
HAL Id: hal-00626831
https://hal.science/hal-00626831v1

Submitted on 27 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fully Dynamic Approach to the Reverse Engineering
of UML Sequence Diagrams

Tewfik Ziadi, Marcos Aurélio Almeida da Silva, Lom Messan Hillah, Mikal
Ziane

To cite this version:
Tewfik Ziadi, Marcos Aurélio Almeida da Silva, Lom Messan Hillah, Mikal Ziane. A Fully Dynamic
Approach to the Reverse Engineering of UML Sequence Diagrams. 16th IEEE International Confer-
ence on Engineering of Complex Computer Systems, ICECCS, Apr 2011, Las Vegas, United States.
pp.107 - 116, �10.1109/ICECCS.2011.18�. �hal-00626831�

https://hal.science/hal-00626831v1
https://hal.archives-ouvertes.fr


A Fully Dynamic Approach to the Reverse Engineering of UML Sequence Diagrams

Tewfik Ziadi∗, Marcos Aurélio Almeida da Silva∗, Lom Messan Hillah∗†, Mikal Ziane∗‡
∗UMR CNRS 7606, LIP6-MoVe

Université Pierre et Marie Curie, Paris, France
†Université Paris Ouest Nanterre La Défense, Nanterre, France

‡Université Paris Descartes, Paris, France
Email: Tewfik.Ziadi@lip6.fr, Marcos.Almeida@lip6.fr, Lom-Messan.Hillah@lip6.fr, Mikal.Ziane@lip6.fr

Abstract—The reverse engineering of behavioral models
consists in extracting high-level models that help understand
the behavior of existing software systems. In the context of
reverse engineering of sequence diagrams, most approaches
strongly depend on the static analysis and instrumentation
of the source code to produce correct diagrams that take
into account control flow structures such as alternative blocks
(“if”s) and repeated blocks (“loop”s). This approach is not
possible with systems for which no source code is available
anymore (e.g. some legacy systems). In this paper, we propose
an approach for the reverse engineering of sequence diagrams
from the analysis of execution traces produced dynamically by
an object-oriented application. Our approach is fully based on
dynamic analysis and reuses the k-tail merging algorithm to
produce a Labeled Transition System (LTS) that merges the
collected traces. This LTS is then translated into a sequence
diagram which contains alternatives and loops. A prototype of
this approach has been tested with a real world application
that has been developed independently from the present work.
Our results show that this approach can produce sequence
diagrams in reasonable time and suggest that these diagrams
are helpful in understanding the behavior of the underlying
application.

Keywords-reverse engineering; UML sequence diagrams;
execution traces

I. INTRODUCTION

Scenario formalisms, such as UML Sequence Diagrams
(SDs), play an important role in software engineering.
They help software engineers understand existing software
through the visualisation of interactions between its ob-
jects [1]. They can also be used in testing activities [2].

When sequence diagrams are either absent or inconsistent
with the current code, as it is the case for many legacy
systems, reverse engineering can be used to extract more
accurate models. Reverse engineering can be done statically
by analyzing the system’s source code or dynamically by
running the program and then analyzing the obtained exe-
cution traces to extract sequence diagrams. As underlined
by [3], dynamic analysis is better suited to the reverse
engineering of sequence diagrams of object-oriented (OO)
systems because of inheritance, polymorphism and dynamic
binding. Indeed, it is difficult to know the dynamic type of
an object reference and which methods are executed by only
relying on the source code.

In this paper, we consider the reverse engineering of
sequence diagrams from execution traces of object-oriented
systems. An execution trace of an object-oriented system
is defined as a sequence of method invocations where each
method invocation represents a communication between two
objects. Figure 1 shows simple traces related to the well
known ATM (Automatic Teller Machine) [4] example. While
the mapping between method invocations in traces and
messages in sequence diagrams is straightforward, two major
challenges can be identified:

• Control flow detection. The first challenge concerns
the detection of control structures in traces and their
mapping to interaction operators in sequence diagrams.
This mainly concerns the detection of the two main
interaction operators included in UML sequence dia-
grams: alt and loop.

• Multiple execution traces merging. The second chal-
lenge concerns merging execution traces. Indeed, the
behavior of a system is often described by multiple
execution traces that correspond to different scenarios.

Several approaches have been proposed for the reverse
engineering of sequence diagrams regarding these two chal-
lenges (e.g., [3], [5], [6]). In [3] a complete review of
these approaches is discussed. However, existing approaches
often use static analysis by instrumenting the source code
to identify if method invocations in traces are related to
loop blocks in the source code. Although this solution
ensures that the detected loop conforms to the source code,
it can not be reused in the context where the source code
is not available. Another limit related to existing work
on the reverse engineering of sequence diagrams concerns
the second challenge. Indeed these approaches [5]–[7] only
extract a sequence diagram from a single execution trace and
it is not clear how they deal with multiple execution traces.

