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France

Xavier Boutillon
Laboratory for the Mechanics of Solids, École polytechnique, F-91128 Palaiseau Cedex, France

Summary

Up to around 1.1 kHz, the soundboard of the piano behaves like a homogeneous plate whereas up-
per in frequency, it can be described as a set of waveguides defined by the ribs. In consequence:
a) The acoustical coincidence phenomenon is deeply modified in comparison with that occurring in
homogeneous plates since the dispersion curve of a waveguide can present none, one, or two co-
incidence frequencies. This may result in a nonuniformity of the soundboard radiation in the tre-
ble range, corresponding to the so-called killer octave, where a good sustain is difficult to obtain.
b) The mobility (mechanical admittance) in the direction normal to the soundboard can be synthesised with
only a small number of parameters. It compares well with published measurements (Giordano, JASA, 1998), in
particular the step-like falloff of the local impedance due to the localisation of the waves between ribs.
c) The synthesised mobility has the same features as those which can be de-
rived independantly, according to Skudrzyk (JASA, 1980) and Langley (JSV, 1994).
This approach avoids the detailed description of the soundboard, based on a very large number of param-
eters. It can be used to predict global changes of the driving point mobility, and possibly of the sound radiation
in the treble range, resulting from structural modificationsa.

PACS no. 43.75.Mn, 43.40.Dx

aMost of this work has been done as a doctoral thesis by the first author at the Laboratory for the Mechanics of Solids. Part
of it was presented at the 20th International Symposium on Music Acoustics, held at Sydney and Katoomba, August 2010, and
reported in the short communication [1].

1. Introduction

Like for any extended continuous linear structure, the dy-
namics of the piano soundboard can be described by a su-
perposition of modes. This description may be used up to a
frequency-domain where the response of the structure be-
comes more or less flat, that is where modes are not distin-
guishable one from each other due to the overlapping char-
acter of their individual responses. As frequency increases,
the validity of the modal description becomes more and
more sensitive to the details of the local description of the
structure. This paper deals with the frequency-domain up
to 10kHz. Since the piano soundboard has a modal den-
sity of roughly 0.02, about 200 modes are involved in the
description... Since neither the modal analysis nor the mu-
sical significance give cues that would help to sort out the
huge number of modal parameters or establish a hiererar-
chy between them, the modal description, as such, is of lit-
tle help for dealing with practical questions. However, the
piano soundboard can be described, as a structure, with far
less parameters: elastic constants of the materials, geom-

etry. Given an appropriate modelling, describing the main
features of the dynamics must therefore be possible with
far less parameters than the overall number of degrees of
freedom.

The piano soundboard is essentially an interface be-
tween the strings and the acoustical field. We emphasise
here the string viewpoint and give less attention to the
acoustical field. We propose dynamical descriptors that
are complete but do not deal with the details of the dy-
namics: all global features are taken into account so that
the dynamics can be solved at a given point (mechanical
mobility of the soundboard, as seen by the string) but the
solution does not take into account precise details of the
string location or of the frequency response, for example.
To this end, we have investigated the modal behaviour of
an upright piano soundboard (see Figure 1) by means of
a recently published high-resolution modal analysis tech-
nique [2]. The frequency evolution of the modal density
of the piano soundboard reveals two well-separated vibra-
tory regimes of the structure described in section 2. Conse-
quences in terms of radiation of the soundboard are given.
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Figure 1. Rear view of the upright piano studied with the wood
grain direction added in green and the two bridges (on the other
side of the soundboard) added in red.

Based on the model corresponding to the findings of the
modal analysis, the mobility (or mechanical admittance)
at any point of the soundboard can be synthesised (sec-
tion 3), in the spirit given in the introduction. It is com-
pared to published measurements far from the bridge and
at the bridge, and also to global approaches of the mo-
bility of mechanical structures by Skudrzyk and Langley
(section 4).

