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LÊ-GREUEL TYPE FORMULA FOR THE EULER

OBSTRUCTION AND APPLICATIONS

NICOLAS DUTERTRE AND NIVALDO G. GRULHA JR.

Abstract. The Euler obstruction of a function f can be viewed as a
generalization of the Milnor number for functions defined on singular
spaces. In this work, using the Euler obstruction of a function, we give
a version of the Lê-Greuel formula for germs f : (X, 0) → (C, 0) and
g : (X, 0) → (C, 0) of analytic functions with isolated singularity at the
origin. Using this formula and results of Loeser, we also present an
integral formula for the Euler obstruction of a function, generalizing a
formula of Kennedy.

1. Introduction

Let f : (Cn, 0) → (C, 0) be an analytic function defined in a neighborhood
of the origin. The Milnor fiber is the set f−1(δ) ∩ Bε, where δ is a regular
value of f , Bε is the euclidian ball in C

n of radius ε and where 0 < |δ| ≪
ε ≪ 1. Many research works have been devoted to the study of the topology
of the Milnor fiber. When f has an isolated critical point at the origin,
Milnor [25] proved that f−1(δ) ∩ Bε had the homotopy type of a wedge of
spheres of dimension n− 1. The number of spheres appearing in this wedge
is called the Milnor number of f and is denoted by µ(f). Milnor showed

that µ(f) was equal to the topological degree of the map ∇f
‖∇f‖ : Sε → S1,

where Sε and S1 are the euclidian spheres in C
n of radius ε and 1. Therefore

µ(f) is equal to the dimension of the C-algebra
OCn,0

( ∂f
∂x1

,...,
∂f
∂xn

)
, where OCn,0 is

the algebra of holomorphic germs at the origin, and also to the number of
critical points of a Morsification of f .

Milnor’s results were extended to the case of a complete intersection with
isolated singularity F = (f1, . . . , fk) : (Cn, 0) → (Ck, 0), 1 < k < n, by
Hamm [13], who proved that the Milnor fiber F−1(δ)∩Bε, 0 < |δ| ≪ ε ≪ 1,
had the homotopy type of a wedge of µ(F ) spheres of dimension n− k. Lê
[17] and Greuel [12] proved the following formula:

µ(F ′) + µ(F ) = dimC

OCn,0

I
,
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where F ′ : (Cn, 0) → (Ck−1, 0) is the map with components f1, . . . , fk−1 and

I is the ideal generated by f1, . . . , fk−1 and the (k × k)-minors ∂(f1,...,fk)
∂(xi1

,...,xik
) .

If we denote by ΓF the set of points where all these minors vanish then the
above formula can be reformulated as follows:

µ(F ′) + µ(F ) = ICn,0({F ′ = 0},ΓF ),

where ICn,0(−,−) is the intersection multiplicity at the origin in C
n. When

F ′ = f : (Cn, 0) → (C, 0) and F = (f, l), where l is a generic linear function,
the above formula is also called Teissier’s lemma [31]. Note also that in this
situation µ(f, l) is equal to the first Milnor-Teissier number µ′(f), namely
the Milnor number of f restricted to a generic hyperplane.

Using Teissier’s lemma and tools from integral geometry, Langevin [16]
gave an integral formula for the sum µ(f)+µ′(f). In [15], Kennedy carried on
Langevin’s work and established an integral formula for the Milnor number
µ(f) (see also [22] for other integral formulas).

Our aim in this paper is to generalize some of the previous results to
the singular case, namely to replace C

n with an equidimensional reduced
complex analytic space X. There exist several generalizations of the Milnor
number of a function defined on a singular space. We will use the local Euler
obstruction of a function defined in [4].

Let us recall first that the local Euler obstruction at a point p of an
algebraic variety X, denoted by EuX(p), was defined by MacPherson. It is
one of the main ingredients in his proof of Deligne-Grothendieck conjecture
concerning existence of characteristic classes for complex algebraic varieties
[23]. An equivalent definition was given in [5] by J.-P. Brasselet and M.-H.
Schwartz, using stratified vector fields.

The computation of local Euler obstruction is not so easy by using the
definition. Various authors propose formulae which make the computation
easier. Lê D.T. and B. Teissier provide a formula in terms of polar multi-
plicities [20].

In the paper [3], J.-P. Brasselet, Lê D. T. and J. Seade give a Lefschetz
type formula for the local Euler obstruction. The formula shows that the
local Euler obstruction, as a constructible function, satisfies the Euler con-
dition relatively to generic linear forms. A natural continuation of the result
is the paper by J.-P. Brasselet, D. Massey, A. J. Parameswaran and J. Seade
[4], whose aim is to understand what is the obstacle for the local Euler ob-
struction to satisfy the Euler condition relatively to analytic functions with
isolated singularity at the considered point. That is the role of the so-called
local Euler obstruction of f , denoted by Euf,X(0).

In this paper we introduce the number Bf,X(0) = EuX(0) − Euf,X(0).
When f is linear and generic, it gives EuX(0), hence Bf,X(0) can be viewed
as a generalization of the Euler obstruction, as it was first remarked by
Jean-Paul Brasselet. Using the number Bf,X(0), we give a version of the
Lê-Greuel formula for germs f : (X, 0) → (C, 0) and g : (X, 0) → (C, 0)
of analytic functions with isolated singularity at the origin (Theorem 6.1).
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Namely we prove:

Bf,X(0)− Bf,Xg (0) = (−1)dIX,0(X
f ,Γq

f,g),

where Xf = X ∩ f−1(0), Xg = X ∩ g−1(0) and IX,0(X
f ,Γq

f,g) is the inter-

section multiplicity at the origin of Xf and the following polar set:

Γq
f,g =

{
x ∈ Vi | rank(df|Vq

(x), dg|Vq
(x)) < 2

}
.

Here Vq = Xreg is the set of smooth points of X.
When g is a generic linear function, we obtain a singular version of

Teissier’s lemma (Theorem 6.5). As a corollary of this singular Teissier’s
lemma, we express Bf,X(0) in terms of relative polar multiplicities (Theo-
rem 6.6), in the spirit of the formula of Lê and Teissier mentioned above.

Then, using this last result and results of Loeser [22], we also present an
integral formula for Bf,X(0), generalizing the formula of Kennedy (Corollary
6.7) and a Gauss-Bonnet formula for the Milnor fiber of f (Corollary 6.8).

The paper is organized as follows : in Section 2, we recall some facts
about the Euler obstruction, the Euler obstruction of a function and the
Euler obstruction of a 1-form. In Section 3, we give the definition of the
complex link, the definition of the radial index of a 1-form and a useful
relation due to Ebeling and Gusein-Zade between these two notions and
the Euler obstruction of a 1-form (Theorem 3.6). Section 4 is devoted to
the proof of an auxiliary lemma in subanalytic geometry. In Section 5, we
present two versions of the Lê-Greuel formula (Theorem 5.2 and Corollary
5.3) that we will use in the proof of our main results. We also give an
application to 1-parameter deformations (Corollary 5.6). Section 6 contains
the main results mentioned above.

