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ABSTRACT

We present an algorithm for sound analysis and resyntheagis w
local automatic adaptation of time-frequency resolutibinere ex-
ists several algorithms allowing to adapt the analysis winde-
pending on its time or frequency location; in what follows pre-
pose a method which select the optimal resolution depenaling
both time and frequency. We consider an approach that weteleno
asanalysis-weightingfrom the point of view of Gabor frame the-
ory. We analyze in particular the case of different adaptives-
varying resolutions within two complementary frequencyds
this is a typical case where perfect signal reconstructamot in
general be achieved with fast algorithms, causing a ceetamr

to be minimized. We provide examples of adaptive analyses of
music sound, and outline several possibilities that thiskepens.

1. INTRODUCTION

Traditional analysis methods based on single sets of athmiz
tions offer limited possibilities concerning the variatiof the res-
olution. Moreover, the optimal analysis parameters arenoftet
depending on an a-priori knowledge of the signal charasttesi.
Analyses with a non-optimal resolution result in a blurrargome-
times even a loss of information about the original signdijciv
affects every kind of later treatment: visual represeotatfea-
tures extraction and processing among others. This mesivthie
research for adaptive methods, conducted at present intheth
signal processing and the applied mathematics communitieg
lead to the possibility of analyses whose resolution lgceiiange
according to the signal features.

We present an algorithm with local automatic adaptation of
time-frequency resolution. In particular, we usestationary Ga-
bor framed[I] of windows with compact time supports, being able
to adapt the analysis window depending on its time or frequen
location. For compactly supported windows fast reconsional-
gorithms are possible, se€ [1/2, 3]: all along the paper Vigrwi

* This work was supported by grants from region lle de France
T This work was partially supported by by the WWTF project MUCA
('Frame Multipliers: Theory and Application in AcoustidgtA07-025)

dicate adasta class of algorithms whose principal computational
cost is due to the Fourier transform of the signal.

In the present paper we want to go a step beyond and adapt
the window in timeand frequency. This case has been detailed
in [4] among others. This can be possible, and frame theédry [5
would help in providing perfect reconstruction synthesetmods
(if no information is lost). However, this is a typical caskave the
calculation of the dual frame for the signal reconstructtannot
in general be achieved with a fast algorithm: thus a choicst ipe
done between a slow analysis/re-synthesis method guaiagte
perfect reconstruction and a fast one giving an approxonatiith
a certain error. There are, at least, two interesting agpesto
obtain fast algorithms:

o filter bank: the signal is first filtered with an invertible bank
of P pass band filters, to obtaiR different band limited
signals; for each of these bands a different nonstationary
Gabor frame{ggl} of windows with compact time support
is used, withy} the time-dependent window function. The
other members of the frame are time-frequency shiftg of

p _ P py 2wibP It
Gy = it —ap)e™™ 7,

)
wherek, | € Z anda}, b} are the time location and fre-
guency step associated to theth frame at the time index

k. We will write NGF to indicate a nonstationary Gabor
frame in the time case, and we will always assume to be in
the painless cask][6]. Each band-limited signal is pesfectl
reconstructed with an expansion of the analysis coeffigsient
in the dual frame{gx,”}. Note that by this notation we
denote the dual frame for a fixed By appropriately com-
bining the reconstructed bands we obtain a perfect recon-
struction of the original signal. An important remark isttha
the reconstruction at every time location is perfect as long
as all the frequency coefficients within all thé analyses

are used. On the other hand, for every analysis we are inter-
ested in considering only the frequency coefficients corre-
sponding to the considered band, thus introducing a recon-
struction error.
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e analysis - weighting the signal is first analyzed witt®
NGFS{gk .} of windows with compact time support . Each

analysis is associated to a certain frequency band, and itsjs g frame with—-—

coefficients are weighted to match this association. We look
for a reconstruction formula to minimize the reconstruttio
error when expanding the weighted coefficients within the
union of theP individual dual framesJ/_, {gr.;” }.

We focus here on the second approach, in the basic case of two

bands; so we split the frequency dimension into high and few f
quencies, withP? = 2. We provide the algorithm for an automatic
adaptation routine: in each frequency band, the best résolis
defined through the optimization of a sparsity measure dmtiuc
from the class oRényi entropieg7]. As for the filter bank ap-
proach, the results detailed inl [8] indicate a useful sofutithey
give an exact upper bound of the reconstruction error wheorre
structing a compactly supported and essentially bandéuinsig-
nal from a certain subset of its analysis coefficients with@®abor
frame.

