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Abstract

Kah et al. (2010) recently developed the Eulerian Multi-Size Moment model (EMSM) which tackles the
modelling and the numerical aspects for the simulation of polydisperse multiphase flows of a gaseous flow field
carrying a disperse liquid phase. Using a moment method, they proposed to reconstruct the number density
function (NDF) by Entropy Maximisation , which leads to a unique and realizable NDF. This reconstruction
is used to simulate the evaporation process, by an evaluation of the flux of droplet disappearance at zero size
and an accurate description of the size shift induced by the evaporation as well as the transport in physical
space. Although this method demonstrated its great potential for evaporating polydisperse flows, two issues
remain to be addressed. First, the EMSM only considers one velocity for all droplets, thus decoupling size
from velocity, which will be to restrictive for distributions with a large size spectrum. In most applications
size-conditioned dynamics have to be accounted for. Second, the possibility to have separated dynamics for
each size can lead to quasi-monodisperse distributions, which corresponds to a hard limiting case for the
entropy maximization algorithm. So the behavior of the entropy maximization needs to be investigated, in
order to be able to reproduce a larger subset of the moment space. The aim of this paper is thus twofold.
First, the entropy maximization and its related algorithm are enhanced by using a more precise integration
method in order to handle NDF close to the frontier of the moment space associated with an adaptive
number of parameters to reconstruct the NDF accurately and efficiently, as well as tabulated initial guess to
optimize the computational time. Then, a new model called CSVM (Coupled Size-Velocity Moments model)
is proposed. Size-velocity correlations are addressed either in the evaporation and drag processes, or in the
convective transport. To reach this goal, a reconstruction of the velocity for each size is proposed, using
only one additional moment per dimension. This reconstruction is evaluated in evaporation-drag 0D cases,
to assess its ability to reproduce both phenomena. To handle the convective transport, a new flux splitting
scheme is proposed, based on the underlying kinetic description of the disperse phase. The full strategy is
evaluated in 1D and 2D cases and shows the ability of the CSVM and its related algorithms to capture the
full physics of polydisperse evaporating sprays with a minimal number of moments.

Key words: Polydisperse sprays, high order moment method, Entropy Maximization, flux splitting,
size-velocity correlations

1. Introduction

Multiphase flows occur in several industrial applications, such as internal combustion engine ([1, 2] and
references therein), gas turbine [3] or rocket booster [4]. Those applications are linked by the existence of a
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disperse liquid phase, composed of droplets. Simulating this disperse phase accurately becomes crucial, as it
highly influences the global behaviour of the full device (consumption, overall power, pollutant emissions...).

The description of a disperse phase may rely on a population balance equation (PBE) on the number
density function (NDF), namely the Williams-Boltzmann equation [5, 6]. The PBE describes the time
evolution of the NDF in the real space (position) and in the phase space determined by the chosen internal
coordinates for the description of the NDF (size, velocity, temperature...). Simulating the PBE can be
achieved by using the lagrangian direct simulation Monte-Carlo method (DSMC [7]), which solves lagrangian
equations for a large sample of particles, in order to reach converged statistics. This approach is considered
as the most accurate, but is very expensive, especially for unsteady flows, and is not well adapted for high
performance parallel computing (load balancing [8]) as well as for coupling to the gas phase (interpolations
between gas and disperse phases [8]). Its use for industrial applications stays unreachable, even with the great
increase in computational resources. Eulerian methods can overcome this problem by not directly solving
the PBE on the NDF, but its moments, which are integrated quantities over phase space. In idealized
cases of monodisperse distributions, i.e.a unique size for all droplets, the NDF can be easily reconstructed
because only two moments are necessary to uniquely determined this NDF. But in the case of polydisperse
distributions, a finite moment set has potentially an infinity of admissible NDF reconstructions, which is
called the Hausdorff moment problem [9], and the goal is to be able to determine a unique NDF, by imposing
additional constraints on the reconstruction.

To account for the size polydispersity, three ways can be envisaged:

1. A size space discretization: the size space can be discretized into intervals called “sections” [10], which
leads to a Finite Volume formulation called Multifluid approach in the context of sprays [11].

2. A moment method with continuous reconstruction: a limited set of size moments is used to reconstruct
the NDF [12, 13].

3. A quadrature-based moment method : a set of moments is used to build a quadrature approximation
of the NDF [14, 15].

Discretizing the size phase space is the simplest way to capture the size polydispersity, but in order
to limit diffusion in size space, a high number of sections is needed, increasing the computational cost
[16]. Adopting a moment point of view may overcome this problem by transporting only one “fluid” with
several moments. This can be done using QMOM (quadrature method of moment [14]) or DQMOM (direct
quadrature method of moment [15]). Those approaches are linked by the reconstruction of the NDF : a sum
of Diracs delta-functions evolving jointly. The difference lies on the fact that QMOM solves equations on
the moment set, whereas DQMOM directly solves the equation on the weight and abscissas of the Dirac
δ-functions. Those two methods had shown their great potential for coalescence or breakage, but encounter
difficulties for evaporating spray, especially with continuous distributions, due to the disappearance flux of
droplets at zero size [17]. Actually, the lower order representation of the QMOM or the DQMOM is not
able to reproduce this continuous flux, the disappearance of droplet being possible only when a Dirac delta
function reaches the zero abscissa, and leading to singular fluxes.

To solve this intrinsic problem of the representation of the NDF, Kah et al. [2, 13] have proposed a new
strategy, called Eulerian Multi-Size Moment model (EMSM), taking advantage of a continuous description of
the NDF to determine the flux at zero size, and the evaluation of the shift in size induced by evaporation by
a a combined flux/quadrature approach. The reconstruction of the NDF is done by Entropy Maximization
(EM, [18]). This is a convex optimization problem with constraints, which admits a unique solution, as long
as the moment vector stays in the interior of the moment space [19]. This NDF is used to compute the flux
at zero size, and the evaporation is evaluated by means of the zero flux and a quadrature approximation.
The great potential of EMSM is demonstrated in [20], where it is shown that the computational time for a
equivalent accuracy is clearly an advantage over the Multifluid method.

The evolution in size phase space solved, an important issue to be tackled concerns the numerical scheme
used to transport the set of moments in the physical space. In general, a first order Finite Volume scheme
is able to transport a set of moments vector, preserving the moment space. But for complex problems, high
order methods are needed. As shown in [21], classical high order finite volume numerical schemes cannot
guaranty to keep the moments in the interior of the moment space. To overcome this difficulty, a kinetic
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scheme adapted to a high number of moments is proposed in [20], which uses a linear reconstruction on the
canonical moments, and preserves the realisability of the moment set.

The EMSM associated with a stable and realizable kinetic scheme for the physical transport is a good
candidate for the simulation of complex flows. But two important issues still remain unsolved. Firstly, the
EMSM uses the same velocity for all droplets, independently of their size. This is quite a strong assumption
when drag force is accounted for, as it may generate size-conditionned dynamics. The effect of such an
assumption is illustrated on Fig. 1, which consists in the injection of droplet perpendicularly to a gaseous
crossflow at constant and uniform velocity. When only one velocity is considered for the whole distribution,
only one trajectory can be reproduced. This effect is partially accounted for, using a Multifluid approach
with 10 sections, because each section has its proper velocity. But for coarse size discretization, this leads
to distinct trajectories separated by vacuum regions, as in Fig. 1. Secondly, the ability to capture separated
dynamics depending on the droplet size would generate quasi-monodisperse distributions. Unfortunately, the
EMSM and its related EM algorithm cannot reproduce this kind of NDF, which are close to the frontier of
the moment space. This would limit the applicability of the EM or at least introduce an error for NDF close
to the frontier [13]. This type of highly segregative flows is typical of swirling injection [12] in aeronautical
configurations, even if the turbulent mixing tends to generate continuous and regular NDF.

