.
Understanding how to construct a diagnostic tool requires
analysis of network performance data annotated with users’
perception of network quality. However, no such dataset ex-
ists today! A few end-host measurement datasets exist [5–7],

but these lack the all important annotations of users’ per-
ceived quality. Other studies incorporate user feedback with
the performance measurements, for specific applications [4],
but the data is not collected at the end-host. Clearly if one
is to correlate a user’s perception of performance with that
of the network, applications and mobile environment her de-
vice operates in, the data collection utility must reside on
the end-host itself.

In this paper, we describe the design of HostView, an end-
host measuring tool to collect network performance data an-
notated with users’ perceived quality of the network. The
questions of what data to collect, and how to collect it are
fundamental design questions that are also driven by the
user. Certainly, the more data a tool collects the better it
will be able to do diagnosis. But privacy concerns, while sub-
jective, will govern the types of data collected. The mecha-
nism for collecting data is also critical because heavy handed
methods that affect the basic performance of the machine
will deter a user from installing such a tool. Thus a study
of the overhead of any measurement method is imperative
in the design of end-host tracing tools. We describe how we
came to our design decisions regarding what type of data to
collect, and using our first prototype we present the over-
head of candidate collection techniques (§2).

Another key design question focuses on how to extract
feedback from users across different network conditions with
a minimum level of annoyance (§3). We build a second pro-
totype of HostView1 that includes an algorithm to sample
user experience three times a day. Our two-week exper-
iments with a small set of users show that users’ unpre-
dictable behavior is an important challenge for any sampling
algorithm. Our long-term goal is to collect traces via a large-
scale campaign that will enable a broad research agenda.

2. END-HOST DATA
We concentrate on collecting three kinds of data: (i) traf-

fic and network performance statistics, (ii) application level
context (for traffic flows), and (iii) system performance and
environmental data (network type, etc). This section ex-
plores what specific data should be collected within these
broad categories and also evaluates the accuracy versus over-
head tradeoff of candidate collection methods. The perfor-
mance study was carried out with a first implementation of
HostView that runs on MacOS X and Linux, via a small
pilot with 7 students from LIP6 who ran the tool on their
laptops for 2 weeks.

1http://cmon.lip6.fr/EMD/



2.1 Network performance
Active network probing, as a mechanism to measure net-

work performance, is appealing because it sidesteps issues
related to recording potentially private information (as com-
pared to passively recording traffic). However, the perfor-
mance inferred by active probing might not reflect that of
any particular application: the destinations are different;
probe packets may be handled differently from those of ap-
plications; the probing may happen outside of performance
episodes, and so on! Thus, to overcome these difficulties,
HostView uses passive measurements and incorporates a
number of mechanisms to allay privacy concerns with record-
ing traffic. With the packet traces, we can infer RTTs, losses,
and reachability issues of active application connections [8].
We log the traffic, rather than simply log summary statis-
tics as in [7], because the summaries are not fine-grained
enough to allow detailed analysis on specific connections.
Logging all the traffic packets is easily accomplished with
the libpcap library; which has been extensively tested and
optimized. Previous results show that the overhead with
libpcap is under 20% in the worst case [9] (full packet cap-
ture on 100Mbps Ethernet). In our own testing, we never
saw the overhead exceed 5%; thus, we do not expect the
overhead of libpcap to be significant.

Recording packets raises issues with some users about pri-
vacy; few people are readily willing to run such a measure-
ment tool. To understand this issue better, we conducted
a user survey of 400 computer scientists to assess user dis-
comfort with specific kinds of data being logged. Our re-
sults, summarized in [10], lead us to believe that a tool that
is restricted to recording packet headers (and not the en-
tire packet) and which appropriately anonymizes the traces,
would be acceptable to a large fraction of users.

To this end, HostView incorporates a number of privacy
protection features. First, it removes any information that
identifies the host: users are identified by a randomly gen-
erated id, which is used to prefix trace file names. Source
IP addresses are anonymized with a SHA-256 hash. In ad-
dition, the traces are periodically uploaded using s-ftp and
the server where the traces reside has very restricted access
controls. Third, HostView allows users to pause the logging
(all logging is disabled in this period) in one hour incre-
ments, when the user carries out any activity they do not
want recorded.