2. Two vibratory regimes

2.1. Modal density

The modal density n(f) is a global descriptor of the vi-
bratory behaviour of the soundboard in the mid-frequency
domain. Based on measured modal frequencies ([3]), the
modal density has been estimated as the moving average
of the modal spacing (six successive modes retained for
each estimation). The frequency evolution of n(f) (Fig. 2)
at four points of measurements (see Fig. 1 for the exact lo-
cations) reveals two distinct vibratory regimes of the struc-
ture.
1. Below 1.1 kHz, the four experimental curves are almost

similar. The modal density increases slowly and tends
towards a constant value of ≈ 0.06 modes Hz−1 inde-
pendently of the zones of the board where the measure-
ment is done. This means that the corresponding modes
extend over the whole soundboard: the ribbed board
behaves as a homogeneous plate. The rise in n in the
lowest frequency range is characteristic of constrained

boundary conditions. The theoretical asymptotic modal
density of a isotropic homogeneous plate is:

n∞(f) =
S

2

√

ρ h

D
(1)

where S and h are respectively the plate area and thick-

ness, ρ is the material density, and D =
Eh3

12(1− ν2)
with E and ν, the Young’s modulus and Poisson ratio.
The ribbed zone was replaced by an isotropic thin plate

with surface and surfacic area equal to those of the cor-
responding part of the soundboard. The rigidity of the
homogenised plate D was somewhat arbitrarily taken
so that its dynamical rigidity D/(ρ h) equals that of the
orthotropic spruce plate in the direction of the grain:

Dhom = Dx,wood =
Exh

3

12(1− νxyνyx)
. The mechanical

characteristics of the strips of wood are derived from
measurements made by Berthaut [4] on spruce species
selected for piano soundboards.

2. For frequencies above 1.1 kHz, n(f) decreases signifi-
cantly and is not exactly the same at each location of the
soundboard. The interpretation is that ribs confine wave
propagation: the soundboard behaves as a set of struc-
tural wave-guides. The lowest frequency for which this
phenomenon occurs is such that the inter-rib spacing p
corresponds to a half-wavelength: kx = π/p (see Fig. 1
for the directions of the x- and y-axes), corresponding
roughly to 1.1 kHz in the soundboard case. The modal
density of such a waveguide can be easily calculated.
The red continuous curve in Fig. 2 corresponds to three
times the theoretical modal density of one waveguide
and corresponds closely to the measured modal densi-
ties. The interpretation is that the motion is not strictly
confined to the inter-rib region where it has been gener-
ated but extends over the two adjacent regions with the

same wavenumber kx = π/p. Thus, a given point of the
soundboard "sees" three times more modes than there
are in a single wave-guide and the modal density is also
to be multiplied by 3. Modes can be organised in fam-
ilies, corresponding to the successive transverse modes
(like in pipes) whose wavenumbers are kx,m = mπ/p
with m ∈ N

∗. The asymptotic modal density of any
family (i.e. restricted to one given transverse mode) is
that of a beam of length Ly (ω−1/2 dependency):

n(f) →
f−→+∞

Ly√
2π

√
f

(

ρ h

Dy

)1/4

(2)

As frequency increases, successive families enter into
the modal population of the guide, multiplying step by
step the modal density given by Eq. 2 by 2, 3, etc., as
it will be seen further. The mechanical characteristics
of the waveguide are the one of the interrib orthotropic
spruce plate.

2.2. Nonuniformity of the radiation

The structural wave-guide phenomenon deeply modifies
the acoustical coincidence phenomenon in comparison to
what occurs with a homogeneous plate. A plate radiates ef-
ficiently when the structural wavelength is larger than that
in air (supersonic structural waves). For a thin isotropic
plate, this occurs above a so-called coincidence frequency
given by the intersection of the dispersion curves in the
plate (blue plain and dotted line in Fig. 3) and in air (dah-
dot line in the same figure). Musical consequence: for a
note with a fundamental below 1.1 kHz, the lowest par-
tials radiate less efficiently (and thus, decrease in time less
rapidly) that the upper ones.
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Figure 2. Modal densities of the upright piano sondboard studied.
(•), N, H), (∗) : measurements at four points of the soundboard
(different zones). : theoretical modal density of the homo-
geneous equivalent clamped plate (see § 2.1). : three times
the theoretical modal density of one waveguide for the first trans-
verse mode (1,n).