In this work, these two issues are addressed. The entropy maximization and its algorithms are enhanced
using adaptive procedures, in terms of integration methods and controlled moments, and tabulated initial
guess to decrease the computational cost. A new method is proposed, called Coupled Size-Velocity Moments
model (CSVM) that take into account size-velocity correlations by the transport of an additional size-velocity
moment for each space dimension, which permits to reconstruct the velocity against size. The evolution in
size space for the size moments is done by the determination of the disappearance flux of droplets and a
size quadrature approximation. But, contrary to the initial EMSM where the evolution of velocity moments
is straightforward due to the a unique velocity for all sizes, the newly introduced size-velocity moments
also evolve in size space using both size and velocity reconstructions. The evolution in velocity space due
to drag force is done using a CQMOM quadrature [22] coupled to EMSM, which permits to account for
the coupled size and velocity evolution, by integrating coupled ordinary differential equations. Using a
quadrature approach for the evolution in phase space is important, because complex laws for drag force,
evaporation and heating can be easily accounted for, even if we consider simple laws in this work [13]. A
numerical kinetic scheme is proposed for the convection in real space, which is based on the flux splitting
technique, and preserves the moment space.

The paper is organized as follows. First, the EMSM is described, with its advantages and drawbacks.
Then improvements of the EM are described, in order to be able to reproduce all the moment space within
a controlled error. The CSVM which takes into account size-velocity correlations is then presented, and the
ability to describe the evolution in phase space is analyzed. Concerning the transport in physical space, the
flux splitting kinetic scheme is detailed and is evaluated on 1D cases. Finally, an evaluation in 2D complex
cases (crossflow and Taylor-Green Vortices) is presented.

Figure 1: 2D Crossflow: Multifluid method with 10 sections (left) and monodisperse-monokinetic approach (right).

3



2. The Eulerian Multi-Size Moment model

2.1. The moment problem

Here we consider dilute sprays at high Knudsen number, so that collisions are negligible and there is no
effect of the dispersed phase on the gas phase. The phase space of the NDF is limited to size S and velocity
v, leading to the following PBE:

∂f

∂t
+ v

∂f

∂x
+

∂

∂v

(

v − ug

τp
f

)

+
∂RSf

∂S
= 0 (1)

where RS = dS/dt is the evaporation rate which is constant in the case of d2 evaporation laws and τp the
relaxation time of the droplets. Using non-dimensional variable S∗ = S/Smax, t∗ = t/τg, v∗ = v/vref where
Smax is the maximum droplet surface, τg and vref a reference time scale and velocity of the gaseous flow,
we obtain the non-dimensional PBE:
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where St = τp/τg is the Stokes number. For sake of clarity, star exponent will be dropped for non-dimensional
variables. To solve this equation, we are looking at the moments of the NDF. In one dimension, these are
defined:
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(4)

In this equation, the main issues concern the modelling of the second left hand side term (convection)
and the third right hand side term (evaporation). The former is due to the fact that with a finite set of
moments, the flux for the highest order moment equation is unclosed. The latter imposes the knowledge of
point-wise values of the NDF at the edge of the size phase space.

2.2. The moment space

Even if the moment space where lies the size moment vector M0 = (M0
0 , M1

0 , ...,MN
0 ) is convex, it has a

complex geometry in the semi-open space R
N+1
+ [13]. The normalized moments vector (M1

0 /M0
0 , ...,MN

0 /M0
0 )

lives in a closed convex space of [0, 1]N , but still have a complex geometry. A simpler space can be determined
by using the canonical moments [19]. The first four canonical moments are:
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p1 =
M1

0

M0
0

(6)

p2 =
M0

0 M2
0 − M1

0
2

M1
0 (M0

0 − M1
0 )

(7)

p3 =
(M0

0 − M1
0 )(M1

0 M3
0 − M2

0
2
)

(M0
0 M2

0 − M1
0

2
)(M1

0 − M2
0 )

(8)

4



So the actual moments reads:

M1
0 = M0

0 p1 (9)

M2
0 = M0

0 p1 [(1 − p1)p2 + p1] (10)

M3
0 = M0

0 p1

[

(1 − p1)(1 − p2)p2p3 + [(1 − p1)p2 + p1]
2
]

(11)

The canonical moments lie in the ]0, 1[N , leading to simpler analysis, especially in terms of realisability of
the moment vector. The frontier of the moment space is defined by values 0 or 1 for a canonical moment pk,
and implies that canonical moments of order greated than k are not defined. This frontier is characterized
by the existence of a unique solution for the NDF, a sum of weighted Dirac δ-functions. In the interior of
the moment space where canonical moments are neither equal to 0 nor 1, there is an infinity of NDF, the
moments of which are a finite moment vector.

The EMSM tackles the problem of evaporation terms by a reconstruction of the NDF. In this work we
will considered 4 moments in size, but the method can be extended to more moments. Considering that
each size only have one velocity, the NDF can be decomposed the following way:

f(t, x, v, S) = n(t, x, S)δ(v − U(t, x)) (12)

where U = M0
1 /M0

0 . The EMSM reconstructs f(t, x, S) using Entropy Maximization (EM, [18]). The
Shannon Entropy is defined by:

H(f) = −
∫ 1

0

f(S) ln f(S)dS (13)

Associated with N moments constraints, the maximization of H(f) imposes the unique following recon-
struction:

nEM = exp


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where ζj are Lagrange multipliers. The following convex potential is then minimize:
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The stationary points are given by:

∂∆

∂ζi
= 0 ⇒

∫ Smax
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Si exp


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ζjS
j


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0 (16)

Numerically, this non-linear system is solved using a Newton method: starting form initial choices ζ =
(ζ0, ..., ζN )T , updated ζ is defined from:

ζ+ = ζ − H−1(M0 − 〈X〉ζ) (17)

where 〈X〉ζ = (
〈

x0
〉

ζ
, ...,

〈

xN
〉

ζ
)T is the vector of approximated moments:

〈

xi
〉

=

∫ 1

0

xi exp



−
N

∑

j=0

ζjS
j



 dx (18)

and H is the Hessian matrix defined by Hi,j = ∂∆
∂xi∂xj

=
〈

xi+j
〉

ζ
. A Gauss-Legendre quadrature method

evaluates the integrals. In [13], it has be proven that this integration method with 15 quadrature points is
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sufficient to reach the subset [0.01, 0.99]3 of the canonical moment space and that it is sufficient to evaluate
the disappearance flux of droplet at zero size within an error less than 1%.