In this paper, we revisit the problem of reverse engineering
sequence diagrams by a new approach which is completely
based on dynamic analysis and which does not use any
source code analysis. To tackle the two main challenges
previously presented, our approach proposes to represent
execution traces as Labeled Transition Systems (LTS). This
enables us to define merging execution traces as merging



LTSes using well founded algorithms such as k-tail [8].
To extract a sequence diagram from the obtained merged
LTS, we propose to identify sequence diagrams as regular
expressions. This enables us to generate them from the
obtained LTS and ensure that they are trace equivalent [9],
[10].

In order to validate our approach, a prototype implemen-
tation was developed for Java systems. This prototype is
able to observe a real Java system at runtime and to build
a set of execution traces from it. From this set of execution
traces it builds an LTS that merges the traces. From this LTS,
it extracts a sequence diagram that depicts the interactions
among the objects.

The paper is organized as follows. Section II introduces
a background on reverse engineering of UML SD from
execution traces and gives an overview of our approach.
Section III deals with the extraction of LTS from execution
traces. Section IV introduces our approach for sequence
diagram extraction. Section V reports on first experiments
using our prototype. Finally, Section VI discusses related
work and Section VII concludes this paper.

II. BACKGROUND AND APPROACH

Our goal in this work is to extract UML sequence dia-
grams from multiple execution traces for an object-oriented
system using only dynamic analysis. As underlined by [3],
dynamic analysis is better suited to the reverse engineering
of sequence diagrams of object-oriented systems because
of inheritance, polymorphism and dynamic binding. Before
presenting an overview of our approach, we present in
this section models that we used to formalize the reverse
engineering of UML sequence diagrams. First, we define
execution traces for object-oriented systems. Then we for-
malize sequence diagrams as regular expressions on method
invocations.

A. Execution Traces for Object-Oriented Systems
Performing dynamic analysis of a object-oriented system

starts by collecting an execution trace from its execution.
An execution trace is defined as a sequence of method
invocations. In the following, we formally define method
invocations and traces.

Definition 1 (Method invocation): A Method invocation
is a triplet 〈caller,method, callee〉 where:
• caller is the caller object, expressed in the form

“object : class”
• method is the invoked method of the callee object,

expressed in the form “methodName()”.1

• callee is the callee object, expressed in the form
“object : class”

A method invocation is displayed in the trace as: label.
caller | method | callee. Labels are only used to
simplify further references in the rest of the text.

1In this paper we do not consider method parameters in our invocations.

In what follows, we introduce a definition of equivalence
of method invocations which is necessary to formalize traces
merging.

Definition 2 (Equivalence between method invocations):
The method invocations inv1 =
〈caller1,method1, callee1〉 and inv2 =
〈caller2,method2, callee2〉 are equivalent if and only
if:
• The two objects caller1 and caller2 are equivalent.

Two objects are equivalent if they are instances of
the same class and are created (using the constructor
invocation) with the same values of parameters.

• method1 and method2 concern the same method and
have the same signature. 2

• callee1 and callee2 are two equivalent objects.
To define equivalence between method invocations in our

approach, we implemented in the Traces Collection step
described below a component collecting all invocations of
constructors in all execution traces. This allows us to check
equivalence between objects using the rule defined in the
definition above.

Definition 3 (Trace): A Trace is a sequence of method
invocations inv1, inv2, ..invn.

Figure 1 illustrates an example of two execution traces for
the well known ATM (Automatic Teller Machine) example.
These traces show method invocations between four objects,
instances of the classes: UserIHM, ATM, Consortium,
and Bank. The first trace illustrates the execution of the
ATM system where the user entered a bad password in
two attempts and then decides to cancel the operation.
The second trace shows a sequence of method invocations
where the user cancels the operation after the password
request. Note that these two traces also illustrate equivalence
between method invocations as we defined above. Indeed, all
method invocations labeled by the same label are equivalent
events if they are related to different traces. For instance,
all invocations labeled "inv3" in Trace 1 and Trace 2 are
equivalent because the objects involved in these invocations
are equivalent (they are created with the same values of
parameters).

Note that in this paper we focus on sequential traces.
If a concurrent system is considered, the traces collected
from different threads are sequentially collected in a unique
execution trace as described in [11]. In addition, in the pre-
sented example, we only presented synchronous invocations.
However, our approach also supports asynchronous ones.

B. Sequence diagrams (SD)

A SD shows how a set of objects interact with each
other. The diagrams considered in this paper follow the

2In this paper we do not consider method parameters in our invocations.
However we only deal with parameters of constructors, i.e., the new()
method for Java systems in the perspective of defining equivalence between
objects.



Execution trace 1
Execution trace 2

Execution trace 3

...

Traces Merging Sequence Diagram 
ExtractionTraces Collection

st1

st5

st8

st2
st6

st9

st3

st7

st2

Merged LTS Extracted Sequence Diagram

1 2 3

Output of a step

Input of a step

Legend

Traces

Figure 2. Overview of our approach.

