
HAL Id: hal-00626693
https://hal.science/hal-00626693v1

Preprint submitted on 26 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of the Hurst parameter in some fractional
processes

Luis Armando Salomon, Jean-Claude Fort

To cite this version:
Luis Armando Salomon, Jean-Claude Fort. Estimation of the Hurst parameter in some fractional
processes. 2011. �hal-00626693�

https://hal.science/hal-00626693v1
https://hal.archives-ouvertes.fr


Estimation of the Hurst parameter in some fractional processes

Luis Salomona,b, Jean-Claude Fortc

a"Université de la Havane"
bInstitut de Mathématiques de Toulouse, 118 route de Narbonne F-31062 Toulouse

cUniversité Paris Descartes, 45 rue des saints pères, 75006 Paris, France

Abstract

We propose to estimate the Hurst parameter involved in fractional processes via a method
based on the Karhunen-Loève expansion of Gaussian process.We specifically investigate the
cases of the Fractional Brownian motion(FBm) and the Fractional Ornstein-Uhlenbeck(FOU)
Family. The main tool is the analysis of the residuals of a convenient linear regression model.
We numerically compare our results with the ones obtained by the maximum likelihood
method, which show the validity of our proposal.
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1. Introduction

Our goal is to propose an estimator of the hurst parameter of a fractional gaussian
process that performs almost as the maximum likelihood estimator but is more robust to
computational problems.

Our framework is quite simple : we have observations of a random process at equally
spaced or randomly distributed times, X(t1), . . . , X(tn). Assuming that the model which
rules these observations is a gaussian fractional process (Brownian motion, Ornstein Ulhen-
beck process, Brownian bridge) we estimate the hurst parameter denoted by θ, θ ∈ (0, 1)].
We are strictly in the parametric estimation framework.

Obviously the best estimator is obtain by maximizing the likelihood. It involves the
numerical computation of the inverse of the covariance matrix, which is tedious when n is
of magnitude larger than 500, even using LU decomposition.

Our alternative method relies on the Karhune-Loève decomposition, but in practice only
needs a short expansion, say less than 10 terms.

The next section presents our framework and recall some basic results about Karhune-
Loève decomposition. In section 3 we define our estimator and give some asymptotic results
that prove its consistency. Finally a section is devoted to numerical comparison with the
Maximum Likelihood Estimator (M.L.E.) on several examples.
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2. Framework and basic results

In this section we introduce a method based in the Karhunen-Loève expansion of Gaus-
sian process to estimate the Hurst parameter involved in fractional processes, specifically
the Fractional Brownian motion(FBm) and the Fractional Ornstein-Uhlenbeck(FOU) Fam-
ily. Our aim is to compare our results with the ones obtained by the maximum likelihood
method and show the validity of our proposal.

In the sequel for all the fractional process we will consider, we deal with only one unknown
parameter of interest: the hurst parameter θ. This parameter describes the roughness of
the path we partially observe.

In many cases other parameters are to be considered as mean, variance, drift parameter...
We will discuss these cases further on.

For instance for the Fractional Ornstein-Ulhenbeck family we assume that µ = 0 and
that α the drift parameter and σ the spatial scale are known.

2.0.1. Karhune-Loève decomposition

We will consider from now on that X belongs to one of the family (Xθ) of centered
fractional Gaussian process mentioned before with Hurst parameter θ in [0, 1]. We assume
that the observation time interval is [0, 1]. Let us denote by θ0 the real and unknown
parameter of the process actually observe, Xθ

0 . It is well-known that a Gaussian process
has a unique representation in the basis of Karhunen-Loève. This basis is given by the
diagonalisation of the so-called covariance operator Γ of the process X, which is assumed to
be a Hilbert-schmidt operator:

Γθ(f)(t) = E(f(Xθ(s))Xθ(t)Xθ(s)) =

∫

R

f(t)cov(Xθ(t), Xθ(s))ds.

For each value of θ we denote by (λθ
i , ϕ

θ
i )i≥1 the eigenvalues and associated normalized

eigenfunctions of Γθ in decreasing order. Then there exists a an i.i.d. sequence of standard
normal random variables ξθ

i , such that in L2[0, 1]:

Xθ(t) =
∑

i≥1

√
λθ

i ξ
θ
i ϕ

θ
i (t), (1)

This is the Karhunen-Loève decomposition of Xθ.
For N an integer, splitting the sum in equation (1) we have:

Xθ(t) =
∑

i≥1

√
λθ

i ξ
θ
i ϕ

θ
i (t)

=
N∑

j=1

√
λθ

i ξ
θ
i ϕ

θ
i (t) +

∑

j≥N+1

√
λθ

i ξ
θ
i ϕ

θ
i (t).