Starting from the reconstructed NDF, The evaluation of the evaporation process is made in two step.
First, the disappearance flux at zero size is evaluated, and correspond to the part of the moment that will
disappear during a time step ∆t:

F l
i =

∫ RS∆t

0

U iSlnl(S)dS (19)

corresponding to the part of the distribution which reach the zero size during one time step. The moment
are then corrected:

M̃ l
i = M l

i − F l
i (20)

The evolution in phase space is determined by a quadrature approach:

M̃ l
i = U i

2
∑

k=1

wkSl
k (21)

dSk

dt
= RS (22)

Sk(t + ∆t) = Sk(t) + RS∆t (23)

As stated in [13], this method can account for d2-law as well as arbitrary evaporation law with a good
accuracy.

For the transport in physical space, Kah et al. [20] developed a second order Finite Volume scheme
based on a spatial reconstruction of the canonical moments, which preserves the moment space. The
authors evaluated the full strategy on complex 2D configurations and had proven its ability to predict such
evaporating polydisperse flows, as well as its high efficiency comparing to the Multifluid approach.

3. Numerical issues with Entropy Maximization

In [13], the Entropy Maximization is used to quantify the disappearance flux of droplets. Such an
algorithm was design in order to mainly treat smooth distribution where the EM reconstruction associated
with a Gauss-Legendre quadrature is able to reach a controlled precision of typically 10−6 on the evaporative
flux, within the limit of a reasonable number of Newton steps. Even if some treatment was proposed in
[13] at the frontier of the moment space the method could only achieve a precision of 10−2 in the favorable
context of size-velocity decoupling which was coherent with the expected level of modeling of that paper.
Unfortunately, in the present context, where we reach a much better precision in terms of size-velocity
coupling and treatment of polydispersion, the frontier of the moment space will have a much more important
role and we need to upgrade such a ME procedure in both precision and algorithmic efficiency in order to
cope up with the increase of modeling level.

Three new ingredients will be introduced in the present section. First, in order to drastically increase
the computational efficiency of the ME subroutine, a tabulated initial guess for the Newton solver has been
implemented and we provide the key features of such an approach which is used in most of the interior of the
moment space, that is in the cube [0, 1]3 in terms of the canonical moments. Second, two ingredients will be
added in order to cope with a large subset of the moment space close to the frontier. An adaptive support
for the evaluation of the integrals in the ME subroutine has been implemented, thus leading to an important
gain in precision. Besides, an adaptive reduction of the number of parameters required for the description of
the moments vectors very close to the frontier of the moment space is implemented, which allows to further
the same level of precision much closer to the frontier of the moment space that was achieved in [13]. These
improvements will prove to be exactly what is needed as far as accurate description of the moment space in
order to cope with a precise description of the size-velocity correlations.
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3.1. Tabulation

To reduce the number of iterations needed for the Newton solver to converge, the tabulation of all
parameters is considered. The evolution of the parameters against canonical moments is first investigated.
On Fig. 2, parameters ζ1, ζ2 and ζ3 of the behaviour are plotted against p2 and p3 for p1 = 0.1, 0.5, 0.9.
Notice that p2 and p3 vary between 0.1 and 0.9. Considering the smooth evolution of parameters in the
interior of the moment space, the tabulation may give accurate results. The question is now to evaluate the
error for a direct tabulation of the parameters.

Two interpolation methods are compared for the tabulation: a linear reconstruction and a third order
polynomial reconstruction. The tabulation step is ∆p = 0.01 for each canonical moment, and the tabulation
is done in the interval [0.1, 0.9]3.

On Tab. 1, the error made on the moments by the two methods are compared for different sets of
canonical moments in the interior of the moment space. Each set is chosen to be as far as possible from
tabulated value, to exhibit the maximal error. It can be seen that, even with a third order polynomial the
error can be close to 10−4, which can be relatively high as long as this reconstruction is the basis of moment
evolution in phase and physical spaces.

p1 p2 p3 Linear 3rd order
0.105 0.105 0.105 3.8e-3 7.0e-5
0.505 0.505 0.505 3.3e-4 2.9e-7
0.895 0.895 0.895 3.7e-3 1.0e-4
0.505 0.105 0.105 4.3e-3 4.8e-5
0.505 0.895 0.895 2.6e-3 7.3e-5

Table 1: Error on moments using a linear or a third order interpolation method for five set of canonical moments.

To reach an acceptable accuracy, it is proposed to use the tabulation to define an initial guess for
the Newton iterative solver, which is supposed to reduce the computational time needed to reach a given
accuracy of 10−6. On Tab. 2, it can be seen that the tabulation of the initial guess lowers significantly the
computational time needed and the number of Newton iterations needed, the fastest method being the more
precise third order reconstruction for the initial guess.

p1 p2 p3 Constant Nearest Linear 3rd order
0.105 0.105 0.105 1.18s/12it 0.55s/4it 0.33s/2it 0.25s/1it
0.505 0.505 0.505 0.27s/4it 0.18s/2it 0.12s/1it 0.09s/0it
0.895 0.895 0.895 5.13s/17it 0.81s/3it 0.61s/2it 0.43s/1it
0.505 0.105 0.105 1.35s/8it 0.69s/3it 0.52s/2it 0.37s/1it
0.505 0.895 0.895 1.91s/10it 0.69s/3it 0.54s/2it 0.38s/1it

Table 2: Computational time and number of iterations using a constant initial guess, or a tabulated initial guess with nearest,
linear or third order interpolation method for five set of canonical moments.

3.2. Dealing with the frontier of the moment space

As stated in the previous section, the parameters λ evolves slowly with the canonical moments in the
subspace [0.1, 0.9]3. But close to the frontier, where at least one canonical moment is in [0.0, 0.1]∪ [0.9, 1.0],
the variation of λ for a small variation of the canonical moments could be very important. The tabulation
technique cannot be used in this part of the moment space. Howerver the initial guess for the Newton solver
is chosen to be the closest point in [0.1, 0.9]3. Now being closer to this frontier imposes two constraints on
the Newton solver used for EM: NDF become singular, and the determinant of the Jacobian matrix becomes
close to zero, leading to ill-conditioned matrices. We thus introduce two strategies to handle the frontier of
the moment space: an adaptive support for the integrals and a way to choose the optimal number of entropy
maximization parameters.
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Figure 2: Entropy maximization parameters: ζ1(up), ζ2(center) and ζ3(down) against canonical moments p1 = 0.1 (left),
p1 = 0.5 (center), p1 = 0.9 (right).
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3.2.1. Adaptive support for the integrals

The reconstruction can exhibit very high variations for limiting cases near the frontier of the moment
space. In such cases, the classical Gauss Legendre quadrature may use abscissas where the function is close
to zero, limiting the precision of the method. To overcome this problem, an adaptative support for the
gaussian quadrature is proposed. This support is set for a given threshold ǫ0 in order to locate zones with
negligible number density:

exp





N
∑

j=0

ζjS
j



 = ǫ0 (24)

N
∑

j=0

ζjS
j − ln ǫ0 = 0 (25)

Finding the roots of this polynomial allows to define the integration intervals. As we considered four size
moments in this work, the integration support will be made of one or two intervals (as the polynomial will
have 3 real roots at most). In practice ǫ0 is set to the expected tolerance on the integrals evaluation (to
reach an accuracy of ǫ on the integrals, ǫ0 is set to ǫ).