2.2 Application context
To understand how individual applications are affected

by network events, we also need to associate network flows
(reconstructed from the packet traces collected by libpcap)
with the application (executable) that is terminating the
flow and also correctly identify the application protocol em-
bedded in the stream of packets. The traffic stream seen
at the end-host is a multiplexing of the traffic from several
individual applications (Firefox, Yahoo Messenger, Skype,
etc.), each of which uses a multiplicity of application pro-
tocols (HTTP, FTP, SMTP, RPC, etc.). Using destination
ports alone (without other information) of a network flow is
reputed to have limited value in understanding which appli-
cation generated the flow. This is because the destination
port numbers are often overloaded, or used in unorthodox
ways (applications often tunnel their protocols over HTTP
to traverse firewalls, as an example). In the following, we
describe mechanisms to associate these two labels with net-

work flows seen at the end-host.

Identifying Application name: There are several APIs
available that allow mapping network flows to application
names (in short, app name) or process identifiers– ETW [11]
and lsof are two in particular. However, they are often
platform specific (ETW is only supported in Windows), or
come with very high overhead (lsof), which makes them
hard to use for a broad deployment. Among the options
we considered, the gt toolkit [12] was found to have the
best balance of platform support (it runs on our target plat-
forms), and low overhead, and this has been integrated into
HostView. This particular method periodically samples the
kernel socket tables, which contain mappings between ap-
plications and sockets, and associates outgoing flows with
the appropriate socket entry. This method has an intrinsic
tradeoff between sampling interval and coverage: shorter in-
tervals are likely to label more flows, but at a higher cost.
Longer sampling intervals reduce the overhead, but tend to
label fewer flows (missing those that start and terminate
between sampling periods). This tool has been profiled ex-
tensively in previous work [12]. The results showed CPU
loads of 5% with 1 s polling intervals, and 20% when the in-
terval is reduced to 125 ms. In our own testing, we also ran
it with a more extreme sampling interval of 0.01 s and with
this sampling rate, we observed average CPU loads of 59%.
While this did give us a very small increase in classification
coverage (a few percentage points), the substantial increase
in the CPU loads makes this operating point undesirable;
the default setting of 1 s seems like a reasonable choice, and
this is the sampling interval that is used in HostView.

Identifying Application protocol: The naive method
to associate a network flow with the application protocol
is to simply consult the IANA list of well known port num-
bers (/etc/services in most *nix distributions). This method
tends to be unreliable when applications use non-standard
or dynamic port numbers. More robust application pro-
tocol classifiers include those that scan for known signa-
tures in payloads [13], and statistical methods that apply
learned traffic models to traffic distributions. While such
methods are well matched for traffic collected at network
gateways [14], they have costly CPU requirements, and a
careful evaluation of their feasibility on end-hosts has not
yet been carried out.

To understand whether the more complex classifiers can
practically be deployed on end-hosts, a first implementation
of HostView incorporated the l7 classifier [13]. This par-
ticular instance has built into it a comprehensive database
of protocol signatures. We choose this particular payload
classifier since it is considered the authoritative payload-
based classifier and has been extensively used to determine
“ground-truth” in other studies of classification accuracy.
We do not include port-based classification or any of the
statistical-based methods in this version of the tool, because
these can be run offline using the packet header traces we
already export to the server (l7 inspects the full packet pay-
load, and hence cannot be run on packet headers alone). In
the data collected from our pilot deployment over 7 users, we
observed that CPU load of l7 is directly proportional to traf-
fic load; we also observed frequent episodes where the CPU
load spiked very high (this was found to correlate with bursts
in traffic volume). Since we expect traffic to be bursty, it
would seem that running l7 on a user’s production end-host



Output Method TCP UDP Total traffic
Flows Bytes Flows Bytes Flows Bytes

Protocol
l7 99.20% 99.90% 47.72% 13.66% 60.08% 90.04%

port 99.60% 99.85% 87.82% 69.90% 90.65% 96.39%
l7=port 94.77% 95.84% 46.76% 13.51% 58.29% 86.43%

93.69% 98.41% 94.89% 95.82%

App Name gt 99.56% 99.89% 10.30% 1.36% 31.73% 88.63%
79.13% 96.13% 83.87% 99.64%

Table 1: Application classification coverage

would not be recommended and we will have to resort to
alternate methods of performing the classification.