Our result concern functions with isolated singularities, it would be inter-
esting to try to generalize them to the non-isolated singularity case, using
for instance technics of D. Massey [24].

The authors are grateful to M.A.S Ruas for suggesting them the appli-
cation to 1-parameter deformations, and to J.-P. Brasselet for his careful
reading and for suggesting some improvements in this paper.

2. The Euler obstruction

The Euler obstruction was defined by MacPherson [23] as a tool to prove
the conjecture about existence and unicity of the Chern classes in the singu-
lar case. Since that the Euler obstruction was deeply investigated by many
authors as Brasselet, Schwartz, Sebastiani, Lê, Teissier, Sabbah, Dubson,
Kato and others. For an overview about the Euler obstruction see [1, 2].
Let us now introduce some objects in order to define the Euler obstruction.

For all this paper, let us consider the following setting. Let (X, 0) ⊂
(CN , 0) be an equidimensional reduced complex analytic germ of dimension
d in an open set U ⊂ C

N . We consider a complex analytic Whitney strati-
fication {Vi} of U adapted to X and we assume that {0} is a stratum. We
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choose a small representative of (X, 0) such that 0 belongs to the closure of
all the strata. We will denote it by X and we will write X = ∪q

i=0Vi where
V0 = {0} and Vq = Xreg, the set of smooth points of X. We will assume that

the strata V0, . . . , Vq−1 are connected and that the analytic sets V0, . . . , Vq−1

are reduced. We will set di = dimVi for i ∈ {1, . . . , q} (note that dq = d).
Let G(d,N) denote the Grassmanian of complex d-planes in C

N . On the
regular part Xreg of X the Gauss map φ : Xreg → U×G(d,N) is well defined
by φ(x) = (x, Tx(Xreg)).

Definition 2.1. The Nash transformation (or Nash blow up) X̃ of X is
the closure of the image Im(φ) in U × G(d,N). It is a (usually singular)

complex analytic space endowed with an analytic projection map ν : X̃ → X

which is a biholomorphism away from ν−1(Sing(X)) .

The fiber of the tautological bundle T over G(d,N), at the point P ∈
G(d,N), is the set of the vectors v in the d-plane P . We still denote by T
the corresponding trivial extension bundle over U ×G(d,N). Let T̃ be the

restriction of T to X̃, with projection map π. The bundle T̃ on X̃ is called
the Nash bundle of X.

An element of T̃ is written (x, P, v) where x ∈ U , P is a d-plane in C
N

based at x and v is a vector in P . We have the following diagram:

T̃ →֒ T
π ↓ ↓
X̃ →֒ U ×G(d,N)
ν ↓ ↓
X →֒ U.

Let us recall the original definition of the Euler obstruction, due to Mac-
Pherson [23]. Let z = (z1, . . . , zN ) be local coordinates in C

N around {0},
such that zi(0) = 0. We denote by Bε and Sε the ball and the sphere
centered at {0} and of radius ε in C

N . Let us consider the norm ‖z‖ =√
z1z1 + · · ·+ zNzN . Then the differential form ω = d‖z‖2 defines a section

of the real vector bundle T (CN )∗, cotangent bundle on C
N . Its pull back

restricted to X̃ becomes a section denoted by ω̃ of the dual bundle T̃ ∗. For
ε small enough, the section ω̃ is nonzero over ν−1(z) for 0 < ‖z‖ ≤ ε. The

obstruction to extend ω̃ as a nonzero section of T̃ ∗ from ν−1(Sε) to ν−1(Bε),

denoted by Obs(T̃ ∗, ω̃) lies in H2d(ν−1(Bε), ν
−1(Sε);Z). Let us denote by

Oν−1(Bε),ν−1(Sε) the orientation class in H2d(ν
−1(Bε), ν

−1(Sε);Z).

Definition 2.2. The local Euler obstruction of X at 0 is the evaluation of

Obs(T̃ ∗, ω̃) on Oν−1(Bε),ν−1(Sε), i.e:

EuX(0) = 〈Obs(T̃ ∗, ω̃),Oν−1(Bε),ν−1(Sε)〉.
An equivalent definition of the Euler obstruction was given by Brasselet

and Schwartz in the context of vector fields [5].
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We will need in this paper some results about the Euler obstruction where
this invariant is computed using hyperplane sections. The idea of studying
the Euler obstruction using hyperplane sections appears in the works of
Dubson and Kato, but the approach we follow here is that of [3, 4].

Theorem 2.3 ([3]). Let (X, 0) and {Vi} be given as before, then for each
generic linear form l, there is ε0 such that for any ε with 0 < ε < ε0 and
t0 6= 0 sufficiently small, the Euler obstruction of (X, 0) is equal to:

EuX(0) =

q∑

i=1

χ
(
Vi ∩Bε ∩ l−1(δ)

)
· EuX(Vi),

where χ denotes the Euler-Poincaré characteristic, EuX(Vi) is the value of
the Euler obstruction of X at any point of Vi, i = 1, . . . , q, and 0 < |δ| ≪
ε ≪ 1.

We define now an invariant introduced by Brasselet, Massey, Parameswa-
ran and Seade in [4], which measures in a way how far the equality given in
Theorem 2.3 is from being true if we replace the generic linear form l with
some other function on X with at most an isolated stratified critical point
at 0. So let f : X → C be a holomorphic function which is the restriction
of a holomorphic function F : U → C. A point x in X is a critical point
of f if it is a critical point of F|V (x), where V (x) is the stratum containing
x. We will assume that f has an isolated singularity (or an isolated critical
point) at 0, i.e that f has no critical point in a punctured neighborhood of
0 in X. In order to define the new invariant the authors constructed in [4] a
stratified vector field on X, denoted by ∇Xf . This vector field is homotopic
to ∇F |X and one has ∇Xf(x) 6= 0 unless x = 0.

Let ζ̃ be the lifting of ∇Xf as a section of the Nash bundle T̃ over X̃

without singularity over ν−1(X∩Sε). Let O(ζ̃) ∈ H2n
(
ν−1(X∩Bε), ν

−1(X∩
Sε)
)
be the obstruction cocycle to the extension of ζ̃ as a nowhere zero

section of T̃ inside ν−1(X ∩Bε).

Definition 2.4. The local Euler obstruction Euf,X(0) is the evaluation of

O(ζ̃) on the fundamental class of the pair (ν−1(X ∩Bε), ν
−1(X ∩ Sε)).

The following result compares the Euler obstruction of the space X with
that of a function on X [4].

Theorem 2.5. Let (X, 0) and {Vi} given as before and let f : (X, 0) →
(C, 0) be a function with an isolated singularity at 0. For 0 < |δ| ≪ ε ≪ 1
we have:

Euf,X(0) = EuX(0) −
(

q∑

i=1

χ
(
Vi ∩Bε ∩ f−1(δ)

)
· EuX(Vi)

)
.

Using the notation defined in the introduction, we have:
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Bf,X(0) =

q∑

i=1

χ
(
Vi ∩Bε ∩ f−1(δ)

)
· EuX(Vi).