The ability of the adaptive support to compute the integral of singular functions is assessed on the
computation of the integral of exp(−KS) for which the analytical solution is easily found. On Fig. 3, the
relative error made by both fixed and adaptive support Gauss Legendre integration methods are shown.
For exp(−10S), the two methods exhibit the same results, as the function extremum on the interval are
not so far (1 at S = 0 and exp(−10) = 4.5.10−5 at S=1), and the support stays [0, 1] for the adaptive
method. For exp(−102S), the adaptive support is activated, as the extremum values are 1 at S = 0 and
exp(−102) = 3.7.10−44 at S=1. With a threshold at 5.10−16, the adapted support is now [0, 0.398] and the
accuracy of the adaptive method is considerably higher, even if the fixed support method is able to compute
this integrals with high but reasonable number of nodes. For exp(−104S), the fixed support method is not
able to compute this integral, even with 40 nodes, where the adaptive method uses the support [0, 4.44.10−3]
and computes the integral within an error less than 10−6 with only 15 nodes, and confirms the importance
and the accuracy of the proposed integration method.

3.2.2. Reduction of the number of parameters at the frontier of the moment space

At the frontier of the moment space, the distribution is close to a sum of Dirac δ-functions. For a four-
moments reconstruction the two limit cases are a unique δ-function with Sdirac ∈]0, 1[, or two δ-functions at
S = 0 and S = 1, which can be uniquely determined by only two moments. So it appears that close to the
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frontier, less moments are needed to capture the NDF. The idea here is to determine where using less than
four moments is effective in the sense that we reach the same level of accuracy without leading to unstable
numerical methods. The introduced error has to be controlled, as only the border is uniquely determined
by less moments.

One can notice that each moment linearly depends on the canonical moment of the same order. So, with

respect to pk, the moment mk is bounded between Mk
0

min
= Mk

0 (pk = 0) and Mk
0

max
= Mk

0 (pk = 1). The
distance between minimum and maximum values is then:

δMk
0 =

Mk
0 (pk = 1) − Mk

0 (pk = 0)

M0
0

(26)

M3
0 is considered (here the highest order moment):

δM3
0 = p1p2(1 − p1)(1 − p2) (27)

When this distance is close to 0, the moment M3
0 weakly depends on p3, which says that the moment M3

0

can be accurately reproduced with the first three moments only. The subset where controlling the first three
moments is sufficient to achieve an accuracy ǫ3 on M3

0 is defined as:

p1p2(1 − p1)(1 − p2) < ǫ3 (28)

Considering p1 << 1 or and when 1 − p1 << 1:

plim,0
1 (M3

0 ) =
ǫ3

p2(1 − p2)
(29)

plim,1
1 (M3

0 ) = 1 − ǫ3
p2(1 − p2)

(30)

Considering p2 << 1 or and when 1 − p2 << 1:

plim,0
2 (M3

0 ) =
ǫ3

p1(1 − p1)
(31)

plim,1
2 (M3

0 ) = 1 − ǫ3
p1(1 − p1)

(32)

The minimum (resp. maximum) value of plim,0
k = 4ǫ3 (resp. plim,1

k = 1 − 4ǫ3) is reached at pk = 0.5. So to
achieve an accuracy of ǫ3 on M3

0 with only the first three moments, p1 and p2 must stay in [4ǫ3, 1 − 4ǫ3],
this condition being less and less restrictive as p1 and p2 are conjointly close to the frontier.

The same procedure can be applied to reduce from 3 to 2 moments using the normalized distance for
M2

0 :
δM2

0 = p1(1 − p1) (33)

So for a given threshold ǫ2, using the same method as for δM3
0 , the limits for p1 are:

δM2
0 = p1(1 − p1) < ǫ2 (34)

plim,0
1 (M2

0 ) = ǫ2 (35)

plim,1
1 (M2

0 ) = 1 − ǫ2 (36)

3.3. Conclusions on the entropy maximization

The proposed adaptive support for integrals enables the accurate computation of the integrals of singular
NDF. With the knowledge of the canonical moments, we are now able to choose an optimal initial guess for
the Newton solver by means of a tabulation. The number of moments used for the reconstruction can be
reduced where less moments are needed. This reduction is limited to a subspace close to the frontier, and
we are able to define precisely the error made by this reduction of parameter.

So the EM is now able to reproduce a large subset of the moment space, and is ready for highly segregative
case like the crossflow (Fig. 1), where the drag force separates the droplets into quasi-monodisperse NDF,
which lie at the frontier of the moment space.
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4. Accounting for size-velocity correlation: the CSVM method

4.1. Description of the problem

The initial EMSM considers a unique velocity for all sizes. In moderate to high Stokes flows, the velocity
of each size would be different, as exhibited in Fig. 1 in the crossflow configuration. So the NDF now writes:

f(t, x, v, S) = n(t, x, S)δ(v − U(t, x, S)) (37)

where U depends on position and time, but also on droplet surface. To describe this velocity distribution, a
reconstruction strategy is proposed. The starting point is the same as the initial EMSM for the reconstruction
of the size distribution: with a certain number of moments, we need to have an accurate enough description
of the NDF. As we want to build size-velocity informations, size-velocity moments will be used:

M l
i =

∫ 1

0

SlU(S)in(S)dS (38)

So that the CSVM will use size moments to determine the size distribution n(S) and size-velocity moments
to determine U(S). As the determination of n(S) does not need U(S) (size moments does not depend on
U(S)), this first step of the EMSM is unchanged. However the velocity reconstruction depends on the size
reconstruction.

4.2. Strategy for the velocity reconstruction

Hereafter, the reconstruction strategy for one dimension is proposed. The application for others directions
is straightforward, as the used size-velocity moments will be at first order in velocity (i = 1).

To evaluate the velocity of each size, a reconstruction shape of U(t, x, S) is proposed. A constraint on
this reconstruction is that droplets with a null size and so a null relaxation time follow the gas phase:

U(t, x, S = 0) = ug (39)

To be able to represent all possible moment vectors, it is necessary to propose a reconstruction that can
describe the full velocity moment space. The following power reconstruction is proposed:

U(t, x, S) = ug +

N
∑

k=1

AkSαk (40)

Where Ak are the parameters used to control the size-velocity moments, and αk are user-determined with
α1 < α2 < ... < αN . Considering size-velocity moments expression, one can write:

M l
1 = M l

0ug +

N
∑

k=1

Ak

∫ 1

0

Sαk+lnl(S)dS (41)

which gives the linear system for the parameters vector A:

MA = N (42)

where:

Mkl =

∫ 1

0

Sαk+lnl(S)dS

Nl = M l
1 − M l

0ug

Considering the linear system, the only configuration for which this reconstruction will not be possible for
a given moment corresponds to the zero determinant for matrix Mkl. In practice, this condition is reached
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for Dirac’s delta function for the size distribution n(S). As the EM will never reach this type of distribution
(the EM can be as close as possible but never reach the frontier of the moment space), it is emphasized that
this reconstruction will be able to reproduce any moment set that will be generated by the EMSM.

In [12], an exponential reconstruction is proposed, based on the analytical solution of the relaxation of
droplets at constant gas velocity. Although this is a physical and relatively smooth reconstruction, with
good asymptotic predictions, this shape is not able to reproduce all the moment space, as it cannot capture
inversions in the relative velocity between gas and droplets, which is a typical case with oscillating gas
velocity. In this work, as the aim is to design a method with as few moments as possible, only one additional
size-velocity moment per dimension will be used, compared to the original EMSM.

