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Abstract

This report presents a novel approach to compute high quality and alias-free soft shadows using exact
visibility computations. This work relies on a theoritical framework allowing to group lines according
to the geometry they intersect. From this study, we derive a new algorithm encoding lazily the visibility
from a polygon. Contrary to previous works on from-polygon visibility, our approach is very robust and
straightforward to implement. We apply this algorithm to solve exactly and efficiently the visibility of an
area light source from any point in a scene. As a consequence, results are not sensitive to noise, contrary to
soft shadows methods based on area light source sampling. We demonstrate the reliability of our approach
on different scenes and configurations.

1 Introduction

Shadows and especially soft shadows play an important role in visual perception as they unveil spatial
relationships between objects. This makes soft shadows essential to realistic rendering. However, they are
very expensive to compute since they require solving the visibility of an area light source from any visible
point in a scene. The accuracy of any solution to this problem determines the soft shadows quality and, as
a consequence, the realism of the scene.

Dedicated algorithms were developed to reduce the computational complexity inherent to soft shadows.
Interactive solutions exist, but they make crude assumptions leading to approximate or plausible soft shad-
ows. They are forced to sacrifice the correctness of the shadows in order to reach interactive frame rates.
Geometry-based approaches can lead to fine results, using silhouette edges [LLA06, FBP08] for example.
While the accuracy of the visibility computation is crucial for soft shadows, the wide majority of algorithms
are based on sampled light sources. As a consequence, whatever their accuracy, they are still sensitive to
noise according to the sampling strategy and density.

In this paper, we present a new high quality soft shadow algorithm based on exact visibility computed
from the area light source. Our method relies on an equivalence relation allowing to group lines according to
the geometry they intersect [Pel04]. We build on this theoretical framework to provide a novel and practical
approach to lazily compute the exact visibility from a polygon. This visibility data allows to solve efficiently
and exactly the visibility of an area light source for each point to be shaded, taking advantage of the visibility
coherence between neighbour points. Since the direct illumination is analytically evaluated using exact
visibility, the shadows are optimal and alias-free. While exact approaches suffer from implementation and
robustness issues, our method is easy to implement, scalable and numerically robust. In addition, our results
show that it outperforms an optimized ray tracer.

The paper is organized as follows: The first section outlines the works related to this paper. The sec-
ond section presents the geometrical and mathematical framework we use. Moreover, we demonstrate an
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essential theorem to our algorithm. The third section details our exact from-polygon visibility algorithm
which is the basis to solve the visibility of an area light source. At last, in the section 4, we test our algo-
rithm’s behaviour in different configurations. Before concluding, we discuss these results, we analyse some
limitations and we consider several perspectives.

2 Previous works

Many contributions on soft shadows can be found in the literature. A survey has been presented by Hasen-
fratz et al. [HLHS03]. Recently, Eisemann et al. [EASW09] provide another interesting lecture. In this
section, we only focus on widely used or recent physically-based algorithms able to compute very high
quality or exact soft shadows. In addition, since the core of our method relies on an exact from-polygon
visibility algorithm, we also focus on this topic.

Soft shadows in ray and beam tracing

Ray tracing easily supports soft shadows using shadow rays and stochastic sampling of the light sources.
As a counterpart, the results are sensitive to noise. This requires increasing the number of samples in
order to avoid visual artifacts. But this drastically slows down the rendering. Packet [WBWS01] and frus-
trum [RSH05, WIK∗06] traversal techniques improve ray-tracing efficiency. They take advantage of the
spatial coherence and have efficient implementations, using SIMD instructions. Moreover, they can be
designed for a specific graphic architecture [BW09]. Despite these improvements, soft shadows remain a
challenging task. If the sample distribution can be improved using importance or interleaved sampling, the
results remain sensitive to noise.

Beam tracing [HH84] methods are suited for soft shadows computation. A single beam is cast to the
light to solve exactly its visibility. As a consequence, results are not sensitive to noise. Beam tracing is
usually considered as lacking robustness, which can be improved by adaptive methods [GH98]. Overbeck
et al. [ORM07] propose a robust beam-triangle intersection to handle more complex models with soft shad-
ows.

Packets, frustrum or beam techniques take advantage of the spatial coherence from each point to be
shaded. Our algorithm uses the spatial coherence from the light source. This is an important difference
since the shading of the points is not an independent operation anymore.

Silhouette based soft shadows

Möller and Assarson [AMA02, AAM03] propose the soft shadow volume algorithm on graphics hardware.
It extends the shadow volume algorithm [Cro77] using penumbra wedges. A wedge is the place where
the light source view can change because of a silhouette edge. Given a point inside a wedge, the relevant
silhouette edge is projected onto the light to determine the light samples visibility. However, overlapping
silhouette edges lead to overestimating the shadow and silhouette edges are underestimated since they are
computed only from the center of the light source. As a consequence, soft shadows are approximated.