Using the traces from our initial pilot, Table 1 presents
the fraction of flows and bytes, that were correctly classified
either by the l7 method, and the port inspection method.
The row labeled l7=port shows the flows and bytes for which
both methods gave the same classification. The last row
presents the fraction of flows and bytes with which gt could
associate an application name.

Comparing the results of port- and payload-based classifi-
cation in Table 1, we see that the two techniques return the
same application protocol for 86.43% of bytes. This fraction
is even higher if we only consider TCP connections (over
94% of flows and bytes), which confirms a recent study with
residential DSL customers [15]. We find surprisingly that
the port-based classifier does reasonably well. Similarly, gt
is able to assign an application name to almost all the TCP
connections. Therefore, the combination of port inspection
to obtain application protocol and gt for application name
suffices for labeling TCP connections. Although a different
application mix would lead to different classification accu-
racy for port inspection, the application name should allow
us to identify these cases. For instance, one of our traces
contains BitTorrent traffic. Although the connections use
port 80, the application name contains the string “BitTor-
rent”.

The fraction of flows and bytes labeled by l7 and by gt
is much lower for UDP. We examine UDP destination ports
of all unlabeled flows both for gt and l7 and find that the
vast majority of these flows are broadcast and multicast traf-
fic on the local network (for instance, NetBIOS, MDNS, and
UPnP). If we assume that these ports are always used consis-
tently, and hard code these into the classifier, the results are
remarkably better (over 90% accurate classification). Port
inspection is the only technique to infer the application con-
text for UDP flows.

HTTP traffic accounts for a very large fraction of the bytes
seen in our traces. Given our overall goal, we feel it advan-
tageous to also record the content-type fields (video, audio,
images, or text) to gain an understanding of the type of
application being transported. However, this does require
some form of online payload inspection, just to extract the
leading portion of the packet (we find that the first 500 bytes
are sufficient to identify the content-type in most cases).

To sum, HostView logs application names associated with
open sockets every second using the gt toolkit. It does not
incorporate any online methods to identify the application
protocol; this identification is relegated to the back end
server where the traces are uploaded. Finally, HostView
tries to identify the content-type from looking at the first
few packets of potential HTTP responses.

2.3 System performance and environment
We also log system and environment data to broaden our

understanding of the end-host’s performance. 1) HostView
logs CPU load every second and this data is uploaded to a
back-end server. 2) The active network interface is recorded
whenever it changes; if the active network is wireless, a pop-
up asks the user to assign a label to the network (work,
airport, coffee-shop, etc) when the wireless network SSID
is encountered for the first time. As a privacy mechanism,
HostView only logs a hash of the SSID (and not the SSID
text string) along with the user supplied descriptive label
for the network. HostView periodically logs a few wireless
network performance indicators 3) received signal strength,
4) noise level and 5) last transmission rate. 6) HostView also
attempts to find the home autonomous system (AS) that
the end-host is in each time its IP address changes. This
is carried out with a 3-hop limited traceroute to google.com
after which the IP addresses of each hop are mapped to
ASes using an IP-to-AS mapping tool; only the AS numbers
are actually exported from the end-host. We collect the
AS information to have the ability to understand how a
user’s perception of performance can vary when connected
to different ASes.

3. USER FEEDBACK
While network performance can be objectively measured,

the actual impact felt by the user is much harder to capture
and quantify. At the same time, capturing the user’s per-
ception of network performance is crucial to understanding
how, and to what extent, network disruptions affect differ-
ent users and applications. Motivated by the extensive user
studies research carried out in the HCI community, we in-
corporated user feedback mechanisms directly into our tool.