4.3. Evaluation of the proposed strategy

To evaluate the proposed reconstruction, a 0D analytical test case is proposed, in which a initial size-
velocity distribution evolves because of the drag force imposed by a constant gas velocity. The initial size
and velocity distributions are constant so that n(S, t) = 1 and U(S, t = 0) = U0. For each size, this case is
solution of the ordinary differential equation:

dU(S, t)

dt
= Fd = −U(S, t) − ug

St(S)
(43)

so:

U(S, t) = ug + (U0 − ug) exp

(

− t

St(S)

)

(44)

The moments evolution against time is:

M l
1(t) =

∫ 1

0

SlU(S, t)n(S)dS =
ug

l + 1
+ (U0 − ug)

∫ 1

0

Sl exp

(

− t

St(S)

)

dS

M0
1 (t) = ug +

t

Kd
(U0 − ug)Γinc

(

−1,
t

Kd

)

if t > 0 (45)

M1
1 (t) =

ug

2
+

t2

K2
d

(U0 − ug)Γinc

(

−2,
t

Kd

)

if t > 0 (46)

where Γinc(a, z) =
∫

∞

z
xa−1 exp(−x)dx is the upper incomplete gamma function and St(S) = KdS, which

corresponds to Stokes drag.
On Fig. 4, the influence of the power α1 and α2 on the absolute reconstruction error in L∞ norm is

shown for t = 1. Two optimal zones are exhibited, the first one with high powers nearly identical, and the
second one with one power close to 1 and the second one less than 1. In Practice, α1 = 0.5 and α2 = 1 will
be used.

Results are plotted on Fig. 5. For a two parameters reconstruction, it proves to be efficient except for a
constant velocity distribution. This error may be reduced by using more moments.

A second analytical test case is proposed, with variable gas velocity ug = α cos(βt). It aims at repre-
senting the velocity profile inside a vortex, and so the effect of a turbulent structure. The solution of Eq. 43
is then:

U(S, t) =
α (βSt sin(βt) + cos(βt))

β2St2 + 1
+

[

U0β2St2 + (U0 − α)
]

exp(− t

St
)

β2St2 + 1
(47)

Results are plotted on Fig.6. Again the reconstruction is satisfactory with only two moments and so two
parameters, and proves to be able to reproduce distributions with an inversion of the gas relative velocity,
which would be typical of turbulent flow with a wide spectrum of droplet sizes. Furthermore, as a relative
velocity inversion occurs, an exponential function would not be able to reproduce such a distribution.

So we are able to reconstruct the droplet number density as well as the velocity for each size. Now, we
need to predict the evolution of this NDF through evaporation, drag force and convection.
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Figure 4: CSVM reconstruction error for the 0D test case at constant gas velocity for t = 1 against α1 and α2. For α2 < α1

the error is not plotted. For α1 = α2, the reconstruction is undefined.
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Figure 5: 0D analytical test case with constant gas velocity: velocity distribution (solid lines) and its reconstruction by CSVM
(dashed lines).
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Figure 6: 0D analytical test case with sinusoidal gas velocity: velocity distribution (solid lines) and its reconstruction by CSVM
(dashed lines).

5. Numerical methods for the moment evolution

5.1. Evaporation and drag force

5.1.1. Description of the proposed strategy

Here the evolution of the NDF through evaporation and drag force is proposed. The method described
in [13] is based on two main steps: the evaluation of the disappearance flux of droplet, and the evolution
in size space. Here the strategy is extended to the evolution in velocity space through drag force. First the
derivation is shown for d2 law and Stokes drag (RS = cte and St(S) = KdS). The size reconstruction of the
CSVM enables the computation of the disappearance flux of droplet F l

i for each moment and for one time
step ∆t:

F l
i =

∫

−RS∆t

0

U(S)iSlnl(S)dS (48)

corresponding to the part of the distribution which reaches the zero size during one time step. The moment
are then corrected:

M̃ l
i = M l

i − F l
i (49)

The evolution in phase space is determined by the CQMOM quadrature approach [22] :

M̃ l
i =

2
∑

k=1

wkSl
kU i

k (50)

dUk

dt
= − 1

St
(Uk − ug) = − 1

KdSk
(Uk − ug) (51)

dSk

dt
= RS (52)

With the ODE in velocity and size, it is then possible to account for most evaporation laws, as stated in
[13]. The size and velocity after one time step is:

Sk(t + ∆t) = Sk(t) + RS .∆t (53)

Uk(t + ∆t) = (Uk(t) − ug)

(

Sk(t) + RS∆t

Sk(t)

)

−1

KdRS + ug (54)
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With the updated quadrature, the new moments can be computed.

M l
i (t + ∆t) =

2
∑

k=1

wk(t)Sk(t + ∆t)lUk(t + ∆t)i (55)

To account for complex law, the strategy is slightly modified, the two differences lying on the flux
determination and the ODE system that is needed to be solved. Considering RS = f(S) and St(S) = g(S),
the evaluation of the disappearance flux of droplets is now:

F l
i =

∫ Slim

0

U(S)iSlnl(S)dS (56)

where Slim is obtained by solving the non-linear system:






dSlim

dt
= −RS(Slim)

Slim(t = ∆t) = 0
(57)

which means that Slim is the biggest size that reaches the zero size during one timestep. Using this flux, the
corrected moments are computed and the quadrature is performed, like with simple laws. Then, the obtain
system of ODE cannot be solved analytically:















dUk

dt
= − 1

St(S)
(Uk − ug)

dSk

dt
= RS(S)

(58)

so an ODE solver is needed. Solving this system of ODE finally gives the new moments, like with simple
laws.

5.1.2. Evaluation in 0D test cases

0D test cases are used to evaluate the ability of the CSVM to account for both drag and evaporation.
For all cases, the initial liquid velocity distribution is constant and set to 1. The initial size distribution is a
normal distribution n(S) = 1/(

√
2πσ). exp(−(S −µ)/2σ2) with σ = 0.4 and µ = 0.6. The Stokes number at

S = 1 is set to 1. Then the test cases are defined by two parameters: the gas velocity against time, ug(t),
and the evaporation rate RS .

The Lagrangian reference is computed using a tracking of 106 particles randomly chosen to fullfill the
normal distribution n(S). Eulerian quantities for the reference solution are obtained by projection of the
lagrangian particles over the Eulerian grid.

The combined effect of drag force and evaporation is evaluated. Evaporation is the first motivation of
the EMSM, and its accuracy has already been demonstrated in [13]. The novelty of this work is the ability
to achieve a good accuracy on size-velocity moments. Here we consider RS = 1 and ug = 0.5 cos(10t).

The evolution of moments against time for lagrangian, CSVM and EMSM are plotted on Fig. 7. For
size moments, the results are the same for CSVM and EMSM, as the size reconstruction is still the same.
For size-velocity moments, results are better for the CSVM. This result is confirmed by Fig. 8, on which the
error for size and size-velocity moments is plotted. For the CSVM, the error is under 3% where it reaches
10% without velocity reconstruction, and this with only one additional moment.

