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ABSTRACT

We present an algorithm for sound analysis and resynthesis with
local automatic adaptation of time-frequency resolution.There ex-
ists several algorithms allowing to adapt the analysis window de-
pending on its time or frequency location; in what follows wepro-
pose a method which select the optimal resolution dependingon
both time and frequency. We consider an approach that we denote
asanalysis-weighting, from the point of view of Gabor frame the-
ory. We analyze in particular the case of different adaptivetime-
varying resolutions within two complementary frequency bands;
this is a typical case where perfect signal reconstruction cannot in
general be achieved with fast algorithms, causing a certainerror
to be minimized. We provide examples of adaptive analyses ofa
music sound, and outline several possibilities that this work opens.

1. INTRODUCTION

Traditional analysis methods based on single sets of atomicfunc-
tions offer limited possibilities concerning the variation of the res-
olution. Moreover, the optimal analysis parameters are often set
depending on an a-priori knowledge of the signal characteristics.
Analyses with a non-optimal resolution result in a blurringor some-
times even a loss of information about the original signal, which
affects every kind of later treatment: visual representation, fea-
tures extraction and processing among others. This motivates the
research for adaptive methods, conducted at present in boththe
signal processing and the applied mathematics communities: they
lead to the possibility of analyses whose resolution locally change
according to the signal features.

We present an algorithm with local automatic adaptation of
time-frequency resolution. In particular, we usenonstationary Ga-
bor frames[1] of windows with compact time supports, being able
to adapt the analysis window depending on its time or frequency
location. For compactly supported windows fast reconstruction al-
gorithms are possible, see [1, 2, 3]: all along the paper we will in-
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dicate asfasta class of algorithms whose principal computational
cost is due to the Fourier transform of the signal.

In the present paper we want to go a step beyond and adapt
the window in timeand frequency. This case has been detailed
in [4] among others. This can be possible, and frame theory [5]
would help in providing perfect reconstruction synthesis methods
(if no information is lost). However, this is a typical case where the
calculation of the dual frame for the signal reconstructioncannot
in general be achieved with a fast algorithm: thus a choice must be
done between a slow analysis/re-synthesis method guaranteeing
perfect reconstruction and a fast one giving an approximation with
a certain error. There are, at least, two interesting approaches to
obtain fast algorithms:

• filter bank : the signal is first filtered with an invertible bank
of P pass band filters, to obtainP different band limited
signals; for each of these bands a different nonstationary
Gabor frame{gpk,l} of windows with compact time support
is used, withgpk the time-dependent window function. The
other members of the frame are time-frequency shifts ofg
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wherek, l ∈ Z andap
k, b

p
k are the time location and fre-

quency step associated to thep-th frame at the time index
k. We will write NGF to indicate a nonstationary Gabor
frame in the time case, and we will always assume to be in
the painless case [6]. Each band-limited signal is perfectly
reconstructed with an expansion of the analysis coefficients
in the dual frame{g̃k,lp}. Note that by this notation we
denote the dual frame for a fixedp. By appropriately com-
bining the reconstructed bands we obtain a perfect recon-
struction of the original signal. An important remark is that
the reconstruction at every time location is perfect as long
as all the frequency coefficients within all theP analyses
are used. On the other hand, for every analysis we are inter-
ested in considering only the frequency coefficients corre-
sponding to the considered band, thus introducing a recon-
struction error.
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• analysis - weighting: the signal is first analyzed withP
NGFs{gpk,l} of windows with compact time support . Each
analysis is associated to a certain frequency band, and its
coefficients are weighted to match this association. We look
for a reconstruction formula to minimize the reconstruction
error when expanding the weighted coefficients within the
union of theP individual dual frames∪P

p=1{g̃k,lp}.

We focus here on the second approach, in the basic case of two
bands; so we split the frequency dimension into high and low fre-
quencies, withP = 2. We provide the algorithm for an automatic
adaptation routine: in each frequency band, the best resolution is
defined through the optimization of a sparsity measure deduced
from the class ofRényi entropies[7]. As for the filter bank ap-
proach, the results detailed in [8] indicate a useful solution: they
give an exact upper bound of the reconstruction error when recon-
structing a compactly supported and essentially band-limited sig-
nal from a certain subset of its analysis coefficients withina Gabor
frame.