3.1 Questionnaire design
We capture user feedback by asking people to fill out a set

of questions about their network connection quality. Inter-
esting tradeoffs arise when designing such a questionnaire;
on the one hand we want the questionnaire to be short so
that users will take the time to fill it out, but on the other
hand the more information we obtain the better for our re-
search. We limited our questionnaire to 5 questions (a com-
mon amount in HCI surveys [16]) because more people are
willing to participate when the questionnaire takes less than
a minute or two to complete. User feedback can be both
quantitative (e.g. rating performance on a scale, or things
for which statistical summaries can be produced) and qual-
itative (e.g., free-form text). Multiple choices are easier to
interpret than open format questions, but they can limit
the feedback a user can provide. To balance these issues,
our questionnaire uses a mix of both quantitative and qual-
itative. For example, we ask the user to rate the quality
of their perceived network connection on a standard Likert
scale [17] from 1 to 5 (widely used scale in survey research).
We also ask the user to list which applications (if any) expe-
rienced problems accessing the Internet in the last 5 minutes
prior to the questionnaire. For qualitative input, users can
enter (via a free form text box) any additional comments
they would like describing their computer’s performance (at
the application/network/machine level); this includes even
potential hypotheses the user might have as to why poor
performance occurred.



3.2 Triggering the questionnaire
There are two approaches to trigger the questionnaire in

order to elicit user feedback: system- or user-driven. The
first approach, Experience sampling (ESM) [18], is widely
adopted in the HCI community [16]. By triggering the ques-
tionnaire using system measurements such as throughput or
CPU load, the user can be queried over a range of perfor-
mance levels that should theoretically translate into a range
of annoyance/satisfaction levels.

The second approach is user-driven and is implemented
with an “I am annoyed" button; the user is encouraged to
hit a button at any moment when they are unsatisfied with
the performance. This mechanism was first proposed with
the OneClick framework [4] where it was coupled with a
single specific application. Our scenario differs in two ways:
(i) OneClick runs at a web server with pre-recorded content
and ours runs on the end-host itself; (ii) we do not know a
priori which application the user is annoyed with, whereas
OneClick runs in the context of a single specific application.

These two approaches have different advantages. ESM
will sample more evenly throughout the performance range
which is useful because we want to understand the range of
user satisfaction across levels of performance. However, we
also seek extra samples at moments of performance problems
since our end goal is to be able to do diagnosis. We thus
need extra questionnaires from these rarer events. The I’m
annoyed button has the benefit of obtaining more samples
at poor performance epochs. We thus elected to incorporate
both mechanisms to obtain the benefits of each.

Experience sampling algorithm: The purpose of the
experience sampling algorithm is to decide under what con-
ditions and when to pop up the questionnaire to obtain user
feedback. One could simply trigger the questionnaire at ran-
dom epochs. However, as one might guess, and as the end-
host data we obtained so far indicates, most of the time
a user’s machine is lightly loaded, and thus a purely ran-
dom scheme results in large numbers of user samples at low
load. Although there are many different phenomena that
can underlie a performance degradation, we simplify things
by using network load as a proxy for performance assuming
that higher user annoyance usually co-occurs with a heavily
loaded network. It is thus intuitive that a weighted random
sampling scheme which weighs more heavily the higher load
epochs will yield a more even distribution of samples. (Each
sample here refers to a single completed questionnaire.)

The basic form of our sampling algorithm incorporated
into HostView is presented in Algorithm 1. The algorithm
has six static parameters (αl, αm, αh, γl, γm, γh,) and three
adaptive parameters (Tl, Tm and active-time) that are ad-
justed per user and updated on a daily basis. The thresholds
Tl and Tm denote load ranges in the traffic. The throughput,
denoted throu, is considered low if 0 ≤ throu ≤ Tl, medium
if Tl < throu ≤ Tm, and high if throu > Tm. These pa-
rameters are computed per user as the 85 and 95 percentile
values of the user’s empirical distribution. These parame-
ters are adaptive because they are updated each day. On
a given day, the value is taken from the same day of the
previous week. If no such measurements exist, we use data
from the previous day. The sampling is bootstrapped by
setting Tl = 117Kbps and Tm = 727Kbps; these values were
extracted from the data collected in the first pilot study.