In the first section, the analysis-weighting method is gdat
with an extension of the weighted Gabor frames approath [9],
which will give us a closed reconstruction formula. The seto
section is dedicated to the sparsity measures we use foruthe a
tomatic adaptation, with an insight on how weighting tecjueis
of the analysis coefficients can lead to measures with spéedi
tures. We then close the paper with some examples and ari@verv
on the perspectives of our research.

2. RECONSTRUCTION FROM WEIGHTED FRAMES

Let P € N and{gy ,} be different NGFsp = 1,..., P, where

k and! are the time and frequency location, respectwely We will
consider weight functiond < w”(v) < oco: for everyp, they only
depend on the frequency location. The idea is to smoothlyoset
zero the coefficients not belonging to the frequency pontibich

the p-th analysis has been assigned to; in this way, every asalysi
will just contribute to the reconstruction of the signal foam of its
pertinence, so high or low frequencies respectively wRes 2.
For each NGH gy, , } we writec;, , = w” (bpl){f, gy, ;) to indicate
the weighted analysis coefficients, and we consider theviatig
reconstruction formula:

f=7"

S k)] |

) > €} and for everye > 0, r(p, k, 1) is

)

wherep(v) = #{p : wP (v
0if wP(bPl) < ¢, else

r(p, k, 1) = (w”(OR0)(f, gr.,)) ®)

1 - P
wr (b01) 7!

We see that non-zero weights cancel each other: this recon-

struction formula still makes sense, as the goal is exaetfintd a
reconstruction as an expansion of tg.

We give now an interpretation of the introduced formula. If
w? is a semi-normalized sequence for eachthat is there exist
constantsn, andn, such that) < m, < w?(b}l) < n, and
e < my Vp, thenp(y) = p and the equatiofi{2) becomes

=1 k,l

Y00 g @t =T @
k
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This is related to the concept of weighted frames detaild]iras
in the hypothesis of semi-normalization the sequen&éb”l)gg .

p(bpl)gk ;¥ as one of its dual. For weights which

are not bounded from below, but still non-zero, the recaicsion

still works: the sequences” (b}1) - g, are not frames anymore
(for eachp), but complete Bessel sequences (also known as upper
semi-frames[10]). This reconstruction can be unstabtajgh.

In our case, these hypotheses are not verified, as we need to
set to zero a certain subset of the coefficients within botthef
analyses; thus the equatidd (2) will in general give an agppra-

tion of f. In sectior[ZP we give an example of reconstruction
following this approach, evaluating the reconstructioroerfur-

ther theoretical and numerical examinations should bézexhlas

we are interested to find an upper bound for the error depgndin
on:

o the signal spectral features at frequenciesherep(v) >
15

e the features of the” sequences and thgr) function.

A first natural choice for the weights” is a binary mask;
first because this is the worst case in terms of reconstruetimr,
as we are multiplying in the frequency domain with a rectangu
lar window before performing an inverse Fourier transfoilthus
the analysis of the error with a binary masking establishato
to the error obtained with a smoother mask. Moreover, with a b
nary mask the reconstruction formula takes the very sinquien f
detailed in equatior{6), allowing a direct implementatitmmived
from the general full band algorithm. So we considee 2 and
w. a certain cut value, then

wl(y):{ 0

andw?(v) = 1—w' (). Inthis case(v) = 1 for every frequency
v and the equatiori]2) becomes

F= hadai + > (faidai

Wi<we bpl>we

if v <we
if v > we.

(6)

(6)

The reconstruction error in this case will in general bedagfre-
quencies corresponding to coefficients close to the cutevaly

we envisage that a way to reduce this error is to allow«iffe
weights to have a smooth overlap; this results in more caoeffis
form different analyses contributing to the reconstruttiba same
portion of signal, thus weakening their interpretation.

3. RENYIENTROPY EVALUATION OF WEIGHTED
SPECTROGRAMS

The representation we take into account is the spectrogfeem o
signal f: it is the squared modulus of the Short-Time Fourier
Transform (STFT) off with window g, which is defined by

f (€)= / (gt

and so the spectrogramS (¢, w) = [V, f(t,w)|*. Given a Ga-
bor frame{ g, } we obtain a sampling of the spectrogram coeffi-
cients consideringy,; = |(f, gr,:)|*. With an appropriate normal-
ization, both the continuous and sampled spectrogram céambe
terpreted as probability densities. The idea to use Rényogies

—omigt
Ye P

)
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as sparsity measures for time-frequency distributionsbleas in-
troduced in[[7]: minimizing the complexity or informatiorf a

set of time-frequency representations of a same signaluivaq
lent to maximizing the concentration, peakiness, and fhexéhe
sparsity of the analysis. Thus we will considebastanalysis the
sparsest one, according to the minimal entropy evaluation.

