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Abstract

Kah et al. (2010) recently developed the Eulerian Multi-Size Moment model (EMSM) which tackles the
modeling and numerical simulation of polydisperse multiphase flows. Using a high order moment method
in a compact interval, they suggested to reconstruct the number density function (NDF) by Entropy Maxi-
mization, which leads to a unique and realizable NDF, potentially in several size intervals, thus leading to an
hybrid method between Multifluid and high order. This reconstruction is used to simulate the evaporation
process, by an evaluation of the flux of droplet disappearance at zero size, the fluxes of droplets between
size intervals, and an accurate description of the size shift induced by evaporation (Massot et al. 2010).
Although this method demonstrated its potential for evaporating polydisperse flows, two issues remain to be
addressed. First, the EMSM only considers one velocity for all droplets, thus decoupling size from velocity,
which is too restrictive for distributions with a large size spectrum. In most applications size-conditioned
dynamics have to be accounted for. Second, the possibility to have separated dynamics for each size can
lead to quasi-monodisperse distributions, which corresponds to a hard limiting case for the EM algorithm.
So the behavior of the algorithm needs to be investigated, in order to reproduce the entire moment space
with a reasonable accuracy. The aim of this paper is thus twofold. The EM and its related algorithm are
enhanced by using a more accurate integration method in order to handle NDF close to the frontier of the
moment space associated with an adaptive number of parameters to reconstruct the NDF accurately and
efficiently, as well as tabulated initial guess to optimize the computational time. Then, a new model called
CSVM (Coupled Size-Velocity Moments model) is introduced. Size-velocity correlations are addressed ei-
ther in the evaporation and drag processes, or in the convective transport. To reach this goal, a velocity
reconstruction for each size is suggested, using only one additional moment per dimension, and which can be
directly applied to several size intervals. Thus, this method is a direct generalization of EMSM. To handle
the convective transport, a flux splitting scheme is proposed, based on the underlying kinetic description
of the disperse phase. Comparing to existing approaches, a main novelty of the CSVM is that our kinetic
approach ensures built-in realizability conditions, no additional corrections of the moments being needed at
each time step. The full strategy is first evaluated in 0D and 1D cases, which either demonstrates the ability
to reproduce both evaporation, drag force and convection with size-velocity correlations, or the possible
extension to several size intervals. Finally, the method is applied on 2D cases with only one section, showing
the ability of the CSVM and its related algorithms to capture the main physics of polydisperse evaporating
sprays with a minimal number of moments.
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1. Introduction

Multiphase flows occur in several industrial applications, such as internal combustion engines ([1, 2] and
references therein), gas turbines [3] or rocket boosters [4]. Those applications are linked by the existence
of a disperse liquid phase, composed of droplets of various sizes. Simulating this disperse phase accurately
becomes crucial, as it highly influences the global behavior of the full device (consumption, overall power,
pollutant emissions, etc...).

The description of a disperse phase may rely on a population balance equation (PBE) on the number
density function (NDF), namely the Williams-Boltzmann equation in the context of sprays [5, 6]. The PBE
describes the time evolution of the NDF in the real space (position) and in the phase space determined by
the chosen internal coordinates for the description of the NDF (size, velocity, temperature...). Simulating the
PBE can be achieved by using the Lagrangian direct simulation Monte-Carlo method (DSMC [7]), which
solves Lagrangian equations for a large sample of particles, in order to reach converged statistics. This
approach is considered as the most accurate, but is very expensive, especially for unsteady flows, and is not
well adapted for high performance parallel computing due to load balancing as well as for coupling to the
gas phase due to interpolations between gas and disperse phases [8]. Its use for industrial applications stays
unreachable, even with the great increase in computational resources. Eulerian methods can overcome this
problem by not directly solving the PBE on the NDF, but its moments, which are integrated quantities
over phase space. In the idealized case of monodisperse distributions, i.e. when all droplets have the same
size, the NDF can be easily reconstructed because only two moments are necessary. But in the case of
polydisperse distributions, an infinite number of moments is needed to fully determine the NDF, which is
called the Hausdorff moment problem [9] if a compact support is considered. With fewer moments, the NDF
is not uniquely determine (the finite Hausdorff moment problem), and additional constraints are needed to
obtain a one-to-one relationship between the moments and the NDF.

To account for size polydispersion, three ways can be envisaged:

1. A size phase space discretization: the size space can be discretized into intervals called “sections” [10],
which leads to a Finite Volume formulation called Multifluid approach in the context of sprays [11],

2. A quadrature-based moment method : a limited set of moments is used to build a quadrature approx-
imation of the NDF [12, 13],

3. A moment method with continuous reconstruction: a limited set of size moments is used to reconstruct
the NDF continuously [14, 15, 16, 17, 18, 19].

Discretizing the size phase space is the simplest way to capture the size polydispersion. A first order
Multifluid approach, which uses one moment per section is easy to implement and accurate [20]. But in order
to limit diffusion in size space, a high number of sections is needed, thus increasing the computational cost
[21]. Using two moments per section, second order Multifluid approaches can reduced the number of sections
needed to reach a high accuracy [22, 21, 4], but one may want to further minimize the number of sections.
Adopting a moment point of view leads to the transport of only one “fluid”, but with several moments. This
can be done using QMOM (quadrature method of moment) [12] or DQMOM (direct quadrature method of
moment) [13]. These approaches are linked by the reconstruction of the NDF : a sum of Dirac δ-functions
evolving jointly. The difference is that QMOM solves equations on the moment set, whereas DQMOM
directly solves the equation on weights and abscissas of the Dirac δ-functions. Those two methods have
shown their potential for coalescence or breakage, but encounter difficulties for evaporating spray, especially
with continuous distributions, due to the disappearance flux of droplets at zero size [23]. Actually, the
lower order representation of the QMOM or the DQMOM is not able to reproduce this continuous flux, the
disappearance of droplet being possible only when a Dirac δ-function reaches the zero abscissa, and leading
to a singular flux.

To solve this intrinsic problem of the representation of the NDF, Kah et al. [2, 15] have suggested a new
strategy, called Eulerian Multi-Size Moment model (EMSM), taking advantage of a continuous description
of the NDF to determine the flux at zero size, and the evaluation of the shift in size induced by evaporation
by a combined flux/quadrature approach. The reconstruction of the NDF is done by Entropy Maximization
(EM) [24]. This is a convex optimization problem with constraints, which admits a unique solution, as long
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as the moment vector stays in the interior of the moment space [25]. This NDF is used to compute the flux
at zero size, and the evaporation is evaluated by means of the zero flux and a quadrature approximation.
The potential of EMSM is demonstrated in [26], where it is shown that the computational time for a
equivalent accuracy is clearly better than the Multifluid method. Furthermore, the EMSM can be coupled
to a discretization of the size space, leading to a hybrid method between Multifluid and high order moment
approaches [15, 2].

The evolution in size phase space solved, an important issue to be tackled is the evolution in physical
space. In fact this issue is twofold: we need to define a closure in velocity phase space, which will depend
on the number of velocity moments we want and which relates to the expected dynamics, and then we need
to build the numerical scheme used to transport the set of moments in physical space. In the current study
we will focus on flow regimes for which no droplet trajectory crossings occur, which, following [27] in the
case of turbulent flows, corresponds to Stokes number in the range [0, 1]. For high Stokes number, statistical
[28], deterministic [29, 30] or hybrid [29, 31] methods can be used, but are out the scope of the present
work. Concerning the definition of the numerical scheme, in general a first order Finite Volume scheme is
able to transport a set of moments vector, preserving the moment space. But for complex problems, high
order methods are needed. As shown in [32], classical high order finite volume numerical schemes cannot
always keep the moments in the interior of the moment space. To overcome this difficulty, a kinetic scheme
adapted to a high number of moments is proposed in [26], which uses a linear reconstruction on the canonical
moments, and intrinsically preserves the realizability of the moment set.

The EMSM associated with a stable and realizable kinetic scheme for the physical transport is a good
candidate for the simulation of complex flows and has already been implemented in an industrial code (IFP-
C3D [33, 34]). But two important issues still remain unsolved. Firstly, the EMSM uses the same velocity for
all droplets, independently of their size. This is quite a strong assumption when drag force is accounted for,
as it may generate size-conditionned differential dynamics. The effect of such an assumption was illustrated
in a test case proposed in [35] which consists in the injection of droplets into a gaseous crossflow at constant
and uniform velocity, with a constant size distribution for which Stokes numbers based on the convective
time of the gas phase range in [0.083, 0.744]. The flow field was solved using the AVBP code [36], using two
formalisms: a two-fluid approach, which is equivalent to the EMSM in the case of non-evaporating flows, and
a Multifluid approach with 10 sections. Results are shown in Fig. 1. When only one velocity is considered for
the whole distribution, only one trajectory can be reproduced. This effect is partially accounted for, using a
Multifluid approach, because each section has its proper velocity. But for a coarse size discretization, such
as the ten section example given in Fig. 1, this leads to distinct trajectories separated by vacuum regions.
Secondly, the ability to capture separated dynamics depending on the droplet size would generate quasi-
monodisperse distributions. Unfortunately, the EMSM and its related EM algorithm encounter difficulties
in reproducing this kind of NDF. It limits the applicability of the EM or at least introduces an error for this
type of NDF [15]. This type of highly segregative flows is typical of swirling injection [14] in aeronautical
configurations, even if the turbulent mixing tends to generate continuous and regular NDFs.

Figure 1: 2D Crossflow: Multifluid method with 10 sections (left) and to a monodisperse-monokinetic approach equivalent to
the EMSM in this non-evaporating case (right). Stokes numbers are in the range [0.083, 0.744] for the Multifluid method and
0.332 for the monokinetic approach [35].
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The developments of the present work address these issues, in terms of modeling and numerics:

• Compared to existing reconstructions [16, 14, 19, 37], the EM is for now the only reconstruction
strategy that enables to cover the whole moment space (ie. all possible combinations of moments that
corresponds to a positive NDF), excepting its frontier which can be reached as close as necessary.
Considering the propensity of size-velocity correlations to generate moment sets at the frontier of
the moment space, we enhance the EM numerics using adaptive procedures, in terms of integration
methods and controlled moments, and a tabulated initial guess1,

• A new method is developed, called Coupled Size-Velocity Moments model (CSVM), that takes into
account size-velocity correlations by the transport of an additional size-velocity moment for each
space dimension, which allows to reconstruct the velocity against size. Comparing to the velocity
reconstruction of Dems et al. [16] based on the work of Ferry and Balachandar [38, 39], which assumes
a linear expansion of the disperse phase velocity around the gas phase velocity and uses only one
size-velocity moment, our reconstruction uses at least two size-velocity moments, to be able to capture
inversion of the relative velocity with respect to size which may occur in turbulent vortical flows.
Moreover, in the spirit of the EMSM, the CSVM is adapted to a discretization in size phase space
into size intervals called sections (such as in the Multifluid point of view), making possible to increase
the accuracy either by increasing the number of moments per section or by increasing the number of
sections. The hybrid character of the method is a major advantage and leads to a very flexible method.