In [29], J. Seade et al. show that the Euler obstruction of f is closely
related to the number of Morse points of a Morsification of f , as it is stated
in the next proposition.

Proposition 2.6 ([29]). Let f : (X, 0) → (C, 0) be the germ of an analytic
function with isolated singularity at the origin. Then:

Euf,X(0) = (−1)dnreg,

where nreg is the number of Morse points in Xreg in a stratified morsification
of f .

Let us consider the Nash bundle T̃ on X̃ . The corresponding dual bundles

of complex and real 1-forms are denoted, respectively, by T̃ ∗ → X̃ and

T̃ ∗
R
→ X̃ .

Definition 2.7. Let (X, 0) and {Vα} as before. Let ω be a (real or complex)
1-form on X, i.e., a continuous section of either T ∗

R
C
N |X or T ∗

C
N |X . A

singularity of ω in the stratified sense means a point x where the kernel of
ω contains the tangent space of the corresponding stratum.

This means that the pull back of the form to Vα vanishes at x. Given
a section η of T ∗

R
C
N |A, A ⊂ V , there is a canonical way of constructing

a section η̃ of T̃ ∗
R
|Ã, Ã = ν−1A, such that if η has an isolated singularity

at the point 0 ∈ X (in the stratified sense), then we have a never-zero

section η̃ of the dual Nash bundle T̃ ∗
R
over ν−1(Sε ∩ X) ⊂ X̃ . Let o(η) ∈

H2d(ν−1(Bε∩X), ν−1(Sε∩X);Z) be the cohomology class of the obstruction

cycle to extend this to a section of T̃ ∗
R
over ν−1(Bε∩X). Then we can define

(c.f. [10]):

Definition 2.8. The local Euler obstruction of the real differential form
η at an isolated singularity is the integer EuX,0 η obtained by evaluating
the obstruction cohomology class o(η) on the orientation fundamental cycle
[ν−1(Bε ∩X), ν−1(Sε ∩X)].

MacPherson’s local Euler obstruction EuX(0) corresponds to taking the

differential ω = d‖z‖2 of the square of the function distance to 0.
In the complex case, one can perform the same construction, using the

corresponding complex bundles. If ω is a complex differential form, section
of T ∗

C
N |A with an isolated singularity, one can define the local Euler ob-

struction EuX,0 ω. Notice that, as explained in [6] p.151, it is equal to the
local Euler obstruction of its real part up to sign:

EuX,0 ω = (−1)dEuX,0Re ω.

This is an immediate consequence of the relation between the Chern classes
of a complex vector bundle and those of its dual. Remark also that when
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we consider the differential of a function f , we have the following equality
(see [10]):

EuX,0 df = (−1)dEuf,X(0).

We note that the idea to consider the (complex) dual Nash bundle was
already present in [27], where Sabbah introduces a local Euler obstruction
EǔX(0) that satisfies EǔX(0) = (−1)dEuX(0). See also [28, sec. 5.2].

3. The complex link and the radial index

In this section, we recall the definition of the complex link and of the
radial index. We also present a formula of Ebeling and Gusein-Zade which
expresses the radial index of a 1-form in terms of Euler characteristics of
complex links and Euler obstructions.

The complex link is an important object in the study of the topology of
complex analytic sets. It is analogous to the Milnor fibre and was studied
first in [18]. It plays a crucial role in complex stratified Morse theory (see
[11]) and appears in general bouquet theorems for the Milnor fibre of a
function with isolated singularity (see [19, 30, 32]). It is related to the
multiplicity of polar varieties and also the local Euler obstruction (see [7, 8,
20, 21]). Let us recall briefly its definition. Let M be a complex analytic
manifold equipped with a Riemannian metric and let Y ⊂ M be a complex
analytic variety equipped with a Whitney stratification. Let V be a stratum
of Y and let p be a point in V . Let N be a complex analytic submanifold
of M which meets V transversally at the single point p. By choosing local
coordinates on N , in some neighborhood of p we can assume that N is an
Euclidian space C

k.

Definition 3.1. The complex link of V in Y is the set denoted by lkC(V, Y )
and defined as follows:

lkC(V, Y ) = Y ∩N ∩Bε ∩ l−1(δ),

where l : N → C is a generic linear form and 0 < |δ| ≪ ε ≪ 1.

The fact that the link of a stratum is well-defined, i.e independent of all
the choices made to define it, is explained in [21, 8, 11]. It is also independent
of the embedding of the analytic variety Y (see [21]). Now let H be a smooth
analytic hypersurface of M transverse to Y . The intersections of H with
the stratum of Y give a Whitney stratification of Y ∩H. We will need the
following lemma.

Lemma 3.2. Let V be a stratum of Y such that V ∩ H 6= ∅. We have
lkC(V, Y ) = lkC(V ∩H,Y ∩H).

Proof. Let p be a point in V ∩ H. Let N ⊂ H be a complex analytic
manifold of dimension dimH−dim(V ∩H) that intersects V ∩H transversally
at p in H. Since H intersects V transversally, we have:

dim H − dim(V ∩H) = dim M − 1− (dim V − 1) = dim M − dim V.
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HenceN intersects V transversally at p inM as well. We conclude remarking
that Y ∩N = Y ∩H ∩N because N ⊂ H. �

In [10], Ebeling and Gusein-Zade established relations between the local
Euler obstruction of a 1-form, its radial index and Euler characteristics of
complex links. The radial index is a generalization to the singular case of the
Poincaré-Hopf index. In order to define this index, let us consider first the
real case. Let Z ⊂ R

n be a closed subanalytic set equipped with a Whitney
stratification {Sα}α∈Λ. Let ω be a continuous 1-form defined on R

n. We
say that a point P in Z is a zero (or a singular point) of ω on Z if it is a
zero of ω|S, where S is the stratum that contains P . In the sequel, we will
define the radial index of ω at P , when P is an isolated zero of ω on Z. We
can assume that P = 0 and we denote by S0 the stratum that contains 0.

Definition 3.3. A 1-form ω is radial on Z at 0 if, for an arbitrary non-
trivial subanalytic arc ϕ : [0, ν[→ Z of class C1, the value of the form ω on
the tangent vector ϕ̇(t) is positive for t small enough.

Let ε > 0 be small enough so that in the closed ball Bε, the 1-form has
no singular points on Z \ {0}. Let S0, . . . , Sr be the strata that contain 0 in
their closure. Following Ebeling and Gusein-Zade, there exists a 1-form ω̃

on R
n such that :

(1) The 1-form ω̃ coincides with the 1-form ω on a neighborhood of Sε.
(2) The 1-form ω̃ is radial on Z at the origin.
(3) In a neighborhood of each zero Q ∈ Z ∩Bε \ {0}, Q ∈ Si, dim Si =

k, the 1-form ω̃ looks as follows. There exists a local subanalytic
diffeomorphism h : (Rn,Rk, 0) → (Rn, Si, Q) such that h∗ω̃ = π∗

1ω̃1+
π∗
2ω̃2 where π1 and π2 are the natural projections π1 : R

n → R
k and

π2 : Rn → R
n−k, ω̃1 is a 1-form on a neighborhood of 0 in R

k with
an isolated zero at the origin and ω̃2 is a radial 1-form on R

n−k at
0.