The soft shadow volume algorithm is extended to offline ray-tracing by Laine et al. [LAA∗05]. All the
silhouette edges are taken into account and the algorithm deals properly with the overlapping ones. Special
rules determine the light samples affected by each silhouette edges. Then a single ray is shot to recover
the samples visibility. Lehtinen et al. [LLA06] remark that this algorithm can be over-conservative and
less efficient than a classical ray-tracer. They change the data structure used to store the silhouette edges,
improving both the algorithm efficiency and its memory consumption.

Forest et al. [FBP08] build on the works of [AAM03] and [LLA06]. They remove the shooting ray
step and provide a dedicated implementation on graphics hardware allowing several frames per second on
moderate scenes using an average of 16 light samples per light sources.

Research on silhouette based algorithms has lead to very efficient solutions. However, they require
triangles connectivity with consistent orientation. Since these methods are object-based, visibility compu-
tations are accurate. But they are still subject to aliasing because of the light source sampling. The sampling
strategy has a significant impact as shown in [FBP08].
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Other methods

Laine et al. [LA05] change the pre-processing order of ray tracing. Instead of finding a triangle hit by a
shadow ray, they search all the shadow rays intersecting a given triangle. Notice that the same idea was
used to provide interactive GPU algorithms based on triangles [ED07, SEA08] or extended to silhouette
edges [JHH∗09]. However, approximations are made to reach such frame rates. In this work, we also focus
on the sets of lines intersecting triangles. However, we use an analytical representation of those sets.

Exact from-polygon visibility

Exact solutions to visibility problems are important to better understand its underlying nature, and design
new algorithms. However, exact from-polygon (and thus from-region) visibility is very complex, because it
is a four-dimensional problem [DDP02]. There are few solutions in the literature. They all rely on the same
theoretical framework described by Pellegrini [Pel04] in the Plücker space, a 5D space of lines. His analysis
provides a worst case complexity of O(n4logn) in space and time, where n is the number of triangles. This
underlines the complexity inherent to the visibility in space. To remain practicable, a very special care must
be given to the algorithm design. As an example, a first approach is proposed by Mount and Pu [MP99].
But their experiments do not exceed 14 random triangles, because, as stated by the authors, they reach the
theoretical complexity upper bound.

The two first practicable algorithms are provided by Nirenstein et al. [NBG02] and Bittner [Bit02] (see
[MAM05] for details about the differences between the two solutions), and further improved by Haumont
et al. [HMN05] and Mora et al. [MA05] respectively. It is worth underlying a major difference between the
two approaches initiated by Nirenstein and Bittner respectively :

• Nirenstein and Haumont design their algorithms to prove that two polygons are visible. Thus the
algorithm output is a boolean value. Whenever possible, the computation of the whole visibility set
is avoided since the process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and store all the visibility information. In this
case, the output is a partition of the Plücker space encoded in a Binary Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Geometry in the Plücker space which is computa-
tionally very expensive. As a consequence, they are only used as a pre-process step. In addition 5D CSG
operations are very complex to implement and prone to numerical instability. Thus, the reliability and the
scalability of these solutions is restricted.

The soft shadow algorithm presented in this paper relies on a novel approach to capture the visibility
from a polygon. It also leads to the construction of a BSP tree in the Plücker space. But in contrast to the
previous works, the tree is built lazily and at run time, not as a pre-process step. Visibility is computed
on-demand when and where it is required, according to the image resolution. It does not rely on any expen-
sive and complicated 5D CSG operation. This makes the algorithm very easy to implement, efficient and
computationally robust, whereas previous methods are complex and suffer from numerical instability.

3 Geometrical basis

In this section we introduce the geometrical knowledge underlying the work presented in this paper. In
particular, we demonstrate a result on the orientation of the lines stabbing two polygons. This result is
important for our algorithm.

3.1 Plücker’s coordinates

The Plücker space is a five dimensional projective space, denoted P
5, well known in computer graphics

as an efficient solution for dealing with real 3D lines [Sho98]. We only recall here the properties used in
this paper. Let’s consider an oriented 3D line l going through two distinct points P and Q of coordinates
(px, py, pz) and (qx,qy,qz) respectively. The line l maps to the Plücker point denoted πl ∈ P

5. The six
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Figure 1: Above: The relative orientation of two lines is given by the sign of the side operator. Under: Since
side(l,r) = hl(πr), applying the side operator comes down to testing the position of the Plücker point of one
line against the dual hyperplane of the other line

coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus, any line l in the 3D space can be mapped to the

Plücker space as a point πl or its dual hyperplane hl . We now recall the definition of the so-called side

operator:
side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and (r0,r1,r2,r3,r4,r5) are respectively the coordinates of
their Plücker point, πl and πr. The sign of the side operator dertermines the relative orientation of the two
lines. In particular, two lines are incident (or parallel) if their side operator equals zero. We can notice that:
side(l,r) = hl(πr). This leads to the geometrical interpretation of the side operator as depicted in Figure 1.