Trace 1
inv1.  atm:ATM | displayMainScreen() | user:UserIHM
inv2.  user:UserIHM | insertCard() | atm:ATM
inv3.  atm:ATM | requestPassword() | user:UserIHM
inv4.  user:UserIHM | enterPassword() | atm:ATM
inv5.  atm:ATM | verifyAccount() | cons:Consortium
inv6.  cons:Consortium | verifyAccountWithBank() | bank:Bank
inv7.  bank:Bank | badBankPassword() | cons:Consortium
inv8.  cons:Consortium | badPassword() | atm:ATM
inv3.  atm:ATM | requestPassword() | user:UserIHM
inv4. user:UserIHM | enterPassword() | atm:ATM
inv5. atm:ATM | verifyAccount() | cons:Consortium
inv6. cons:Consortium | verifyAccountWithBank() | bank:Bank
inv7. bank:Bank | badBankPassword() | cons:Consortium
inv8. cons:Consortium | badPassword() | atm:ATM

Trace 2
inv1.  atm:ATM | displayMainScreen() | user:UserIHM
inv2.  user:UserIHM | insertCard() | atm:ATM
inv3.  atm:ATM | requestPassword() | user:UserIHM
inv9.  user:UserIHM | cancel() | atm:ATM
inv10.  atm:ATM | cancelledMessage() | user:UserIHM
inv11.  atm:ATM | ejectCard() | user:UserIHM
inv12.  atm:ATM | requestTakeCard() | user:UserIHM

inv9.  user:UserIHM | cancel() | atm:ATM
inv10.  atm:ATM | cancelledMessage() | user:UserIHM
inv11.  atm:ATM | ejectCard() | user:UserIHM
inv12.  atm:ATM | requestTakeCard() | user:UserIHM

Figure 1. Sample execution traces for the ATM example.

UML2 metamodel [12]. Figure 3 shows an example of a
sequence diagram which describes the interactions of two
objects, instances respectively of classes UserIHM, and
ATM. The vertical lines represent lifelines for the given
objects. Interactions between objects, displayed as horizontal
arrows, are called messages in the UML2 specification.
Each message corresponds to a method invocation. Messages
located on the same lifeline are ordered from top to bottom.

Interactions in sequence diagrams can be composed using
operators. UML2 considers several operators among which
we only kept the main ones, which also allows us to
identify sequence diagrams as regular expressions: seq (for
sequential composition), alt (for alternative) and loop (for
iteration). Figure 3 illustrates the use of the alt operator.
Notice that a sequential composition can also be implicitly

Figure 3. Sequence Diagram of checking account in the ATM example.

given by the relative order of two messages in a diagram. For
example, in Figure 3, the message displayMainScreen
is specified before the message insertCard. This is
equivalent to a sequential composition between these two
messages3.

More formally, inspired by our precedent work [4], SDs
can be defined as algebraic expressions where atomic terms
are method invocations and operators are the three operators
mentioned above.

Definition 4 (Sequence Diagram (SD)): A sequence dia-
gram is an expression of the form:

D ::= M | (D altD) | (D seqD) | loop (D)

3Note that, this interpretation is correct because the seq operator specifies
a weak sequential which is different from the strict sequential composi-
tion [12].



where M is a method invocation.

For instance, let us consider the sequence diagram in
Figure 3. It can be represented by the following expression:

D = inv1 seq inv2 seq inv3 seq (inv4 alt
inv5 )

where the invis are defined as:
• inv1 = (inv1. atm:ATM:|displayMainScreen()

| user:userIHM),
• inv2 = (inv2. user:UserIHM|insertCard()

| atm:ATM),
• inv3 = (inv3. atm:ATM|requestPassword

| user:UserIHM),
• inv4 = (inv4. user:UserIHM|enterPassword()

| atm:ATM),
• inv5 = (inv5. user:UserIHM|cancel()

| atm:ATM).

This definition of sequence diagrams is isomorphic to
regular expressions (RE) as shown below and will be used in
section IV. Indeed, the seq operator in SDs is equivalent to
the classical concatenation operator in REs, alt is equiva-
lent to choice operator, and loop is equivalent to the Kleene
star operator in REs. The alphabet of the corresponding
regular expression is the set of method invocations of the
sequence diagram.

Definition 5 (Isomorphism between REs and SDs): The
mapping from REs into SDs [·] : RE 7→ SD is defined as
follows:
• [S] = S, iff S is a method invocation
• [(S1 + S2)] = ([S1] alt [S2])
• [(S1 · S2)] = ([S1] seq [S2])
• [(S)∗] = loop [S]

The set of traces associated with a sequence diagram is
defined straightforwardly as the set of traces recognized
by the corresponding regular expression. This morphism
is also obviously an isomorphism as all the equations are
symmetrical.

C. Overview of Our Approach

The proposed approach consists of three steps outlined
in Figure 2: the collection of the execution traces from a
running system, the generation of a LTS that represents the
merge of the input execution traces and finally the extraction
of the sequence diagram.

Step 1: Traces Collection: This step consists in ob-
serving the interaction of a set of known objects in various
scenarios. For each scenario, an execution trace is captured
by creating a method invocation for each method call from
one object to another. There are multiple strategies to collect
execution traces [13]. This can include instrumentation of
virtual machines or the use of a customized debugger.
In Section V, we present the strategy we used to collect
execution traces for Java systems.