• The evolution in size space for the size moments is done by the determination of the disappearance
flux of droplets coupled to a size quadrature approximation. But, contrary to the initial EMSM
where the evolution of velocity moments is straightforward due to the fact that all droplet size have
the same velocity, the newly introduced size-velocity moments also evolve in size space using both
size and velocity reconstructions. The evolution in velocity space due to drag force is done using
a CQMOM quadrature [40] coupled to EMSM, which permits to account for the coupled size and
velocity evolution, by integrating ordinary differential equations. Using a quadrature approach for the
evolution in phase space is important, because complex laws for drag force, evaporation and heating
can be easily accounted for, even if we consider simple laws in this work [15].

• A new numerical kinetic scheme is introduced for the convection in physical space, which is based on
the flux splitting technique, and preserves the moment space. Compared to the transport scheme in
Beck et al. [18] and Dems et al. [16], for which each moment is transported using its proper moment-
average velocity, our scheme directly relies on the kinetic representation of the NDF, which allows to
keep a accurate description of the fluxes as well as the realizability of the moments.

This new moment method is then assessed in 0D for both evaporating and non-evaporating cases and is
shown to capture size-conditioned dynamics even in the configuration of oscillating gaseous flow field and in
the presence of a large spectrum of sizes. This transport scheme is evaluated in 1D cases, its order studied
and its robustness demonstrated. We then switch to two extreme non-evaporating cases in order to isolate
the size-velocity correlations due to drag force and convection, the evaporation part having already been
characterized in the framework of EMSM studies [15, 26]. We study a crossflow case and a Taylor-Green case,
with steady gaseous velocity fields, where a strong size-conditioned dynamics leads to moment vectors very
close to the frontier of the moment space. Comparisons with either analytical solutions or other solvers such
as Lagrangian, Multi-fluid or EMSM show the potential and the accuracy of the method. Eventually, in order
to provide a test case closer to more realistic unsteady configurations, we investigate a weakly turbulent free
jet with a very large size spectrum in a non-evaporating configuration. An excellent agreement is obtained
compared to Lagrangian and Multifluid with 10 sections, thus completing the validation of the method. We
finally provide comments on the memory storage and computational cost of the method as well as on its
application to industrial configurations and potential extensions.

1This study is mandatory for size-velocity correlations, but can also be seen as an autonomous topic, as it can be useful for
other applications that uses EM.
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The paper is organized as follows. First, the EMSM is described, with its advantages and drawbacks in
Section 2. Then improvements of the EM are presented in Section 3, in order to be able to reproduce the
whole moment space with a controlled error. The CSVM which takes into account size-velocity correlations
is introduced in Section 4. Concerning the evolution in phase space and the transport in physical space, the
drag/evaporation strategy and the flux splitting kinetic scheme are detailed in section 5 and evaluated in
0D/1D cases in section 6 . Finally, an evaluation in 2D extreme cases of crossflow and Taylor-Green vortices
is investigated in section 7 as well as the final free jet configuration.

2. The Eulerian Multi-Size Moment model

2.1. The moment problem

We consider dilute sprays at high Knudsen numbers, so that there is no effect of the disperse phase
on the gas phase and collisions can be considered as negligible. The phase space of the NDF is limited to
droplet surface S and velocity v in one dimension, leading to the following PBE:

∂f

∂t
+ v

∂f

∂x
+

∂

∂v

(
v − ug

τp
f

)
+

∂RSf

∂S
= 0, (1)

where RS = dS/dt is the evaporation rate which is constant in the case of the d2 evaporation law and τp is
the relaxation time of the droplets for Stokes’ drag. Using non-dimensional variable S∗ = S/Smax, t∗ = t/τg,
v∗ = v/vref where Smax is the maximum droplet surface, τg and vref a reference time scale and velocity of
the gaseous flow, we get the non-dimensional PBE:

∂f

∂t∗
+ v∗

∂f

∂x∗
+

∂

∂v∗

(
v∗ − u∗

g

St
f

)
+

∂R∗
Sf

∂S∗
= 0, (2)

where St = τp/τg is the Stokes number. For sake of clarity, star exponent will be dropped for non-dimensional
variables. To solve Eq. 2, we look at the moments of the NDF. In one dimension, and considering the compact
support [0, 1] for the size space (which corresponds to [0, Smax] in dimensional quantities), these are defined
by:

M l
i (t, x) =

∫ ∞

−∞

∫ 1

0

Slvif(t, x, v, S)dvdS. (3)

The equation for M l
i (t, x)2 is then:

∂M l
i

∂t
+

∂M l
i+1

∂x
= −

∫ 1

0

i
Sl

St

(
vi − ugv

i−1
)
fdSdv

+RSM l−1
i + RS

[∫ ∞

−∞

viSlf(t, x, v, S)dv

]S=1

S=0

. (4)

In Eq. 4, the main issues are the modeling of the second left hand side term (convection) and the third
right hand side term (evaporation). The former is due to the fact that with a finite set of moments, the flux
for the highest order moment equation is unclosed. The latter requires the knowledge of point-wise values
of the NDF at the edge of the size phase space. In the following, one section is considered, but the whole
method can be easily adapted to a Multifluid approach by means of a change of variables [15].

2Exponent l stands for the order in size of the moment, and not for a power.

5



2.2. The moment space

Even if the moment space where lives the size moment vector M0 = (M0
0 , M1

0 , . . . , MN
0 ) is convex, it has a

complex geometry in the semi-open space RN+1
+ [15]. The normalized moment vector (M1

0 /M0
0 , . . . , MN

0 /M0
0 )

lives in a closed convex space of [0, 1]N , but still has a complex geometry. A simpler space can be determined
by using the canonical moments [25]. The first four canonical moments are:

p0 = 1, (5)

p1 =
M1

0

M0
0

, (6)

p2 =
M0

0M2
0 − (M1

0 )
2

M1
0 (M0

0 − M1
0 )

, (7)

p3 =
(M0

0 − M1
0 )(M1

0 M3
0 − (M2

0 )
2
)

(M0
0 M2

0 − (M1
0 )2)(M1

0 − M2
0 )

. (8)

So the actual moments reads:

M1
0 = M0

0 p1, (9)

M2
0 = M0

0 p1 [(1 − p1)p2 + p1] , (10)

M3
0 = M0

0 p1

[
(1 − p1)(1 − p2)p2p3 + [(1 − p1)p2 + p1]

2
]
. (11)

The canonical moments live in the full cube [0, 1]N , leading to simpler analysis, especially in terms of
realizability of the moment vector. The frontier of the moment space is defined by the values 0 or 1 for
one of the canonical moment pk. This frontier is characterized by the existence of a unique solution of the
Hausdorff moment probem: a NDF which is a sum of weighted Dirac δ-functions f(S) =

∑2
k=1 wkδ(S−Sk).

In the interior of the moment space where canonical moments are neither equal to 0 nor 1, there is an
infinity of NDF, the moments of which are a finite moment vector.

The EMSM tackles the problem of evaporation terms by a reconstruction of the NDF. In this work we will
considered 4 moments in size and one size interval, but the method can be extended to more moments and
more size intervals. Considering that the velocity does not depend on the size, the NDF can be decomposed
in the following way:

f(t, x, v, S) = n(t, x, S)δ(v − U(t, x)), (12)

where U = M0
1/M0

0 . The EMSM reconstructs n(t, x, S) using EM [24]. The Shannon Entropy is defined by:

H(f) = −
∫ 1

0

n(t, x, S) ln n(t, x, S)dS. (13)

Associated with N moments constraints, the maximization of H(f) imposes the unique following recon-
struction (for convenience x and t dependences are dropped, as they do not influence the reconstruction):

n(S) = exp


−

N∑

j=0

ζjS
j


 , (14)

where ζj are Lagrange multipliers. The interested reader will refer to [24] and [9] and references therein for
more information. The following convex potential is then minimized:

∆ =

∫ 1

0


exp


−

N∑

j=0

ζjS
j


− 1


dS +

N∑

j=0

ζjM
j
0 . (15)

Indeed, its stationary points are given by:

∂∆

∂ζi
= 0 ⇒

∫ Smax

Smin

Si exp


−

N∑

j=0

ζjS
j


 dS = M i

0. (16)
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Numerically, the non-linear system of Eq. 16 is solved using a Newton method. Starting form initial choices
ζ = (ζ0, . . . , ζN )T , updated ζT is defined from:

ζ+ = ζ −
M0 − 〈M〉ζ

H
, (17)

where 〈M〉ζ = (
〈
m0
〉

ζ
, . . . ,

〈
mN

〉
ζ
)T is the vector of approximated moments:

〈
mi
〉

=

∫ 1

0

Si exp


−

N∑

j=0

ζjS
j


 dS, (18)

and H is the Hessian matrix defined by Hi,j = ∂∆
∂ζi∂ζj

=
〈
mi+j

〉
ζ

for i, j = 0, .., N . Moments
〈
mi
〉

for

i = 0, .., N are evaluated by a Gauss-Legendre quadrature method evaluates the integrals. In [15], it
has been proven that this integration method with 24 quadrature points is sufficient to reach the subset
[0.01, 0.99]3 of the canonical moment space and that it is sufficient to evaluate the disappearance flux of
droplet at zero size with an error less than 1%. Higher order moments that are needed for the Hessian
matrix are computed using an integration by parts [41]:

〈
mN+k

〉
=

1

NζN

(
(k + 1)

〈
mk
〉
−

N−1∑

l=1

lζl

〈
ml+k

〉
+ Wk(1, ζ) − Wk(0, ζ)

)
, (19)

where Wk(a, ζ) = ak+1 exp(−∑N
j=0 ζja

j).
Starting from the reconstructed NDF, the evaluation of the evaporation process is made in two steps.

First, the disappearance flux at zero size is evaluated, and corresponds to the part of the moment that will
disappear during a time step ∆t:

F l
i =

∫ RS∆t

0

U iSlnl(S)dS. (20)

The moments are then corrected:
M̃ l

i = M l
i − F l

i . (21)

The evolution in phase space is determined by a quadrature approach: given the quadrature on the corrected
moments,

M̃ l
i (t) = U i

2∑

k=1

wkSk(t)l, (22)

the evolution of abscissas is computed thanks to the evaporation law:

dSk

dt
= RS ⇒ Sk(t + ∆t) = Sk(t) + RS∆t. (23)

so that:

M̃ l
i (t + ∆t) = U i

2∑

k=1

wk (Sk(t + ∆t))
l
, (24)

As stated in [15], this method can account for the d2-law as well as any other evaporation law (if RS is
evaluated at Sk) with a good accuracy and a rigorous preservation of the moment space.

For the transport in physical space, Kah et al. [26] developed a second order in time and space Finite
Volume scheme based on a spatial reconstruction of the canonical moments, which preserves the moment
space. The authors evaluated the full strategy on complex 2D configurations and have proven its ability to
predict such evaporating polydisperse flows, as well as its efficiency compared to the Multifluid approach.

7



3. Numerical issues with Entropy Maximization

In [15], the EM is used to quantify the disappearance flux of droplets. Such an algorithm was designed in
order to mainly treat smooth distributions where the EM reconstruction associated with a Gauss-Legendre
quadrature is able to reach a controlled precision of typically 10−6 on the evaporative flux, with the limit
of a reasonable number of Newton steps. Even if some treatment was proposed in [15] at the frontier of
the moment space, the method could only achieve a precision of 10−2 on the moments in the favorable
context of size-velocity decoupling which was coherent with the expected level of modeling of that paper.
Unfortunately, in the present context, where we reach a much higher accuracy in terms of size-velocity
coupling and treatment of polydispersion, the frontier of the moment space will potentially have a much
more important role in some zones of the flow and we need to upgrade the EM procedure in both precision
and algorithmic efficiency in order to cope with the increase of modeling level.