3.2 On the lines intersecting the same triangles

A direct application of the side operator is an easy and robust line-triangle intersection test. A line intersects
a triangle if its orientation is consistent in respect to the lines spanning the triangle edges. This is depicted
in Figure 2. Beyond this intersection test, we can notice that the 3 hyperplanes related to the triangle edges
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Figure 2: Left: a triangle in 3D space. l0, l1, l2 are the lines spanning the triangle’s edges. a is a line
stabbing the triangle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes mapped from l0, l1 and l2. πa is
the Plücker point mapped from the stabbing line a. πa has a consistent orientation in respect to l0, l1 and
l2. From a geometrical point of view, πa lies at the intersection of the halfpsaces induced by hl0 , hl1 and hl2 .
Thus, these 3 hyperplanes provide an analytical representation of all the lines stabbing the triangle.

divide the Plücker space into cells and one of them contains all the lines (i.e. their Plücker points) stabbing
the triangle, while the other cells contain the lines missing the triangle.

Pellegrini [Pel04] develops a more general approach. He uses the Plücker space as a framework to
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R
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5

Figure 3: Left: 2 triangles and 3 lines a, b, c in various configurations. Right: The arrangement of hyper-
planes (illustrated by 6 2D lines) mapped from the 6 triangles edges. They divide the Plücker space into
cells. Filled cells are set of lines intersecting at least one triangle. πa, πb and πc are the Plücker points
mapped from a, b and c. They are located in the cells they belong to, according to the triangle(s) they
stab. For example, πb has a consistent orientation in respect to the 6 hyperplanes since b intersects the two
triangles. Its relevant cell holds all the lines intersecting the two triangles.

provide theoretical bounds on various problems involving lines. Let S be a set of several triangles (or
convex polygons) and LS be the lines spanning the triangles edges in S. Each line in LS can be mapped to
Plücker space as a hyperplane. This builds an arrangement in Plücker space: A decomposition of the space
into cells by a set of hyperplanes. All the points in a same cell satisfy the following property: They all have
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the same sign in respect to its bounding hyperplanes. This is illustrated in Figure 3 with 2 triangles. Thus,
in Plücker space, all the lines (i.e. their Plücker points) belonging to the same cell intersect the same subset
of triangles in S. Notice that this subset can be empty if the lines miss all the triangles in S.

The decomposition of Plücker space into cells allows to group lines together according to the subset
of triangles they intersect. This defines an equivalence relation on lines. As a consequence, each cell
corresponds to an equivalence class (sometimes called isotopy class [Pel91] or orientation class [CEG∗96]).
To sum up, the Pellegrini approach allows an exact and analytical representation of all the sets of lines
generated by a set of triangles S, using the set of lines LS.

3.3 Orientation of lines intersecting two polygons

We focus on the set of lines intersecting two convex polygons. We demonstrate the following theorem:

Theorem 1 Let A and B be two convex polygons with n and m vertices respectively. We define vvset =
{vi j, i ∈ [1,n], j ∈ [1,m]} the set of the lines vi j defined by one vertex of A and one vertex of B. Let l be any

line and q a line intersecting A and B:

side(l,x)≥ 0, ∀x ∈ vvset ⇒ side(l,q)≥ 0
side(l,x)≤ 0, ∀x ∈ vvset ⇒ side(l,q)≤ 0

In other words, if all the vertex-to-vertex lines of two polygons have a positive (resp. negative) orientation
in respect to any line l, all the stabbing lines of the two polygons will have a positive (resp. negative)
orientation in respect to l.
To demonstrate this theorem, we use a vector notation for Plücker’s coordinates: Given two points P and Q,
the Plücker coordinates of (PQ) is the vector couple (~u,~v) such as:

(PQ)







~u =
−→
PQ = (l0, l1, l2)

~v =
−→
OP×

−→
OQ = (l3, l4, l5)

Where O is the origin in 3D space. For simplicity, we will omit the symbol~, simply denoting the vector
couple (u,v). Using this notation, we now formulate the side operator as the sum of two dot products. For
example, given two lines l and l′ with Plücker coordinates (u,v) and (u′,v′) respectively, then : side(l, l′) =
u.v′+ v.u′.
Proof: Let A and B be two convex polygons with n and m vertices in the 3D space. Using barycentric
coordinates, any point a on A (resp. b on B) can be defined by a combination of its vertices (a1, ...,an) (resp.
b1, ...,bm):

a =
n

∑
i=1

αiai with
n

∑
i=1

αi = 1, with ∀i αi ≥ 0

b =
n

∑
i=1

βibi with
n

∑
i=1

βi = 1, with ∀i βi ≥ 0

a and b define any line q stabbing A and B, and the Plücker point of q is (ab,oa× ob). Thus the relative
orientation of a line q and any line l (u,v) is:

side(q, l) = u.(oa×ob)+ v.ab

Since the orientation of two lines is relative, we can assume without loss of generality that l goes through the
origin of the 3D space (otherwise it is always possible to translate l). Thus v (the last 3 Plücker coordinates
of l) becomes null and:

side(q, l) = u.(oa×ob)
= u.(∑

n
i αioai ×∑

m
j β job j)

Since the cross product is distributive over addition:

side(q, l) = u.(∑
m
j ∑

n
i (αioai ×β job j))
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Next, by compatibility with scalar multiplication:

side(q, l) = u.(∑
m
j β j ∑

n
i αi(oai ×ob j))

At last, since the dot product is distributive over addition:

side(q, l) = ∑
m
j β j ∑

n
i αiu.(oai ×ob j)

= ∑
m
j β j ∑

n
i αi(side(aib j, l))

Since αi ≥ 0 and β j ≥ 0, the sign of side(q, l) depends only on the sign of side(aib j, l). In particular, if they
are all positive (resp negative) then side(q, l) is positive (resp negative).