S0 S1 S2 S3 S4 S5 S6 S7
inv1 inv2 inv3 inv4 inv5 inv6 inv7

LTS of Trace 1

LTS of Trace 2

S8

inv8

S9
inv3

S10S11S12S13S14
inv4inv5inv6inv7inv8

S0' S1' S2' S3' S4' S5' S6'

S7'

inv1 inv2 inv3 inv9 inv10 inv11

inv12

S16 S17 S18

inv9
inv11

S15
inv10 inv12

Figure 4. LTSes generated from traces of Figure 1.

Step 2: Traces Merging: In the second step of our
approach we propose a technique, based on merging Labeled
Transition Systems, to merge the traces collected in the
previous step. This step is detailed in Section III.

Step 3: Sequence Diagram Extraction: This final step
generates a sequence diagram using the results of Step 2.
This step is detailed in Section IV.

III. MERGING TRACES

The second step of our approach deals with merging
traces. Indeed, as mentioned in the previous section, one
of the major challenges to reverse engineering sequence
diagrams is to merge the multiple execution traces to identify
common and variable method invocations throughout the
input traces. To the best of our knowledge, most of existing
work [5]–[7] only extracts a sequence diagram from a single
execution trace and consequently this challenge of merging
traces is not reported. For instance, Briand et al.’s approach
only generates what the authors called partial sequence
diagrams which depict the method invocations within a
specific execution trace [3].

Independently from the reverse engineering of sequence
diagrams, the challenge of merging traces is well identi-
fied in the grammar inference domain where several well
defined techniques were proposed [14]. The main idea of
these techniques is to represent each input trace using a
labeled transition system and then define trace merging as
LTS merging. However, the grammar inference techniques
are often used to infer only LTSes that specify protocols
of components. In this section we propose to reuse and
adapt one of these grammar inference techniques (the k-tail
algorithm [8]) to merge execution traces in the perspective
of extracting sequence diagrams. This includes two steps:
Initialization and Merging.

A. Initialization

In the first step, one LTS for each captured execution
trace is generated. The LTS that we generate is a variant
of classical finite automata where transitions are labeled
by method invocations. Figure 4 illustrates two examples



of LTSes in which final states are represented by double
circled states and the initial state is represented as a full
small circle. Below we formally define our LTSes:

Definition 6 (LTS): An LTS is a 4-tuple 〈S, T, s0, sF 〉,
where S is a set of states, T is a finite set of transitions
between states in S, s0 is the initial state, and sF is the set
of final states. A transition t ∈ T is a 3-tuple 〈s, inv, s′〉,
where s, s′ ∈ S are the source and destination of the
transition respectively, and inv is the method invocation
labelling the transition.

This transformation from one execution trace to an LTS is
straightforward. For each method invocation in the trace, a
transition and a state are created in the LTS. The generated
LTS will be a sequence of states, and will contain a single
final state, which corresponds to the state reached when all
method invocations in the trace have proceeded.

B. Merging

In this second step, the LTSes of the different traces are
merged to obtain a single LTS that merges the initial traces.
This is done by using the k-tail algorithm [8]. The algorithm
starts by initializing a new LTS which has a new common
initial state and merges the initial state of all input LTSes.

The k-tail algorithm takes as input the new initial LTS,
then, iteratively merges “k-equivalent” states. Two states s1
and s2 are “k-equivalent” if and only if they are defined
by the same set of paths of method invocations with length
k. Before defining k-equivalence between states, we define
the notion of k-paths.

Definition 7 (k-Paths): Given a state s in a LTS M, a
set of paths with length k, called k-paths(s), is defined
as a set {path1, ...pathr}, where pathi is a sequence
of method invocations in M, i.e., pathi = st1st2...stk
such that there exists a sequence of transitions
(s, inv1, s1)(s1, inv2, s2)...(sk−1, invk, sk) in the LTS
M.

The notion of k-equivalence between states is defined as
follows:

Definition 8 (k-equivalence): Two states s1 and s2 in the
LTS M are k-equivalent if and only if k-paths(s1) =
k-paths(s2).

For instance, the states s14 in the LTS of Trace 1 and
s3’ in the LTS of Trace 2 (see Figure 4) are 2-equivalent
because:

2-paths(s14) = 2-paths(s3’) = {
inv9inv10 }

The k-tail algorithm iteratively identifies sets of k-
equivalent states, i.e., states with the same k-paths, to be

S0

S1

inv1: atm:user.displayMainScrean()

S2

inv2: user:atm.inserCard()

S3

inv3: atm:user.requestPassword()

S4

inv4: user:atm.enterPassword()

S5

inv9: user:atm.cancel()

S6

inv5: atm:consortium.verifyAccount()

S7

inv10: atm:user.cancelledMessage()

S8

inv6: cons:bank.verifyAccountWithBank()

S9

inv11: atm:user.ejectCard()

S10

inv7: bank:consortium.badBankPassword()

S11

inv12: atm:user.requestTakeCard()

inv8: cons:atm.badPassword()

Figure 5. The extracted final LTS from the traces of Figure 1.

merged. Merging k-equivalent states s1 and s2 for example
is realized by removing s1 and adding all transitions enter-
ing or exiting s1 to s2. The process of merging k-equivalent
states is repeated until there are no more such states. The
obtained LTS being an automaton, classical determinization
and minimization techniques are applied to obtain a rigorous
deterministic finite state machine.