Three new ingredients are introduced in the present section:

• In order to drastically increase the computational efficiency of the EM subroutine, a tabulated initial
guess for the Newton solver has been implemented and we provide the key features of such an approach
which is used in most of the interior of the moment space, that is in the cube [0.1, 0.9]3 in terms of
the canonical moments (Sec. 3.1),

• An adaptive support for the evaluation of the integrals in the EM subroutine has been implemented,
thus leading to an important gain in accuracy (Sec. 3.2.1),

• An adaptive reduction of the number of parameters required for the description of the moments vectors
very close to the frontier of the moment space is implemented. It allows to reduce the computational
time and to increase the precision compared to the initial algorithm in [15] (Sec. 3.2.2).

3.1. Tabulation

To reduce the number of iterations needed for the Newton solver to converge, the tabulation of the
parameters (ζk) is considered. The evolution of the parameters against the canonical moments is first
investigated. In Fig. 2, ζ1 is plotted against p2 and p3 for p1 = 0.1, 0.5, 0.9. Notice that p2 and p3 vary
between 0.1 and 0.9. In fact, the parameters evolve smoothly in the interior of the moment space. The
tabulation will then give accurate results. The question is now to evaluate the error for a direct tabulation
of the parameters.

Two interpolation methods are compared for the tabulation: a linear reconstruction and a third order
polynomial reconstruction. The tabulation step is ∆p = 0.01 for each canonical moment, and the tabulation
is done in the cube [0.1, 0.9]3.

On Tab. 1, the error made on the moments with the two methods are compared for different sets of
canonical moments in the interior of the moment space. Each set is chosen to be as far as possible from
tabulated values, to exhibit the maximal error. With a third order polynomial the error can be close to
10−4.

p1 p2 p3 Linear 3rd order
0.105 0.105 0.105 3.8e-3 7.0e-5
0.505 0.505 0.505 3.3e-4 2.9e-7
0.895 0.895 0.895 3.7e-3 1.0e-4
0.505 0.105 0.105 4.3e-3 4.8e-5
0.505 0.895 0.895 2.6e-3 7.3e-5

Table 1: Error on moments using a linear or a third order interpolation method for five sets of canonical moments.

If a higher precision is required, the tabulation is used to define an initial guess for the Newton iterative
solver, which is supposed to reduce the computational time needed to reach a given accuracy of 10−6.
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Figure 2: Entropy maximization parameters: ζ1 against canonical moments p2 and p3, with p1 = 0.1 (left), p1 = 0.5 (center),
p1 = 0.9 (right).

Table 2 shows the numbers of iterations needed by the Newton solver for five moments sets depending on
the initial guess: a constant number density distribution, the nearest point in the tabulation, a linear or a
3rd order interpolation. It can be seen that the tabulation of the initial guess lowers significantly the number
of Newton iterations needed, the fastest method being the more accurate third order reconstruction for the
initial guess3.

p1 p2 p3 Constant Nearest Linear 3rd order
0.105 0.105 0.105 12 4 2 1
0.505 0.505 0.505 4 2 1 0
0.895 0.895 0.895 17 3 2 1
0.505 0.105 0.105 8 3 2 1
0.505 0.895 0.895 10 3 2 1

Table 2: Number of iterations of the Newton solver using a constant initial guess, or a tabulated initial guess with nearest
point, with linear or third order interpolation method for five set of canonical moments.

3.2. Dealing with the frontier of the moment space

As stated in the previous section, the parameters ζ evolve slowly with the canonical moments in the
subspace [0.1, 0.9]3. But close to the frontier, where at least one canonical moment is in [0.0, 0.1]∪ [0.9, 1.0],
the variation of ζ for a small variation of the canonical moments is very important. The tabulation technique
cannot be used in this part of the moment space, where the convex minimization problem becomes ill-
conditioned. However the initial guess for the Newton solver is chosen to be the closest point in [0.1, 0.9]3.

At the frontier of the moment space, the distribution is a sum of Dirac δ-functions. For a four-moments
reconstruction the frontier is defined as follow (see [25, 15] for more details):

• if p1 = 0 or p1 = 1: the frontier corresponds to two points in the normalized moment space. The NDF
is a δ-function at S = 0 (if p1 = 0) or S = 1 (if p1 = 1).

3The interpolation step is negligible in terms of computational time, comparing to one Newton step.
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• if p2 = 0 or p2 = 1: the frontier corresponds to two submanifolds of dimension one in the normalized
moment space parametrized by p1 for example and connecting the previous two points. The NDF is
a δ-function at S = p1 (if p2 = 0) or two δ-functions with different weights at S = 0 and S = 1 (if
p2 = 1).

• if p3 = 0 or p3 = 1: the frontier corresponds to two submanifolds of dimension two in the normalized
moment space parametrized by (p1, p2) for example and connecting the previous two curves. The
NDF is a sum of two δ-functions with different weights and surfaces, one of them being located at the
boundary of the [0, 1] interval.

It is clear that the process is recursive and can be extended to higher order moments. In the present
contribution we will work in the interior of the moment set, that is, we will never reach the frontier of the
moment space with its various levels of degeneracy. However, even if we are working on the open moment
space, the EM should possibly used as close as we want from the frontier of the moment space. Now being
close to this frontier imposes two constraints on the Newton solver used for EM: the NDF approached a
singular function constituted of a sum of Dirac δ-functions, and the Hessian matrix becomes ill-conditioned.
We thus introduce two strategies to handle the neighborhood of the frontier of the moment space: an
adaptive support for the integrals and a way to choose the optimal number of EM parameters.

3.2.1. Adaptive support for the integrals

The reconstruction can exhibit very high variations for limiting cases near the frontier of the moment
space. In such cases, the classical Gauss-Legendre quadrature may use abscissas where the function is
close to zero, limiting the precision of the method. To overcome this problem, an adaptive support for
the gaussian quadrature is used. This support is set for a given threshold ǫ0 in order to locate zones with
negligible number density, by an analysis of the reconstructed NDF n(S)4:

n(S) = exp




N∑

j=0

ζjS
j


 = ǫ0 ⇐⇒

N∑

j=0

ζjS
j − ln ǫ0 = 0. (25)

Finding the roots of the polynomial in Eq. (25) allows to define the integration intervals. As we considered
four size moments in this work, the integration support will be made of one or two intervals (as the polynomial
will have 3 real roots at most). In practice ǫ0 is set to the expected tolerance on the integrals evaluation (to
reach an accuracy of ǫ on the integrals, ǫ0 is set to ǫ).

The ability of the adaptive support to compute the integral of singular functions is assessed on the
computation of the integral of exp(−KS) for which the analytical solution is easily found. In Fig. 3, the
relative error made by both fixed and adaptive support Gauss-Legendre integration methods are shown. For
n(S) = exp(−10S), the two methods exhibit the same results, as the function extrema are larger than the
threshold ǫ0 = 5.10−6 (n(S = 0) = 1 and n(S = 1) = exp(−10) = 4.5.10−5), and the support stays [0, 1] for
the adaptive method. For n(S) = exp(−102S), the adaptive support is activated, as the extremum values
are 1 at S = 0 and n(S = 1) = exp(−102) = 3.7.10−44. With ǫ0 = 5.10−6, the adapted support is now
[0, 0.398] and the accuracy of the adaptive method is considerably higher, even if the fixed support method
is able to compute this integrals with high but reasonable number of nodes. For n(S) = exp(−104S), the
fixed support method is not able to compute this integral, even with 40 nodes, where the adaptive method
uses the support [0, 4.44.10−3] and computes the integral with an error less than 10−6 with only 15 nodes,
and confirms the importance and the accuracy of the integration method.

3.2.2. Adaptive reconstruction at the frontier of the moment space

In the interior of the moment space, in a small neighborhood of the frontier, the Newton solver experiences
a very slow convergence due to an ill-conditioned Hessian matrix. This difficulty is mainly encountered when

4This NDF can be the final reconstruction or an intermediate one in the Newton iterations, as the Hessian matrix needs to
be reevaluated at each iteration with the new parameters.
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Figure 3: Adaptive integrals: (left) Function f(S) = exp(−KS) for K = 101 (full line), K = 102 (dashed line) and K = 104

(dot-dashed line) and (right) relative error on the integrals with fixed (circle) and adaptive (square) supports.

we are close to a zone of the frontier where the uniquely defined NDF involves a lower number of variables.
For example for canonical moments p1 ∈ (0, 1) and p2 = 0 on the frontier, only 3 parameters are necessary
to reconstruct the NDF, which ends to be the lower order representation. So the idea is that there is a
transition zone in which we go from a situation where 4 parameters are needed (the interior of the moment
space), to a situation where less parameters are needed (the frontier). We then propose to determine where
to use less than four moments is effective in the sense that we reach the same level of accuracy without
leading to unstable numerical methods. The introduced error has to be controlled, as only the frontier is
uniquely determined by less moments. The main interest of such a strategy is that the computational cost
and the convergence rate of the Newton solver may be notably reduced. Furthermore, the computational
time of the EM being mainly dominated by cells where the NDF is close to the frontier of the moment space,
one can adapt the accuracy on the frontier to control the computational time.

One can notice that each moment linearly depends on the canonical moment of the same order if lower
order moments are fixed. So, with respect to pk, and M0

0 , . . . , Mk−1
0 being fixed, the moment mk is bounded

between Mk
0

min
= Mk

0 |pk=0 and Mk
0

max
= Mk

0 |pk=1. The distance δMk
0 between minimum and maximum

values normalized by the zeroth moment is then defined as:

δMk
0 =

Mk
0 |pk=1 − Mk

0 |pk=0

M0
0

. (26)

So if M3
0 is considered (here the highest order moment), δM3

0 is:

δM3
0 = p1p2(1 − p1)(1 − p2). (27)

When δM3
0 is close to 0, the moment M3

0 only weakly depends on p3, i.e. the moment M3
0 can be accurately

reproduced with the first three moments only. The subset where it is sufficient to control the first three
moments to achieve an accuracy ǫ3 = 10−3 on M3

0 is represented in Fig. 4. When the moment vector is
closer to the frontier of the moment space than this limit, the number of controlled moments is reduced
from 4 to 35.

The same procedure can be applied to reduce from 3 to 2 moments using the normalized distance for
M2

0 :
δM2

0 = p1(1 − p1), (28)

5Let us underline that this amount to reducing the dimensionality of the interior of the moment space in a neighborhood
of its frontier, with a given tolerance on higher order moments, in such a way that the highest order moment(s) becomes a
function of the lower order moments through the EM reconstruction of the lower order moments. Such an approximation of the
higher order moments, considering the ”thickness” of the moment space in such a neighborhood, provides an accurate value.
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The black line is the limit of the realizable moment space.

so that if δM2
0 is close to zero the number of controlled moments can be reduced from 3 to 2. This condition

being more restrictive than the one on δM3
0 , fulfilling it will be sufficient to reduce from 4 to 2 the number of

controlled moments. Once again, such a process can be extended to high order moments in a straightforward
manner.