Using this theorem, we can determine if the set of lines stabbing two polygons has a consistent orienta-
tion in respect to a given line. The visibilty algorithm presented in the next section uses this essential result.

It can be proved that the Plücker points of the lines in vvset are the vertices of the smallest convex
polyhedron in the Plücker space containing the stabbing lines of A and B. A demonstration can be found
in [CAF06, ACFM11], but it requires advanced knowledge in Geometric Algebras. For the understanding
and the correctness of this work, the property demonstrated in this paper is sufficient.

4 Algorithm

Since equivalence classes are continuous sets of lines that hit/miss the same subset of triangles, they rep-
resent coherent paths through the scene independently of any viewpoint. As a consequence, two lines
belonging to the same equivalence class are spatially coherent. We use this property to build a Plücker
space partition representing the visibility of an area light source.

4.1 Overview

We consider an area light source L, a triangle T , and define their occluders O as the triangles intersecting
their convex hull. To represent the light source visibility, we focus on the sets of lines intersecting L and
which either miss all the occluders in O, or hit at least one occluder in O. Thus, we define:

• A visible class: Any equivalence class representing a set of lines that do not intersect any occluders.

• An invisible class: Any equivalence class representing a set of lines that intersect at least one occluder.

• An undefined class: An equivalence class that is not yet found as visible or invisible.

Our algorithm builds a BSP tree in Plücker space, providing a hierarchical representation of the equivalence
classes generated by the occluders. Each leaf represents one of these three classes. The algorithm is lazy:
The BSP tree is grown on-demand depending on when and where visibility information is needed. The
construction only relies on two operations: Inserting and merging an occluder into the tree. The former
allows to find the leaves affected by an occluder in the tree, while the latter grows the tree by replacing a
leaf with an occluder’s equivalence classes.

Merging an occluder:

Let o be an occluder, we note bsp(o) the BSP representation of the equivalence classes generated by o (see
Figure 4). The tree grows each time an occluder is merged: The visible/invisible classes generated by the
occluder are added to the tree. Merging o into the tree consists in replacing a leaf by the root of bsp(o). As
a consequence, each inner node contains a hyperplane corresponding to an occluder’s edge.

Inserting an occluder:

Occluders are inserted into the tree and located into the leaves (and thus the classes) they may affect.
Inserting an occluder o comes down to testing the relative orientation of a hyperplane (from an inner node)
and the lines occluded by o. Since the occlusion created by an occluder o is the set of lines intersecting both
L and o, we use Theorem 1 to determine the orientation of the occluded lines with respect to the hyperplane.
Figure 5 details the three cases that occur.
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l0

l1

l2

h0

h1

h2o

Figure 4: Let l0, l1, l2 be the lines defined by the edges of an occluder o, and h0, h1, h2 their dual hyperplanes
in Plücker space. We can build a BSP tree whose leaves are the four equivalence classes generated by the
triangle: Three visible classes (left leaves) and one invisible class (right leaf). We note bsp(o) such a
representation.

L L L

o o o

o o o

h h h

h h h

Figure 5: A 2D illustration of an insertion. An occluder o intersects a subset of all the lines originating from
the light L. This subset may have a negative (first case), a mixed (second case), or a positive (third case)
orientation in respect to a hyperplane h from an inner node. As a consequence the occluder o is inserted
into the right, or both, or left subtree of the node. When a leaf is reached, the occluder is stored into the leaf
except if it is an invisible class.
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The BSP tree construction is driven by the visibility queries in order to compute only the required equiva-
lence classes. The following section presents this process and gives the details of our visibility algorithm.
Next, we describe how it is used in our soft shadow framework.

4.2 Visibility algorithm

We consider the following visibility query : Given a point xyz on the triangle T , we want to find out the
visible parts of the light L from xyz through the occluders O. This involves all the lines originating from
xyz and intersecting L. As a consequence, we have to find the subsets of those lines belonging to a visible
class. At first, we explain how those sets can be represented using convex fragments of L. Let us consider

xyz xyz

h

h

Figure 6: The point xyz and the line h define a plane that sets apart the lines having a positive or negative
orientation in respect to h

a line h spanning an occluder edge in O. We observe that h and xyz define a plane p that sets apart the lines
intersecting xyz and L in two sets: The first one with a positive orientation with respect to h, the second one
with a negative orientation. Figure 6 gives an illustration. Notice that the orientation of p is coherent with
the orientation of h. As a consequence, if L is split by p, we can compute the two relevant polygons L∩ p+

and L∩ p− so that they represent respectively the positive and negative subset of lines with respect to h.
The visibility algorithm (Algorithm 1) finds the equivalence classes related to the visibility of L from xyz. It
subdivides L into several convex fragments so that each one of them belongs to a single equivalence class. It
starts with all the occluders associated to a single undefined leaf. For each inner node, we compute the plane
defined by xyz and the line stored in the node (line 18). Then, L is tested against this plane to determine the
orientation of the lines stabbing L and xyz (line 19). If L lies in the positive (resp. negative) half-space of
the plane, then all the lines have a positive (resp. negative) orientation, and the algorithm continues in the
left (resp. right) subtree (line 20 or 22). Otherwise, L is split against the plane and the algorithm continues
recursively in both subtrees with the relevant parts of L (line 25). When a fragment reaches a leaf, two
alternatives occur:

• The leaf has no occluders, therefore it is either a visible or an invisible class. In the former case, the
fragment is a convex part of L which is visible from xyz, thus it is returned (line 29). Otherwise, the
fragment is invisible from xyz and it is discarded.
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Algorithm 1 Visibility algorithm: Given a point xyz on T , the algorithm answers the query "which parts of
L are visible from xyz ? L is used to drive the BSP tree construction and may be split into several fragments
representing homogeneous sets of lines from xyz. The fragments reaching visible classes are the visible
parts of L from xyz

1: insertOccluder(Node n, Occluder o)
2: if n is a leaf then

3: if n is not an invisible class then

4: n.occluders← n.occluders ∪ o

5: end if

6: else if orientation( o.vvset, n.hyperplane) > 0 then

7: insert( n.le f t, o )
8: else if orientation( o.vvset, n.hyperplane ) < 0 then

9: insert( n.right, o )
10: else

11: insert( n.le f t, o )
12: insert( n.right, o )
13: end if

14:
15: BSP_query(Node n, Polygon L, Point xyz ) return Polygons
16: loop

17: while n is not a leaf do

18: Plane p← makePlane( xyz, n.hyperplane )
19: if position( p, L ) > 0 then

20: n← n.le f t

21: else if position( p, L ) < 0 then

22: n← n.right

23: else

24: // split the light and work recursively

25: return BSP_query(n.le f t, L∩ p+)
∪ BSP_query(n.right, L∩ p−)

26: end if

27: end while

28: if n.occluders is empty then

29: return (n.class is visible) ? L : ∅
30: else

31: ro← random occluder in n.occluders

32: n← root of bsp(ro)
33: for o in n.occluders, o 6= ro do

34: insertOccluder( n, o )
35: end for

36: end if

37: end loop

• The leaf has some occluders, the class is undefined and we cannot answer the query without further
developing the tree.

In the latter case, the algorithm chooses a random occluder (line 31) ro among the occluders associated
with the current leaf. This occluder is merged into the tree by replacing the leaf by bsp(ro), the BSP
representation of the four classes generated by ro (line 32). Next, the remaining occluders are inserted
into bsp(ro) which is now a new part of the tree. The procedure at line 1 achieve an occluder insertion as
describe in Figure 5. When all the occluders have been inserted in bsp(o), the algorithm continues from the
root of bsp(o) until it finds the equivalence class for the current light fragment.
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4.3 Key points

This section underlines significant points of the algorithm.

Random selection of the occluders:

The algorithm’s efficiency is related to the balance of the tree. To develop the BSP tree, the algorithm
chooses an occluder randomly. Obviously, some choices may lead to a more balanced tree than others.
However this is not predictable. In fact, we have tested different heuristics, trying to make a "good choice".
Unfortunately, all of them achieved poor improvements compared to the extra computational cost. More-
over, their behaviour can be very different according to the nature of the scene. We have reached the conclu-
sion that a random choice gives better results, and more important, it has a consistent behaviour whatever
the rendered scene. This is similar to the choice of the pivot in the well known quicksort algorithm: Al-
though a random pivot is not the optimal choice, it leads to the best performance in practice whatever the
entry is.

Conservative insertion:

If all the lines occluded by an occluder o do not have the same orientation in respect to a hyperplane, o is
inserted in both subtrees of the relevant node. As a consequence the insertion is conservative. This step
could be computed exactly as in [HMN05, MA05]. But, as explained in section 2, this is expensive and
prone to numerical errors. Our algorithm avoids these problems to remain simple and robust.

Tree growth :

Notice that not all the queries will develop the BSP tree. We can expect some queries to develop new
equivalence classes, at least at the begining since the BSP tree is empty. And we can expect queries to
take advantage of the previous computations thanks to the visibility coherence. This is a key point of the
algorithm’s efficiency.

4.4 Soft shadows framework

To illustrate the efficiency and the reliability of our exact visibility algorithm, we plug it into a ray-tracing
rendering software for computing high quality soft shadows. Algorithm 2 describes the process.