In the first section, the analysis-weighting method is treated
with an extension of the weighted Gabor frames approach [9],
which will give us a closed reconstruction formula. The second
section is dedicated to the sparsity measures we use for the au-
tomatic adaptation, with an insight on how weighting techniques
of the analysis coefficients can lead to measures with specific fea-
tures. We then close the paper with some examples and an overview
on the perspectives of our research.

2. RECONSTRUCTION FROM WEIGHTED FRAMES

Let P ∈ N and{gpk,l} be different NGFs,p = 1, . . . , P , where
k andl are the time and frequency location, respectively. We will
consider weight functions0 ≤ wp(ν) ≤ ∞: for everyp, they only
depend on the frequency location. The idea is to smoothly setto
zero the coefficients not belonging to the frequency portionwhich
thep-th analysis has been assigned to; in this way, every analysis
will just contribute to the reconstruction of the signal portion of its
pertinence, so high or low frequencies respectively whenP = 2.
For each NGF{gpk,l} we writecpk,l = wp(bpkl)〈f, g

p
k,l〉 to indicate

the weighted analysis coefficients, and we consider the following
reconstruction formula:

f̃ = F
−1


 1

p(ν)
F




P∑
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r(p, k, l)




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wherep(ν) = ♯{p : wp(ν) ≥ ǫ} and for everyǫ > 0, r(p, k, l) is
0 if wp(bpkl) < ǫ, else

r(p, k, l) =
(
w

p(bpkl)〈f, g
p
k,l〉

) 1

wp(bpkl)
g̃k,l

p
. (3)

We see that non-zero weights cancel each other: this recon-
struction formula still makes sense, as the goal is exactly to find a
reconstruction as an expansion of thec

p
k,l.

We give now an interpretation of the introduced formula. If
wp is a semi-normalized sequence for eachp, that is there exist
constantsmp andnp such that0 < mp ≤ wp(bpkl) ≤ np and
ǫ ≤ mp ∀p, thenp(ν) = p and the equation (2) becomes

f̃ =
1

P

P∑

p=1

∑

k,l

(
w

p(bpkl)〈f, g
p
k,l〉

) 1

wp(bpkl)
g̃k,l

p = f . (4)

This is related to the concept of weighted frames detailed in[9], as
in the hypothesis of semi-normalization the sequencewp(bpkl)g

p
k,l

is a frame with 1
wp(b

p
k
l)
g̃k,l

p as one of its dual. For weights which

are not bounded from below, but still non-zero, the reconstruction
still works: the sequenceswp(bpkl) · gpk,l are not frames anymore
(for eachp), but complete Bessel sequences (also known as upper
semi-frames [10]). This reconstruction can be unstable, though.

In our case, these hypotheses are not verified, as we need to
set to zero a certain subset of the coefficients within both ofthe
analyses; thus the equation (2) will in general give an approxima-
tion of f . In section 4.2 we give an example of reconstruction
following this approach, evaluating the reconstruction error; fur-
ther theoretical and numerical examinations should be realized, as
we are interested to find an upper bound for the error depending
on:

• the signal spectral features at frequenciesν wherep(ν) >
1 ;

• the features of thewp sequences and thep(ν) function.

A first natural choice for the weightswp is a binary mask;
first because this is the worst case in terms of reconstruction error,
as we are multiplying in the frequency domain with a rectangu-
lar window before performing an inverse Fourier transform.Thus
the analysis of the error with a binary masking establish a bound
to the error obtained with a smoother mask. Moreover, with a bi-
nary mask the reconstruction formula takes the very simple form
detailed in equation (6), allowing a direct implementationderived
from the general full band algorithm. So we considerP = 2 and
ωc a certain cut value, then

w
1(ν) =

{
1 if ν ≤ ωc

0 if ν > ωc
(5)

andw2(ν) = 1−w1(ν). In this casep(ν) = 1 for every frequency
ν and the equation (2) becomes

f̃ =
∑

b
p

k
l≤ωc

〈f, g1k,l〉g̃k,l1 +
∑

b
p

k
l>ωc

〈f, g2k,l〉g̃k,l2 . (6)

The reconstruction error in this case will in general be large at fre-
quencies corresponding to coefficients close to the cut value ωc;
we envisage that a way to reduce this error is to allow thewp

weights to have a smooth overlap; this results in more coefficients
form different analyses contributing to the reconstruction of a same
portion of signal, thus weakening their interpretation.