The dispersion curve of a structural wave-guide is dif-
ferent: it always starts with supersonic structural waves
(efficient acoustical radiation) and may present two, one,
or even no coincidence frequencies, depending on the
value of the wave width p. Accordingly, there will be two,
one, or no change in the radiation efficiency. This creates
a nonuniformity in the radiation of the soundboard in the
treble range of the instrument compared to the low-range
which may explain the well-known difference in timbre.
The timbre is influenced by the relative level of the par-
tials and also by their relative time-decays. For example,
for the key D♯6 having a fundamental frequency around
1245 Hz, the sound level and the damping factor of the
fundamental may be higher (due to the acoustical radia-
tion: supersonic structural waves) than those of the next
two partials (subsonic structural waves).

It may be possible to establish a connection between
the frequency range where the radiation pattern of the pi-
ano is ruled by the wave-guide phenomenon (around 1.1
kHz) and the so-called killer octave mentionned by some
manufacturers. The transition between the two vibratory
regimes of the soundboard and the induced nonuniformity
of the acoustical radiation may explain why the sustain is
so difficult to obtain around the fifth to sixth octave (see
for example comments of the Fandrich Piano Company’s
piano maker [5]).

3. Synthesised mechanical mobility of the

soundboard

The purpose here is to give an expression of the piano
soundboard mechanical mobility (in the direction normal
to the soundboard) depending on a small number of pa-
rameters and valid up to several kHz.
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Figure 3. Relations of dispersion for flexural waves in the ho-
mogeneous isotropic plate (—), in the air (– · –) and for the
two first modes (– –) of the waveguide between the second and
third ribs. • and ◦: discrete values corresponding to the (1, n)-
and (2, n)-modes of the wave-guide, respectively. ⋄: partials of
the D♯6 strings. See also the range of the so-called killer octave
A5-A6 ([880-1760] Hz).

3.1. Analytical expression: sum of the modal contri-

butions

The driving point mobility YA at a point (xA, yA) of a
weakly dissipative vibrating system can be expressed as
the sum of the mobility of single-degree of freedom linear
damped oscillators:

YA(ω) =
VA(ω)

FA(ω)
= iω

+∞
∑

ν=1

Φ2
ν(xA, yA)

mν (ω2
ν + iηνωνω − ω2)

(3)

where mν is the modal mass, ην is the modal loss factor,
ων the modal angular frequency and Φν the modal shape
of the mode ν.

3.2. Synthesis in the low-frequency range

In the low-frequency range, the vibration extends over the
whole soundboard and the modal analysis has shown that
the soundboard was similar to a homogeneous plate in this
frequency range. Whatever the wavenumbers are (depend-
ing on the boundary conditions, for example), the modal
shapes can be approximated locally by the product of two
sines:

Φ(x, y) = sin (2πkxx+ ϕx) sin (2πkyy + ϕy) (4)

Since we do not want to take into account the details
of the geometry, location, etc., we may as well replace the
local dependency of any modal shape by a random distri-
bution:

Φν(xA, yA) = sin (2πα+ ϕ) sin (2πβ + ϕ) (5)

where the random quantities α and β are uniformly dis-
tributed in [0,1].

For this type of modal shape and in order to obtain the
orthogonality in terms of the mass matrix, we consider that
the modal mass of any mode is mν = M/4. For this low-
frequency range, M is the mass of the whole soundboard
(including ribs, bridges and the two fir bars) and almost
equal to 9 kg for our upright piano.
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Figure 4. Dispersion law of the flexural waves in the bridge.

The spacing between successive modal frequencies
fν+1 − fν is considered as the reciprocal of the modal
density, as modelled in §2.1. The first mode is slightly dif-
ferent from one piano to another; a typical value of 70 Hz
was chosen here. In order to account for the non-regularity
of the soundboard geometry, a random proportion of the
inter-modal interval is added to each modal frequency:

fν+1 = fν +
1

n(fν)
[1 + α] (6)

where α is a random quantity uniformly distributed in
[1/2,+1/2].

According to the experimental results of modal analysis,
we took 2% as a uniform value for modal loss factors ην .