Figure 5 illustrates the LTS obtained from merging
LTSes of Figure 4 using the k-tail with k = 2 and after
minimization and determinization. Note that for the sake of
clarity we labeled method invocations in transitions of the
LTS of Figure 5 in the form caller:callee.method.
For instance, atm:user.displayMainScreen
is equivalent to the method invocation: atm:ATM
|displayMainScreen()| user:userIHM.

The LTS obtained at the end of this step is thus an LTS
that depicts the behavior specified in the input traces but
allows other behaviors. The next step consists in extracting
a SD from this LTS. Our approach for this extraction is
presented in the next section.

IV. SEQUENCE DIAGRAMS EXTRACTION

This section presents our approach to extract a SD from
the LTS generated by the k-tail algorithm presented in
the previous section. Our approach consists in reusing the



known solutions for the problem of Converting Deterministic
Finite Automata to Regular Expressions to obtain a regular
expression (RE) that is equivalent to the LTS [9], [10]. The
obtained regular expression is then transformed into a SD
by a simple mapping defined in Section II.

Neumann [10] presents a survey of existing techniques
for converting finite automata to RE. We adopted the
technique defined by Brzozowski in [15]. This technique is
based on the creation of a system of equations of regular
expressions with one variable for each state in the LTS. This
system is then solved to the variable associated with initial
state via straightforward substitution based on the Arden’s
theorem [16]. The solution for this system of equations is
a regular expression. For instance, the regular expression
obtained by this method over the LTS of Figure 5 is :

RELTSfinal
= ((inv1·inv2·inv3·inv4·inv5·inv6·inv7·

(inv8·inv3·inv4·inv5·inv6·inv7)∗
inv8·inv3·inv9·inv10·inv11·inv12) +
(inv1·inv2·inv3·inv9·inv10·inv11·inv12))

where the invi are the labels of method invocations used
in Figure 1.

The obtained RE can be mapped into a SD ( see Defini-
tion 5).

The application of our mapping 5 on this regular
expression results in the following sequence diagram whose
expression is depicted as follows:

SDLTSfinal
=
[
RELTSfinal

]
= alt(inv1 seq inv2

seq inv3 seq inv4 seq inv5 seq inv6 seq
inv7 seq loop (inv8 seq inv3 seq inv4
seq inv5 seq inv6 seq inv7) seq inv8 seq
inv3 seq inv9 seq inv10 seq inv11 seq
inv12), (inv1 seq inv2 seq inv3 seq inv9
seq inv10 seq inv11 seq inv12))

The sequence diagram corresponding to the expression
SDLTSfinal

is illustrated in Figure 6. Analyzing the obtained
sequence diagram of Figure 6 shows that combining LTS
merging and the mapping of LTS to regular expressions
allows us to detect interaction operators. Indeed, in addition
to the seq interaction operator, the sequence diagram of
Figure 6 illustrates the detection of two other operators:
alt and loop. The loop operator is extracted because
the initial output traces contain a repetition of method
invocations related to the situation where a bad password
is entered by users.

V. PRELIMINARY EVALUATION & DISCUSSION

This section presents and discusses our preliminary evalu-
ation of the approach presented in this paper. The two main
hypotheses of this section are that (i) the presented approach
is implementable as part of a state of the art programming

Figure 6. The extracted sequence diagram.

environment; and (ii) it may be used to extract sequence
diagrams from a real application.

In order to test the first hypothesis, a prototype implemen-
tation of the approach was developed as a chain of Model-to-
Model (M2M) transformations based on the Eclipse Model-
ing Framework (EMF) environment. This prototype is able
to observe a real system at runtime and to build a set of
execution traces from it. From this set of execution traces
it builds a state machine that abstracts the traces and from
it a sequence diagram that depicts the interactions among
the objects. The second hypothesis was tested by the means
of a case study using a medium-sized scientific prototype
of a distributed peer-to-peer modeling environment that has
been developed independently from the present prototype.
Our results show that we could successfully extract sequence
diagrams that abstract the traces obtained by observation.

This section is organized as follows: Section V-A de-



scribes the prototype and details its architecture and Sec-
tion V-B uses the prototype to build both behavioral models
from the case study application.

A. Prototype Implementation

Our prototype implementation was developed in the Java
programming language and contains 97 classes, with a total
of 5.164 lines of code4. Approximately 50% of the code was
automatically generated by Eclipse EMF.