3. RÉNYI ENTROPY EVALUATION OF WEIGHTED
SPECTROGRAMS

The representation we take into account is the spectrogram of a
signal f : it is the squared modulus of the Short-Time Fourier
Transform (STFT) off with window g, which is defined by

Vgf (u, ξ) =

∫
f(t)g(t− u)e−2πiξtdt , (7)

and so the spectrogram isPSf (t, ω) = |Vgf(t, ω)|2. Given a Ga-
bor frame{gk,l} we obtain a sampling of the spectrogram coeffi-
cients consideringzk,l = |〈f, gk,l〉|2. With an appropriate normal-
ization, both the continuous and sampled spectrogram can bein-
terpreted as probability densities. The idea to use Rényi entropies
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as sparsity measures for time-frequency distributions hasbeen in-
troduced in [7]: minimizing the complexity or information of a
set of time-frequency representations of a same signal is equiva-
lent to maximizing the concentration, peakiness, and therefore the
sparsity of the analysis. Thus we will consider asbestanalysis the
sparsest one, according to the minimal entropy evaluation.

Given a signalf and its spectrogramPSf , theRényi entropy
of orderα > 0, α 6= 1 of PSf is defined as follows

HR
α (PSf ) =

1

1− α
log2

∫∫

R

(
PSf (t, ω)∫∫

R
PSf (t′, ω′)dt′dω′

)α

dtdω ,

(8)
whereR ⊆ R

2 and we omit its indication if equality holds. Given
a discrete spectrogram obtained through the Gabor frame{gk,l},
we considerR as a rectangle of the time-frequency planeR =
[t1, t2] × [ν1, ν2] ⊆ R

2. It identifies a sequence of pointsG on
the sampling grid defined by the frame. As a discretization ofthe
original continuous spectrogram, every sample|zk,l|2 is related to
a time-frequency region of areaab, wherea andb are respectively
the time and frequency steps; we thus obtain the discrete Rényi
entropy measure directly from (8),

HG
α [PSf ] =

1

1− α
log2

∑

k,l∈G

(
zk,l∑

[k′,l′]∈G
zk′,l′

)α

+log2(ab) .

(9)
We consider now another weight function0 ≤ w(k, l) ≤ ∞;

instead of weighting the STFT coefficients〈f, gk,l〉 as we did in
Section 2, we weight here the discrete spectrogram obtaining a
new distributionz∗k,l = w(k, l)zk,l which is not necessarily the
spectrogram of a signal: nevertheless, by the definition ofw(k, l),
its Rényi entropy can still be evaluated from (9). This valuegives
an information of the concentration of the distribution within the
time-frequency area emphasized by the specific weight function:
as we show in section 4.1, this can be useful for the customization
of the adaptation procedure.

We will focus on discretized spectrograms with a finite num-
ber of coefficients, as dealing with digital signal processing re-
quires to work with finite sampled signals and distributions. As
α tends to one this measure converges to the Shannon entropy,
which is therefore included in this larger class. General properties
of Rényi entropies can be found in [11], [12] and [13]; in par-
ticular, givenP a probability density,Hα(P ) is a non increasing
function ofα, soα1 < α2 ⇒ Hα1

(P ) ≥ Hα2
(P ) . Moreover, for

every orderα the Rényi entropyHα is maximum whenP is uni-
formly distributed, while it is minimum and equal to zero when P
has a single non-zero value. As we are working with finite discrete
densities we can also consider the caseα = 0 which is simply
the logarithm of the number of elements inp; as a consequence
H0[p] ≥ Hα[p] for every admissible orderα. As long as we can
give an interpretation to theα parameter, this class of measures of-
fers a largely more detailed information about the time-frequency
representation of the signal.

3.1. Adaptive procedure

We choose a finite setS of admissible scaling factors, and realize
different scaled version of a windowg,

g
s(t) =

1√
s
g

(
t

s

)
, (10)

so that the discretized temporal support of the scaled windows gs

still remains insideG for anys ∈ S. In our case,G is a rectangle
with the time segment analyzed as horizontal dimension and the
whole frequency lattice as vertical: at each step of our algorithm,
this rectangle is shifted forward in time with a certain overlap with
the previous position. By fixing anα, the sparsest local analysis is
defined to be the one with minimum Rényi entropy: thus the opti-
mization is performed on the scaling factors, and the best window
is defined consequently, with a similar approach to the one devel-
oped in [14]. With the weight functions introduced above, weare
also able to limit the frequency range of the rectangleG at each
time location: adaptation is thus obtained over the time dimension
for each weighted spectrogram, so in our case for each frequency
band enhanced. An interpolation is performed over the overlap-
ping zones to avoid abrupt discontinuities in the tradeoff of the res-
olutions: in the examples given in section 4, the spectrogram seg-
ment for the entropy evaluation includes four spectrogram frames
of the largest window, and the overlapping zone correspondsto
three frames of the largest window. The temporal sizes of theseg-
ment and the overlap are deduced accordingly.
The time-frequency adapted analysis of the global signal isfinally
realized by opportunely assembling the slices of local sparsest
analyses obtained with the selected windows.

