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ABSTRACT 

This paper presents a new measure which takes into 

accounts simultaneously brightness and connectivity, in the 

segmentation step, for crack detection on road pavement 

images. Features which are calculated along every free-form 

paths provide detection of cracks with any form and any 

orientation. The method proposed does not need learning 

stage of free defect texture to perform default detection. 

Experimental results were conducted on some samples of 

different kinds of pavements. Results of the method are also 

given on other kinds of images and can provide perspectives 

on other domains as road extraction on satellite images or 

segment blood vessels in retinal images. 

Index Terms— Image segmentation, crack detection, 

defect detection, texture analyses 

1. INTRODUCTION 

From 1990, there is a growing interest in pavement defect 

detection using image processing techniques [1]. Crack 

detection on pavement surfaces is a difficult problem due to 

the noisy pavement surfaces. There are different kinds of 

texture that can be encountered on road pavements. Cracks 

can have any form; crack size can be as small as 1 pixel in 

width and thinner than aggregate size. Figure 1 illustrates 

some road pavement image samples. 

 
(a)                            (b)                             (c) 

Figure 1: pavement image samples: (a) longitudinal crack, (b) 

transversal crack, (c) alligator crack. 

The paper is organized as follows: In section 2, a short 

review of defect detection methods is proposed. In section 3, 

we introduce a new approach based on Free-Form 

Anisotropy (FFA) for segmentation. First, we recall 

Conditional Texture Anisotropy (CTA), which was 

introduced by F. Roli [2], and adapted for pavement crack 

detection [3]. Then, we explain FFA method which 

overcomes CTA limitations (orientations and linear form of 

crack). Section 4 summarizes experimental results. Finally, 

we conclude and propose others purposes for the method. 

2. REVIEW OF DEFECT DETECTION METHODS 

Because of the road pavement image nature, crack detection 

methods, in literature, were based on “stable” characteristics 

of cracks. We can give the two following characteristics of 

cracks [1], [4]: 

- Brightness: crack pixels are darker than their neighbors. 

- Form: crack is continuous or could be formed by 

various continuous segments. Its length is greater than its 

width and than granulate size.  

Both of these characteristics can be noised with shadows, 

lane marking, etc. 

Usually, crack pavement detection methods can be 

divided into four sequential stages: pre-processing, 

segmentation, post-processing and classification. According 

to [5], in most of existing methods, classification step is 

trivial due to the easy task consisting in separating different 

crack types (longitudinal, transversal and alligator).  

Most of approaches, in literature, use brightness 

characteristic of crack for segmentation followed by a post-

processing step, which uses connectivity characteristic to 

connect crack segments and to eliminate noises.  

Thresholding is frequently used to segment cracks, fixed 

threshold in [6-7] or fuzzy threshold in [8]. Some methods 

[9, 10] divide image into grid cells and then classify each 

cell as crack or crack-free cell by comparing mean and 

standard deviation of the cell with their neighbors or by 

UINTA filtering [11]. Authors in [5] supposed that, by 

applying a 2D Continuous Wavelet Transform (CWT), the 

differences between crack pixels and background pixels 

could be raised up. 

After segmentation step, crack appears as discontinuous 

regions with noises. Post-processing step is needed to 

remove noise and to connect crack segments.  

In case of use of grid cells, crack as thin as 1 pixel cannot 

be detected considering only statistical features of 

intensities. Use of wavelet [5] is a good approach by 

considering multi-resolution aspect, but their results showed 

that CWT not only rises up cracks but also noises. Recent 

approaches [9, 11] provide very noisy results for the 

2011 18th IEEE International Conference on Image Processing

978-1-4577-1302-6/11/$26.00 ©2011 IEEE 1093



segmentation step and it is hard to obtain good connection 

results. 

In the next part, we propose a new method which takes 

into account simultaneously intensity and crack form 

features for segmentation step. 

3. FREE-FORM ANISOTROPY 

3.1. Conditional Texture Anisotropy for crack detection 

Conditional Texture Anisotropy (CTA) was first introduced 

by F. Roli [2]. The main idea was to find out a measure 

which produces small values in one orientation (e.g. along 

crack orientation) and higher values in other orientations. 