3.3. Limit of the low-frequency range

It was shown in § 2.1 that the vibration regime of the
soundboard changes at around 1.1 kHz, that is when kx =
π/p (p: inter-rib spacing). In general, 1.1 kHz should thus
be considered as the limit of the low-frequency regime.
However, this global description must be considered more
carefully when waves are generated locally (by a string,
for example) and that a local singularity of the structure,
namely the bridge, alters significantly the wave-guide dy-
namics. The impedance of the bridge – a slightly curved
bar, almost orthogonal to the direction of the ribs – is
much larger than that of the table (or the ribs) for fre-
quencies higher than the kHz (almost five times greater
at 4kHz). The dispersion curve of transverse waves in the
bridge only, considered as a beam, is shown in Fig. 4. It
appears that bending in the x-direction that would corre-
spond to kx = π/p cannot occur below 4.2 kHz1. Below
this frequency, the bridge prevents the vibration from be-
ing localised in a single waveguide (or in three of them,
with the same kx = π/p); in effect, it makes the sys-
tem plate+bridge+ribs more or less homogeneous up to
≈ 4.2 kHz. As a first approximation, we consider that the
low-frequency regime for the mobility at the bridge ex-
tends up to 4.3 kHz.

1 Surprisingly (or not. . . ) this frequency is the fundamental frequency of
C8, the highest piano note.
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Figure 5. Real part of the mobility far from the bridge. —– : syn-
thesised mobility. – – – : mean value (see §4.1). —— : envelopes
(see §4.2).

3.4. Mobility above 1.1 kHz far from the bridge

The approach is the same as in the low-frequency range.
As explained above, modes above 1.1 kHz are localised
in a region extending over approximately three inter-rib
bands, with kx = π/p. The reasoning on the modal shapes
can thus be repeated verbatim. The mass M is considered
to be three times the mass located between two ribs, i.e.

≈0.7 kg overall. The modal masses are here also mν =
M/4. The modal frequencies are taken as explained in
§ 2.1 for the case of the wave-guide. Although the acousti-
cal radiation regime changes in that frequency region, we
consider that the modal loss factors are the same as in the
low-frequency region. This approximation needs to be re-
considered in a future research, when a global approach,
similar to that performed on the vibrations, will have been
done on the acoustical radiation of the soundboard.

We present in figure 5 the real part of the synthetised
mobility, according to Eq. 3, far from the bridge. The
magnitude of the synthesised impedance is presented in
Fig. 6 and compares very well with published measure-
ments by Giordano [6]. The fall of impedance measured
around 1 kHz is well predicted by our model.

3.5. Mobility above 1.1 kHz at the bridge

As explained in § 3.3, we considered that the bridge ex-
tends the frequency range where the soundboard can be
considered as homogeneous, namely up to 4.2 kHz. Be-
yond that limit, we adopt for the mobility at the bridge
the same approach as for the mobility in a wave-guide, far
from the bridge, as described in § 3.4. There is clearly here
a lack of selfconsistency which, hopefully, will be resolved
by future research.

The synthesised mobility far from the bridge is given in
figure 7) and the magnitude of the synthesised impedance
in Fig. 8. The mean value of the synthesised impedance be-
tween 100 and 1000 Hz is approximately 800 kg s−1. This
value is consistent with the measurements at the bridge
published by Wogram [7] or Giordano [6]: these authors
measured a mean impedance for typical upright piano of
about 103 kg s−1. Moreover, the fluctuations of the mobil-
ity for those frequencies are ±10-15 dB, which is also con-
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Figure 6. Magnitude of the impedance far from the bridge. Top:
synthesised values. Bottom: measurements published by Gior-
dano [6]. – – –: mean value according to Skudrzyk (see §4.1).
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Figure 7. Real part of the mobility at the bridge. —– : synthe-
sised mobility. – – – : mean value (see §4.1). —— : envelopes
(see §4.2).

sistent with measurements published by Conklin [8] for
example. Nevertheless a discrepency on the average value
of the impedance (particularly visible around 1-3kHz, on
figure 8) exists. Our model must be improved in order
to take into account more properly the influence of the
bridge.

4. Comparison with global approaches

4.1. Skudrzyk mean-value theorem

Skudrzyk’s mean-value method (proposed in [9]–[10] and
theorised in its final form in [11]) predicts the mean value
and the asymptotic value of the driving point admittance
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Figure 8. Magnitude of the impedance at the bridge. Top: synthe-
sised values. Bottom: measurements published by Giordano [6].
– – –: mean value according to Skudrzyk (see §4.1).

of a weakly dissipative vibrating structure. This approach
is not frequency limited.