Definition 3.4. The radial index indRZ,0 ω of the 1-form ω on Z at 0 is the
sum:

1 +
r∑

i=0

∑

Q|ω̃|Si
(Q)=0

indPH(ω̃, Q, Si),

where indPH(ω̃, Q, Si) is the Poincaré-Hopf index of the from ω̃|Si
at Q and

where the sum is taken over all zeros of the 1-form ω̃ on (Z \ {0}) ∩Bε. If
0 is not a zero of ω on Z, we put indRZ,0 ω = 0.

A straightforward corollary of this definition is that the radial index satis-
fies the law of conservation of number (see Remark 9.4.6 in [6] or the remark
before Proposition 1 in [10]).

Let us go back to the complex case. As in Section 2, (X, 0) ⊂ (CN , 0)
is an equidimensional reduced complex analytic germ of dimension d in an
open set U ⊂ C

N . Let ω be a complex 1-form on U with an isolated singular
point on X at the origin.
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Definition 3.5. The complex radial index indCX,0 ω of the complex 1-form

ω on X at the origin is (−1)d times the index of the real 1-form given by
the real part of ω.

Let us denote ni = (−1)d−di−1
(
χ
(
lkC(Vi,X)

)
− 1
)
, where {Vi} is the

Whitney stratification of (X, 0) considered in Section 2. In particular for a

open stratum Vi of X, lkC(Vi,X) is empty and so ni = 1. Let us define the
Euler obstruction EuY,0(ω) to be equal to 1 for a zero-dimensional variety Y .
Under this conditions Ebeling and Gusein-Zade proved in [10] the following
result which relates the radial index of a 1-form to Euler obstructions.

Theorem 3.6. Let (X, 0) ⊂ (CN , 0) be the germ of a reduced complex an-
alytic space at the origin, with a Whitney stratification {Vi}, i = 0, . . . , q,
where V0 = {0} and Vq is the regular part of X. Then

indCX,0 ω =

q∑

i=0

ni · EuVi,0
ω.

4. A lemma in subanalytic geometry

Let Y ⊂ R
n be a closed subanalytic set equipped with a locally finite

subanalytic Whitney stratification {Si}α∈Λ: Y = ∪Si. Let ρ : Rn → R be a
smooth subanalytic function such that ρ−1(a) intersects Y transversally (in
the stratified sense). Then the following partition:

Y ∩ {ρ ≤ a} =
⋃

Si ∩ {ρ < a} ∪
⋃

Si ∩ {ρ = a},

is a Whitney stratification of the closed subanalytic set Y ∩ {ρ ≤ a}.
Let θ : R

n → R be another smooth subanalytic function such that
θ|Y ∩{ρ≤a} admits an isolated critical point p in Y ∩ {ρ = a} which is not
a critical point of θ|Y . If S denotes the stratum of Y that contains p, this
implies that:

∇θ|S(p) = λ(p)∇ρ|S(p),

with λ(p) 6= 0.

Definition 4.1. We will say that p ∈ Y ∩ {ρ = a} is an outward-pointing
(resp. inward-pointing) critical point for θ|Y ∩{ρ≤a} if λ(p) > 0 (resp. λ(p) <
0).

Now let us suppose that 0 ∈ Y and that {0} is a single stratum of Y .
Let θ : U ⊂ R

n → R be a smooth subanalytic function defined on an open
neighborhood U of 0. We assume that θ|U\{0}∩S has no critical point.

Let ρ : Rn → R be defined by ρ(x) = x21 + · · · + x2n. It is known that
for ε > 0 small enough, the sphere Sε = ω−1(ε2) intersects Y transversally.
Let pε be a critical point of θ|Y ∩Sε

. This means that there exists λ(pε) such
that:

∇θ|S(p
ε) = λ(pε)∇ρ|S(p

ε),
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where S is the stratum containing pε. Note that λ(pε) 6= 0 since θ has no
critical point on U \ {0} ∩ S.

Lemma 4.2. If ε is small enough then θ(pε) 6= 0. Furthermore pε is
outward-pointing (resp. inward-pointing) for θ|Y ∩Bε

if and only if θ(pε) > 0
(resp. θ(pε) < 0).

Proof. If for ε small enough, there is a critical point pε of θ|Y ∩Sε such that
θ(pε) = 0 then by the Curve Selection Lemma, there is a smooth subanalytic
curve p : [0, ν[→ Y , p(0) = 0, such that p(t) is a critical point of θ|Y ∩S‖p(t)‖

and g(p(t)) = 0. Since the stratification is locally finite, we can assume that
p(]0, ν[) is included in a stratum S. Hence, we have:

0 = (θ ◦ p)′(t) = 〈∇θ(p(t)), p′(t)〉 = λ(p(t))〈∇ρ|S(p(t)), p
′(t)〉,

because p′(t) lies in Tp(t)S. Therefore (ρ ◦ p)′(t) = 0 and ρ ◦ p is constant.
But ρ(p(t)) tends to 0 as t tends to 0 so ρ ◦ p is zero everywhere, which is a
contradiction.

Now let us assume that λ(pε) > 0. By the Curve Selection Lemma, there
exists a smooth subanalytic curve p : [0, ν[→ Y passing through pε such that
p(0) = 0, p(]0, ν[) is included in a stratum S and for t 6= 0, p(t) is a critical
point of θ|S∩S‖p(t)‖

with λ(p(t)) > 0. Therefore we have:

(θ ◦ p)′(t) = λ(p(t))〈∇ρ|S(p(t)), p
′(t)〉 = λ(p(t))(ρ ◦ p)′(t).

But (ρ◦p)′ > 0 for otherwise (ρ◦p)′ ≤ 0 and ρ◦p would be decreasing. Since
ρ(p(t)) tends to 0 as t tends to 0, this would imply that ρ ◦ p(t) ≤ 0, which
is impossible. Hence we can conclude that (θ ◦ p)′ > 0 and θ ◦ p is strictly
increasing. Since θ ◦ p(t) tends to 0 as t tends to 0, we see that θ ◦ p(t) > 0
for t > 0. Similarly if λ(pε) < 0 then θ(pε) < 0. �

5. Critical points and topology of Milnor fibres

In this section we show Lê-Greuel type formulae (Theorem 5.2 and Corol-
lary 5.3) and we give applications for sets with isolated singularity.

As in section 2, (X, 0) ⊂ (CN , 0) is an equidimensional reduced complex
analytic germ of dimension d in an open set U , equipped with a Whitney
stratification {Vi} such that 0 belongs to the closure of all the strata. We
write X = ∪q

i=0Vi where V0 = {0} and Vq = Xreg. We assume that the

strata V0, . . . , Vq−1 are connected and that the analytic sets V0, . . . , Vq−1

are reduced. We set di = dimVi for i ∈ {1, . . . , q}. Let f : X → C be a
holomorphic function which is the restriction of a holomorphic function F :
U → C. We assume that f has an isolated singularity (or an isolated critical
point) at 0, i.e that f has no critical point in a punctured neighborhood of
0 in X. This implies that Xf = X ∩ f−1(0) is a Whitney stratified set of

dimension d−1, equipped with the stratification ∪q
i=0Vi∩f−1(0) = ∪q

i=0V
f
i .