Given a signalf and its spectrograr®S s, the Rényi entropy
of ordera > 0, « # 1 of PS¢ is defined as follows
) dtdw ,

1%// (ffRngS o w)dt'dw o

whereR C R? and we omit its indication if equality holds. Given
a discrete spectrogram obtained through the Gabor friggne},

we considerR as a rectangle of the time-frequency plaRe=
[t1,t2] x [v1,12] C R2. It identifies a sequence of poin@ on
the sampling grid defined by the frame. As a discretizatiothef
original continuous spectrogram, every samplg|? is related to

a time-frequency region of are@, wherea andb are respectively
the time and frequency steps; we thus obtain the discretgiRén
entropy measure directly frorl(8),

w3

k,leG

HJ(PSy) =

Zk,l

HS[PS;] = (7
Z[k/,l’]eG 2R

) +log,(ab) .
©)
We consider now another weight function< w(k, 1) < oo;
instead of weighting the STFT coefficientg, gx;) as we did in
Section2, we weight here the discrete spectrogram obtaiain
new distributionz; ; = w(k, 1)z, which is not necessarily the
spectrogram of a signal: nevertheless, by the definition(@f, ),
its Rényi entropy can still be evaluated froph (9). This vajiies
an information of the concentration of the distribution hvisit the
time-frequency area emphasized by the specific weight ifumct
as we show in sectidn 4.1, this can be useful for the custdiniza
of the adaptation procedure.

We will focus on discretized spectrograms with a finite num-
ber of coefficients, as dealing with digital signal procegsie-
quires to work with finite sampled signals and distributiordss

so that the discretized temporal support of the scaled wisdd
still remains inside> for anys € S. In our case( is a rectangle
with the time segment analyzed as horizontal dimension hed t
whole frequency lattice as vertical: at each step of ourrélyo,
this rectangle is shifted forward in time with a certain dapmwith
the previous position. By fixing an, the sparsest local analysis is
defined to be the one with minimum Rényi entropy: thus the-opti
mization is performed on the scaling factgand the best window
is defined consequently, with a similar approach to the ownelde
oped in [14]. With the weight functions introduced above, ave
also able to limit the frequency range of the rectarn@lat each
time location: adaptation is thus obtained over the timeetision
for each weighted spectrogram, so in our case for each fregue
band enhanced. An interpolation is performed over the aperl
ping zones to avoid abrupt discontinuities in the tradefifffie res-
olutions: in the examples given in sectidn 4, the spectragsag-
ment for the entropy evaluation includes four spectrogreamés
of the largest window, and the overlapping zone correspénds
three frames of the largest window. The temporal sizes o¢ige
ment and the overlap are deduced accordingly.

The time-frequency adapted analysis of the global sigrfaladly
realized by opportunely assembling the slices of local sgir
analyses obtained with the selected windows.

3.2. Biasing spectral coefficients through thex parameter

The « parameter in equatiofil(8) introduces a biasing on the spec-
tral coefficients; to have a qualitative description of thiasing,

we first consider a collection of simple spectrograms coragos
by a variable amount of large and small coefficients. We zeai
vector D of length N = 100 generating numbers between 0 and
1 with a normal random distribution; then we consider themec
Dar, 1 < M < N such that

Dlk] ifk<M 11)
Dr[k] :{ ' (
ZEL k> M

and then normalize to obtain a unitary sum. We then apply Rény
entropy measures with varying between 0 and 3: these are the
values that we use to adopt for music signals. As we see from fig

a tends to one this measure converges to the Shannon entropyure[d, there is a relation between the number of large cosffigi

which is therefore included in this larger class. Generapprties

of Rényi entropies can be found inJ11], [12] and1[13]; in par-
ticular, givenP a probability densityH. (P) is a non increasing
function ofa, soa < a2 = Ha, (P) > Ha, (P) . Moreover, for
every orderx the Rényi entropyH,, is maximum whenP is uni-
formly distributed, while it is minimum and equal to zero whe
has a single non-zero value. As we are working with finitereisc
densities we can also consider the case= 0 which is simply
the logarithm of the number of elementsznas a consequence
Ho[p] > Ha[p] for every admissible ordex. As long as we can
give an interpretation to the parameter, this class of measures of-
fers a largely more detailed information about the timerfiency
representation of the signal.