The α parameters capture the fraction of time a user

spends in the different load ranges. Since we do not know
this a-priori, we make a reasonable guess and set αl = 0.85,
αm = 0.10 and αh = 0.05 implying that a user spends 85%
(10%, 5%) of the time in a low load state (medium, high,
respectively). The γ parameters, γl, γm, γh, are the proba-
bilities of taking a sample when the load is low, medium or
high respectively. These are set to 0.02, 0.4 and 0.9. Finally,
the parameter N is a polling interval.

Our algorithm works as follows. Every N seconds, the
ESM algorithm computes the load and determines whether
it is low, medium or high based on the values of Tl and
Tm. Depending on the current state, the algorithm com-
putes a random value and compares it to the corresponding
γ values. The decision of whether to pop-up the ESM ques-
tionnaire is based on the outcome of this comparison and
also on whether the user was actually using his machine in
the previous minute. Our goal is to obtain a maximum of
three completed questionnaires per day; this number was
chosen based on the results of our survey [10]. We require
that the samples be complete; a deferred sample (users are
allowed to postpone the questionnaire), or a timeout (the
questionnaire goes away after 6 minutes of the pop up) does
not add to this number. Thus the selection of the polling
interval N is important.

The choice of N presents a fundamental tradeoff: if N is
small and we sample too much, user annoyance increases be-
cause either there are too many questionnaires or the ques-
tionnaires occur too close in time. On the other hand, if
N is too large, we won’t get enough samples to perform di-
agnostic analysis. We limit the maximum number of ques-
tionnaires per day to 4, and design the algorithm to hit
an average between 2 and 3 ESM questionnaires per day.
There are various heuristic schemes that could be selected
to choose N , including static and adaptive approaches. In
our pilot study, we elected to use an Adaptive Polling In-
terval scheme that computes N = (0.102 /4) ∗ active time
where 0.102 is the average probability of taking a sample
at any interval, 4 is the maximum number of questionnaires
per day, and active time is defined as the number of seconds
per day the user is actually using the keyboard or the mouse
of their computer. Each new day, before the ESM algorithm
starts, HostView predicts the active time value for the day
based on the same day of last week, or if that is not avail-
able, then it uses the active time of the previous day. We
set the minimum value of active time to be three hours.

When the questionnaire pops up, the user has the choice
to answer it immediately, to postpone it, or to ignore it. If
it is ignored, the questionnaire will "timeout" and disappear
after 6 minutes. If the user answers the questionnaire, then
we return to the basic algorithm to select the next time to
pop up a the questionnaire. However, if the user postpones
or ignores it, then they were be asked again in 30 minutes,
on average.

Algorithm 1 Experience sampling algorithm
1: Every N seconds :
2: if (machine not idle) and (Numsamples <= 3) :
3: if (throu < Tl) and (Rand < γl)
4: take sample
5: else if (Tl <= throu < Tm) and (Rand < γm)
6: take sample
7: else if (Tm <= throu) and (Rand < γh)
8: take sample



User Days Total pop-ups Answered surveys Unanswered surveys Load in Kbits/s
Low Med High Low Med High Deferred Timed out 85th % 95th %

1 23 21 32 35 9 20 31 2 26 12.57 41.76
2 12 11 11 25 0 2 5 38 2 21.57 286.09
3 18 11 9 23 4 4 9 6 14 22.69 120.34
4 10 5 7 6 2 4 3 2 7 123.73 449.02

Table 2: User sample types

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

<= 1 hour 1-2 hours > 2 hours

%
 U

na
ns

w
er

ed
 p

op
-u

ps

Distance to previous pop-up

U1
U2
U3
U4

Figure 1: Distribution of unanswered pop-ups.