Let us consider another holomorphic function g : X → C, restriction of
a holomorphic function G : U → C. We also assume that g has an isolated
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singularity at 0 so that Xg = X ∩ g−1(0) = ∪q
i=0Vi ∩ g−1(0) = ∪q

i=0V
g
i is a

Whitney stratification of Xg.

Lemma 5.1. The function g : Xf → C has an isolated singularity at 0 if
and only if the function f : Xg → C has an isolated singularity at 0.

Proof. Let Σg
|Xf

denote the critical set of g : Xf → C. By the Curve

Selection Lemma, it is easy to prove that Σg
|Xf

lies in g−1(0). Let x be a

point in Σg
|Xf

different from 0. Then if V (x) denotes the stratum of X that

contains x, we have:

dG|V (x)(x) = λ(x)dF|V (x)(x).

Since x is not a critical point of g, λ(x) is different from 0 and:

dF|V (x)(x) =
1

λ(x)
dG|V (x)(x).

This last equality means that x is a critical point of f|Xg . �

For all i ∈ {1, . . . , q}, we denote by Γi
f,g the following relative polar set:

Γi
f,g =

{
x ∈ Vi | rank(dF|Vi

(x), dG|Vi
(x)) < 2

}
,

and we make the assumption that IX,0(X
f ,Γi

f,g) < +∞, where IX,0(−,−)

denotes the intersection multiplicity at the origin. This implies that the only
critical point of g|Xf is 0 and, by the previous lemma, that f|Xg has also an
isolated singularity at 0. Furthermore, it also implies that the number of
critical points of g|X∩f−1(δ)∩B̊ε

is finite for 0 < |δ| ≪ ε ≪ 1. Let us denote by

pi1, . . . , pini
the critical points of g|Vi∩f−1(δ)∩B̊ε

and for each j ∈ {1, . . . , ni},
let us denote by µij the Milnor number of g|Vi

at pij. Our aim is to relate the

µij’s to the topology of the Milnor fibresX∩f−1(δ)∩Bε andXg∩f−1(δ)∩Bε.

Theorem 5.2. For 0 < |δ| ≪ ε ≪ 1, we have:

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
Xg ∩ f−1(δ) ∩Bε

)
=

q∑

i=1

(−1)di−1
ni∑

j=1

µij

(
1− χ

(
lkC(Vi,X)

))
.

Proof. Let us consider first the case when X is a curve. In this situation,
X has two stratum {0} and X \ {0} and there is only one polar set Γq

f,g

which is exactly the stratum X \ {0}. The critical points of g|X∩f−1(δ)∩Bε

are exactly the points in X ∩ f−1(δ) ∩ Bε and they have Milnor number 1.
Since Xg ∩ f−1(δ) ∩ Bε is empty as well as lkC(X \ {0},X), the result is
easy.

For the general case, we apply stratified Morse theory to the real and
imaginary parts of g. Let us write g = g1 +

√
−1g2. Using the Cauchy-

Riemann equations and local coordinates, it is not difficult to see that
g1|Xf : Xf → R and g2|Xf : Xf → R have the same critical points as
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g|Xf : Xf → C. Hence g1|Xf and g2|Xf have an isolated singularity at 0.
Similarly, g1|X∩f−1(δ)∩B̊ε

and g2|X∩f−1(δ)∩B̊ε
have the same critical points as

g|X∩f−1(δ)∩B̊ε
.

Let us study the critical points of g1 on the stratified set X ∩f−1(δ)∩Bε.
We can distinguish between two kinds of critical points : those lying in
X ∩ f−1(δ)∩ B̊ε and those lying in X ∩ f−1(δ)∩Sε. Applying Lemma 4.2 to
g1|Xf

and taking δ sufficiently close to 0, we can say that the critical points

of the second type satisfy the following properties:

(1) they lie outside {g1 = 0},
(2) they are outward-pointing for g1|X∩f−1(δ)∩Bε

in {g1 > 0},
(3) they are inward-pointing for g1|X∩f−1(δ)∩Bε

in {g1 < 0}.
Let g̃1 : X ∩ f−1(δ) ∩ Bε → R be a stratified Morse function close to g1.
Applying Theorem 2.3 of [11] to the submersion R

N × R
N → R

N × R
N ,

(x, v) 7→ G1(x) +
∑N

i=1 xivi, where G = G1 +
√
−1G2, we can take g̃1 to be

the restriction of a real-analytic function.
For each i ∈ {1, . . . , q}, j ∈ {1, . . . , ni}, let {qkij}, k ∈ {1, . . . ,mij}, be the

set of critical points of g̃1|Vi
lying close to pij. For each critical point qkij,

let Mg̃1(q
k
ij) be the local negative Milnor fibre of g̃1 at qkij. It is defined as

follows:

Mg̃1(q
k
ij) = X ∩ f−1(δ) ∩Bε̃(q

k
ij) ∩ g̃1

−1
(
g̃1(q

k
ij)− ν

)
,

where 0 < ν ≪ ε̃ ≪ 1 and Bε̃(q
k
ij) is the ball of radius ε̃ centered at qkij.

Let α̃ be a regular value of g̃1 close to 0. Applying Theorem 3.1 in [9], we
have:

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 ≥ α̃}

)
− χ

(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 = α̃}

)
=

q∑

i=1

ni∑

j=1

∑

k:g̃1(qkij)>α̃

1− χ
(
Mg̃1(q

k
ij)
)
.

Here we remark that the critical points of g̃1 lying in {g̃1 > α̃} ∩ Sε do
not appear in the above equality. This is due to the fact that, since g̃1
is close to g1 and α close to 0, these critical points are outward-pointing
g̃1|X∩f−1(δ)∩Bε

. For such critical points, the local negative Milnor fibre has

Euler characteristic 1, as explained in [9, Lemma 2.1].
For each critical point qkij, let λk

ij be the Morse index of g̃1|Vi
at qkij.

Since X ∩ f−1(δ) is complex analytic, the normal Morse data of g̃1 at qkij
does not depend on g̃1 nor on qkij and has the homotopy type of the pair(
Cone(lkC(Vi ∩ f−1(δ),X ∩ f−1(δ)), lkC(Vi ∩ f−1(δ),X ∩ f−1(δ))

)
(see [11,

Corollary 1, p. 166]). Moreover, since g̃1|X∩f−1(δ)∩Bε
is a Morse function,

the local Morse data at a critical point is the product of the tangential Morse
data and the normal Morse data (see [11, Section 3.7, p. 65]). Hence, we
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can write:

1− χ
(
Mg̃1(q

k
ij)
)
= (−1)λ

k
ij

(
1− χ

(
lkC(Vi ∩ f−1(δ),X ∩ f−1(δ)

))
.