3.1. Adaptive procedure

We choose a finite s&f of admissible scaling factors, and realize
different scaled version of a windogyy

9°(t) = % g(é) : (10)

M and the slope of the entropy curves for the different valdes o
a. Fora = 0, Ho[Dy/] is the logarithm of the number of non-zero
coefficients and it is therefore constant; wheimcreases, we see
that densities with a small amount of large coefficients gadig
decrease their entropy, faster than the almost flat vectore-c
sponding to larger values @ff. This means that by increasing
we emphasize the difference between the entropy valueseztlayp
distribution and that of a nearly flat one. The sparsity megsue
consider, selects as best analysis the one with minimabgntr
so reducingy rises the probability of less peaky distributions to be
chosen as sparsest: in principle, this is desirable as weakgpo-
nents of the signal, such as partials, have to be taken ictmuat

in the sparsity evaluation.

The second example we consider shows that the just men-
tioned principle should be applied with care, as a smallfadeit
in a spectrogram could be determined by a partial as well as by
a noise component; with an extremely smallthe best window
selected could vary without a reliable relation with spaicton-
centration, depending on the noise level within the sound.il¥V
lustrate how noise has to be taken in account when tuningrthe

DAFX-3
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60
80 3
100 alpha

M
Figure 1: Rényi entropy evaluations of thk, vectors with vary-
ing «; the distribution becomes flatter ¢ increases. Therefore
increasingx favors a sparse representation (see text).

parameter by means of another model of spectrogram: taking t
same vectoD considered previously, and two integeérs. Nyq.¢,
1 < Rpart, We defineDy, like follows:

1 it k=1
Dok ={ ek 1<k < Npart (12)
%ﬂ— if k> Npare -

whereR,oise = 2227, [, € [5&, 1]; then we normalize to obtain
a unitary sum. This vectors are a simplified model of the spect
grams of a signal whose coefficients correspond to one maik, pe
Npare partials with amplitude reduced by, and some noise
whose amplitude varies, proportionally to theparameter, from a
negligible level to the one of the partials. Applying Réngtrepy
measures withy varying between 0 and 3, we obtain the figure
[, which shows the impact of the noise levebn the evaluations
with different values ofv.

entropy

alpha

Figure 2: Rényi entropy evaluations of tii&, vectors with vary-
ing &, Npart = 5 and Rpqr¢ = 2; the entropy values rise differ-
ently asL increases, depending @n this shows that the impact
of the noise level on the entropy evaluation depends on ttie@n
order (see text).

The increment of. corresponds to a strengthening of the noise

coefficients, causing the rise of the entropy values for@anyhe
key point is the observation of how they rise, depending @mth
value: the convexity of the surface in figlitke 2 increases ag-
comes larger, and it describes the impact of the noise levéhi®
evaluation; the stronger convexity wheris around 3 denotes an
higher robustness, as the noise level needs to be high tordete

a significant entropy variation. Our tests show that, as av-dra
back, in this way we lower the sensitivity of the evaluatiorthie
partials, and the measure keeps almost the same profiledoy ev
Rpa'rt > 1

On the other hand, whemtends to O the entropy growth is almost
linear in L, showing the significant impact of noise on the evalua-
tion, as well as a finer response to the variation of the paurdian-
plitude. As a consequence, the tuning of thparameter has to be
performed according to the desired tradeoff between thsitsen

ity of the measure to the weak signal components to be observe
and the robustness to noise. In our experimental experi¢hee
value of 0.7 is appropriate for both speech and music signals

4. ALGORITHMS AND EXAMPLES

We give here two examples of the methods described above: the
first shows an application of two different weights on thecspe
trogram of a given sound, which determines two differenict®
for the optimal resolutions; the second is a reconstruatiioh the
algorithm detailed in Sectidd 2.

4.1. Adaptation with Different Masks

We can privilege a certain subset of the analysis coeffisiémt
drive the adaptation routine, instead of considering théwith
the same importance. For example, the adaptation withip-the
band could be determined from the coefficients laying at tater
small distance from the band central frequency.