This can be seen as a linear regression model with noise

εθ(t) =
∑

j≥N+1

〈Xθ, ϕθ
j〉ϕθ

j(t) =
∑

j≥N+1

√
λθ

jξ
θ
j ϕ

θ
j(t),
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so that we may write :

Xθ(t) =
N∑

j=1

√
λθ

i ξ
θ
i ϕ

θ
i (t) + εθ(t) (2)

=
∑

1≤j≤N

〈Xθ, ϕθ
j〉ϕθ

j(t) + εθ(t). (3)

The covariance function of εθ(t) is given by

Cθ(t, s) = Eθ(ε
θ(t)εθ(s)) =

∑

j≥N+1

λθ
jϕ

θ
j(t)ϕ

θ
j(s). (4)

2.1. The observations

We assume observing the path of the process Xθ0 at n times t1, . . . , tn, which could be
regularly spaced or uniformly distributed. Let t = (t1, · · · , tn)′, in view of (3) we write:

Xθ(t) =




Xθ(t1)
...

Xθ(tn)


 = M θ

N(t)Ξθ
N + εθ

N(t),

where

M θ
N(t) =

(
〈Xθ, ϕθ

j〉
)

1≤i≤n
1≤j≤N

, Ξθ
N =




ξθ
1
...

ξθ
N


 , εθ

N(t) =




εθ(t1)
...

εθ(tn)


 ,

This is a classical multiple regression model:

Xθ(t) = M θ
N(t)Ξθ

N + εθ
N(t). (5)

From this we derive the estimator of Ξθ
N and consequently the estimate of εθ

N(t). We also
have the covariance matrix of εθ

N(t), defined by

Σθ
N =

( ∑

j≥N+1

λθ
jϕ

θ
j(tk)ϕ

θ
j(tl)

)

1≤k≤n
1≤l≤n

. (6)

Since we work with Gaussian process εθ
N is gaussian vector, εθ

N(t) ∼ N(0, Σθ
N), and it follows

that
ηN = (Σθ

N)−
1
2 εθ

N(t) ∼ N(0, In),

and then ‖ηN‖2 ∼ χ2(n).
The estimator of Ξθ

N is

Ξ̂θ
N = (M θ

N(t)
′

(Σθ
N)−1M θ

N(t))−1M θ
N(t)

′

(Σθ
N)−1Xθ(t),
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and the estimate of the residuals is ε̂θ
N(t) which writes

ε̂θ
N(t) = (In − Hθ)Xθ(t),

where Hθ is the hat matrix of the model with the following expression

Hθ = M θ
N(t)(M θ

N(t)
′

(Σθ
N)−1M θ

N(t))−1M θ
N(t)

′

(Σθ
N)−1.

therefore
ε̂θ

N(t) ∼ N(0, (In − Hθ)Σθ
N(In − Hθ)′).

Now we observe Xθ0(t) with true unknown parameter θ0 and the regression model (5) is
given by the expansion on the Karhunen-Loève basis associated to θ. Hence we must write:

Xθ0(t) =
∑

i≥1

ρθ,θ0

i ϕθ
i (t), (7)

where

ρθ,θ0

i =

∫ 1

0

Xθ0(t)ϕθ
i (t)dt,

and when θ = θ0, ρθ0,θ0

i =
√

λθ0
i ξθ0

i .

The regression model (5) becomes:

Xθ0(t) = M θ,θ0

N (t)Ξθ,θ0

N + εθ,θ0

N (t), (8)

where M θ,θ0

N (t) and Ξθ,θ0

N are:

M θ,θ0

N (t) =
(
〈Xθ0 , ϕθ

j〉
)

1≤i≤n
1≤j≤N

, Ξθ,θ0

N =




ξθ
1
...

ξθ
N




and
εθ,θ0

N (t) = (ε(t1)
θ,θ0 , · · · , ε(tn)θ,θ0)′,

with
εθ,θ0(ti) =

∑

j≥N+1

〈Xθ0 , ϕθ
j〉ϕθ

j(ti) =
∑

j≥N+1

ρθ,θ0

i ϕθ
j(ti).