3.3 Takeaways from pilot study
We conducted a second pilot study of two weeks with four

LIP6 students to evaluate the user feedback mechanism. In
this experiment, we collect packet headers, application con-
text, system performance logs and user feedback. Table 2
presents the number of ESM samples per user, the number
of days each user ran HostView, and the 85th and 95th per-
centile of the load distribution of each user. A sample is
labeled low, medium or high depending on the value of the
instantaneous load with respect to Tl and Tm.

We make a few observations from this pilot study. First,
we see that a third or more of the samples collected for
each user occurred during heavy network load. This re-
flects our choice of giving a higher weight to sampling heavy
traffic episodes than sampling light episodes and confirms
correct implementation of the approach. Second, the last
two columns of Table 2 justify HostView’s design decision
to customize the load thresholds to each user. The distribu-
tion of load for User 1 and User 4 are dramatically different;
in fact the 85th and 95th percentiles of User 1 are not even in
the same order of magnitude as User 4. Third, users behave
differently when it comes to dealing with the ESM question-
naire. For instance, User 1 only used the “Ask me later"
option to defer the questionnaire twice, but his/her ques-
tionnaire timed out 26 times. User 2, however, deferred an-
swering the questionnaire 38 times. This justifies the design
decision to include multiple options for answering, postpon-
ing, and timing-out the questionnaire because all of these
end up being used. Fourth, we observe that the total num-
ber of times the questionnaire popped up varies across users.
Users 2 and 4 ran HostView for a roughly similar amount of
time (12 and 10 days). However, user 2 received 43 pop-ups
while user 4 was only queried for feedback 18 times. In this
case, the reason for this variation is the behavior of user 2,
who only filled in 15% of the pop-ups, which forced the ESM

0 1 2 3

N
um

be
r 

of
 d

ay
s

Number of pop-ups per day

1min
5mins

10mins
20mins

API

Figure 2: Average number of pop-ups per day (100
simulations with a maximum standard error of 0.15)

algorithm to oversample. In other cases, the variation in the
total number of pop-ups is also due to the sampling prob-
abilities (see Alg. 1), the adaptive thresholds and whether
the user was actively using her machine one minute before
the pop-up.

In our pilot study, some users complained that pop-ups
were too close in time. After studying their data, we real-
ized that our predictors for user active time could be quite
erroneous and that user active time is not easily predictable
from their behavior on the previous day or the same day
the previous week. We evaluated the correlation between
completed responses and the frequency of pop-ups as an in-
dication of user annoyance. Figure 1 plots the fraction of
unanswered pop-ups as a function of the distance to pre-
vious pop-up. We observe that when two pop-ups happen
within less than one hour, users are less likely to answer
them (over 50 % for all users). Therefore, we decided to
modify our algorithm to ensure a one hour minimum gap
between popping up two consecutive questionnaires.

3.4 Tradeoff: Polling frequency vs. number
of daily samples

Because our pilot study showed that it is very difficult
to predict a user’s active time, and since we suspect that
this complexity may not be necessary in practice, we con-
sidered other heuristics for defining the polling interval N .
The simplest solution is set it to a fixed time, such as 1,
5, 10 or 20 minutes. Using the data collected in the sec-
ond pilot, we simulated each of these settings to assess how
many questionnaires each of our users would get each day.
The simulation for each user utilizes their actual active time,
load levels, etc.

Figure 2 plots the daily number of pop-ups for the various
fixed-N schemes. We observe that a polling interval of 1



minute yields the highest number of days where we achieve
the goal of getting three samples per day. However, a 1
minute interval presents the risk of taking the three samples
in a short time duration (a little more than three hours)
which means that for people who are very active on their
machines, the samples will not be spread throughout the
day. We conclude that a polling interval of 5 minutes is a
reasonable choice and we incorporate this design decision
in the final version of HostView along with the one hour
minimum gap between consecutive pop-ups.