3.3. Conclusions on the entropy maximization

The adaptive support for integrals enables an accurate computation of the integrals of almost singular
NDFs. With the knowledge of the canonical moments, we are now able to choose an optimal initial guess
for the Newton solver by means of a tabulation. The number of moments used for the reconstruction can
be adapted where less moments are needed. This adaptivity is limited to a subspace close to the frontier,
and we are able to define accurately the error made by this reduction of the number of parameters.

Thus, the EM is now able to reproduce a large subset of the moment space, and is ready for highly
segregative cases such as the crossflow (Fig. 1), where the drag force separates the droplets into a quasi-
monodisperse NDF, which corresponds to moment vectors living close to the frontier of the moment space.
Let us underline that turbulence will naturally take the distribution away from the frontier of the moment
space, as studied in [42].

4. Accounting for size-velocity correlation: the CSVM method

4.1. Description of the problem

The initial EMSM considers that all droplet sizes have the same velocity. In moderate to high Stokes
flows, the velocity of each size would be different, as exhibited in Fig. 1 in the crossflow configuration, leading
to the following expression for the NDF:

f(t, x, v, S) = n(t, x, S)δ(v − U(t, x, S)), (29)

where U depends on position and time, but also on droplet surface. To describe this velocity distribution,
a reconstruction strategy is envisioned. The starting point is the same as the initial EMSM for the recon-
struction of the size distribution: with a certain number of moments, we need to have an accurate enough
description of the NDF. As we want to build size-velocity informations, size-velocity moments will be used
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so that the CSVM will use size moments to determine the size distribution n(S) and size-velocity moments
to determine U(S). As the determination of n(S) does not need U(S), since size moments do not depend
on U(S), this first step of the EMSM is unchanged. However the velocity reconstruction depends on the
size reconstruction. Three constraints are imposed for our reconstruction strategy:

• Constraint 1: droplets with a null size, i.e. a null relaxation time, follow the gas,

• Constraint 2: the presumed shape for U(S) must not be monotonic, to reproduce relative velocity
inversion that may occur in turbulent flow (due to the oscillating nature of the gas velocity),

• Constraint 3: the reconstruction strategy has to work in a Multifluid framework. It means that the
method have to work with one size interval, but also with several size intervals coupled by droplet
fluxes due to evaporation.

4.2. Strategy for the velocity reconstruction

Hereafter, the reconstruction strategy for one dimension is detailed. The application for other directions
is straightforward, as no second order moments in velocity will be used (i ≤ 1):

M l
i =

∫ 1

0

SlU(S)in(S)dS. (30)

To evaluate the velocity of each size, a generic shape for U(t, x, S) need to be presumed. Following
constraint 1:

U(t, x, S = 0) = ug. (31)

To be able to represent all possible moment vectors, it is necessary that the reconstruction can describe the
full velocity moment space. The following power reconstruction is suggested:

U(t, x, S) = ug +

Nv∑

k=1

AkSαk , (32)

where Nv is the number of size-velocity moments, Ak are the parameters used to control the size-velocity
moments, and αk are user-determined with α1 < α2 < · · · < αNv . Considering size-velocity moments
expressions, one can write:

M l
1 = M l

0ug +

Nv∑

k=1

Ak

∫ 1

0

Sαk+lnl(S)dS, (33)

which gives the linear system for the parameter vector A = (A1, . . . , ANv)T :

PA = N , (34)

where:

Pkl =

∫ 1

0

Sαk+lnl(S)dS,

Nl = M l
1 − M l

0ug.

Considering Eq. (34), the only configuration for which this reconstruction will not be possible for a given
moment vector corresponds to the zero determinant for matrix P . This condition is reached for a Dirac
δ-function for the size distribution n(S). As the EM does not generate this type of distribution, our
reconstruction strategy can reproduce any moment vector given by our method. Due to constraint 2, Nv

must be greater or equal than to 2, to allow a change of sign for the derivative. Finally, constraint 3 is already
satisfied, as the proposed strategy does not depend on the size interval, but directly on the moments. So it
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can be applied on any section, always keeping an information on the gas velocity, even for big droplets (it
does not mean that the minimum size of each interval has the same velocity as the gas phase).

In [14], an exponential reconstruction is used, based on the analytical solution of the relaxation of
droplets at constant gas velocity. Although this is a physical and relatively smooth reconstruction, with
good asymptotic predictions, this shape is not able to reproduce all the moment space. Basically, in the case
of an oscillating gas velocity, small droplets react fastly to the gas velocity variations, whereas big droplets
have a bigger relaxation time. This may lead to different dynamics in the size interval: the sign of the
relative velocity between the gas and the droplets may change in the size interval. This type of dynamics
cannot be captured by monotonic functions with a zero size constraint, such as in [14] or [17].

5. Numerical methods for the moment evolution

5.1. Evaporation and drag force

We present a new strategy for the evolution of the NDF through evaporation and drag force. The
method described in [15] is based on two main steps: the evaluation of the disappearance flux of droplet,
and the evolution in size space. The strategy is here extended to the evolution in velocity space through
drag force. First the derivation is shown for the d2 law and Stokes drag (RS = cst and St(S) = KdS). The
size reconstruction of the CSVM enables the computation of the disappearance flux of droplets F l

i for each
moment and for one time step ∆t:

F l
i =

∫ −RS∆t

0

U(S)iSlnl(S)dS, (35)

corresponding to the part of the distribution which reaches the zero size during one time step. The moment
are then corrected:

M̃ l
i = M l

i − F l
i . (36)

The evolution in phase space is determined by a CQMOM-like quadrature approach [40] :

M̃ l
i =

2∑

k=1

wkSl
kU i

k, (37)

dUk

dt
= − 1

St
(Uk − ug) = − 1

KdSk
(Uk − ug) , (38)

dSk

dt
= RS . (39)

The size and velocity after one time step is:

Sk(t + ∆t) = Sk(t) + RS∆t, (40)

Uk(t + ∆t) = (Uk(t) − ug(t))

(
Sk(t) + RS∆t

Sk(t)

) −1

KdRS + ug(t). (41)

and the updated moments are:

M l
i (t + ∆t) =

2∑

k=1

wk(t)Sk(t + ∆t)lUk(t + ∆t)i. (42)

To account for more complex law, the strategy is slightly modified, the two differences lying on the
flux determination and the ODE system that is needed to be solved. Considering RS(S) and St(S), the
evaluation of the disappearance flux of droplets is now:

F l
i =

∫ Slim(t)

0

U(S)iSlnl(S)dS, (43)
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where Slim is obtained by solving the non-linear system backward in time:




dSlim

dt
= RS(Slim),

Slim(t + ∆t) = 0,
(44)

which means that Slim is the biggest size that reaches the zero size during one timestep. Using Eq. (43),
the corrected moments are computed and the same quadrature is performed, as with simple laws. Then,
the obtained system of ODE is solved:





dUk

dt
= − 1

St(S)
(Uk − ug) ,

dSk

dt
= RS(Sk),

(45)

Using an ODE solver, the updated moments are computed in the same manner as with simple laws. Fur-
thermore, this strategy works in a Multifluid approach, since fluxes can be calculated for each section in a
finite volume manner.

5.2. Flux splitting kinetic scheme

The physical space evolution is surely the most important part of the size-velocity correlation. As seen
in previous section, the constant velocity assumption, even if it leads to higher errors, does not lead to
a completely different moment evolution in the velocity phase space. But in physical space, as shown by
Fig. 1, the dynamics will be totally different. The moment equation for the transport in physical space in
one dimension is:

∂M
∂t

+
∂F(M)

∂x
= 0, (46)

where M = (M0
0 , M1

0 , M2
0 , M3

0 , M0
1 , M1

1 )T is the moment vector and F(M) = (M0
1 , M1

1 , M2
1 , M3

1 , M0
2 , M1

2 )T

is the flux vector. For a constant velocity distribution, the fluxes are linear functions of the moments. In
this case, a first order finite-volume scheme preserves the moment space, as it is positive definite and the
scheme reconstruction generates realizable moments. The second-order scheme that preserves the moment
space is much more difficult to design, and this issue raised in the literature [43] had been finally tackled in
[26]. In the case of a continuous non-constant velocity, fluxes are now a complex function of the moments,
and designing a specific scheme becomes necessary.

The moment equation is related to the following one dimensional kinetic equation:

∂f

∂t
+ v

∂f

∂x
= 0, (47)

where f(t, x, v, S) = n(t, x, S)δ(v − U(t, x, S)). Integrating over velocities but not over sizes, the following
infinite system for S = [0, 1] is found:

∂n(t, x, S)

∂t
+

∂n(t, x, S)U(t, x, S)

∂x
= 0,

∂n(t, x, S)U(t, x, S)

∂t
+

∂n(t, x, S)U(t, x, S)2

∂x
= 0. (48)

To solve this system, a first order upwind finite volume scheme is used. Defining the cell values at each time
step 6:

nn
j (S) =

1

∆x

∫ xj+1/2

xj−1/2

n(∆tn, x, S)dx (49)

Un
j (S) =

1

∆x

∫ xj+1/2

xj−1/2

U(∆tn, x, S)dx (50)

6Here exponent n qualifies the time step, and not a variable at the power n.
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The moment update is:

nn+1
j = nn

j − ∆t

∆x

(
Fj+1/2 − Fj−1/2

)
, (51)

nn+1
j Un+1

j = nn
j Un

j − ∆t

∆x

(
Gj+1/2 − Gj−1/2

)
, (52)

where:

Fj+1/2 = min(0, Un
j+1)n

n
j+1 + max(0, Un

j )nn
j , (53)

Gj+1/2 = min(0, Un
j+1)n

n
j+1U

n
j+1 + max(0, Un

j )nn
j Un

j . (54)

By integrating over size, the following scheme is obtained:

Mn+1
j = Mn

j − ∆t

∆x

(
Fj+1/2 −Fj−1/2

)
, (55)

where the fluxes are splitted into positive and negative components:

Fj+1/2 =

∫ 1

0

S
(
min(0, Un

j+1)nj+1Un
j+1 + max(0, Un

j )njUn
j

)
dS = F−

j+1 + F+
j , (56)

where S = [1, S, S2, S3, 1, S]T and Un
j = [1, 1, 1, 1, Un

j , Un
j ]T . Using the size and velocity reconstructions,

fluxes in Eq. (56) can be computed for every moments using the adaptive integration method proposed for
the EM. To ensure the stability of the scheme, a CFL condition is imposed on the timestep which is also
based on the velocity reconstruction:

∆t < CFL
∆x

maxS(|U(S)|) . (57)

The two main interests of the resulting numerical scheme is that it reproduces the behavior at the kinetic
level and is proven realizable. The originality is that, comparing to classical kinetic schemes which have to
handle the dependence in size of the maximum velocity to integrate the fluxes exactly in time, the proposed
scheme totally disconnects the maximum velocity from size (by taking the maximum over the whole size
spectrum), and then allows an easy closure of the scheme. This scheme is first order in time and space only,
which will be not sufficient for real applications. A second order scheme is proposed in Appendix A, but is
not used here, as a first order scheme is sufficient to highlight the main features of size-velocity correlations.