Figured8 anfl4 are realized with an improved version of the
algorithm described i [15], which allows for a weighting tbe
analysis coefficients which concerns only the adaptatiarime,
and not the analysis and re-synthesis. Thus, we obtairreliffe
adapted analyses depending on the frequency area we wist+to p
ilege, still preserving perfect reconstruction: the sowedanalyze
is a music signal with a bass guitar, a drum set and a femajagin
voice starting from second 1.54. We use two different comple-
tary binary masks, the first setting to zero the spectrogreeific
cients corresponding to frequencies higher than 300Hzebend
doing the opposite. As we can see in Figdre 3, with the firskmas
we obtain an analysis where the largest window is privilegeid
is the best frequency resolution for the bass guitar souhé;hwis
prominent in the considered band. The only points wheretshor
windows are chosen correspond to strong transients, asdoass
voice attacks, where the time precision is enhanced.

With the second mask, low frequencies are ignored in thetadap
tion step, and as a consequence we obtain a different opzimadl
ysis: the smallest window is generally selected, yieldindigher
time resolution which is best adapted to the percussive dgun
moreover, we see that the largest window is chosen corrdspon
ing to the presence of the singing voice, whose higher haicaon
belong to the considered band and determine a better frequen
resolution to be privileged.

DAFX-4



Proc. of the 14 Int. Conference on Digital Audio Effects (DAFx-11), Pafisance, September 19-23, 2011

4096
I
2262
1680
1248

928

690

512

3 . . .3
time time

Figure 3: Adaptive analysis with a mask privileging freqcies Figure 4: Adaptive analysis with a mask privileging freqcies
below 300Hz, on a music signal with a bass guitar, a drum set above 300Hz, on a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: onkiegt, and a female singing voice starting from second 1.54: onliest,
window size chosen as a function of time; at the bottom, athpt window size chosen as a function of time; at the bottom, athpt
spectrogram of the analyzed sound file. spectrogram of the analyzed sound file.

In both cases we calculate the difference between the signal
constructed and the original one; we use a 16 bit audio fil@seh
amplitude is represented in the rangel, 1] with double preci-  hossiility for the cut frequency to be variable, in ordeffreely
sion: the_ maximum absolute value of the differences between select the adaptation criterium.
responding time samples, as well as thle root mean squane eIoEjgureT shows the spectrogram of the difference betweeoriye
over the entire signal, are both of order'°. inal sound and the reconstructed one, and we see that theeapec
content of the error is concentrated at the cut frequencye arth
teration introduced has negligible perceptual effectsthso the
original signal and the reconstruction are hard to be djsished:
We show here an example of the approximation of a signal apply this aspect needs to be quantified; when dealing with theoappr

low: unfortunately, music signals generally do not havgedow-
energy bands; moreover, the interest of our method reliebdan

4.2. Analysis-Weighting Example

ing the formula[(B), within the analysis-weighting approarsing matipn of mgsic signals, the objective error measures dgivet
a binary mask: as detailed in Secti@iis 2 Bhd 3, we analyze a sig any information about the perceptual meaning of the erroe dc-
nal with different stationary Gabor frames; the sound wesider curacy of a method has thus to be evaluated by means of measure

is the same of the sectidn #.1, and the binary mask is still ob- taking into account the human auditory system as well aarlisg
tained with a cut frequency of 300Hz, while the sampling iate  tests.

44.1kHz. We modify the coefficients of all these analyses wie

maskw' (), and build the NGR g, , } with resolutions adapted to Another element to consider is the overlap between the weigh
the low frequencies optimizing the entropy of the maskedyaea. functions introduced in sectidd 2: if we allow them for an eve
Then we repeat this step with the mask(r) and build the NGF  |ap over a sufficiently large frequency band, we envisagettie
{g%.}. We finally calculate the duals of the two NGFs, which can error would be reduced. The sense of this point can be clari-
be done in these cases with fast algorithms, and re-symthé&s fied considering the causes of the reconstruction errordovirs

two signal bands: for these examples, the reconstructiqers with compact time support cannot have a compactly supported

formed with the SuperVP phase vocoder by Axel Robel [16]. Fourier transform; from the analysis point of view, this me#hat
Figure[® shows the spectrogram of the lower signal bandnreco a spectrogram coefficient affects the signal reconstracimong
structed with the low-frequencies adapted analysis. Tpgstso- the whole frequency dimension. We can limit such an influence

gram is computed with a fixed window, which is the largest one with a choice of well-localized time-frequency atoms: eifgheir
within the set considered; the choice of the best windowvsmi frequency support is not compact, they have a fast decajdeuds

as well, to give information about how the reconstructiopes- certain region. If we cut with a binary mask outside a certaind,
formed at each time. FiguEé 6 is obtained in the same way, con-the reconstruction error comes mainly from the fact that vee a
sidering the upper band reconstruction. The approximatfahe setting to zero the contribution of atoms whose Fourierstiaims
original sound is then given by the sum of the two bands. spread into the band of interest: if the atoms are well-iaed)

only a few of them actually have an impact.