Let w1 be the class of defect-free pixels and w2 be the class 

of default pixels. The CTA of a pixel l can be defined as: 
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features computed along the orientation j.  

p(x
l
j|l∈w1) is probability for the pixel l to be a defect-free 

pixel along the orientation j. In [2], j is usually one of the 4 

traditional orientations (0°,45°,90°,135°). According to 

crack characteristics, p(x
l
j|l∈w1) should take low value on 

dominant orientation of crack. As well, p(x
l
j|l∈w1) will take 

high values for other orientations. We can deduce from 

equation (3.1) that CTA takes high value (close to 1) on 

crack pixels and low value for defect-free pixels (close to 0). 

According to “brightness” characteristic of crack and 

Gaussian–form histogram [5] of pavement image, mean and 

standard deviation of pixel intensity of oriented segment 

have been chosen as features to calculate CTA. These 

oriented segments are composed of (2d +1) pixels. 

1 2 1 2( , ) sup{min ( , )}h π π π π=  (3.2) 

 
Figure 2 : oriented segments and sup-min function to evaluate 

degree of coherence between two sources. 

To compute p(x
l
j|l∈w1), we use possibility theory [13] to 

evaluate degree of coherence (3.2) between two sources 

(Figure 2). Source πi is composed by mean µi and standard 

deviation σi..  

We dispose of 4 sources, one for each orientation. To 

avoid training stage for background characterization, we use 

this hypothesis: crack affect texture only in one orientation 

(the crack orientation). Then to evaluate background (or 

defect-free) source, we compute mean of the 3 sources 

which have higher values (Figure 3).  

A two levels threshold [3] is used to produce binary 

images. The most important parameter of the method is the 

distance d, of oriented segments, used to compute features. 

 
Figure 3: Computation of CTA for l1 and l2 using the degree of 

coherence (right figures). 

In Figure 4, we see results of CTA, on an image, on 

which we produce synthetic defects. We create defects with 

3 of the traditional orientations and one different. These 

defects go from 1 to 4 pixels in width, with intensities 

chosen randomly with values near their neighbors. 

 
     transversal profil                   d=4                         d=16 

 

        original image                              binary images 

Figure 4: CTA results for different distances d. 

In this Figure 4, we see that defects with traditional 

orientations are correctly detected. When distance d is high 

enough, the background noises disappear, but we see also 

that, for non traditional orientation, only large defects are 

detected.  

So CTA is interesting for traditional orientations and it 

provides efficient background suppression when the distance 

d is high enough. But for other orientations, CTA suppresses 

also thin defects. 

3.2. Free-Form Anisotropy 

To overcome the CTA limitations, we propose the Free-

Form Anisotropy method (FFA) which calculates, for each 

pixel, features along every free-form path.  

3.2.1. Definition 

We reach 4 minimal paths according to 4 global orientations 

as it is shown in figure 5. A minimal path is defined as a 

path for which sum of pixel intensities is the smallest. Graph 

theory, for example Dijkstra algorithm [14], provides 

where :  
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solution to find efficiently these minimal paths. 

 
(a)                    (b)                   (c)                    (d) 

Figure 5 : Minimal paths of pixel l according to 4 orientations: (a) 

transversal, (b) longitudinal, (c) diagonal 135°, (d) diagonal 45°. 

Features are calculated for each path and converted into 

sources and we can compute background source πbgd as it 

was done for CTA. 

Then the FFA of each pixel l can be formulated as:  
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with j a global orientation, and ),( bgdjh ππ  computed on 

the 4 minimal paths (Figure 5) with pixel l at the center of 

the path with (2d+1) length.  

 
                   (a)                                          (b) 

 
                   (c)                                          (d) 

Figure 6 : Computation of FFA for 2 pixels width d = 30. (a,b) 

crack pixel (c,d) defect-free pixel. 

As for CTA measure, the FFA measure is close to 1 for 

crack pixels and close to 0 for defect-free pixels.  

FFA computation is illustrated on figure 6. We can see 

that the free-form path follows the crack. This shows the 

ability of FFA to explore with accuracy different crack 

forms. Without crack, minimal paths produce sources with 

high correlation level (Figure 6 d). 

The same strategy, as for CTA, was used to test FFA. 