3.2. Biasing spectral coefficients through theα parameter

Theα parameter in equation (8) introduces a biasing on the spec-
tral coefficients; to have a qualitative description of thisbiasing,
we first consider a collection of simple spectrograms composed
by a variable amount of large and small coefficients. We realize a
vectorD of lengthN = 100 generating numbers between 0 and
1 with a normal random distribution; then we consider the vectors
DM , 1 ≤ M ≤ N such that

DM [k] =

{
D[k] if k ≤ M
D[k]
20

if k > M
(11)

and then normalize to obtain a unitary sum. We then apply Rényi
entropy measures withα varying between 0 and 3: these are the
values that we use to adopt for music signals. As we see from fig-
ure 1, there is a relation between the number of large coefficients
M and the slope of the entropy curves for the different values of
α. Forα = 0, H0[DM ] is the logarithm of the number of non-zero
coefficients and it is therefore constant; whenα increases, we see
that densities with a small amount of large coefficients gradually
decrease their entropy, faster than the almost flat vectors corre-
sponding to larger values ofM . This means that by increasingα
we emphasize the difference between the entropy values of a peaky
distribution and that of a nearly flat one. The sparsity measure, we
consider, selects as best analysis the one with minimal entropy,
so reducingα rises the probability of less peaky distributions to be
chosen as sparsest: in principle, this is desirable as weaker compo-
nents of the signal, such as partials, have to be taken into account
in the sparsity evaluation.

The second example we consider shows that the just men-
tioned principle should be applied with care, as a small coefficient
in a spectrogram could be determined by a partial as well as by
a noise component; with an extremely smallα, the best window
selected could vary without a reliable relation with spectral con-
centration, depending on the noise level within the sound. We il-
lustrate how noise has to be taken in account when tuning theα
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Figure 1: Rényi entropy evaluations of theDM vectors with vary-
ing α; the distribution becomes flatter asM increases. Therefore
increasingα favors a sparse representation (see text).

parameter by means of another model of spectrogram: taking the
same vectorD considered previously, and two integers1 ≤ Npart,
1 ≤ Rpart, we defineDL like follows:

DL[k] =





1 if k = 1

D[k]
Rpart

if 1 < k ≤ Npart

D[k]
Rnoise

if k > Npart .

(12)

whereRnoise =
Rpart

L
, L ∈ [ 1

16
, 1]; then we normalize to obtain

a unitary sum. This vectors are a simplified model of the spectro-
grams of a signal whose coefficients correspond to one main peak,
Npart partials with amplitude reduced byRpart and some noise
whose amplitude varies, proportionally to theL parameter, from a
negligible level to the one of the partials. Applying Rényi entropy
measures withα varying between 0 and 3, we obtain the figure
2, which shows the impact of the noise levelL on the evaluations
with different values ofα.
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Figure 2: Rényi entropy evaluations of theDL vectors with vary-
ing α, Npart = 5 andRpart = 2; the entropy values rise differ-
ently asL increases, depending onα: this shows that the impact
of the noise level on the entropy evaluation depends on the entropy
order (see text).

The increment ofL corresponds to a strengthening of the noise

coefficients, causing the rise of the entropy values for anyα. The
key point is the observation of how they rise, depending on theα
value: the convexity of the surface in figure 2 increases asα be-
comes larger, and it describes the impact of the noise level on the
evaluation; the stronger convexity whenα is around 3 denotes an
higher robustness, as the noise level needs to be high to determine
a significant entropy variation. Our tests show that, as a draw-
back, in this way we lower the sensitivity of the evaluation to the
partials, and the measure keeps almost the same profile for every
Rpart > 1.
On the other hand, whenα tends to 0 the entropy growth is almost
linear inL, showing the significant impact of noise on the evalua-
tion, as well as a finer response to the variation of the partials am-
plitude. As a consequence, the tuning of theα parameter has to be
performed according to the desired tradeoff between the sensitiv-
ity of the measure to the weak signal components to be observed,
and the robustness to noise. In our experimental experience, the
value of 0.7 is appropriate for both speech and music signals.