Algorithm 2 The following pseudocode illustrates how our visibility algorithm is plugged in a ray tracer
software to analytically compute soft shadows

1: build visible_triangle, the triangle list visible from the camera
2: foreach light L in the scene do

3: triangle_list ← visible_triangle

4: // the following loop parallelization is straightforward

5: while triangle_list is not empty do

6: remove a triangle T from the triangle_list

7: select the occluders O of T and L

8: initialize a BSP tree root node n associated with O

9: foreach image point xyz on T do

10: visible_parts← BSP_query( n, xyz, L)
11: compute the illumination in xyz using visible_parts

12: end for

13: end while

14: end for

• Using the primary rays, all the image points are grouped together with respect to the triangle they
belong to. This builds a list of visible triangles (line 1).

• Multiple lights are handled successively and independently (line 2)

• For each visible triangle, an empty BSP tree is created and associated with its set of occluders (line
8).
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• Next, for each image point, the algorithm 1 is used to compute the visible parts of the light (line 10).
In our framework, we consider area light sources with a uniform emission, therefore we compute
direct illumination analytically (line 11) by integrating over the visible parts of the light [NN85].

This framework is designed to allow an efficient implementation. Since one BSP tree is built per light and
per visible triangle, and since visible triangles are successively handled, BSP trees are developed succes-
sively and independently. This improves the memory coherence and avoids switching many times between
BSP trees. This also limits the memory consumption since each BSP tree is deleted as soon as all its related
image points are shaded. Moreover, the implementation can be easily multithreaded: A thread gets a visible
triangle from the list, shades its image points and starts over until the list becomes empty. In this case, the
triangle list access (line 6) has to be protected.

Implementation details

In Section 4, occluders are defined as the geometry intersecting the convex hull of a triangle and a light
source. In practice, the occluders selection relies on a shaft culling approach as described in [Hai00]. Let’s
consider the bounding box of a visible triangle and the bounding box of an area light source. The shaft is
defined as the convex hull of the two bounding boxes plus the triangle’s plane support and the light’s plane
support. Any triangle intersecting the shaft is considered as a possible occluder. While this definition can
lead to a conservative occluder set, it can be computed efficiently. At last, compared to Algorithm 1, a stack
is managed to avoid recursive system calls. Except this detail, the implementation is straightforward, it uses
single floating point precision and does not use SIMD instructions.

5 Results

All tests were run on a 2.67 GHz Intel Core i7 920 processor with 4GB of memory. For comparison
purpose, all pictures were rendered at 1280x720 pixels with one primary ray per pixel. Four sets of results
are presented, three sets testing the global performance of our soft shadow framework, and a last one giving
an insight on Algorithm 1 behaviour.

5.1 Comparisons on time and quality

The first set of results compares our method to ray-traced soft shadows both at comparable time and com-
parable quality. The ray tracer implementation is similar to [WBWS01]: It relies on an optimized SAH
kd-tree, uses SIMD instructions to trace four rays simultaneously, and supports multithreading to render
several parts of the picture in parallel. Ray-traced soft shadows are computed using groups of 4 shadow
rays, and an uncorrelated stratified sampling of the area light sources. Since both our method and the
ray-tracer support multithreading, all computations are run using 4 threads.

We use four scenes to test our method in different configurations. Despite its moderate geometrical
complexity (26 673 triangles), the T-Rex scene is challenging for our approach because it presents difficult
and complex shadows due to a long rectangular light source. This means that the light source visibility
is complex and this is precisely what is computed by our algorithm. The modified Sponza Atrium with
the statue of Neptune (115 737 triangles) and Conference (282 873 triangles) are significant and detailed
models with different kinds of shadow complexities. At last, Soda Hall (2 147K triangles) is used to test the
scalability of our approach on a massive model with heterogeneous geometry.

Figure 7 details these results, and presents the time spent in soft shadows computation for each method.
At comparable time, ray traced soft shadows are always noisy. At comparable quality (i.e. the noise is
not noticeable anymore in the stochastic shadows), our method is always faster. In addition, this is very
noticeable on a complex case such as the T-rex scene, because the stochastic approach requires a very high
number of shadow rays to remove almost all the visible noise. In contrast, the exact visibility algorithm
produces high quality results in a few seconds.

Figure 8 presents the computation measurements (memory and time consumption) for our exact visi-
bility algorithm. Since we compute a BSP tree in Plücker space for each visible triangle from the camera,
the memory consumption varies during the process according to the building of the BSP tree. As a conse-
quence, our results report the maximum memory load reached by our soft shadow framework. In any case,
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Comparable Time Our Method Comparable Quality

5 seconds / 32 shadow rays 5 seconds 1 min 18 seconds / 1024 shadow rays

7 seconds / 32 shadow rays 6.5 seconds 1 min 22 seconds / 512 shadow rays

7 seconds / 32 shadow rays 7 seconds 23 seconds / 256 shadow rays

6 seconds / 32 shadow rays 6 seconds 24 seconds / 256 shadow rays

8 seconds / 32 shadow rays 5 seconds 38 seconds / 256 shadow rays

Figure 7: From top to bottom: T-Rex, Sponza with Neptune, Conference and Soda Hall. The middle column
shows the results computed with our algorithm. The left column presents the same pictures computed at
comparable time and the right one at comparable quality, both using shadow rays.

the memory footprint is low. The lazy evaluation of the visibility driven by the visibility queries allows to
focus on the equivalence classes related to the shadows and avoid the computation of useless visibility data.
In addition, our framework is designed to avoid building too many BSP trees simultaneously (at most one
per thread) which helps to keep the memory low.