6. Evaluation on simple 0D and 1D configurations

The CSVM is evaluated on simple 0D and 1D configurations. These test cases are set to assess the
accuracy of the reconstruction strategy as well as the ability of the moment evolution methods to capture
the main features of size-velocity correlations:

• The reconstruction strategy is validated, by evaluating the reconstruction error for both NDF and
velocity reconstructions (Sec. 6.1),

• The moment evolution algorithms in phase space (drag force and evaporation) are evaluated on 0D
cases with increasing complexity (Sec. 6.2),

• The convection scheme is finally investigated. Its ability to reproduce the impact of size-velocity
correlations is validated through two 1D segregative cases, whereas the robustness is assessed on a 1D
δ-shock-generating case (Sec. 6.3).
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Figure 5: Entropy Maximization: reconstructed NDF for one section and N = 0, . . . , 3 (left) and L1 reconstruction error against
the number of sections (right) for N = 0 (blue circles ), 1 (green squares), 2 (red diamonds) and 3 (magenta triangles).

6.1. Evaluation of the reconstruction strategy

6.1.1. NDF reconstruction

The quality of the NDF reconstruction was already assessed in [15]. The new information that we provide
concerns a accurate determination of the order of the method with respect to the number of controlled
moments, by varying the number of sections. Moreover, we emphasize on an important feature of the
size reconstruction: to adapt the precision of the method, one can either modify the number of controlled
moments in a section, or modify the number of sections. It leads that the resulting reconstruction is highly
adaptive, as it has two degree of freedom concerning the description of the NDF.

The initial NDF is a log-normal distribution on the compact support [0, 1]:

f0(S) =
1

Sσ
√

2π
exp

(
− (ln(S) − ln(µ))

2

σ2

)
(58)

with σ = 1 and µ = 0.81. In Fig. 5, the reconstructed NDF and the L1 error against the number of sections
are plotted, for different number of moments. The results show the increasing precision with the number of
moments, as well as with the number of sections. With 4 moments, the method is proven to be of fourth
order. We also demonstrate the direct link between the number of moments and the order of the method.
It also demonstrates that the user can reach the same accuracy either by increasing the number of sections
or by increasing the number of moments per section. In this work, we stay with one section, as our aim is
to evaluate the method which uses the minimal number of moments.

6.1.2. Velocity reconstruction

To evaluate the reconstruction, the first 0D analytical test consists in an initial size-velocity distribution
which evolves because of the drag force imposed by a constant gas velocity. The initial size and velocity
distributions are constant so that n(S, t) = 1 and U(S, t = 0) = U0. For each size, this case is solution of
the ODE:

dU(S, t)

dt
= −U(S, t) − ug

St(S)
, (59)

so:

U(S, t) = ug + (U0 − ug) exp

(
− t

St(S)

)
. (60)
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Figure 6: CSVM reconstruction error for the 0D test case at constant gas velocity for t = 1 against α1 and α2. For α2 < α1

the error is not plotted. For α1 = α2, the reconstruction is undefined.

The moment evolution against time is:

M l
1(t) =

∫ 1

0

SlU(S, t)n(S)dS =
ug

l + 1
+ (U0 − ug)

∫ 1

0

Sl exp

(
− t

St(S)

)
dS, (61)

M0
1 (t) = ug +

t

Kd
(U0 − ug)Γinc

(
−1,

t

Kd

)
, (62)

M1
1 (t) =

ug

2
+

t2

K2
d

(U0 − ug)Γinc

(
−2,

t

Kd

)
, (63)

where Γinc(a, z) =
∫∞

z
xa−1 exp(−x)dx is the upper incomplete gamma function and St(S) = KdS, which

corresponds to Stokes drag.
In Fig. 6, the influence of the power α1 and α2 on the absolute reconstruction error in L∞ norm is shown

for t = 1. Two optimal zones are exhibited, the first one with high powers nearly identical, and the second
one with one power close to 1 and the second one lower than 1. In practice, α1 = 0.5 and α2 = 1 will be
used. Results are plotted in Fig. 7 (left). For a two parameter reconstruction, it proves to be efficient except
for a constant velocity distribution, which artificially breaks the assumption U(S = 0) = ug.

The second analytical test case has a variable gas velocity ug = α cos(βt). It aims at representing the
velocity profile inside a vortex, and so the effect of a turbulent structure. The solution of Eq. (59) is then:

U(S, t) =
α (βSt(S) sin(βt) + cos(βt))

β2St(S)2 + 1
+

[
U0β2St(S)2 + (U0 − α)

]
exp

(
− t

St(S)

)

β2St(S)2 + 1
. (64)

Results are plotted in Fig. 7 (right). Again the reconstruction is satisfactory with only two moments and
so two parameters, and proves to be able to reproduce distributions with an inversion of the gas relative
velocity, which would be typical of turbulent flows with a wide spectrum of droplet sizes. Furthermore, as a
relative velocity inversion occurs, an exponential function would not be able to reproduce such a distribution.

So we are able to reconstruct the droplet number density as well as the velocity for each size. Now, we
need to predict the evolution of this NDF through evaporation, drag force and convection.

6.2. Moment evolution: 0D test cases

Two 0D test cases are used to evaluate the ability of the CSVM to account for both drag and evaporation.
For all cases, the initial liquid velocity distribution is constant and set to U(S) = 1. The initial size
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Figure 7: 0D analytical test case with constant (left) and sinusoidal (right) gas velocity: velocity distribution (solid lines) and
its reconstruction by CSVM (dashed lines).

distribution is a normal distribution n(S) = 1/(
√

2πσ) exp(−(S − µ)/2σ2) with σ = 0.4 and µ = 0.6. The
Stokes number at S = 1 is set to 1. Then the test cases are defined by two parameters: the gas velocity
as a function of time, ug(t), and the evaporation rate RS . The Lagrangian reference is computed using a
tracking of 106 particles randomly chosen to fullfill the normal distribution n(S). Eulerian quantities for
the reference solution are obtained by computing the moment of the Lagrangian particles.

The combined effect of drag force and evaporation is evaluated. Evaporation is the first motivation of
the EMSM, and its accuracy has already been demonstrated in [15]. The novelty of this work is the ability
to achieve a good accuracy on size-velocity moments. Here we consider RS = −1 and ug = 0.5 cos(10t).
The evolution of moments as a function of time for Lagrangian, CSVM and EMSM are plotted in Fig. 8.
For size moments, the results are the same for CSVM and EMSM, as the size reconstruction is the same.
For size-velocity moments, results are better for the CSVM. This result is confirmed by Fig. 9, on which the
error for size and size-velocity moments is plotted. For the CSVM, the error is under 3% where it reaches
10% without velocity reconstruction, and this with only one additional moment.

To investigate the ability of the method to capture a more complex dynamic, this test case will consider
no evaporation (RS = 0) and a variable gas velocity with three modes, plotted in Fig. 10:

ug(t) =





1

2
cos(4πt), t ≤ 1,

cos(πt), 1 < t ≤ 5,
1

4
cos(8πt), t > 5.

(65)

These three modes are expected to mimic what can be seen by particles going through several vortices
with different properties. In Fig. 11, the evolution of size-velocity moments against time for CSVM and
EMSM. The improvement of the velocity reconstruction is obvious, the error on M1

1 being undistinguished
with velocity reconstruction. These results are confirmed again by the error in Fig. 12, which stays under
2% with reconstruction and reaches more than 10% without.

Finally, the CSVM is able to capture the phase space evolution due to evaporation and drag force of a
dispersed phase, by using only one additional moment comparing to the EMSM, which cannot capture the
evolution of size-velocity moments.

6.3. 1D convection cases

The coupling between size-velocity correlations and convection can produce a high segregation with
respect to droplet sizes. In the subsequent test cases, three aspects of the CSVM are highlighted:
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Figure 8: Evolution of resolved moments: Lagrangian reference (solid line), CSVM (dashed line), and EMSM (dot-dashed line).
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Figure 9: Evolution of the maximal error on size (left) and size-velocity moment (right) vectors comparing to the Lagrangian
reference: CSVM (dashed line), and EMSM (dot-dashed line) for size moments (left) and size-velocity moments (right).
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Figure 10: Evolution of the gas velocity against time.

Figure 11: Evolution of resolved moments: Lagrangian reference (solid line), CSVM (dashed line), and EMSM (dot-dashed
line).

Figure 12: Evolution of the maximal error on size-velocity moments M0

1
and M1

1
comparing to the Lagrangian reference:

CSVM (dashed line), and EMSM (dot-dashed line).
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• The ability of the convection scheme to reproduce size-conditioned dynamics (without drag force), and
its order of accuracy (Sec. 6.3.1),

• The influence of the size reconstruction on the spatial convergence rate of the CSVM (Sec. 6.3.2),

• The accuracy and the robustness of the method when droplets trajectory crossings occur, leading to
the generation of δ-shocks in the monokinetic limit (Sec. 6.3.3).

6.3.1. Segregation due to convection

The first test case corresponds to a gaussian spatial distribution for total number density, whereas the
NDF is constant in size, and the velocity is linear in size:

n(t = 0, x, S) = exp

(
− (x − xc)

2

σ2

)
, (66)

U(t = 0, x, S) = Ug + (Umax − Ug)S. (67)

Here xc = 0.2, σ = 0.05, Ug = 0, Umax = 1. Such a test case is expected to produce a high segregation,
as each size has its proper trajectory. For each size, the solution consists in the linear advection of the
initial solution: n(t, x, S) = n(0, x−U(t = 0, x, S)t, S). Integrating over the whole size space, the analytical
solution for M0

0 at time t = 0.6 is:

M0
0 (x, t) =

σ
√

π

2t(U1 − Ug)

[
erf

(
U1t + xc − x

σ

)
− erf

(
Ugt + xc − x

σ

)]
. (68)

where U1 = U(S = 1). Results are plotted in Fig. 13. The total droplet number is spread by the velocity
distribution, and the agreement between analytical and CSVM solutions is satisfactory. The order of the
scheme is 1, and the method converges to the analytical solution.

6.3.2. Convergence in physical and size spaces

The previous test case is interesting to qualify the order of the method, but as it generates smooth
distributions that can be accurately captured by the CSVM, one may want to assess the accuracy of the
method when non-smooth NDF are generated. The test case now consists in a constant number density in
size and space n(x, S) = 1, but with a velocity distribution which has the following triangular hat distribution
in space:

U(x, S) =





0 if x < 0.2
S(x − 0.2)/0.2 if 0.2 ≤ x < 0.4
S(0.6 − x)/0.2 if 0.4 ≤ x < 0.6
0 if x ≥ 0.6

(69)

The initial solution in velocity and the analytical solution of number density for three sizes are plotted
in Fig. 14. This test case generates rectangular-hat-shaped distributions in size space, which are hardly
reproduced by any smooth reconstructions7. Here we investigate the sectional aspect of the proposed
method: the convergence rate is governed by the accuracy in both physical and size spaces.

In Fig. 15, the CSVM solutions with 1000 cells for 1 and 8 sections are compared to the analytical
solution, and the error against the number of sections for different number of sections is plotted. It can be
noticed that even if the size discretization is fine, the 1-section solution is not yet converged, whereas the
8-section solution reproduces the analytical solution accurately. This issue is confirmed by the convergence
rate against the number of cells, which reach first order (the limit imposed by the spatial scheme) with at
least 4 sections for a coarse discretization, and 8 sections for a fine one. A main outcome of this test case is
that the precision of the method is limited by the precision of each solver. Here, even using a fine resolution
for the physical space, the error is still high because the description of the size space is not sufficiently
accurate. Increasing the precision in size space permits to recover a satisfactory precision in physical space.
It clearly demonstrates the link between the kinetic description of the NDF, and the resulting moment
evolution.