4. ALGORITHMS AND EXAMPLES

We give here two examples of the methods described above: the
first shows an application of two different weights on the spec-
trogram of a given sound, which determines two different choices
for the optimal resolutions; the second is a reconstructionwith the
algorithm detailed in Section 2.

4.1. Adaptation with Different Masks

We can privilege a certain subset of the analysis coefficients to
drive the adaptation routine, instead of considering them all with
the same importance. For example, the adaptation within thep-th
band could be determined from the coefficients laying at a certain
small distance from the band central frequency.

Figures 3 and 4 are realized with an improved version of the
algorithm described in [15], which allows for a weighting ofthe
analysis coefficients which concerns only the adaptation routine,
and not the analysis and re-synthesis. Thus, we obtain different
adapted analyses depending on the frequency area we wish to priv-
ilege, still preserving perfect reconstruction: the soundwe analyze
is a music signal with a bass guitar, a drum set and a female singing
voice starting from second 1.54. We use two different complemen-
tary binary masks, the first setting to zero the spectrogram coeffi-
cients corresponding to frequencies higher than 300Hz, thesecond
doing the opposite. As we can see in Figure 3, with the first mask
we obtain an analysis where the largest window is privileged; this
is the best frequency resolution for the bass guitar sound, which is
prominent in the considered band. The only points where shorter
windows are chosen correspond to strong transients, as bassor
voice attacks, where the time precision is enhanced.
With the second mask, low frequencies are ignored in the adapta-
tion step, and as a consequence we obtain a different optimalanal-
ysis: the smallest window is generally selected, yielding an higher
time resolution which is best adapted to the percussive sounds;
moreover, we see that the largest window is chosen correspond-
ing to the presence of the singing voice, whose higher harmonics
belong to the considered band and determine a better frequency
resolution to be privileged.
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Figure 3: Adaptive analysis with a mask privileging frequencies
below 300Hz, on a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time; at the bottom, adapted
spectrogram of the analyzed sound file.

In both cases we calculate the difference between the signalre-
constructed and the original one; we use a 16 bit audio file, whose
amplitude is represented in the range[−1, 1] with double preci-
sion: the maximum absolute value of the differences betweencor-
responding time samples, as well as the root mean square error
over the entire signal, are both of order10−16.

4.2. Analysis-Weighting Example

We show here an example of the approximation of a signal apply-
ing the formula (6), within the analysis-weighting approach using
a binary mask: as detailed in Sections 2 and 3, we analyze a sig-
nal with different stationary Gabor frames; the sound we consider
is the same of the section 4.1, and the binary mask is still ob-
tained with a cut frequency of 300Hz, while the sampling rateis
44.1kHz. We modify the coefficients of all these analyses with the
maskw1(ν), and build the NGF{g1k,l} with resolutions adapted to
the low frequencies optimizing the entropy of the masked analyses.
Then we repeat this step with the maskw2(ν) and build the NGF
{g2k,l}. We finally calculate the duals of the two NGFs, which can
be done in these cases with fast algorithms, and re-synthesize the
two signal bands: for these examples, the reconstruction isper-
formed with the SuperVP phase vocoder by Axel Röbel [16].
Figure 5 shows the spectrogram of the lower signal band, recon-
structed with the low-frequencies adapted analysis. This spectro-
gram is computed with a fixed window, which is the largest one
within the set considered; the choice of the best window is given
as well, to give information about how the reconstruction isper-
formed at each time. Figure 6 is obtained in the same way, con-
sidering the upper band reconstruction. The approximationof the
original sound is then given by the sum of the two bands.

The reconstruction error we obtain is higher than the one in the
previous examples: the maximum absolute value of the samples
differences is 0.0568, while the root mean square error is 0.0099.
With the choice of a binary mask, the only way to reduce the error
is to set the cut frequency in a range where the signal energy is

Figure 4: Adaptive analysis with a mask privileging frequencies
above 300Hz, on a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time; at the bottom, adapted
spectrogram of the analyzed sound file.

low: unfortunately, music signals generally do not have large low-
energy bands; moreover, the interest of our method relies inthe
possibility for the cut frequency to be variable, in order tofreely
select the adaptation criterium.
Figure 7 shows the spectrogram of the difference between theorig-
inal sound and the reconstructed one, and we see that the spectral
content of the error is concentrated at the cut frequency. The al-
teration introduced has negligible perceptual effects, sothat the
original signal and the reconstruction are hard to be distinguished:
this aspect needs to be quantified; when dealing with the approxi-
mation of music signals, the objective error measures do notgive
any information about the perceptual meaning of the error. The ac-
curacy of a method has thus to be evaluated by means of measures
taking into account the human auditory system as well as listening
tests.