The architecture of this prototype is organized into the 5
components described below.
• Execution Trace Collector. This component is respon-

sible for observing the running system. To be able
to perform this observation, this component uses a
customized debugger to collect execution traces for
Java systems. This component captures the execution
traces and builds the related LTSes. The mapping from
execution traces to LTSes was implemented as a M2M
transformation.

• LTS merger. This component takes the LTSes gener-
ated by the previous component as input and merges
them into a single LTS. This is done using the k-tail
algorithm explained in Section III.

• Determinizer & Minimizer. We observed that the au-
tomaton generated by k-tail is non-deterministic (NFA).
Therefore, in order to improve its readability, the
present component uses the Graph library JFLAP 4.0
to determinize and minimize it. The output finite state
machine (FSM) is the state machine generated by our
approach.

• Equation System Generator & Simplifier. This com-
ponent generates a system of equations of regular
expressions from the FSM produced by the previous
component. A M2M transformation generates an initial
system of equations that is simplified until a solution
is found. This implementation follows the method of
Brzozowski [15].

• Sequence Diagram Generator. Finally, a transfor-
mation maps the regular expression that is the solu-
tion of the system generated by the last component
into a sequence diagram. This mapping was described
in Section IV. To visualise sequence diagrams, this
component uses the Quick Sequence Diagram Editor
(SDEDIT)5.

B. Case Study

This section describes the case study that was run with the
prototype implementation described in the previous section.
A medium-sized research application that has been devel-
oped independently from the present prototype was chosen

4This includes the JFLAP 4.0 Graph library that was used to minimize
and determinize LTSes.

5http://sdedit.sourceforge.net/

as the system to be observed. It features the Praxis Peer-To-
Peer Collaboration Environment6 which contains more than
500 classes and interfaces and approximately 25.000 lines
of code.

This application was chosen because it contains a non-
trivial set of components and interactions. It consists of a
set of plug-ins to the Eclipse IDE that extend it with the
possibility of peer-to-peer edition of EMF models. More
specifically, this tool focuses on the management of the
inconsistencies that may appear in such distributed environ-
ment. The inconsistency management is delegated to a SWI-
Prolog inference engine. It is then responsible for keeping
an up-to-date copy of the model currently being edited, and,
under request from the Eclipse plug-ins, deliver an inconsis-
tency report. This component, called SWIPrologBRidge, is
therefore one of the core pieces of the Praxis Peer-To-Peer
Collaboration Environment.

This component masks the complexity of the communi-
cation with the Prolog engine that runs in another virtual
machine, and in another system process. That is why, even
though the number of possible test cases being very reduced,
the obtained sequence diagrams depict the interaction be-
tween many different objects.

We separated this case study into two parts. In the first
one, we wanted to evaluate the performance of our approach.
In order to do that, we defined 8 test cases and stress tested
our approach with them. In the second part, we analyzed
the obtained sequence diagrams to assess their utility in
understanding the dynamic behavior of the application.

1) Performance Evaluation: 8 test cases were constructed
in order to represent the most significative cases of utiliza-
tion of this component. The corresponding execution traces
were collected and the corresponding LTS and sequence
diagram were constructed automatically by our prototype.
The value of k for the k-tail was kept to 2 and the number
of execution traces varied from 1 to 8 in each test case. The
values of the following variables were recorded: time spent
by each component, number of observed objects, number
of messages in the sequence diagram and number of states
and transitions in the LTS. We also recorded the number of
the detected interaction operators. We particularly recorded
the number of alternatives (alt) and loops in the obtained
sequence diagrams. Figure 7 outlines the results of this
experiment.

The time spent in each component was not divided
equally. In average, 4% of the time was spent in merging
the input LTSes; 81% was spent in the determinization
and minimization step and 14% was spent in the equation
simplification. The time spent in the transformation of the
execution traces into the input LTSes and of the equations
into the final sequence diagram were negligible. The time of
generation of the behavioral models went from 0.65s in the

6Available at http://meta.lip6.fr/?page_id=17.



Number of execution traces 1 2 3 4 5 6 7 8
Test case Running Time (ms) 202 265 558 457 508 578 672 669
Merging Time (ms) 15 62 105 401 459 528 461 501
Determinization & Minimization (ms) 631 1096 2213 4574 4905 8505 7499 16889
Equation System (ms) 3 512 483 781 725 1184 1911 1438
Objects 5 5 6 6 6 7 7 7
Messages in Sequence Diagram 22 71 103 1269 942 2561 6706 2437
Alternatives in Sequence Diagram 0 2 3 12 8 13 33 23
Loops in Sequence Diagram 1 6 9 156 116 335 836 276
States in LTS 17 18 18 21 21 25 24 30
Transitions in LTS 17 20 21 27 27 34 35 49

Figure 7. Results of our case study.

simplest case to 18.87s in the most complicated one. This
shows that the approach is utilizable in the context of a real
application.

2) Obtained Sequence Diagrams Evaluation: Figure 8
illustrates the Sequence Diagram obtained from one of the
execution test cases. This test case requires the interaction
between five objects:

1) The PrologExecutionEngine represents the interface
of the Praxis environment with the SWIPrologBridge
component.