Therefore, we have:

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 ≥ α̃}

)
− χ

(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 = α̃}

)
=

q∑

i=1

ni∑

j=1

∑

k:g̃1(qkij)>α̃

(−1)λ
k
ij

(
1− χ

(
lkC(Vi ∩ f−1(δ),X ∩ f−1(δ)

))
.

Applying the same method to −g̃1 and using the fact that the strata have
even real dimension, we obtain:

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 ≤ α̃}

)
− χ

(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 = α̃}

)
=

q∑

i=1

ni∑

j=1

∑

k:g̃1(qkij)<α̃

(−1)λ
k
ij

(
1− χ

(
lkC(Vi ∩ f−1(δ),X ∩ f−1(δ)

))
.

Summing these two equalities and applying the Mayer-Vietoris sequence, we
get:

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 = α̃}

)
=

q∑

i=1

ni∑

j=1

mij∑

k=1

(−1)λ
k
ij

(
1− χ

(
lkC(Vi ∩ f−1(δ),X ∩ f−1(δ)

))
.

But now for each i ∈ {1, . . . , q} and each j ∈ {1, . . . , ni},
∑mij

k=1(−1)λ
k
ij is

the Poincaré-Hopf index of the form dg1|Vi∩f−1(δ). Since g1 is the real part

of g, this index is (−1)di−1µij (see for instance [10, p. 235]). Hence we have
proved:

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
X ∩ f−1(δ) ∩Bε ∩ {g̃1 = α̃}

)
=

q∑

i=1

ni∑

j=1

(−1)di−1µij

(
1− χ

(
lkC(Vi ∩ f−1(δ),X ∩ f−1(δ)

))
,

and therefore, since g̃1 is close to g1:

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
X ∩ f−1(δ) ∩Bε ∩ {g1 = α}

)
=

q∑

i=1

ni∑

j=1

(−1)di−1µij

(
1− χ

(
lkC(Vi ∩ f−1(δ),X ∩ f−1(δ)

))
,

where α is a regular value of g1 close to 0. Applying Lemma 3.2 to X and
f−1(δ), we obtain finally:

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
X ∩ f−1(δ) ∩Bε ∩ {g1 = α}

)
=

q∑

i=1

ni∑

j=1

(−1)di−1µij

(
1− χ

(
lkC(Vi,X)

))
,

Now we are going to study the critical points of g2|X∩f−1(δ)∩Bε∩{g1=α}.
Using the Cauchy-Riemann equations and local coordinates, it is easy to see
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that g2|X∩f−1(δ)∩Bε∩{g1=α} has no critical points in B̊ε. Similarly g2|Xf∩{g1=0}
has an isolated singularity at the origin. Applying Lemma 4.2 to g2|Xf∩{g1=0}
and taking δ and α very small, we can control the behaviour of the critical
points of g2|X∩f−1(δ)∩Bε∩{g1=α} lying in Sε. Namely, we know that:

(1) they lie outside {g2 = 0},
(2) they are outward-pointing forg2|X∩f−1(δ)∩Bε∩{g1=α} in {g2 > 0},
(3) they are inward-pointing for g2|X∩f−1(δ)∩Bε∩{g1=α} in {g2 < 0}.

Let β be a small regular value of g2|X∩f−1(δ)∩{g1=α}∩Bε
. Applying the same

method as above, we find that:

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g1 = α} ∩ {g2 ≥ β}

)
−

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g1 = α} ∩ {g2 = β}

)
= 0,

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g1 = α} ∩ {g2 ≤ β}

)
−

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g1 = α} ∩ {g2 = β}

)
= 0.

Hence, by the Mayer-Vietoris sequence, we get:

χ
(
X ∩ f−1(δ)∩Bε∩{g1 = α}

)
= χ

(
X ∩ f−1(δ)∩Bε∩{g1 = α}∩{g2 = β}

)
.

Since f|Xg has an isolated singularity at the origin, f−1(δ) intersects Xg

transversally. Hence, if α+
√
−1β is small enough, we have:

χ
(
X ∩ f−1(δ) ∩Bε ∩ {g = α+

√
−1β}

)
= χ

(
X ∩ f−1(δ) ∩Bε ∩ {g = 0}

)
=

χ
(
Xg ∩ f−1(δ) ∩Bε

)
.

�

We can express this result in terms of intersection multiplicities.

Corollary 5.3. For 0 < |δ| ≪ ε ≪ 1, we have:

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
Xg ∩ f−1(δ) ∩Bε

)
=

q∑

i=1

(−1)di−1IX,0(X
f ,Γi

f,g)
(
1− χ

(
lkC(Vi,X)

))
.

�

Let us apply these results to the case of a complex analytic variety with
an isolated singularity. In this case, there are only two stratum {0} and
X \{0} and lkC(X \{0},X) is empty. Furthermore there is only one relative
polar set:

Γf,g =
{
x ∈ X \ {0} | rank(dF|X\{0}(x), dG|X\{0}(x)) < 2

}
.

Corollary 5.4. If X has an isolated singularity at 0 then for 0 < |δ| ≪ ε ≪
1, we have:

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
Xg ∩ f−1(δ) ∩Bε

)
= (−1)d−1IX,0(X

f ,Γf,g).

�
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Corollary 5.5. If X is an ICIS defined by the equations f1 = . . . = fN−d =
0 such that X ∩ {f = 0} and X ∩ {f = 0, g = 0} are also ICIS then the
above equality gives that:

µ(f1, . . . , fN−d, f) + µ(f1, . . . , fN−d, f, g) = IX,0(X
f ,Γf,g).

Proof. We just use the equalities

χ
(
X ∩ f−1(δ) ∩Bε

)
= 1 + (−1)d−1µ(f1, . . . , fN−d, f),

and
χ
(
Xg ∩ f−1(δ) ∩Bε

)
= 1 + (−1)d−2µ(f1, . . . , fN−d, f, g).

We recover a particular case of the Lê-Greuel formula. �

We can also apply our results to the case of a 1-parameter smoothing.
Namely let us assume that X ⊂ C

N has an isolated singularity at 0 and let
π : X → Dε be a flat morphism such that π−1(0) = X and Xt = π−1(t)
is smooth for t 6= 0, where X ⊂ C

M is a complex analytic set of dimension
d+ 1 with an isolated singularity at 0 and Dε is a small disk of radius ε in
C. Let g : X → C be a holomorphic function, restriction of a holomorphic
function G : CM → C. We assume that IX ,0(X,Γπ,g) < +∞ where Γπ,g is
the relative polar set defined as above. With these conditions, Corollary 5.4
gives:

Corollary 5.6. For 0 < |t0| ≪ ε ≪ 1, we have:

(−1)dIX ,0(X,Γπ,g) = χ
(
X ∩ π−1(t0) ∩Bε

)
− χ

(
X ∩ g−1(0) ∩ π−1(t0) ∩Bε

)
.

�

When X is a surface, X ∩ g−1(0) is a curve and so:

χ
(
X ∩ g−1(0) ∩ π−1(t0) ∩Bε

)
= 1− µ(X ∩ g−1(0)).