The reconstruction error we obtain is higher than the onlednt  Formula [2) gives an ideal reference: if the overlap is thiren
previous examples: the maximum absolute value of the sample frequency dimension, weights are non-zero, thus we have-a pe
differences is 0.0568, while the root mean square error0GJ®. fect reconstruction from the weighted coefficients. Whemeo
With the choice of a binary mask, the only way to reduce thererr  weights are zero and weight functions do overlap, the nazaal
is to set the cut frequency in a range where the signal energy i tion factor in the formula[{R) is greater than one in the cyeping
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Figure 5. Low-frequencies reconstruction from the ma
adapted analysis of a music signal with a bass guitar, a des

and a female singing voice starting from second 1.54: onlieg
window size chosen as a function of time. At the bottom, spe
gram of the analyzed band with a 4096 samples Hamming window.
3072 samples overlap and 4096 frequency points; the freguen
axis is bounded to 2kHz to focus on the reconstructed region.

05 1

'Figure 6: High-frequencies reconstruction from the masked
adapted analysis of a music signal with a bass guitar, a daim s
and a female singing voice starting from second 1.54: onliesgt,
window size chosen as a function of time; at the bottom, spect
gram of the analyzed band with a 4096 samples Hamming window,

frequency interval. This reduces the impact of the erroraing 3072 samples overlap and 4096 frequency points.

from individual re-syntheses: on the other hand, the facuoh-

ming them all imposes a limit to the achievable global ereatuc-

tion.

A further improvement of this formula is to put different \gbis at

the denominator iri{4), with an effective amplification oduetion

of the contributions coming from individual coefficientso Keep

the perfect reconstruction valid in the case of semi-noaedl

norms, a possibility is to obtain the different weights asiact

tion of the analysis weights depending also on the overlap.

5. CONCLUSIONS AND PERSPECTIVES £43

We have sketched the first steps of a promising researchcf
about the local automatic adaptation of time-frequencyhdaep
resentations: a first question which arises is how to displesp
resentation of the signal such the one described; therevarpds
sibilities involving weighted means of the coefficients ateatair
time-frequency location:

o dy; = Z: - > ¢y, displaying|dy. .|, or
P

wP

2
A
° dl(c,l) = Zplwp Y Czl‘
p -
o — - .
In a previously proposed methdd [15] the algorithm keepstfg 05 1 s 2 2R .Y 88 4 as s

inal coefficients in memory; with this approach, we can ug. ..
reconstruction scheme mentioned [n](13). A further new ques
tion would be how to reconstruct the signal from an expansion
thedy,; or dffl) coefficients. Straightforward numerical examples
could give some numerical insights.

If d,(fl) is used, we also have to address the problem of the
phase. This approach is useful when dealing with spectnogra
transformations where the phase information is lost, as meias-
signed spectrogram or spectral cepstrum. We could eitteeans
iterative approach, like the one described in [17] adaptefceime

Figure 7: Spectrogram of the reconstruction error givenhsy t
described method on a music signal with a bass guitar, a detm s
and a female singing voice starting from second 1.54; spg@m
obtained with a 4096 samples Hamming window, 3072 samples
overlap and 4096 frequency points.
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theory, or use a system with a high redundancy (s€e [18]).

From a computational point of view, we are interested in lim-

iting the size of the signal for the direct and inverse Faurigns-
forms in [2), as this will largely improve the efficiency ofthlgo-
rithm. A different form of the formula{2) in this sense is

1
p(v)

91"
wP (bY1)

f= z;l T ( F ( )) (13)

whose properties have to be further investigated.

Later we would also investigate the properties of timearatri

filters by multiplying these new sets of coefficients, resgltin
new kinds of frame multipliers [19]. Using an optimized way t
analyze acoustical signal, will, therefore, also lead tetidn con-
trol of such adaptive filters.

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]
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