The principal results obtained by Skudrzyk are recalled
here. Skudrzyk’s idea consists in replacing the discrete
summation in equation 3 by a continous integral. After
simplification of the denominator in the hypothesis of
small damping, the transformation of equation 3 takes the
form:

YC =

∫ +∞

0

iωΦ2
ν(xA, yA)

mν ǫν (ω̄2
ν − ω2)

dων = GC + i BC(7)

where ω̄2
ν = ω2

ν(1 + iην), GC = ℜ(YC), BC = ℑ(YC),

and ǫν =
dων

dν
= 2π∆fν =

2π

n(fν)
is the average modal

spacing, written here for angular frequencies. Finally, by
use of the residue theorem, the real part of the driving point
admittance is given by:

ℜ(YA(ω)) →
+∞

GC =
π

2 ǫν M
=

n(f)

4M
(8)

In this frequency domain, the real part of the admittance
depends only on the modal density and the mass of the
structure. For a thin plate, the imaginary part BC vanishes
at high frequency [11]:

YA(ω) →
+∞

GC =
1

4h2

√

3(1− ν2xy)

E ρ
(9)

written here in the isotropic case. GC is equivalent to the
driving point admittance of the infinite plate [12]. It de-
pends neither on the frequency, nor on the surface but only
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on the thickness h and on the elastic constants of plate:
the Young’s modulus E, the Poisson’s ratio νxy , and the
density ρ. By extrapolating towards the low frequencies,
Skudrzyk’s theory predicts the mean value of the admit-
tance: GC = ℜ(YC) is the geometric mean of the values at
resonances Gres and antiresonances Gares.

4.2. Langley’s envelopes calculations

Langley [13] evaluates analytically the envelopes of the
analytical summation given in equation 3. Bidimensional
structures, such as plates, can present repeated resonances,
degeneracy and thus irregular modal spacing. Langley in-
troduces semi-empirical modifications in order to take into
account these irregularities. His approach is derived from
the one of repartition of the resonances in room acoustics.
Under the assumption that the modal spacing conforms to
the Poisson’s law, the amplitudes of resonance frequen-
cies of a bi-dimensional rectangular structure are given by
([13]):

Gres ≈ GC (1 +
1

√
µ2

) coth [(1 +
1

√
µ2

)
πµ2

2
](10)

where the modal overlap factor µ(f) = n(f)ηf (de-
fined as the ratio between the half-power modal band-
width and the average modal spacing) is modified in µ2 =
[1−(L1L2)

−1]µ in order to take into account the repeated
frequencies. µ2 depends on the natural numbersL1 and L2

related to the aspect ratio of the rectangular structure by
L2/L1 = Ly/Lx. Similarly, Langley gives the amplitude
of antiresonances Gares.

4.3. Comparisons

The mean values GC and envelopes Gres and Gares are rep-
resented in figure 5-8. The synthesised quantities displays
the right properties in terms of mean value, asymptot, and
envelopes.

5. Conclusion

The approach presented in this communication avoids the
detailed description of the soundboard, based on a very
large number of parameters. It can be used to predict
global changes of the driving point mobility, and possibly
of the sound radiation in the treble range, resulting from
structural modifications. Synthesised impedances match
well with published measurements. Our model must be
improved in order to take into account more properly the
influence of the bridge. Let’s conclude with a remark by
Conklin [8] concerning the effect of bridges on the tone
production. The design of the soundboard bridges affects

profoundly the tone of a piano. In coupling the strings to

the soundboard, the bridges functions as impedance trans-

formers presenting a higher impedance to the strings than

would exist in the case of direct coupling. [...] If the strings

were terminated directly on the soundboard, the result

would be a louder-than-normal but relatively unpleasant

tone of comparatively short duration. By adjusting the de-

sign of the bridges, the designer of a piano can change the

loudness, the duration, and the quality of the tone, within

a certain range, in order to suit the intended use of the in-

strument. Some more research is clearly needed in order
to put some numbers onto these assertions.
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