The total time can be subdived in three steps: The occluder selection, the BSP tree initialization (in-
cluding the computation of the hyperplanes and the vvset for each occluder), and the visibility queries used
for shading the image points. We can notice that the computation time is clearly dominated by the visibility
queries i.e. calls to the BSP_query function (see Algorithm 1) which is the core of our method.

Aside the comparison with the stochastic approach, these results demonstrate the robustness of our ana-
lytical visibility algorithm in many different configurations. As expected, the sensitivity of our algorithm to
the visual complexity of the light source is confirmed. For instance, the T-Rex scene required roughly the
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Memory Time Modified Version

Scene MS (KB) SC (%) I (%) Q (%) T (s) MV (s) FO

Bike 20 743 1.3 1.5 97.2 5 126 ×25
T-Rex 19 916 4.8 1.9 93.1 6.5 314 ×48
Sponza 16 246 4.0 2.0 94.0 7 191 ×27
Conference 20 758 4.0 4.5 91.5 6 146 ×24
Soda Hall 20 991 1.6 3.5 94.9 5 83 ×16

Figure 8: The time and memory consumption using our algorithm. The Max Size column (MS) is the max-
imum memory load reached during the process. The Shaft Culling column (SC) gives the time percentage
spent to select the occluders. The Init column (I) gives the time percentage spent to initialize each BSP
tree. The Queries columns (Q) gives the time percentage spent to query the BSP trees for shading each
image point. The Total column (T) gives the time in seconds for the whole process. MV Time column
(MV) presents the result obtained using a Modified Version of our framework, where all queries are pre-
vented from taking advantage of the others. The last column gives the falling off factor (FO) between our
framework (Total) and its modified version (MV Time).

same amout of time than the Sponza and Neptune scene or than the Conference scene.

About visibility coherence

A crucial property of our approach is its ability to take advantage of the visibility coherence between image
points. To test this ability, the same pictures were rendered again using a modified version of our visibility
algorithm: Between each visibility query (i.e. between each BSP_query call), the related BSP tree is
reset to its root node associated with its former occluder set (this additional operation is excluded from the
timings). In such a case, each query is "the first one" and we prevent all queries from taking advantage
of the previous ones. Figure 8 presents (two last columns of the table) the computation times compared
to the timings obtained with the true version: The loss of efficiency is considerable. This demonstrates
the capacity of the visibility algorithm to benefit from the visibility coherence, which is a key point to its
efficiency.

5.2 Increasing the area of the light

The soft shadows complexity also depends on the size of the area light source. This is intrinsic to the soft
shadows problem and it will inevitably affect our algorithm since it relies on the visibility coherence of the
light source. If its area increases, the visibility coherence may decrease and lead to a loss of efficiency. As
a consequence the second part of our tests investigates our framework’s behavior when the area light source
increases. These tests are run on the Conference model, selected for its significant number of triangles as
well as the wide range of shadows cast in the scene. The tests start using a small area light source whose size
is progressively increased until it becomes 100 times larger. For each size of light, the time and maximum
memory used by our method is measured. Figure 9 sums up the results. As expected, it shows a loss of
efficiency, both in time and memory, as the size of light source grows (left and right graph of Figure 9). By
extent, there is inevitably a critical light size where the time and the memory consumption would become
a problem, in particular the memory since it is a limited resource. However, our tests show that, even with
the largest area light source, we are far from such a point. In addition, our approach remains competitive
with a stochastic solution: At comparable quality, 512 samples are required for the largest light and the
computation takes 91 seconds against 39 seconds using our framework (2.33 times slower).

5.3 Increasing the light number

Generally, a scene has several light sources. As detailed by Algorithm 2, our implementation supports
multiple lights which are handled successively. Thus, it is interesting to test our framework behaviour in
such a case. The Conference model is used again and rendered with 2 to 36 area light sources. All the lights
have the same size and cast roughly the same "amount" of shadow. Figure 10 presents the results. The left
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Figure 9: Increasing the light size. Left: the time consumption (top) and the maximum memory load (down)
reached during the computations. Right: 3 pictures from our tests with the smallest, the medium and the
largest area light source (100 times larger than the smallest one).

graph shows that the time consumption is linear in respect to the number of area light sources. This is the
expected behaviour since our framework evaluates the contribution of each light source one after another.
In addition this makes the memory load independent from the number of lights, as shown on the right graph.
However we can notice a significant growth of the memory load when the number of lights is more than
12. Indeed, the 12 first lights are above the conference table while the 24 other lights are mainly above the
chairs, casting more complex shadows. The memory growth is independent from the number of lights in
the scene, but it is coherent with the increase in the visibility complexity.

The previous set of results shows that oversized area light sources can become a limitation for our
approach, mainly because of the memory consumption. The present tests give a solution: Any huge light
source, even with a critical size, could always be treated as the union of several smaller lights. And the result
is always guaranteed noise free, which is specialy interesting with huge light sources since they require a
high number of shadow rays using a stochastic method.