2) The Query object encapsulates the code necessary to
send queries to the Prolog process and get their result.

3) The ProcessHolder encapsulates the SWIProlog pro-
cess that runs in another process in the operating
system.

4) The ReaderThread encapsulates the raw communi-
cation with the Prolog inference engine thread, and
makes sure that the data read through the Query object
is valid.

5) The WindowsValidator encapsulates the validation of
the strings returned from the Prolog inference engine.

This diagram represents a test case in which a PrologExe-
cutionEngine is created and then a set of queries are sent to
the SWIPrologBridge. Note that in the produced sequence
digram, constructors are displayed as CreateObject()
rather than the classical Java’s new() invocation. This
display is only imposed by the SDEDIT tool that we used to
display SDs. Notice that the internal interaction between the
objects cannot be deduced from the source code. This lies
in the fact that the source code, in particular the Java source
code, does not contain any information about the types of
the objects used at runtime (like WindowsValidator, which
would change in another operating system). The source
code does not include a clear description of the interaction
between different threads either.

When comparing the produced diagram with the source
code of the original application7, we notice that the obtained

7The original source code of the application is not presented here for the
sake of brevity.

diagram correctly represents the set of traces obtained as
input. However, there are some inconsistencies. For example,
there is no call to writePhrase() and readPhrase() before
the loop that continually sends queries to the Prolog engine.

This comes from the fact that our approach generalizes
a set of extracted traces into a behavioral model. More
specifically, this behavioral model is a sequence diagram
that is an over-approximation of the input traces. Therefore,
the completeness and correctness of the generated sequence
diagram w.r.t. the system under analysis is hard to evaluate
because it depends on the completeness of the input traces
w.r.t. the same system. Even though these imperfections do
not hinder the understandability of the diagram, an extension
of the present work that is able to combine the present
approach with a static analysis in order to rule out these
imperfections is envisaged as future work.

VI. RELATED WORK

A complete survey of the reverse engineering of sequence
diagrams is presented in [3]. In the same article, Briand et
al. propose an approach to the reverse engineering of UML
sequence diagrams for distributed Java applications. While
our approach generates a sequence diagram by generalizing
a collection of execution traces using the k-tail algorithm,
their approach only considers one execution trace. Addition-
ally, they discover interaction operators using source code
analysis and manual instrumentation, which is a drawback
when the source code is not available.

Different techniques for the reverse engineering of se-
quence diagrams have been published [5]–[7]. Unlike our
work, however, all consider one execution trace without try-
ing to generalize from it and do not support the identification
of UML interaction operators (alt, loop,...).

Many approaches for protocol state machine extraction
reuse the k-tail algorithm [11], [17]–[20]. However, the
main difference between their use of this algorithm and
ours is in the nature of the input traces and consequently
in the obtained LTSes. Indeed, while our LTSes used as
input of the k-tail show the interaction among the system’s
objects, the used models in [17]–[19] only show the behavior



Figure 8. The extracted Sequence Diagram for the Praxis Peer-To-Peer Collaboration Environment.

of a single component through its interaction with a user
via its graphical interface. We consider that our present
results constitute a further validation of the k-tail family of
algorithms in the context of reverse engineering of sequence
diagrams.

As underlined by Lo & Khoo in [21], LTS merging
algorithms such as k-tail can generate imprecise and over-
generalized models. This produces many false negative or
false positive behaviors. In the future, we plan to investigate
the use of the new variants of the k-tail algorithm that
avoid such problems of imprecision. We plan in particular
to investigate the use of the algorithms of [11], [20]. Notice
that the integration of these new algorithms will only modify
the Traces Merging step in our approach.

VII. CONCLUSION AND FUTURE WORK

This paper proposes an approach to the reverse engi-
neering of sequence diagrams from execution traces for
object-oriented software. Our approach is completely based
on a dynamic analysis. That is a very important point
since in some contexts, such as in legacy or in highly

secured systems, source code may not be available and some
analyses should be carried out anyway without having the
source code.

Our approach reuses the well-known k-tail algorithm to
extract a generalized labeled transition system from a set of
observed execution traces. This LTS is then translated into a
sequence diagram by an intermediary mapping into regular
expressions. Notice that even though the k-tail algorithm
is well known and used for LTS inference, to the best of
our knowledge, no other work uses it to extract sequence
diagrams.

Beyond offering a systematic and semantically well
founded method, our approach 1) detects interaction opera-
tors in sequence diagrams, and 2) merges multiple execution
traces to obtain a single sequence diagram.

A prototype implementation of our approach was devel-
oped as a chain of Model-to-Model (M2M) transformations
using the Eclipse EMF Environment. Notice that we used a
customized debugger to easily collect execution traces, but
that we do not depend on it directly. The same traces could
be obtained by other strategies such as instrumenting the



virtual machine, for example. This prototype was validated
on a case study using a real application that has been
developed independently from the present work. Our results
show that the approach performs reasonably when it comes
to analyzing real code and that the generated diagrams
(although not perfect, because they are obtained from input
traces without seeing the code) are helpful in the allowing
an engineer understand the behavior of the system.