To investigate the ability of the proposed method to capture a more complex dynamic, this test case will
consider no evaporation (RS = 0) and a variable gas velocity with three modes, plotted on Fig. 9:

ug(t) =
1

2
cos(4πt) if t ≤ 1 (59)

= cos(πt) if 1 < t ≤ 5 (60)

=
1

4
cos(8πt) if t > 5 (61)
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Figure 7: Evolution of moments: lagrangian reference (solid line), CSVM (dashed line), and EMSM (dot-dashed line).
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Figure 8: Absolute L∞ error on size (left) an size-velocity moment (right) vectors comparing to the lagrangian reference:
CSVM (dashed line), and EMSM (dot-dashed line) for size moments (left) and size-velocity moments (right).
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Figure 10: Evolution of moments: lagrangian reference (solid line), CSVM (dashed line), and EMSM (dot-dashed line).

These three modes are expected to mimic what can be seen by particles going through several vortices
with different properties. On Fig. 10, the evolution of size-velocity moments against time for CSVM and
EMSM. The improvement of the velocity reconstruction is obvious, the error on M1

1 being invisible with
velocity reconstruction. These results are confirmed again by the error on Fig. 11, which stays under 2%
with reconstruction and reaches more than 10% without.

Finally, it can be said that CSVM is able to capture the phase space evolution of an evaporating and/or
drag forced disperse phase, which is achieve using only one additional moment comparing to the EMSM.
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Figure 11: Absolute L∞ error on size-velocity moments vector comparing to the lagrangian reference: CSVM (dashed line),
and EMSM (dot-dashed line).

5.2. Convection scheme

The physical space evolution is surely the most important part of the size-velocity correlation. As seen
in previous section, the constant velocity assumption, even if it leads to higher errors, does not lead to
a completely different moment evolution in the velocity phase space. But in physical space, as shown by
Fig. 1, the dynamics will be totally different. The moment equation for the transport in physical space in
one dimension is:

∂M
∂t

+
∂F(M)

∂x
= 0 (62)

where M = (M0
0 , M1

0 , M2
0 , M3

0 , M0
1 , M1

1 )T is the moment vector and F(M) = (M0
1 , M1

1 , M2
1 , M3

1 , M0
2 , M1

2 )T

is the flux vector. For a constant velocity distribution, the fluxes are linear functions of the moments
(F(M) = UM). In this case, a first order finite-volume scheme preserves the moment space, as it is
positive definite and the scheme reconstruction generates realizable moments. The second-order scheme
that preserves the moment space is much more difficult to design, and this issue raised in the literature [23]
had been finally tackled in [20]. In the case of a continuous non-constant velocity, fluxes are now a complex
function of the moments, and designing a specific scheme becomes necessary.

5.2.1. Flux splitting kinetic scheme

The moment equation is related to the following kinetic equation:

∂f

∂t
+ vm

∂f

∂xm
= 0 (63)

where f(t, x, v, S) = n(t, x, S)δ(v − U(t, x, S)). Integrating over velocities but not over sizes, the following
infinite system for S = [0, 1] is found:

∂n(S)

∂t
+

∂n(S)U(S)

∂x
= 0

∂n(S)U(S)

∂t
+

∂n(S)U(S)2

∂x
= 0 (64)

To solve this system, a first order upwind finite volume scheme is used:

nn+1
j = nn

j − ∆t

∆x

(

Fj+1/2 − Fj−1/2

)

(65)

nn+1
j Un+1

j = nn
j Un

j − ∆t

∆x

(

Gj+1/2 − Gj−1/2

)

(66)
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where:

Fj+1/2 = min(0, Un
j+1)n

n
j+1 + max(0, Un

j )nn
j (67)

Gj+1/2 = min(0, Un
j+1)n

n
j+1U

n
j+1 + max(0, Un

j )nn
j Un

j (68)

By integrating over size, the following scheme is obtained:

Mn+1
j = Mn

j − ∆t

∆x

(

Fj+1/2 −Fj−1/2

)

(69)

where the fluxes are splitted into positive and negative components:

Fj+1/2 =

∫ 1

0

S
(

min(0, Un
j+1)nj+1Un

j+1 + max(0, Un
j )njUn

j

)

dS = F−

j+1 + F+
j (70)

where S = [1, S, S2, S3, 1, S]T and Un
j = [1, 1, 1, 1, Un

j , Un
j ]T . Using the size and velocity reconstructions

these fluxes can be computed for every moments using the adaptive integration method proposed for the
EM. To ensure the stability of the scheme, a CFL condition is imposed on the timestep which is also based
on the velocity reconstruction:

∆t < CFL
∆x

maxS(|U(S)|) (71)

5.2.2. 1D case

The proposed scheme is evaluated on a 1D test case. The spatial distribution is gaussian, the NDF is
constant in size, and the velocity is linear in size:

n(t = 0, x, S) = exp

(

− (x − xc)
2

σ2

)

(72)

U(t = 0, x, S) = Ug + (U(S = 1) − Ug)S (73)

Here xc = 0.2, σ = 0.05, Ug = 0, U(S = 1) = 1. The analytical solution for M0
0 at time t = 0.6 is:

M0
0 (x, t) =

σ
√

π

2t(U(S = 1) − Ug)

[

erf

(

(U(S = 1)t + xc − x

σ

)

− erf

(

Ugt + xc − x

σ

)]

(74)

Results are plotted on Fig. 12. The total droplet number is spread by the velocity distribution, and the
agreement between analytical and CSVM solutions is satisfactory. The order of the scheme is close to 1,
and the method converges to the analytical solution.
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Figure 12: 1D test case: initial total droplet number distribution (upper left), analytical solution at t = 0.6 (upper right, full
line), CSVM solution at t = 0.6 for 400 cells (upper right, dashed line), absolute error against cell number (down).
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6. Application to complex cases

Two 2D complex cases are investigated: the crossflow and the Taylor-Green vortices. The first one
consists in the injection of particles in the normal direction of a constant gas flow, which leads to a high
size segregation and exhibits a steady solution. The second one consists in four contra-rotating vortices
in a periodic domain. This case also leads to a high size segregation, but is more complicated as the gas
velocity is not constant and imposes that there is no steady solution here. Those two test cases are set to
evaluate the proposed method to capture limiting case, i.e. where all moment sets in the domain tends to the
frontier of the moment space. In practical applications, NDF tend to continuous and smooth distributions
because of the turbulent mixing for example(see [24]). As our analysis will be focused on the dynamics of a
polydisperse cloud of droplets, these test cases are non-evaporating.

6.1. Crossflow

The crossflow generates monodisperse distributions due to drag force size-conditioned segregration. As
monodiperse distribution are at the frontier of the moment space, it is an interesting case to confirm the
ability of the EM to capture such distributions. Moreover considering that every size has its proper velocity
and trajectory, it is also a good case for evaluating the transport scheme.

The size of the computational domain is 2 in x direction and 1 in y direction. The injection is made
between XL = 0.1 and XR = 0.3, at a constant velocity V0 = 1 and U0 = 0, with a constant number
distribution n(t, x, S) = 1. The gas flow is constant, at Ug = 1 and Vg = 0. The semi-analytical solution is
described in Appendix 8.B.