5.4 Focus on the BSP_query behaviour

Previous results demonstrate the global efficiency and robustness of this work, but they do not highlight the
visibility algorithm (Algorithm 1) behaviour, i.e. how the visibility data and the computational cost evolve
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Figure 10: Increasing the light number. Left: the time consumption (top) and the maximum memory (down)
load reached during the computations. Left: 3 picture from our tests with 2, 16 and 36 area light sources.

in respect to the visibility queries. Figure 11 gives such an insight. It focuses on the construction of a single
BSP tree from the Conference model. This tree was selected because it is representative of the BSP_query
behaviour. It has 2 896 occluders and a significant number of queries (17 878) are performed. In particular,
most of the image points are located in the umbra or penumbra, which represent the most complex cases for
our visibility algorithm.

At first, the tree grows quickly because there is no visibility data and the algorithm has to develop it to
answer the visibility queries. The timings show the extra computational cost required for this construction.
As a second step, the tree growth slows down drastically because the previously computed equivalence
classes can be re-used and only need to be completed from time to time. As a consequence the computational
cost falls down. This is the global behaviour of the visibility algorithm. In addition, notice that the image
points are shaded in the scanline order. This allows handling consecutive points which are likely to share
the same visibility data. This is noticeable locally: An "expensive" query is always followed by "cheaper"
queries, taking advantage of the previous computational effort.

5.5 Discussions and future works

In this section we discuss our algorithm and point out some limitations and some issues we would like to
address in the future.

16



Light visibility

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
im

e
 (

m
s
)

M
e

m
o

ry
 (

M
B

)

Query number

Time
Memory

Figure 11: Lazy construction of a representative BSP tree. The abscissa corresponds to the number of
queries. The left ordinate is the time in milliseconds and is related to the continuous curve, while the right
one is the memory consumption in MB and is related to the dashed curve. Above the graphic, a half-tone
illustration of the light visibility for each query. Black means invisible while white is fully visible.

The lazy construction of the visibility data is an important feature of our algorithm. This requires to query
the visibility from some points to drive the computations. On one hand, this allows our approach to fit the
image resolution and to focus the computational effort where and when it is needed. On the other hand, it
may be inappropriate to solve some visibility problems. For example it is not suitable to proove that the light
source is invisible from a polygon or to compute exact Potentially Visible Sets. Indeed, it is not possible to
query all the points on a polygon or on the PVS boundaries. However, using an adaptative sampling of the
surfaces for example, our approach can still be used to query the visibility from each samples and produce
an accurate solution to these problems.

In this paper, a BSP tree is built for each triangle with image points to shade and makes the most of the
visibility coherence between those points. This is an easy solution to group image points. However, if the
geometric resolution is very high in respect to the image resolution, it can lead to very few image points
per triangle and thus, a loss of efficiency, because the visibility data may be dropped before being re-used.
To overcome this problem, image points should be grouped according to their neighborhood relationship
instead of the triangle they belong to. This will avoid the problem by giving control over the group size and
thus, over the number of queries per BSP tree.

As a future work, we think our implementation could be improved using a parallel computing architec-
ture such as CUDA or OpenCL to benefit from a higher number of threads on the graphic hardware. This
will require fixing some technical issues, in particular about memory management. Indeed, dynamic alloca-
tions from the graphic device are not natively supported, which is not convenient for the lazy construction
of data structures.

In this work, the visibility data is dropped as soon as it is not needed anymore. Instead, we are thinking
it could be saved to be used again for other renderings. In addition, we plan to study how the visibility
data could be simplified and compressed. This may further improve the memory footprint and the visibility
queries efficiency.

At last, we also plan to introduce depth information in the visibility data, which means grouping lines
according to the first triangle they intersect. This would allow extending our approach to other problems
and applications such as ambient occlusion.
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6 Conclusion

In this paper, we have presented a new approach to compute exact from-polygon visibility. The core of this
method is an original algorithm based on equivalence classes of lines. It encodes lazily the visibility from
a polygon, and allows taking advantage of the visibility coherence between successive visibility queries. In
addition, the algorithm implementation is easy, and uses only basic geometric operations. As a consequence,
it is fast and robust in contrast to previous works on exact from-polygon visibility.

Using this core algorithm, we have proposed an alias-free solution to analytically compute high quality
soft shadows. We have tested our approach in various configurations, including different models, different
sizes and different numbers of area light sources. These results demonstrated the reliability of our method.

To conclude, we hope this work illustrates that exact visibility, especially exact from-polygon visibility,
is not necessarily incompatible with robustness and performance. Moreover, since visibility is a recurrent
question in computer graphics, soft shadows is not the only problem that could benefit from the core of our
method. As discussed in the previous section, we are interested in several issues and we intend to continue
this work.
Acknowledgments: Sponza Atrium by Marko Dabrovic. Neptune model is provided courtesy of Laurent
Saboret (IMATI, INRIA) by the AIM@SHAPE Shape Repository.
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