Another element to consider is the overlap between the weight
functions introduced in section 2: if we allow them for an over-
lap over a sufficiently large frequency band, we envisage that the
error would be reduced. The sense of this point can be clari-
fied considering the causes of the reconstruction error: windows
with compact time support cannot have a compactly supported
Fourier transform; from the analysis point of view, this means that
a spectrogram coefficient affects the signal reconstruction among
the whole frequency dimension. We can limit such an influence
with a choice of well-localized time-frequency atoms: evenif their
frequency support is not compact, they have a fast decay outside a
certain region. If we cut with a binary mask outside a certainband,
the reconstruction error comes mainly from the fact that we are
setting to zero the contribution of atoms whose Fourier transforms
spread into the band of interest: if the atoms are well-localized,
only a few of them actually have an impact.
Formula (2) gives an ideal reference: if the overlap is the entire
frequency dimension, weights are non-zero, thus we have a per-
fect reconstruction from the weighted coefficients. When some
weights are zero and weight functions do overlap, the normaliza-
tion factor in the formula (2) is greater than one in the overlapping
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Figure 5: Low-frequencies reconstruction from the masked
adapted analysis of a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time. At the bottom, spectro-
gram of the analyzed band with a 4096 samples Hamming window,
3072 samples overlap and 4096 frequency points; the frequency
axis is bounded to 2kHz to focus on the reconstructed region.

frequency interval. This reduces the impact of the errors coming
from individual re-syntheses: on the other hand, the fact ofsum-
ming them all imposes a limit to the achievable global error reduc-
tion.
A further improvement of this formula is to put different weights at
the denominator in (4), with an effective amplification or reduction
of the contributions coming from individual coefficients. To keep
the perfect reconstruction valid in the case of semi-normalized
norms, a possibility is to obtain the different weights as a func-
tion of the analysis weights depending also on the overlap.

5. CONCLUSIONS AND PERSPECTIVES

We have sketched the first steps of a promising research project
about the local automatic adaptation of time-frequency sound rep-
resentations: a first question which arises is how to displaya rep-
resentation of the signal such the one described; there are two pos-
sibilities involving weighted means of the coefficients at acertain
time-frequency location:

• dk,l =
1∑
p wp ·∑

p

c
p
k,l, displaying|dk,l|, or

• d
(A)
k,l = 1∑

p wp ·
√

∑
p

∣∣∣cpk,l
∣∣∣
2

.

In a previously proposed method [15] the algorithm keeps theorig-
inal coefficients in memory; with this approach, we can use the
reconstruction scheme mentioned in (13). A further new ques-
tion would be how to reconstruct the signal from an expansionof
thedk,l or d(A)

k,l coefficients. Straightforward numerical examples
could give some numerical insights.

If d
(A)
k,l is used, we also have to address the problem of the

phase. This approach is useful when dealing with spectrogram
transformations where the phase information is lost, as with reas-
signed spectrogram or spectral cepstrum. We could either use an
iterative approach, like the one described in [17] adapted to frame

Figure 6: High-frequencies reconstruction from the masked
adapted analysis of a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time; at the bottom, spectro-
gram of the analyzed band with a 4096 samples Hamming window,
3072 samples overlap and 4096 frequency points.

Figure 7: Spectrogram of the reconstruction error given by the
described method on a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54; spectrogram
obtained with a 4096 samples Hamming window, 3072 samples
overlap and 4096 frequency points.
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theory, or use a system with a high redundancy (see [18]).

From a computational point of view, we are interested in lim-
iting the size of the signal for the direct and inverse Fourier trans-
forms in (2), as this will largely improve the efficiency of the algo-
rithm. A different form of the formula (2) in this sense is

f̃ =
∑

p,k,l

c
p
k,lF

−1

(
1

p(ν)
F

(
g̃k,l

p

wp(bpkl)

))
(13)

whose properties have to be further investigated.
Later we would also investigate the properties of time-variant

filters by multiplying these new sets of coefficients, resulting in
new kinds of frame multipliers [19]. Using an optimized way to
analyze acoustical signal, will, therefore, also lead to a better con-
trol of such adaptive filters.
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