On Fig. 13, the droplet number density is shown for the Multifluid approach with 10 and 40 sections,
and the CSVM with 4 moments in size and 2 moments in size-velocity. The Multifluid approach considers
only one Stokes number for each section, so each section will have only one dynamics, even if the section
covers a wide spectrum of Stokes numbers. The effect of such a size discretization is strong with 10 sections
(30 moments, 10 in size, 2 × 10 in velocity), with 10 distinct trajectories. This effect is invisible with 40
sections (120 moments). With the CSVM, as the whole spectrum of Stokes number in the distribution is
considered, a continuous number density distribution is obtained. And this is done with only 8 moments.

On Fig. 14, Multifluid approach with 10 and 40 sections, CSVM and analytical solution for the number
density distribution and mean surface against Y are compared at the right outlet of the domain. The highly
oscillatory behavior of the 10 sections Multifluid solution is exhibited. The 40 sections Multifluid solution is
in good agreement with the analytical solution. The CSVM captures a continuous distribution, but exhibits
a large scale oscillation. In fact the results are encouraging for a 8 moments solution (to compared with
the 30 and 120 moments for Multifluid solution). The quality of the dynamical structure of the solution is
confirmed by the mean size. All the method captures relatively well the size distribution, with the worse
results for the 10 sections Multifluid and better results for the 40 sections Multifluid. This test case also
demonstrates the ability and the robustness of the CSVM to capture high segregation effects with a limited
number of moments.

6.2. Taylor Green vortices

The Taylor Green vortices case is more complex than the Crossflow, as it is an unsteady configuration.
The segregation effect is strong, small droplet being captured by the vortices, whereas big droplets can move
from one to another. Furthermore, droplets with a Stokes number higher than the critical Stokes number
Stc = 1/8π can exhibit trajectory crossings, and thus a monokinetic eulerian approach (one velocity per size
in this work) can generate δ-shock as the system is weakly hyperbolic [25, 26]. The corresponding behaviour
is analysed in Appendix 8.A.

The computational domain is 1-by-1 and periodic in each direction. The gas velocity is:

Ug(X, Y ) = cos(2πX)sin(2πY ) (75)

Vg(X, Y ) = − sin(2πX)cos(2πY ) (76)
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Figure 13: 2D Crossflow: droplet number density for the Multifluid approach with 10 sections (up) and 40 sections (center),
and for the CSVM (down).
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Figure 14: 2D Crossflow: droplet number density (left) and mean surface (right) at X = 2 against Y for the Multifluid approach
with 10 sections (red line) and with 40 sections (blue line), the CSVM (green line) and the analytical solution (black line).

The initial number density distribution is :

n(r, t, S) =
sin(πWR)

πWR
(77)

R =
√

(x − xc)2 + (y − yc)2 (78)

where W =
√

10 and [xc, yc] = [0.275, 0.825]. The size interval is [0, 20Stc] where Stc = 1/8π. The initial
droplet velocity is equal to the gas velocity. As no analycal solution was obtained a Lagrangian reference
solution is proposed, the solver being described in Appendix 8.C.

On Fig. 15, the droplet number density and the mean surface for one section Multifluid, 40 sections
Multifluid, lagrangian, and CSVM are shown at time t = 1. The one section solution shows the effect of a
monokinetic assumption for the whole size distribution. Comparisons of the Lagrangian reference solution,
the 40 sections Multifluid and the CSVM show a really good agreement. For the mean surface, the results of
the CSVM are in really good agreement comparing the Lagrangian reference, and confirm the great accuracy
of the method to capture the size-conditionned dynamics.
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Figure 15: Taylor-Green vortices: droplet number density for the Multifluid approach with one section (upper left) and with
40 sections (upper right), the Lagrangian tracking with 108 particles, and the CSVM.
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Figure 16: Taylor-Green vortices: mean surface for the Multifluid approach with one section (upper left) and with 40 sections
(upper right), the Lagrangian tracking with 108 particles, and the CSVM.
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7. Conclusions and outcomes

In this paper, the CSVM is proposed to account for size-velocity correlations, based on the EMSM of [13].
Basically, in the initial EMSM considered only one velocity for all sizes, which can lead to completely different
dynamics for each size in the case of a wide spectrum of Stokes number for the particles. Moreover, this will
also generate monodisperse distributions, which are difficult to reproduce using entropy maximization.

First, the entropy maximization is improved, in order to be able to reproduce size distributions close to
the frontier of the moment space. Actually, the initial algorithm proposed in [13] is able to build NDF with
canonical moments in [0.01, 0.99]. To cover a larger part of the moment space, a Gauss-Legendre method
with an adaptive support is used, in such a way that quadrature points are used only where droplets lies.
Furthermore, the Newton solver is optimized by adapting the number of parameters of the EM and by
tabulating the initial guess.

Size-velocity correlations are accounted for, by using an additional moment in size-velocity for each
direction. Using a power reconstruction and an equilibrium constraint for droplets of zero size (U(S = 0) =
Ug), this allows to reconstruct the velocity for each size.

The evolution in phase space by drag force and evaporation is performed by evaluating the disappearance
flux at zero size and the shift in size using a CQMOM quadrature. We emphasize on the fact that combining
with a quadrature approach for the phase space evolution allows to use arbitrary evaporation and drag laws.

The evolution in physical space is done by using a flux splitting kinetic scheme, which separates positive
and negative components of the fluxes to obtain an upwind scheme. By integrating this scheme over size, a
realizable scheme is obtained, which is able to reproduce the proper dynamics of each size. This method is
proved to be efficient on 1D cases.

Finally, the CSVM method is applied on two complex cases: the crossflow and the Taylor-Green vortices.
Both cases are relatively well reproduced by the CSVM with only 8 moments, whereas the Multifluid
approach need at least 40 moments to be efficient.

In future work, three issues will be investigated. The convection scheme need to be improved to reach
high order, and reduce the numerical diffusion of such a first order scheme. The proposed formalism will
be extended to turbulent dynamics, to be able to capture size-conditionned velocity dispersion induced by
the turbulence. And a comparison of the computational time with Multifluid approaches in more realistic
configuration (like injection configurations) has to be performed, as the highly segregative cases of the present
work impose to reconstruct NDF at the frontier everywhere in the domain, increasing the computational
cost due to the high number of iterations of the EM algorithm.
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8. Appendix

8.A. Ability to capture Delta-Shock

Even if the proposed extension of the CSVM is able to capture the velocity associated with each size, it
cannot capture the trajectory crossing for each size. Because the underlying semi-kinetic system is weakly
hyperbolic, this will generate δ-shock. To evaluate the ability of the proposed method to capture accurately

26



δ-shock for each size, a 1D test case which is motivated by the Taylor-Green vortices is investigated. This
configuration was further analysed in [25, 26].

In a 1D domain [−π, π], a steady gas velocity field is set with ug = − sin(x). Droplets are distributed
uniformely at t = 0 with a null velocity and a constant droplet number density in size in the interval
[0, 20Stc]. In this test case all trajectories meet at x = 0, generating a central δ-shock, which is fed by all
sizes progressively.

On Fig. 17, droplet number density is plotted at different times. This confirm the ability of the scheme to
capture δ-shock accurately. On Fig. 18, the comparison of the Multifluid with 1000 sections and the CSVM
confirms the ability of the method to capture size-conditionned dynamics, even in the case of δ-shock.
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Figure 17: δ-shock generation: droplet number density zoomed on the initial solution (left) and at full scale (right) at time
t = 0 (black line), t = 0.5 (red line), t = 1.0 (green line) and t = 5.0 (blue line)
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8.B. Semi-analytic solution for the 2D Crossflow

A semi-analytical solution is proposed, based on the solution for each size, and the fact that for one size,
no droplet crossing occurs so that the lagrangian velocity is equal to the eulerian velocity ~Vp(t) = ~V (t, Xp).
Here we are looking for the solution against Y at a given position X.