Our future work spans three main directions: 1) improving
our generalization power by integrating other algorithms
such as [11], [20], [22]. Notice that this only affects the
second step in the approach; 2) considering other UML
interaction operators such as the par operator [12] which is
mandatory to support multi-threaded systems; 3) evaluating
our approach on bigger object-oriented systems to assess its
scalability and usability in more complicated cases. In ad-
dition, we aim at evaluating the definition of equivalence of
objects that were used to implement our merging algorithm.
For instance, we considered that two objects are equivalent
if they are instances of the same class and were created with
the same values, but this definition should be evaluated on
larger case studies.

ACKNOWLEDGMENT

This work was partly funded by the ANR Project Proteus.

REFERENCES

[1] C. Bennett, D. Myers, M.-A. Storey, D. M. German, D. Ouel-
let, M. Salois, and P. Charland, “A survey and evaluation of
tool features for understanding reverse-engineered sequence
diagrams,” J. Softw. Maint. Evol., vol. 20, no. 4, pp. 291–315,
2008.

[2] S. Pickin, C. Jard, T. Jéron, J.-M. Jézéquel, and Y. Le Traon,
“Test synthesis from UML models of distributed software,”
IEEE Transactions on Software Engineering, vol. 33,
no. 4, pp. 252–268, Apr. 2007. [Online]. Available:
http://www.irisa.fr/triskell/publis/2007/Pickin07a.pdf

[3] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed Java
Software,” IEEE Tran. on Sof. Eng., vol. 32, no. 9, pp. 642–
663, 2006.

[4] T. Ziadi, L. Helouet, and J.-M. Jezequel, “Revisiting statechart
synthesis with an algebraic approach,” in ICSE 04, ser. ACM,
Edinburgh, UK, May 2004, pp. 242–251.

[5] O. Rainer and S. Thomas, “Javavis: Automatic program
visualization with object and sequence diagrams using the
java debug interface (JDI),” in Revised Lectures on Software
Visualization. London, UK: Springer-Verlag, 2002, pp. 176–
190.

[6] D. Lo, S. Maoz, and S.-C. Khoo, “Mining modal scenario-
based specifications from execution traces of reactive sys-
tems,” in ASE 02, 2007, pp. 465–468.

[7] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. In-
oue, “Extracting Sequence Diagram from execution trace of
Java Program,” in 8th International Workshop on Principles
of Software Evolution (IWPSE’05). IEEE Computer Society,
2005.

[8] A. Biermann and J. Feldmann, “On the synthesis of finite state
machines from samples of their behavior,” IEEE Transactions
on Computer, vol. 21, pp. 592–597, 1972.

[9] S. Kleene, “Representation of events in nerve nets and
finite automata,” Ann. of Math. Studies, vol. 34, pp. 3–40,
1956.

[10] C. Neumann, “Converting deterministic finite automata to
regular expressions,” 2005.

[11] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic Gener-
ation of Software Behavioral Models,” in Int. Conf. on Sof.
Eng., ICSE’08, Leipzig, Germany, 2008.

[12] OMG, Unified Modeling Language: Superstructure - Version
2.3 formal/2010-05-05, OMG, 2010. [Online]. Available:
http://www.uml.org/

[13] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehen-
sion through dynamic analysis,” IEEE Trans. Software Eng.,
vol. 35, no. 5, pp. 684–702, 2009.

[14] J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” ACM Transactions on
Software Engineering and Methodology, vol. 7, pp. 215–249,
1998.

[15] J. A. Brzozowski, “Derivatives of regular expressions,” J.
ACM, vol. 11, no. 4, pp. 481–494, 1964.

[16] D. N. Arden, “Delayed-logic and finite-state machines,” in
SWCT 1961). Washington, DC, USA: IEEE CS, 1961, pp.
133–151.

[17] S. P. Reiss and M. Renieris, “Encoding program executions,”
in ICSE 2001, 2001, pp. 221–230.

[18] J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extrac-
tion of object-oriented component interfaces,” in ISSTA 02,
2002, pp. 218–228.

[19] T. Xie, “Software component protocol inference,” Univ. of
Washington Dep.of Comp.Sc.and Eng., Seattle, WA, General
Examination Report, June 2003. [Online]. Available: http:
//www.csc.ncsu.edu/faculty/xie/publications/generals-tao.pdf

[20] D. Lo, L. Mariani, and M.Pezzè, “Automatic steering of
behavioral model inference,” in ESEC/SIGSOFT FSE, 2009,
pp. 345–354.

[21] D. Lo and S.-C. Khoo, “Quark: Empirical assessment of
automaton-based specification miners,” in WCRE ’06. Wash-
ington, DC, USA: IEEE CS, 2006, pp. 51–60.

[22] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S., “Reverse
engineering state machines by interactive grammar inference,”
in WCRE 2007. IEEE Computer Society, 2007, pp. 209–218.