7We recall that the EM builds the smoother distribution for a given moment set.
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Figure 13: 1D test case: initial total droplet number distribution (upper left), analytical solution at t = 0.6 (upper right, full
line), CSVM solution at t = 0.6 for 400 cells (upper right, dashed line), absolute error against cell number (down).
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Figure 14: Triangular hat: initial velocity (left) and final number density at t = 0.1 (right) for droplet sizes S = 0.1 (full black),
S = 0.5 (dashed blue) and S = 1.0 (dot-dashed red)
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Figure 15: Triangular hat: (left) analytical solutions at t = 0.1 (full black), CSVM results with 1 (dashed blue ) and 8
(dot-dashed red) sections, (right) L1 error against the number of cells for 1, 2, 4 and 8 sections

6.3.3. Ability to capture δ-shocks

Even if the CSVM is able to capture the velocity associated with each size, it cannot capture the
trajectory crossing for each size. Because the underlying semi-kinetic system is weakly hyperbolic, this will
generate δ-shocks8. To evaluate the ability of the method to capture accurately δ-shock for each size, a 1D
test case which is motivated by the Taylor-Green vortices is investigated. This configuration was further
analyzed in [44, 45].

In a 1D domain [−π, π], a steady gas velocity field is set with ug = − sin(x). Droplets are distributed
uniformly at t = 0 with a null velocity and a constant droplet number density in size in the interval [0, 20Stc]
where Stc = 1/8π. In this test case all trajectories meet at x = 0, generating a central δ-shock, which is fed
by all sizes progressively.

In Fig. 16 (left and center), droplet number densities are plotted at different times. It confirms the ability
of the scheme to capture δ-shocks accurately. In Fig. 16 (right), the comparison of the Multifluid with 1000
sections and the CSVM confirms the ability of the method to capture size-conditionned dynamics, even in
the case of δ-shocks.
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Figure 16: δ-shock generation: droplet number density zoomed on the initial solution (left) and at full scale (center) at time
t = 0 (black line), t = 0.5 (red line with diamonds), t = 1.0 (green line with squares) and t = 5.0 (blue line with circles).
Droplet number density at time t = 1.0 for CSVM (dashed red line) and Multifluid with 1000 sections (full black line) (right).

8In the limit of infinite Knudsen number, these δ-shocks are unphysical. This issue has been tackled in [2] using high order
moments in velocity, in the context of EMSM. The same approach can be envisaged in the context of the CSVM, but is out of
the scope of this paper.
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7. Application to complex cases

Three 2D complex cases are investigated: the crossflow, Taylor-Green vortices and a weakly turbulent
free jet. The first one consists in the injection of particles in the normal direction of a constant gas flow,
which leads to a high size segregation and exhibits a steady solution. The second one consists in four
contra-rotating vortices in a periodic domain. This case also leads to a high size segregation, but is more
complicated as the gas velocity is not uniform. Those two test cases are set to evaluate the ability of the
method to capture a limiting case, i.e. when all the moment sets in the domain tend to the frontier of
the moment space. In practical applications, the NDF tends to smooth size distributions because of the
turbulent mixing for example (see [42] where polydispersion is exactly generated from a monodisperse spray
through evaporation and turbulent mixing). The last test case is closer to pratical applications. it consists
in the injection of particles into a weakly turbulent free jet. As our analysis will be focused on the dynamics
of a polydisperse cloud of droplets, these test cases are non-evaporating.

7.1. Crossflow

The crossflow generates monodisperse distributions due to drag force size-conditioned segregation. As
monodisperse distributions are at the frontier of the moment space, it is an interesting case to confirm the
ability of the EM to capture such distributions. Moreover considering that every size has its proper velocity
and trajectory, it is also a good case for evaluating the transport scheme.

The size of the computational domain is 2 in x direction and 1 in y direction. The injection is made
between XL = 0.1 and XR = 0.3, at a constant velocity V0 = 1 and U0 = 0, with a constant number
distribution n(t, x, S) = 1. The gas flow is uniform with Ug = 1 and Vg = 0 and the Stokes number of the
droplets is St = KdS with Kd = 1. The semi-analytical solution is described in Appendix B.

In Fig. 17, the droplet number density is shown for the Multifluid approach with 10 and 40 sections, and
the CSVM with 4 moments in size and 2 moments in size-velocity. The Multifluid approach considers only
one Stokes number for each section, so each section will have only one dynamics, even if the section covers
a wide spectrum of Stokes numbers. The effect of such a size discretization is strong with 10 sections (30
moments, 10 in size, 2×10 in velocity), with 10 distinct trajectories. This effect becomes less pronounced with
40 sections (120 moments). With the CSVM, as the whole spectrum of Stokes number in the distribution is
considered, a continuous number density distribution is obtained. And this is done with only 8 moments.

In Fig. 18, Multifluid approach with 10 and 40 sections, CSVM and analytical solution for the number
density distribution and mean surface against Y are compared at the right outlet of the domain. The highly
oscillatory behavior of the 10 sections Multifluid solution is exhibited. The 40 sections Multifluid solution is
in good agreement with the analytical solution. The CSVM captures a continuous distribution, but exhibits
a large scale oscillation. In fact the results are encouraging for a 8 moments solution (to be compared with
the 30 and 120 moments for Multifluid solution). The quality of the dynamical structure of the solution is
confirmed by the mean size. All the methods captures relatively well the size distribution, with the worse
results for the 10 section Multifluid and better results for the 40 section Multifluid. This test case also
demonstrates the ability and the robustness of the CSVM to capture high segregation effects with a limited
number of moments.

7.2. Taylor Green vortices

The Taylor Green vortices case is more complex than the Crossflow, as the gas velocity is not uniform.
Furthermore, we focus on the transient regime. The segregation effect is strong, small droplets being captured
by the vortices, whereas big droplets can move from a vortex to another. The computational domain is [0, 1]2

and periodic in each direction. The gas velocity is:

Ug(X, Y ) = cos(2πX)sin(2πY ), (70)

Vg(X, Y ) = − sin(2πX)cos(2πY ). (71)

Droplets with a Stokes number higher than the critical Stokes number Stc = 1/8π can exhibit trajectory
crossings, and thus a monokinetic Eulerian approach (one velocity per size in this work) can generate δ-shock
as the system is weakly hyperbolic [44, 45].
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Figure 17: 2D Crossflow: droplet number density for the Multifluid approach with 10 sections (up) and 40 sections (center),
and for the CSVM (down).
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Figure 18: 2D Crossflow: droplet number density (left) and mean surface (right) at X = 2 against Y for the Multifluid approach
with 10 sections (blue circles) and with 40 sections (red squares), the CSVM (green triangles) and the analytical solution (black
line).

The initial number density distribution is :

n(x, y, t, S) =
sin(πWR)

πWR
, (72)

R =
√

(x − xc)2 + (y − yc)2, (73)

where W =
√

10 and [xc, yc] = [0.275, 0.825]. The size interval is [0, 20Stc] where Stc = 1/8π. The initial
droplet velocity is equal to the gas velocity. Since no analytical solution can easily be obtained, a Lagrangian
reference solution is used. A number of 108 particles is used, in order to achieve a satisfactory statistical
convergence. The Lagrangian system of equations is solved using an implicit first order scheme (see Appendix
C), with a time step of ∆t = 10−3.

The droplet number density (Fig. 19) and the mean surface (Fig. 20) for EMSM, 40 section Multifluid,
Lagrangian, and CSVM are shown at time t = 1. The EMSM solution shows the effect of having one
velocity for the whole size distribution. Comparisons between the Lagrangian reference solution, the 40
sections Multifluid and the CSVM show a satisfactory agreement. For the mean surface, the results of the
CSVM are satisfactory compared to the Lagrangian reference, and confirm the great accuracy of the method
to capture the size-conditionned dynamics. The Multifluid also obtains satisfactory results, even if some
oscillations appear due to the combined effect of vacuum zones between sections and numerical diffusion.
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Figure 19: Taylor-Green vortices: droplet number density for the EMSM approach (upper left) and with 40 sections (upper
right), the Lagrangian tracking with 108 particles, and the CSVM.
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Figure 20: Taylor-Green vortices: mean surface for the EMSM approach (upper left) and with 40 sections (upper right), the
Lagrangian tracking with 108 particles, and the CSVM.
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7.3. Weakly turbulent Free jet

In this last test case, we consider an unsteady weakly turbulent free jet originally introduced in the
Ph.D. Thesis of Hicham Meftah at CORIA [46]. It is generated using the ASPHODELE solver, developed
at CORIA by Julien Reveillon and collaborators [47, 48], which uses a low Mach solver for the gas phase.
Kah et al. [26] showed the ability of the EMSM to reproduce this case in evaporating conditions, but for a
range of low Stokes numbers where the differential size-conditioned dynamics has a limited impact on the
global spray dynamics. In the present case, in order to assess the accuracy and potential of the method,
we rather study a non-evaporating case with a much larger range of Stokes number where size-conditioned
differential dynamics effects are important.

The free jet Reynolds number based on U0, ν0 and L0 is 1000. For illustration purpose, dimensional
quantities are given, the solver using non-dimensional quantities. U0 = 1 m/s is the injection velocity,
ν0 = 1.5 × 10−3 m2/s the gas viscosity, and L0 = 1.5 cm the jet width. To destabilize the jet, turbulence
is injected using the Klein method with 10% fluctuations so that U ′

0 = 0.1 m/s [49]. The vorticity field is
presented in Fig. 21. The Stokes number relative to the gas fluctuation time scale τg = L0/U ′

0 of the injected
particles ranges from St = 0 to St = 6.66.

Figure 21: Free jet: vorticity field for the gas phase at time t = 20 s.

Figure 22 and Fig. 23 show the number density and the mean surface for the EMSM and ten section
Multifluid approaches, the Lagrangian method and the CSVM. All methods capture relatively well the
number density spatial distribution, even if Eulerian results are more diffusive than the Lagrangian one.

In Figs. 24-25, the number densities for small droplets (S = [0.0, 0.1]) and big droplets (S = [0.9, 1.0]) are
shown. Now, whereas the EMSM captures the same repartition for small and big droplets, the Multifluid
approach and the CSVM are able to reproduce the differential dynamics for each size intervals: the big
droplets are ejected from the large vortices of the free jet, whereas small droplets stay into them [50].

Those results are confirmed by the mean surface plotted in Fig. 23. The Lagrangian result shows the high
size segregation induced by the vortices. The 10 section Multifluid approach and the CSVM show a good
qualitative agreement with the reference solution, the numerical diffusion due to the first order convection
schemes tending to diffuse the thin structures appearing in the Lagrangian simulation9.

It is now proven that the CSVM method provides an accurate description of the number density as well
as size-velocity correlations of a polydisperse spray with a large range of Stokes number, successfully coping
with the singularities at the frontier of the moment space where the dynamics tend to converge due to the
size-segregation capabilities of the chosen gaseous flow fields.

9Once again, for the sake of fair comparisons, we have used a first order scheme for all Eulerian simulations.
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Figure 22: Free jet: droplet number density for the EMSM approach with one section (upper left) and with Multifluid 10
sections (upper right), the Lagrangian tracking with 108 particles, and the CSVM.