If we define µ(X) to be the second Betti number of Xt0 ∩Bε then we obtain
the following result:

IX ,0(X,Γπ,g) + b1(Xt0 ∩Bε) = µ(X) + µ(X ∩ g−1(0)),

which was originally proved in [26].

6. Lê-Greuel type formula and applications to curvatures

In this section, we prove a Lê-Greuel formula for the difference of the Euler
obstruction and the Euler obstruction of a function, Bf,X(0) = EuX(0) −
Euf,X(0), and we give applications to curvature integrals on the Milnor fibre.
We work with the objects and the assumptions of the previous section.

Theorem 6.1. Assume that f : X → C and g : X → C have an isolated

singularity at 0 and that for all i ∈ {1, . . . , q}, IX,0(X
f ,Γi

f,g) < +∞. Then

we have:

Bf,X(0)− Bf,Xg (0) = (−1)dIX,0(X
f ,Γq

f,g).

In order to prove the theorem, we need some lemmas relating Euler ob-
structions to complex links of strata.
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Lemma 6.2. We have:

EuX(0) = 1 +

q−1∑

i=0

(
χ
(
lkC(Vi,X)

)
− 1
)
EuVi

(0).

Proof. Let us consider (x1, x2, . . . , xN ) as complex coordinates of C
N ,

where xk = uk +
√
−1vk. This implies that (u1, v1, . . . , uN , vN ) are real

coordinates of R2N . Let ω be a 1-form defined by ω =
∑

xkdxk, it means
that:

ω =
∑

(uk −
√
−1vk)(duk +

√
−1dvk),

and so that:

ω =
∑

(ukduk + vkdvk) +
√
−1
∑

(ukdvk − vkdvk).

In this case, the real 1-form Re ω =
∑

(ukduk + vkdvk) is also a radial

1-form, and indRX,0 Re ω = 1. Since indCX,0 ω = (−1)dindRX,0Re ω, we find
that:

indCX,0 ω = (−1)dindRX,0Re ω = (−1)d.

As it was remarked before,

EuX,0 ω = (−1)dEuX,0Re ω.

Using this information and the definition of ni given in Section 3, we have
the next equality:

niEuVi,0
ω = (−1)d−di−1

(
χ
(
lkC(Vi,X)

)
− 1
)
(−1)diEuVi

(0).

Therefore, by Theorem 3.6 we conclude that:

(−1)d = (−1)d

[
q−1∑

i=0

(
1− χ

(
lkC(Vi,X)

))
EuVi

(0) + EuX(0)

]
,

and so:

(1) EuX(0) = 1 +

q−1∑

i=0

(
χ
(
lkC(Vi,X)

)
− 1
)
EuVi

(0).

�

We have a similar result for the Euler obstruction of the function f .

Lemma 6.3. We have:

1− χ(f−1(δ) ∩X ∩Bε) =

q∑

i=0

(
1− χ

(
lkC(Vi,X)

))
Euf,Vi

(0).

Proof. On the one hand, applying the Theorem 3.6 to the form df , we
have:

indCX,0df =

q∑

i=0

niEuVi,0
df =

(−1)d−di−1
(
χ
(
lkC(Vi,X)

)
− 1
)
(−1)diEuf,Vi

(0).
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On the other hand, by Theorem 3 of [10] we have:

indCX,0df = (−1)d
(
1− χ(f−1(δ) ∩X ∩Bε)

)
.

It follows that:

1− χ(f−1(δ) ∩X ∩Bε) =

q∑

i=0

(
1− χ

(
lkC(Vi,X)

))
Euf,Vi

(0).

�

Corollary 6.4. We have:

χ(f−1(δ) ∩X ∩Bε) =

q∑

i=0

(
1− χ

(
lkC(Vi,X)

))
Bf,Vi

(0).

Proof. By the previous lemma, we have the following equation:

(2) Euf,X(0) = 1−χ(f−1(δ)∩X∩Bε)+

q−1∑

i=0

(
χ
(
lkC(Vi,X)

)
− 1
)
Euf,Vi

(0).

By the difference (1)− (2) we arrive to:

(3) Bf,X(0) = χ(f−1(δ) ∩X ∩Bε)+

q−1∑

i=0

(
χ
(
lkC(Vi,X)

)
− 1
)
Bf,Vi

, (0).

Hence we find:

χ(f−1(δ) ∩X ∩Bε) =

q∑

i=0

(
1− χ

(
lkC(Vi,X)

))
Bf,Vi

(0).

�

We are in position to prove the Lê-Greuel formula for the Euler obstruc-
tion of f .

Proof of Theorem 6.1. If X is a curve, the result is easy because, by
Theorem 2.5:

Bf,X(0) = χ(f−1(δ) ∩Bε ∩X \ {0}) = χ(f−1(δ) ∩Bε ∩X),

and EuXg(0) = Euf,Xg (0) = 1. Thus it is enough to apply Corollary 5.4.
Let us assume that dim X = d ≥ 2 and prove this result by induction on

the depth of the stratification. The first step is to consider the case when
X has isolated singularity at the origin. In this case our stratification will
be {V0 = {0}, V1 = Xreg}. Applying Theorem 2.5, we have:

Bf,X(0)− Bf,Xg (0) =

= χ
(
Xreg ∩Bε ∩ f−1(δ)

)
− χ

(
Xreg ∩Bε ∩ f−1(δ) ∩ {g = 0}

)

= χ
(
X ∩Bε ∩ f−1(δ)

)
− χ

(
X ∩Bε ∩ f−1(δ) ∩ {g = 0}

)
.

But, by Corollary 5.4, we have:

Bf,X(0)− Bf,Xg (0) =
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(−1)d−1IX,0(X
f ,Γ1

f,g)
(
1− χ

(
lkC(V1,X)

))
= (−1)d−1IX,0(X

f ,Γ1
f,g),

because lkC(V1,X) is empty. Thus means that our assumption is true for
the case of X with isolated singularity at the origin.

Let us prove the general case. By the hypothesis of induction, for each
i ∈ {1, . . . , d− 1} we have:

(−1)di−1IX,0(X
f ,Γi

f,g) = Bf,Vi
(0)− Bf,Vi∩{g=0}(0).

Using Corollary 5.3, we have:
q∑

i=1

(−1)di−1IX,0(X
f ,Γi

f,g)
(
1− χ

(
lkC(Vi,X)

))
=

χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
Xg ∩ f−1(δ) ∩Bε

)
.

Thus using the hypothesis of induction, we find:

q−1∑

i=1

[
Bf,Vi

(0)− Bf,Vi∩{g=0}(0)
] (

1− χ
(
lkC(Vi,X)

))
+

(−1)d−1IX,0(X
f ,Γq

f,g) = χ
(
X ∩ f−1(δ) ∩Bε

)
− χ

(
Xg ∩ f−1(δ) ∩Bε

)
.