Figure 7 shows the original image with synthetic cracks, 

FFA and binary images for different distances d, and profiles 

of line extracted on images. If distance d is high enough, all 

cracks are detected in any orientation and with the minimal 

width (1 pixel). 

 

 
  transversal profil                     d=4                             d=16 

 
     original image                                binary images 

Figure 7 : FFA results for different distances d. 

4. RESULTS 

4.1. Comparative results 

    
(a)                 (b)                           (c)                    (d) 

Figure 8 : Anisotropy vs. Subirat’s 2D CWT. Inspected image (a), 

Subirat’s CWT (b), CTA (c), FFA (d). 

Figure 8 (a) shows a longitudinal crack on real image of 

road pavement. In this example, we compare CTA and FFA 

with 2D CWT method [9]. Both CTA results and FFA 

results (Figure 8 c and d) contain less of noise. This is the 

ability of the segmentation step to take into account 

intensity, form and connectivity of the default. FFA is better 

than CTA for connecting crack segments. 

4.2. Texture variation 

We use different kinds of pavement images with different 

properties. Table 1 gives some of theses textures attributes 

for each kind of texture. We see granulate size, contrast. The 

two last parameters are Haralick attributes extracted from 

co-occurrence matrix [15]. 

Image 
Granulate size 

(mm)min/max 
Contrast Correlation Entropy 

1 0/4 308.1 0,001 8,7 

2 0/10 537,3 0,0005 9,38 

3 0/13 612,4 0,0032 9,4 

4 0/18 876,72 0,00031 9,9 

Table 1 : Texture attributes of selected images.  

On these images (Figure 9), we generate synthetic cracks 

with the same method as in 3.1. Cracks have “no segment” 

forms and intensities are chosen randomly. 

 
cracks          image1          image2          image3          image4 

Figure 9 : Synthetic cracks on different kinds of pavement images.  

2011 18th IEEE International Conference on Image Processing

1095



In Figure 10, we show FFA results for different distances 

d. In each case, all cracks are fully detected. If distance is 

high enough, there is no noise detection. The method is able 

to perform background suppression for different kinds of 

textures. This demonstrates the robustness of the method. 

   
      image1             image2             image3            image4      

Figure 10: FFA results on different kinds of pavement images.  

4.3. Results on real defects on pavement images 

These tests were performed on real 16 473 images (Figure 

11) captured dynamically [3-4]. We obtained 93.6% 

detection rate and 13.7% false alarm with FFA. With CTA 

method, we obtained only 73.8% detection rate and more 

than 27.6% false alarm. Computation time for these high 

resolution images (2048x2048 pixels) is about 20 seconds 

(Dell Precision PWS670, Xeon 3.6 GHz, RAM 4Go).  

 
(a)                     (b)                      (c)                      (d) 

 
(a)                     (b)                      (c)                      (d) 

Figure 11 : FFA results. (a) Longitudinal crack, (b) transversal 

crack, (c) alligator crack, (d) defect-free.  

In this figure, all defects (figure 11 a, b, c) are detected. 

We see details of alligator crack (c). Without defect (figure 

11 d), nothing is detected. and we see the efficiency of the 

method which provides results with very low noise. 

5. CONCLUSION AND PERSPECTIVES 

In this paper, we have introduced a new method for crack 

detection on road pavement images. By considering all 

characteristics of crack and by unrestricting crack 

orientations and forms, the method provides good results on 

crack segmentation. Cracks which are as small as 1 mm (1 

pixel in width) could be detected with any form and 

orientations.  

Fine structures on other kinds of images like medical images 

(Figure 12 a) or satellite images (Figure 12 c) have similar 

characteristics as pavement cracks. Results show that FFA 

can also be useful on these kinds of images with fine 

structures. 

     
(a)                     (b)                      (c)                      (d) 

Figure 12 : FFA applied on other kind of fine structure extraction, 

blood vessels in retinal images (a, b), road extraction on satellite 

images (c, d). 

Characteristics of these fine structures in other random 

texture surfaces are similar to cracks on pavement surfaces. 

Good results obtained on some images of this kind suggest 

good perspectives for using FFA in other domains as: 

ceramic damages detection, road network extraction in 

satellite images and blood vessels segmentation in retinal 

images. 
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