Figure 23: Free jet: mean surface for the EMSM approach with one section (upper left) and with Multifluid 10 sections (upper
right), the Lagrangian tracking with 108 particles, and the CSVM.
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Figure 24: Free jet: droplet number density in S = [0.0, 0.1] for the EMSM approach with one section (upper left) and with
Multifluid 10 sections (upper right), the Lagrangian tracking with 108 particles, and the CSVM.

Figure 25: Free jet: droplet number density in S = [0.9, 1.0] for the EMSM approach with one section (upper left) and with
Multifluid 10 sections (upper right), the Lagrangian tracking with 108 particles, and the CSVM.
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7.4. Computational Time

In the laminar configurations we have chosen, the potential of the method has been highlighted and will
lead to large memory storage savings in the case of 3D cases. In terms of computational cost, even if the
configurations chosen in the present study are not favorable (since for example there is no subgrid turbulent
mixing which will take the moment vector further away from the frontier of the moment space), the CSVM
method leads to a computational cost of the same order as the Multifluid with 24 sections. Actually, the
two important building blocks of the CSVM are the reconstruction strategy and the convection scheme.
For 1000 iterations, 185 s are spent for the reconstruction step, whereas 492 s are spent for the convection
scheme out of a total of 811 s. As these two steps are essentially made of integral evaluations, it seems clear
that the last issue to be tackled now is the efficiency of the evaluation of such integrals, even if our method
demonstrates its ability to reproduce the main physics of such polydisperse flows and is very promising as
an extension of EMSM for industrial LES applications [34, 33]. Another solution to improve the efficiency
of the method is to make use of the hybrid aspect of the method, by using more sections but a lower order
reconstruction, for which analytical solutions exist.

8. Conclusions and outcomes

In this paper, the moment method CSVM has been introduced in order to capture polydispersion as well
as to account for size-velocity correlations, based on the EMSM of [26]. Basically, whereas the initial EMSM
considered only one velocity for all sizes, which is efficient for a range of small Stokes numbers, a broader
spectrum of Stokes numbers can lead to very diverse size-conditioned dynamics and the necessity to be able
to model such a phenomenon has become clear. We have also seen that size-conditioned dynamics can lead
to particle size segregation and moment vectors very close to the frontier of the moment space, where the
EM method usually experiences difficulties.

First, the EM has been improved, in order to be able to reproduce size distributions close to the frontier
of the moment space. Actually, the initial algorithm proposed in [15] is able to build the NDF with canonical
moments in [0.01, 0.99]. To cover a larger part of the moment space, a Gauss-Legendre method with an
adaptive support has been implemented, in such a way that quadrature points are used only where droplets
lie. Furthermore, the Newton solver has been optimized by adapting the number of parameters of the EM and
by tabulating the initial guess. Size-velocity correlations have been accounted for, by using one additional
moment in size-velocity for each direction. Using a power reconstruction and an equilibrium constraint for
droplets of zero size allows to reconstruct the velocity for each size. The evolution in phase space by drag
force and evaporation has been performed by evaluating the disappearance flux at zero size and the shift
in size using a quadrature method similar to CQMOM. We emphasize on the fact that combining EMSM
with a quadrature approach for the phase space evolution allows to use arbitrary evaporation and drag laws.
Furthermore, the proposed reconstruction is also adapted to a Multifluid Framework, leading to an adaptive
method in terms of moments (one may change the number of moments or the number of sections to adapt
the method to his requirements).

The evolution in physical space has been done by using a flux splitting kinetic scheme, which separates
positive and negative components of the fluxes to obtain an upwind scheme. By integrating this scheme
over size, a realizable scheme is obtained, which is able to reproduce the proper dynamics of each size. This
method has proven to be efficient in 1D cases.

Finally, the CSVM method has been applied on three complex cases: the crossflow, the Taylor-Green
vortices and the weakly turbulent free jet. Both cases are very properly reproduced by the CSVM with only
8 moments, whereas the Multifluid approach needs at least 10 sections and 30 moments to be efficient.

In future works, three issues need to be investigated. A higher order scheme is required to reduce the
numerical diffusion of such a first order scheme. A second order scheme is proposed in Appendix A but higher
order will be investigated. To account for the dynamics of high-Stokes-number particles in turbulent flows,
higher order size-velocity moments are needed, in combination with an additional reconstruction strategy.
Finally, we need to improve and optimize the integral evaluation algorithms for both reconstruction and
transport in real space and compare such an approach in more realistic configurations with turbulent mixing,
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as the highly segregative cases of the present work impose to reconstruct NDF at the frontier of the moment
space almost everywhere in the domain, increasing the computational cost due to the high number of
iterations of the EM algorithm.
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Appendix A: A second-order robust and realizable numerical scheme

All the results presented in the main text were obtained using a first order accurate numerical scheme
for transport, because all relevant features of the CSVM may be exhibited using a low order scheme. Here
we design a second order scheme, based on the work of Kah et al. [26] and the MUSCL method proposed
initially by Van leer [51]. The main ingredient of a MUSCL method is the spatial reconstruction for the
variables. As long as a spatial reconstruction is provided, the evolution of the conservative variables is done
by assuming a piecewise constant reconstruction in half cells, each state being evaluated as the interface
value of the reconstruction, and by a 2nd order Runge-Kutta time discretization. To simplify the derivation
of the scheme, integer exponents are used for the velocity reconstruction.

A.1. Reconstruction strategy

A.1.1. Size moments

To reconstruct the size moments in space, Kah et al. [26] introduced a strategy based on a limited linear
reconstruction of the canonical moments (see Kah et al. [26] for more details):

M0
0,j(x) = M0

0,j + DM0
0,j

x (74)

pk,j(x) = pk,j + Dpk,j
x (75)

So that the moments can be written as polynomials:

M0
0 (x) = M0

0,j + DM0
0,j

x (76)

M1
0 (x) = M0

0 (x)p1(x) (77)

M2
0 (x) = M0

0 (x)p1(x) [(1 − p1(x))p2(x) + p1] (78)

M3
0 (x) = M0

0 (x)p1(x)
{

(1 − p1(x))(1 − p2(x))p2(x)p3(x) + [(1 − p1(x))p2(x) + p1(x)]
2
}

(79)

We simplify the notation:

M l
0(x) =

N l∑

k=0

αl
kxk (80)

where N = (1, 2, 4, 6)T is the order of the polynomial reconstruction for each moment.
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A.1.2. Size-velocity moments

For size-velocity moments, we consider a second order polynomial reconstruction for the velocity against
size for the sake of simplicity:

M l
1(x) = ug

N l∑

k=0

αl
kxk + A1(x)

N l+1∑

k=0

αl+1
k xk + A2(x)

N l+2∑

k=0

αl+2
k xk (81)

where:
A1(x) = A1,j + DA1,j x, A2(x) = A2,j + DA2,j x (82)

At this point, four parameters are needed: the corrected cell values and the slope. The corrected cell values
are imposed by the conservation of the cell value for each moment:

M l
1,j =

1

∆x

∫ ∆x
2

−
∆x
2

M l
1(x)dx

M l
1,j = ugM

l
0,j + A1,jM

l+1
0,j + A2,jM

l+2
0,j + DA1,j γl+1 + DA2,j γl+2 (83)

where:

γl =




N l∑

k=0

αl
k∆xk+1

2k+2(k + 2)

(
1 − (−1)k+2

)

 (84)

First, it can be noticed that in the case a null slope for each parameter the corrected cell value are exactly
the cell value. If not, a 2 × 2 linear system is solved:

A1,j =
M3

0,j

(
M0

1,j − ugM
0
0,j − DA1,j γ1 − DA2,j γ2

)
− M2

0,j

(
M1

1,j − ugM
1
0,j − DA1,j γ2 − DA2,j γ3

)

M1
0,jM

3
0,j − (M2

0,j)
2

A2,j =
M1

0,j

(
M1

1,j − ugM
1
0,j − DA1,j γ2 − DA2,j γ3

)
− M2

0,j

(
M0

1,j − ugM
0
0,j − DA1,j γ1 − DA2,j γ2

)

M1
0,jM

3
0,j − (M2

0,j)
2

So that the corrected cell values have a linear dependence with respect to the slopes:

A1,j = A1,j + c2DA1,j + c3DA2,j

A2,j = A2,j + d2DA1,j + d3DA2,j

It comes that, if all the slopes are given, we can provide a conservative reconstruction of the moments,
based on the canonical moments for size moments, and on the reconstruction parameters for size-velocity
moments. So we need a strategy to evaluate the slopes.

A.1.3. Slope evaluation

For the canonical moments, the evaluation of the slopes is given in [26], and is based on a maximum
principle that must satisfy the canonical moments. For the velocity, a maximum principle must also be
satisfied at the kinetic level:

rj(S) ≤ U(S, x) ≤ Rj(S) (85)

where rj = min(Uj−1(S), Uj(S), Uj+1(S)) and Rj = min(Uj−1(S), Uj(S), Uj+1(S)).
To fulfill the condition of Eq. (85), the coefficients of each polynomial are limited:

min(A1,j−1, A1,j , A1,j+1) ≤ A1,j + DA1,j x ≤ max(A1,j−1, A1,j , A1,j+1) (86)

min(A2,j−1, A2,j , A2,j+1) ≤ A2,j + DA2,j x ≤ max(A2,j−1, A2,j , A2,j+1) (87)
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Figure 26: 1D convection: error for first (red line with circles) and second (green line with squares) order schemes

This is done by evaluating every combination of left and right slopes through linear systems, and choosing
the minimum:

(
c2 ±

∆x

2

)
DA1,j + c3DA2,j =

−A1,j + A1,j±1

2
(88)

d2DA1,j +

(
d3 ±

∆x

2

)
DA2,j =

−A2,j + A2,j±1

2
(89)

This way, we ensure a realizable, maximum-principle-satisfying reconstruction for the whole moment set.

A.2. Numerical scheme

Using the reconstruction strategy the scheme consists in an evaluation of the interface values thanks to
the reconstruction strategy. Then, at each interface, a piecewise constant convection problem is solved using
a classical first order flux (Flux splitting or HLL [52] for example). The method is then embedded into a
two-step Runge-Kutta temporal scheme:

Mn∗
j = Mn

j − 1

2

∆t

∆x

(
Fj+1/2(Mn

R,jMn
L,j+1) − Fj−1/2(Mn

R,j−1,Mn
L,j)

)
(90)

Mn+1
j = Mn

j − ∆t

∆x

(
Fj+1/2(Mn∗

R,j ,Mn∗
L,j+1) − Fj−1/2(Mn∗

R,j−1,Mn∗
L,j)
)

(91)

where Mn
j is the moment vector.

A.3. Application to the 1D convection test case

The second order scheme is evaluated on the test case in Sec. 6.3.1, i.e. the convection of a number
density that generates a size-conditioned spatial segregation. Errors of the first order and second order
schemes are compared in Fig. 26 and confirm the order of the schemes.