We can rewrite this equation as follows:

(−1)d−1IX,0(X
f ,Γq

f,g) = A−B,

where:

A = χ(f−1(δ) ∩X ∩Bε)−
q−1∑

i=0

Bf,Vi
(0)
(
1− χ

(
lkC(Vi,X)

))
,

and:

B = χ(f−1(δ) ∩X ∩Bε ∩ {g = 0})−
q−1∑

i=0

Bf,Vi∩{g=0}(0)
(
1− χ

(
lkC(Vi ∩ {g = 0},X ∩ {g = 0})

))
,

because by Lemma 3.2, lkC(Vi,X) = lkC(Vi ∩ {g = 0},X ∩ {g = 0}). Ap-
plying Corollary 6.4, we obtain:

(−1)d−1IX,0(X
f ,Γq

f,g) = Bf,X(0) − Bf,Xg (0).

�

In [20], the authors show a formula to compute the Euler obstruction of
X at 0 using polar multiplicities. Our next result generalizes this formula
giving a similar formula for Bf,X(0), i.e., for the difference of the Euler
obstruction and the Euler obstruction of the function. The strategy is to
apply our results when G is a generic linear function. Let H ∈ CPN−1 be
a hyperplane defined by H = {x ∈ C

N | L(x) = 0} where L is a linear
function. It is well-known that if H is general enough then H intersects
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X\{0} andXf \{0} transversally (see [8, I.1.5.5] for instance). Furthermore,

if l : X → C is the restriction to X of L then Γq
f,l is the general relative polar

curve of the morphism f : X → C (see [20] or [14] for the definition of the

general relative polar variety) and IX,0(X
f ,Γq

f,l) < +∞ (see [22]). Following

the notations of Loeser, we denote by Γ0
f the general relative polar curve of

f : X → C. In this situation, we can apply Theorem 6.1.

Theorem 6.5. We have:

Bf,X(0)− Bf,X∩H(0) = (−1)d−1IX,0(X
f ,Γ0

f ),

where H ∈ CPN−1 is a generic hyperplane.

�

Since the left-hand side of the above equality and EuX∩H do not depend
on H , we see that Euf,X∩H(0) is independent on the choice of the generic

hyperplane H. Furthermore, when X = CN , we recover the well-known
Teissier lemma [31], because in this situation:

Bf,X(0) = 1 + (−1)N−1µ(f),

and

Bf,X∩H(0) = 1 + (−1)N−2µ′(f).

For i ∈ {0, . . . , d−1}, let us denote by Γi
f the general relative polar curve

of the morphism f : X∩H i → C, whereH i is a generic plane of codimension
i passing through 0. The following theorem expresses Bf,X(0) in terms of
the intersection multiplicities at the origin of the Γi

f ’s with the X ∩H i’s.

Theorem 6.6. We have:

Bf,X(0) =

d−1∑

i=0

(−1)d−i−1IX∩Hi,0(Γ
i
f ,X

f ∩H i).

Proof. Let Hd−1 ⊂ Hd−2 ⊂ · · · ⊂ H1 ⊂ H0 = C
N be a general flag such

that H i has codimension i for i ∈ {0, . . . , d − 1}. Denoting by Xi the set
X ∩H i and applying the previous theorem, we get:

(−1)d−i−1IXi,0(Γ
i
f ,X

i ∩ {f = 0}) = Bf,Xi(0)− Bf,Xi+1(0),

for i ∈ {0, . . . , d− 2}. For i = d− 1, Xd−1 is a curve and Theorem 6.1 gives:

IXd−1,0(Γ
d−1
f ,Xd−1 ∩ {f = 0}) = Bf,Xd−1(0).

Summing all these equalities, we obtain the result. �

Applying this theorem when f = l is the restriction to X of a generic
linear form leads to:

EuX(0) =

d−1∑

i=0

(−1)d−1−iIX∩Hi,0(Γ
i
l,X

l ∩H i).
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But IX∩Hi,0(Γ
i
l ,X

l ∩H i) is the multiplicity of the polar variety of codimen-
sion d−i−1 of X (see [20, Corollary 4.19]). Hence we recover Corollary 5.12
of [20]. Based on this last result, J.-P. Brasselet suggested that a possible
definition for the Euler obstruction of a function could be the alternated sum
of the relative polar multiplicities. This justifies why we choose to denote
EuX(0) − Euf,X(0) by Bf,X(0), which we call the Brasselet number.

In [15], Kennedy presents a Gauss-Bonnet formula for the Milnor number
of an analytic function f : (Cn, 0) → (C, 0) with an isolated singularity.
Using the integral formulas for the numbers IX∩Hi,0(Γ

i
f ,X

f ∩ H i) proved

by Loeser [22], we can generalize Kennedy’s formula to the singular case.
Let us recall first two objects used by Loeser. For i ∈ {0, . . . , d − 1}, let
cwd−1−i(Tf ) be the (d− 1− i)-th ChernWeil form associated with the relative

tangent fiber bundle Tf on the regular part of X ∩f−1(δ) equipped with the

hermitian structure given by the embedding of X in C
N . Let us also define

ω =
√
−1
2π ∂∂log ‖ z ‖2 to be the inverse image on C

N \ {0} of the Kähler

form on CPN−1.

Corollary 6.7. We have the following integral formula:

Bf,X(0) = lim
ε→0

lim
δ→0

∫

Xreg∩f−1(δ)∩Bε

d−1∑

i=0

cwd−1−i(Tf ) ∧ ωi.

Proof. By Theorem 1 in [22], we have that for i ∈ {0, . . . , d− 1}:

(−1)d−1−iIX∩Hi,0(Γ
i
f ,X

f ∩H i) = lim
ε→0

lim
δ→0

∫

Xreg∩f−1(δ)∩Bε

cwd−1−i(Tf ) ∧ ωi.

It is enough to apply the previous theorem. �

We can apply this last corollary to the stratum Vk, k ∈ {1, . . . , q − 1}, of
X. Recalling that dk = dim Vk, we have:

lim
ε→0

lim
δ→0

∫

Vk∩f−1(δ)∩Bε

dk−1∑

i=0

cwdk−1−i(Tf ) ∧ ωi = Bf,Vk
(0),

where we keep the notation Tf for the relative tangent bundle on Vk∩f−1(δ).

Multiplying by 1 − χ(lkC(Vk,X)) and using Corollary 6.4, we obtain a
Gauss-Bonnet type formula for X ∩ f−1(δ) ∩Bε.

Corollary 6.8. We have the following Gauss-Bonnet formula:

χ(f−1(δ) ∩X ∩Bε) =
q∑

k=1

(
1−

(
χ
(
lkC(Vk,X)

)))
lim
ε→0

lim
δ→0

∫

Vk∩f−1(δ)∩Bε

dk−1∑

i=0

cwdk−1−i(Tf ) ∧ ωi.

�
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[21] LÊ D. T. and TEISSIER, B.: Cycles évanescents, sections planes et conditions
de Whitney II, Singularities, Part 2 (Arcata, Calif., 1981), 65-103, Proc. Sympos.
Pure Math. 40, Amer. Math. Soc., Providence, RI, 1983.
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