Let [Xp, Yp] and [Up, Vp] be the position and the velocity of a particle, [X0
p , 0] and [0, V 0] its initial

position and velocity. Considering that ~Vg = Ug~ex:

dXp

dt
= Up ,

dYp

dt
= Vp (79)

dUp

dt
=

Up − Ug

KdS
,

dVp

dt
=

Vp

KdS
(80)

So the lagrangian solution is:

Up(t) = Ug

(

1 − exp(− t

KdS
)

)

(81)

Vp(t) = V 0 exp(− t

KdS
) (82)

Xp(t) = X0
p + Ug

(

t + KdS

(

exp(− t

KdS
) − 1

))

(83)

Yp(t) = V 0KdS

(

1 − exp(− t

KdS
)

)

(84)

Yp and V 0 do not depend on X0
p , so V 0 is constant for a given Y . So the number density conservation gives

that the droplet number density is constant on a vertical line between X = Xmin(Y ) and X = Xmax(Y ).
The number density conservation equation is then:

∂nV

∂Y
= = 0 (85)

So the eulerian solution for droplet number density is:

n(Y ) =
nY =0V0

V (Y )
(86)

Considering that eulerian and lagrangian velocity are equal at the same position:

tY = −KdS ln

(

1 − Y

V 0KdS

)

(87)

V (Y ) = Vp(Yp(tY )) = V 0

(

1 − Y

V 0KdS

)

(88)

Finally:

n(Y, S) =
nY =0,S

(

1 − Y

V 0KdS

) if Y < V 0KdS (89)

This solution is valid between Ymin and Ymax which depend on X. Considering non-dimensional coordinates
X∗

p = Xp/UgKdS and Y ∗

p = Yp/V 0KdS, the non dimensional trajectory of a particle is:

X∗

p = X0∗
p − ln

(

1 − Y ∗

p

)

− Y ∗

p (90)

and is plotted on Fig. 19.
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The injection is made between X = XL and X = XR, which are respectively left and right limits.
To check the solution, the mass conservation is examined:

∫ Ymax

Ymin

n(Y )U(Y )dY =

∫ XR

XL

n(Y = 0)V 0dX = n(Y = 0)V 0(XL − XR)

= n(Y = 0)Ug

[

Ymin − Ymax − V 0KdS ln

(

Ymax − V 0KdS

Ymin − V 0KdS

)]

= n(Y = 0)V 0(XL − XR) (91)

which verify the mass conservation of the solution. The total droplet number density n(Y ) is obtained by
integrating n(Y, S) over all sizes and considering that only a size interval [Smin(Y ), Smax(Y )] can reach a
given position Y :

n(Y ) =

∫ Smax(Y )

Smin(Y )

n(Y, S)dS (92)

Smin (resp. Smax)corresponds to the droplet size for which the trajectory originating at XL(resp. XR) is
equal to Y at the given X position:

Smin(Y ) =
Y

V 0KdY ∗

p (XL)
(93)

Smax(Y ) =
Y

V 0KdY ∗

p (XR)
(94)

(95)

n(Y ) = n(Y = 0)

∫ Smax(Y )

Smin(Y )

1

1 − Y

V 0KdS

dS (96)

n(Y ) = n(Y = 0)

[

Y

V 0Kd
ln

(

Smax(Y ) − Y

Smin(Y ) − Y

)

+ Smax(Y ) − Smin(Y )

]

(97)
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8.C. Lagrangian solution for Taylor-Green vortices

The reference solution for the Taylor-Green vortices is chosen to be a lagrangian computation, considering
there is no analytical solution. This lagrangian computation consists in a discrete particle simulation with
a sufficiently high number of particles to achieve converged statistics. The problem to solve is:

dXp

dt
= Up ,

dYp

dt
= Vp

dUp

dt
= −Up − Ug

KdS
,

dVp

dt
= −Vp − Vg

KdS

Ug = cos(2πXp) sin(2πYp) , Vg = − sin(2πXp) cos(2πYp)

for p = 1, Np where Np is the number of particles. The initial number density distribution is a cardinal sinus
in physical space [0, 1]2 and a constant distribution in size space [0, 1]:

n(x, y, S) =
sin

(

πW
√

(x − xc)2 + (y − yc)2
)

πW
√

(x − xc)2 + (y − yc)2
if πW

√

(x − xc)2 + (y − yc)2 ≤ 1 (98)

= 0 if πW
√

(x − xc)2 + (y − yc)2 > 1 (99)

where [xc, yc] is the center of cardinal sinus distribution and W its width. To fulfill this distribution the
rejection method is used. Using a uniform random number generator (here the native one of fortran), it allows

to generate random numbers following any distribution. The random variable are the radius r =
√

x2 + y2,
the angle θ = arctan y

x , and the surface S. As the surface and angle distributions are constant, there is no
need of the rejection algorithm for these variables. For the radius the random draw is made as follow:

1. Uniform random numbers r,θ,S and a test random number T are generated

2. if r max(n(r, S)) ≥ T then the generated particle is conserved

3. if r max(n(r, S)) < T then the generated particle is rejected and a new particle is generated

This algorithm is reproduced until the required number of particles is reached. Then the lagrangian system
of equation is solved in a semi-implicit manner. Here it is considered that during one time step, the gas
velocity is constant. So one can derive an analytical solution for position and velocity:

Up(t + ∆t) = (Up(t) − ug(t)) exp

(

− ∆t

KdSp

)

+ ug(t) (100)

Vp(t + ∆t) = (Vp(t) − vg(t)) exp

(

− ∆t

KdSp

)

+ vg(t) (101)

Xp(t + ∆t) = Xp(t) + ug(t)∆t − KdSp(Up(t) − Ug(t))

(

exp

(

− ∆t

KdSp

)

− 1

)

(102)

Yp(t + ∆t) = Yp(t) + vg(t)∆t − KdSp(Vp(t) − Vg(t))

(

exp

(

− ∆t

KdSp

)

− 1

)

(103)

In this approach, the only source of error is the variation of the gas velocity along the particle trajectory.
The exact solution Ue

p (t) is:

Ue
p (t + ∆t) = Up(t) exp

(

− ∆t

KdSp

)

+

∫ ∆t

0

ug

KdS
exp

(

τ − ∆t

KdSp

)

dτ (104)
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So the absolute error in this approach is:

|Ue
p (t + ∆t) − Up(t + ∆t)| =

∣

∣

∣

∣

∣

∫ ∆t

0

ug

KdS
exp

(

τ − ∆t

KdSp

)

dτ

∣

∣

∣

∣

∣

(105)

≤ 2π

∫ ∆t

0

τ

KdS
exp

(

τ − ∆t

KdSp

)

dτ (106)

≤ 2π

(

∆t − KdS

(

1 − exp

(

− ∆t

KdS

)))

= O(∆t2) (107)

So this method is second order in time and have the great advantage to be unconditionally stable comparing
to the classical euler discretisation.
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