Appendix B: Analytic solution for the 2D Crossflow

An analytical solution is proposed for the stationary 2D crossflow configuration, based on the Lagrangian
solution for each size, since no droplet crossing occurs for one size so that the Lagrangian and Eulerian
approaches are equivalent.
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The Eulerian problem (2) with the monokinetic assumption f(t,x,v, S) = n(t,x, S)δ(v−u(t,x, S)) and
without evaporation is written as follows:

∂tn + ∂x.(nu) = 0,

∂t(nu) + ∂x.(nu ⊗ u) =
ug − u

KdS
,

(92)

with u = (U, V ) the droplet velocity conditioned by size and vg = (Ug, 0) the constant gas velocity. The
steady state problem is considered on the domain x = (X, Y ) ∈ [0, +∞[×[0, +∞[ with the following condi-
tions on boundary Y = 0:

n(X, 0, S) = n01[XL,XR](X), U(X, 0, S) = 0, V (X, 0, S) = V 0, (93)

with n0 and V 0 some constants and with n(X = 0, Y, S) = 0 on the other incoming boundary.
Considering Lagrangian formulation, let (Xp, Yp) and (Up, Vp) be the position and the velocity of a

droplet of size S. Its position at injection is (X0
p , 0), with XL < X0

p < XR and its velocity is (0, V 0). The
evolutions of the droplet characteristics is given by:

dXp

dt
= Up,

dYp

dt
= Vp,

dUp

dt
=

Ug − Up

KdS
,

dVp

dt
= − Vp

KdS
. (94)

So, the characteristics of droplets injected at time t = t0 are:

Up(t) = Ug

[
1 − exp

(
− t − t0

KdS

)]
,

Vp(t) = V 0 exp

(
− t − t0

KdS

)
,

Xp(t) = X0
p + Ug

{
t − t0 + KdS

[
exp

(
− t − t0

KdS

)
− 1

]}
,

Yp(t) = V 0KdS

[
1 − exp

(
− t − t0

KdS

)]
.

(95)

Eliminating the variable t, the trajectories of such droplets are then characterized by the equation:

Xp − X0
p

UgKdS
= g

(
Yp

V 0KdS

)
, (96)

where g is the increasing function from [0, 1[ to [0, +∞[ defined by g(y) = − ln(1− y)− y. Since droplets are
injected between abscissa XL and XR, all droplets of size S are located in [Xmin(Y, S), Xmax(Y, S)], with

Xmin(Y, S) = XL + UgKdS g

(
Y

V 0KdS

)
, Xmax(Y, S) = XR + UgKdS g

(
Y

V 0KdS

)
. (97)

The position of such droplets is plotted on Fig. 27 for two sizes. This also implies that the droplets which
can reach a given position (X, Y ) with X > XR have a size S such that :

V 0

Ug
(X − XR) ≤ hY (V 0KdS) ≤ V 0

Ug
(X − XL), (98)

where hY is the decreasing function from ]Y, +∞[ to R defined by hY (x) = x g(Y/x). The size S of droplets
reaching (X, Y ) lives then in the interval [Smin(X, Y ), Smax(X, Y )], with

Smin(X, Y ) =
1

V 0Kd
h−1

Y

(
V 0

Ug
(X − XL)

)
, Smax(X, Y ) =

1

V 0Kd
h−1

Y

(
V 0

Ug
(X − XR)

)
. (99)

Let us return to the Eulerian approach of system (92). The droplet velocity (U, V ) is given, thanks to
the equivalence with the Lagrangian approach and thanks to equations (95), by

U(X, Y, S) =
UgY

V 0KdS
, V (X, Y, S) = V 0

(
1 − Y

V 0KdS

)
, Y ∈ [0, V 0KdS[. (100)
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Figure 27: Position of droplets of size S = 0.9 (between solid lines) and S = 1 (between dashed lines).

This velocity does not depend on X . Moreover, the injection is uniform in the interval [XL, XR] and the
number density is independent of X for X ∈ [Xmin(Y, S), Xmax(Y, S)]. The number density conservation
for the size S is then given by ∂(nV )/∂Y = 0 for X ∈ [Xmin(Y, S), Xmax(Y, S)]. Integrated between 0 and
Y , it then induces:

n(X, Y, S) =
V0n

0

V (Y, S)
=

n0

1 − Y
V 0KdS

, Y ∈ [0, V 0KdS[, X ∈ [Xmin(Y, S), Xmax(Y, S)]. (101)

Equations (100) and (101) give the analytical size conditioned velocity and the NDF, solution of (92). The
total number density at (X, Y ) plotted on Fig. 18 is then given by

ntot(X, Y ) =

∫ Smax(X,Y )

Smin(X,Y )

n(X, Y, S)dS

= n0

[
Y

V 0Kd
ln

(
V 0KdSmax(X, Y ) − Y

V 0KdSmin(X, Y ) − Y

)
+ Smax(X, Y ) − Smin(X, Y )

]
(102)

and the mean surface is

Smean(X, Y ) =
1

ntot(X, Y )

∫ Smax(X,Y )

Smin(X,Y )

S n(X, Y, S)dS

=
Y

V 0Kd
+

n0
(
Smax(X, Y )2 − Smin(X, Y )2

)

2 ntot(X, Y )
. (103)

Appendix C: Lagrangian solution for Taylor-Green vortices

The reference solution for the Taylor-Green vortices is chosen to be a Lagrangian computation, since
there is no analytical solution to the authors’ knowledge. This Lagrangian computation consists in a discrete
particle simulation with a sufficiently high number of particles to achieve accurate statistics. Considering
that the gas velocity (Ug, Vg) is constant and given by

Ug(x, y) = cos(2πx) sin(2πy), Vg(x, y) = − sin(2πx) cos(2πy), (104)
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the problem to solve for each numerical particle is then written:

dXp

dt
= Up,

dYp

dt
= Vp,

dUp

dt
=

Ug(Xp, Yp) − Up

KdS
,

dVp

dt
=

Vg(Xp, Yp) − Vp

KdS
, (105)

for p = 1, Np where Np is the number of particles. First, the initial conditions for each particle has to be
given in such a way that the initial number density distribution is well reproduced. Second, a numerical
scheme has to be given for the system (105).

The initial number density distribution is given by a cardinal sinus in physical space [0, 1]2 and a constant
distribution in size space [0, 1]:

n(x, y, S) =
sin
(
πW

√
(x − xc)2 + (y − yc)2

)

πW
√

(x − xc)2 + (y − yc)2
if W

√
(x − xc)2 + (y − yc)2 ≤ 1 (106)

= 0 if W
√

(x − xc)2 + (y − yc)2 > 1 (107)

so that [xc, yc] is the center of the spatial distribution of the spray and W its width. To simplify, let
us consider cylindrical coordinates (r, θ) around the point [xc, yc]. The initial distribution is then, as

a function of these new variables: ñ(r, θ, S) = r
sin(π W r)

π W r
1[0,1/W ](r)1[0,2π](θ)1[0,1](S). The rejection

method is used to set the numerical parcels with such a distribution. Since ñ(r, θ, S) is smaller that1[0,1/W ](r)1[0,2π](θ)1[0,1](S)/(πW ) this method leads to the following algorithm:

1. a uniform random number generator (here the native one of fortran) is used to generate uniform
random variables r ∈ [0, 1/W ], θ ∈ [0, 2π], S ∈ [0, 1] and T ∈ [0, 1]

2a. if ñ(r, θ, S) > T/(πW ) then the generated particle is validated,
2b. otherwise the generated particle is rejected.

This algorithm is reproduced until the required number of particles is reached.
Once initial conditions are set for each particles, the Lagrangian system of equation (105) is solved in

a semi-implicit manner. During one time step, the gas velocity is approximated by a constant. With this
assumption, one can derive an analytical solution for position and velocity:

Up(t + ∆t) = [Up(t) − Ug(Xp(t), Yp(t))] exp

(
− ∆t

KdSp

)
+ Ug(Xp(t), Yp(t))

Vp(t + ∆t) = [Vp(t) − Vg(Xp(t), Yp(t))] exp

(
− ∆t

KdSp

)
+ Vg(Xp(t), Yp(t))

Xp(t + ∆t) = Xp(t) + Ug(Xp(t), Yp(t))∆t + KdSp[Up(t) − Ug(Xp(t), Yp(t))]

(
1 − exp

(
− ∆t

KdSp

))

Yp(t + ∆t) = Yp(t) + Vg(Xp(t), Yp(t))∆t + KdSp[Vp(t) − Vg(Xp(t), Yp(t))]

(
1 − exp

(
− ∆t

KdSp

))

In this approach, the only source of error is the variation of the gas velocity along the particle trajectory. This
can give the intuition that this method is convergent with at least a first order accuracy. More rigorously,
the convergence of the scheme is proven in what follow.

Let us denote (Ue
p , V e

p , Xe
p , Y e

p ) the exact solution of (105). For example, starting from a time t, the
velocity in the first direction Ue

p (t + θ) is given by

Ue
p (t + θ) = Ue

p (t) exp

(
− θ

KdSp

)
+

∫ θ

0

Ug(X
e
p(t + τ), Y e

p (t + τ))

KdS
exp

(
τ − θ

KdSp

)
dτ (108)

The same kind of formula can be written for the approximate solution Up(t + θ), with no variation of the
gas velocity:

Up(t + θ) = Up(t) exp

(
− θ

KdSp

)
+

∫ θ

0

Ug(Xp(t), Yp(t))

KdS
exp

(
τ − θ

KdSp

)
dτ (109)
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Moreover, the exact and approximated first coordinate is given by

Xe
p(t + τ) − Xe

p(t) =

∫ τ

0

Ue
p (t + θ)dθ, Xp(t + τ) − Xp(t) =

∫ τ

0

Up(t + θ)dθ, (110)

The same kind of formula can be written for the second direction. So the absolute error on the velocity in
the first direction is such that, for θ > 0

|Ue
p (t + θ) − Up(t + θ)| ≤

∣∣Ue
p (t) − Up(t)

∣∣

+
1

KdS

∫ θ

0

∣∣Ug(X
e
p(t + τ), Y e

p (t + τ)) − Ug(Xp(t), Yp(t))
∣∣ exp

(
τ − θ

KdSp

)
dτ.

Since the spatial gradient of the gas velocity is smaller than 2π in both directions, and since both components
of the particle velocity are smaller than one (the maximum of both components of the gas velocity), one can
write

∣∣Ug(X
e
p(t + τ), Y e

p (t + τ)) − Ug(Xp(t), Yp(t))
∣∣ ≤ 2π

(
|Xe

p(t + τ) − Xp(t)| + |Y e
p (t + τ) − Yp(t)|

)
,

≤ 2π
(
2τ + |Xe

p(t) − Xp(t)| + |Y e
p (t) − Yp(t)|

)
,

so that, when θ/(KdS) tends to zero

|Ue
p (t + θ) − Up(t + θ)| ≤

∣∣Ue
p (t) − Up(t)

∣∣+ 2π
(
|Xe

p(t) − Xp(t)| + |Y e
p (t) − Yp(t)|

)
+ θ O

(
θ

KdS

)
(111)

and, thanks to (110)

|Xe
p(t + ∆t) − Xp(t + ∆t)| ≤ |Xe

p(t) − Xp(t)| +
∫ ∆t

0

|Ue
p (t + θ) − Up(t + θ)|dθ (112)

≤ (1 + 2π∆t) |Xe
p(t) − Xp(t)| + ∆t

∣∣Ue
p (t) − Up(t)

∣∣+ 2π∆t|Y e
p (t) − Yp(t)|

+(∆t)2 O

(
∆t

KdS

)
.

Thanks to a recurrence argument and thanks to equations (111) and (112) and same kind on formulas for Yp

and Vp, one prove that the scheme is convergent with a first order accuracy. In particular, it has the great
advantage of being unconditionally stable, which is also the case of the classical explicit Euler discretization.
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