4. DISCUSSION
In this paper, we outlined the tradeoffs involved in collect-

ing end-host measurements annotated with user feedback.
We spent a considerable amount of time studying and ana-
lyzing the overhead of different candidate techniques for col-
lecting end-host data that is complete and sufficient enough
for us to study the root causes of performance degradations.
The techniques for data collection that we elect to imple-
ment are those that have low or moderate overheads and
are associated with high utility. We also discussed a can-
didate experience sampling algorithm and highlighted the
difficulties of sampling users because of the unpredictability
of their behavior. We described how we used the feedback
of our second pilot to modify some of the parameters of
our experience sampling algorithm. Our next step is to run
HostView for a longer period of time, with a larger set of
users, so that we can research characterizations and solu-
tions to end-host diagnostic problems that combine perfor-
mance and perception.

ACKNOWLEDGEMENTS
The authors would like to thank all participants of the pilot
studies. This work was supported by the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)
no. 223850 and the ANR project C’Mon.

5. REFERENCES
[1] W. Jiang and H. Schulzrinne, “Modeling of packet loss

and delay and their effect on real-time multimedia
service quality,” in Proc. NOSSDAV, 2000.

[2] K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive
are online gamers to network quality?,” Commun.
ACM, vol. 49, no. 11, pp. 34–38, 2006.

[3] S. Tao, J. Apostolopoulos, and R. Guérin, “Real-time
monitoring of video quality in IP networks,”
IEEE/ACM Trans. Netw., vol. 16, pp. 1052–1065,
October 2008.

[4] K.-T. Chen, C. C. Tu, and W.-C. Xiao, “Oneclick: A
framework for measuring network quality of
experience,” in Proceedings of IEEE INFOCOM 2009,
2009.

[5] S. Guha, J. Chandrashekar, N. Taft, and
D. Papagiannaki, “How Healthy are Todayís
Enterprise Networks?,” in Proc. f the Internet
Measurement Conference, October 2008.

[6] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and
R. Isaacs, “Reclaiming Network-wide Visibility Using
Ubiquitous Endsystem Monitors,” in Usenix Technical
Conference, 2006.

[7] C. R. Simpson, Jr. and G. F. Riley, “NETI@home: A
distributed approach to collecting end-to-end network
performance measurements,” in PAM2004, April 2004.

[8] M. Zhang, C. Zhang, V. Pai, L. Peterson, and
R. Wang, “PlanetSeer: Internet Path Failure
Monitoring and Characterization in Wide-area
Services,” in OSDI, (San Francisco, CA), 2004.

[9] F. Schneider, J. Wallerich, and A. Feldmann, “Packet
capture in 10-gigabit ethernet environments using
contemporary commodity hardware.,” in PAM, 2007.

[10] D. Joumblatt, R. Teixeira, J. Chandrashekar, and
N. Taft, “Perspectives on Tracing End-Hosts: A
Survey Summary,” in SIGCOMM CCR, April 2009.

[11] “Event Tracing: Improve Debugging and Performance
Tuning with ETW.”
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx.

[12] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano,
F. Risso, and K. Claffy, “Gt: picking up the truth
from the ground for internet traffic,” in ACM
SIGCOMM CCR, 2009.

[13] “Appln. layer packet classifier for linux.”
http://l7-filter.sourceforge.net/.

[14] H. Kim, K. Claffy, M. Fomenkov, D. Barman,
M. Faloutsos, and K. Lee, “Internet Traffic
Classification Demystified: Myths, Caveats, and Best
Practices,” in ACM CoNEXT, 2008.

[15] G. Maier, A. Feldmann, V. Paxson, and M. Allman,
“On dominant characteristics of residential broadband
internet traffic,” in Proc. of Internet Measurement
Conference, 2009.

[16] S. Consolvo and M. Walker, “Using the Experience
Sampling Method to Evaluate Ubicomp Applications,”
IEEE Pervasive Computing Magazine, vol. 2, no. 2,
2003.

[17] “Likert scale.”
http://en.wikipedia.org/wiki/Likert_scale.

[18] M. Csikszentmihalyi and R. Larson, “Validity and
Reliability of the Experience-Sampling Method,”
Journal of Nervous and Mental Disease, no. 175,
pp. 526–536, 1987.