Our procedure of estimation decomposed in three steps :

1. Observe the real process Xθ0(t) with unknown parameter θ0.

2. Adjust the regression model (8) for Xθ0(t), for "all" values θ in (0, 1).

3. Construct a function based on the estimation of the parameters of the model with the
property that discrepancy appears when θ 6= θ0.
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As previously, the covariance function of the process εθ,θ0

(t) is calculated as:

Cθ,θ0(t, s) = E(εθ,θ0(t)εθ,θ0(s)) = cov
(
εθ,θ0(t), εθ,θ0(s)

)

= E
∑

i≥N+1
j≥N+1

〈Xθ0 , ϕθ
i 〉〈Xθ0 , ϕθ

j〉ϕθ
i (t)ϕ

θ
j(s)

= E
∑

i≥N+1
j≥N+1

(∫ 1

0

∫ 1

0

Xθ0(u)Xθ0(v)ϕθ
i (u)ϕθ

j(v)dudv

)
ϕθ

i (t)ϕ
θ
j(s)

=
∑

i≥N+1
j≥N+1

(∫ 1

0

∫ 1

0

Γθ0(u, v)ϕθ
i (u)ϕθ

j(v)dudv

)
ϕθ

i (t)ϕ
θ
j(s),

where we recall that Γθ0(u, v) = E(Xθ0(u)Xθ0(v)) is the covariance function for the process
Xθ0(t).

If we denote

Aθ,θ0

i,j =

∫ 1

0

∫ 1

0

Γθ0(u, v)ϕθ
i (u)ϕθ

j(v)dudv, (9)

the final expression for the covariance function of the process εθ,θ0(t) is

Cθ,θ0(t, s) =
∑

i≥N+1
j≥N+1

Aθ,θ0

i,j ϕθ
i (t)ϕ

θ
j(s). (10)

Therefore the covariance matrix of εθ,θ0

N (t) is

Σθ,θ0

N =



∑

i≥N+1
j≥N+1

Aθ,θ0

i,j ϕθ
i (tk)ϕ

θ
j(tl)




1≤k≤n
1≤l≤n

, (11)

Our idea is to use Σθ
N and Σθ,θ0

N to construct a "contrast function" h that measures the
strength of the estimation for all value of θ. This "contrast function" will be built on the
residuals of the regression. Actually h will not be a contrast but its derivative, which is
enough for our purpose.

So we leave the issue of estimation of the parameters in our model. Let us focus our
attention on the random vector of the "standardized" residuals:

ηθ,θ0

N = (Σθ
N)−

1
2 εθ,θ0

N (t) ∼ N(0, (Σθ
N)−

1
2 Σθ,θ0

N (Σθ
N)−

1
2 ).

This involves the actual covariance matrix (unknown) and the covariance matrix for a model
depending on θ, and we have:

E‖ηθ,θ0

N ‖2 = E

(
εθ,θ0

N (t)
′

(Σθ
N)−1εθ,θ0

N (t)
)

= tr(Σθ,θ0

N (Σθ
N)−1).
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Then we define the contrast function hN by:

hN(θ; θ0) = lim
n→+∞

tr(Σθ,θ0

N (Σθ
N)−1)

n
= lim

n→+∞

E‖ηθ,θ0

N ‖2

n
(12)

If θ = θ0, then Σθ0,θ0

N = Σθ0
N , ηθ0,θ0

N = ηN and
tr(Σθ0,θ0

N (Σθ0
N )−1)

n
= 1, so that hN(θ0; θ0) = 1.

Furthermore we know the behaviour of hN when θ 6= θ0:

Theorem 2.1.

We assume that Xθ(t) is a fractional Brownian motion or a fractional Ornstein-Ulhbeck with
Hurst parameter θ ∈ (0, 1) defined on [0, 1] and Xθ0(t) for t = (t1, · · · , tn) is the partial
observation of a path of the process Xθ0. The times of observation t are assumed to be
equally spaced or random i.i.d. variables uniformly distributed on [0, 1], independent of Xθ0.
The function

hN(θ; θ0) = lim
n→+∞

tr(Σθ,θ0

N (Σθ
N)−1)

n
,

with Σθ
N and Σθ,θ0

N defined in (6) and (11) respectively satisfies the following property:

X If θ = θ0 then hN(θ; θ0) = 1.

X If θ > θ0 then hN(θ; θ0) = ∞.

X If θ < θ0 then hN(θ; θ0) = 0.

The proof is postponed in Annex A.
The previous result is obtained in a rather theoretical setting : the Karhunen-Loève

decomposition is known, N is fixed and the limit n → ∞ is taken. In practice we have
to choose N , use an approximation of the Karhunen-Loève basis, n is finite, we only can
compute estimations of hN , and finally it is not possible to estimate hN at every possible
value of θ0. The question of the choice of N will be studied by simulation.

Now we estimate hN . We use:

ĥN(θ; θ0) =
‖η̂θ,θ0

N ‖2

n − N
=

(
ε̂θ,θ0

N (t)
′

(Σθ
N)−1ε̂θ,θ0

N (t)

)

n − N
,

where

ε̂θ,θ0

N (t) = (In − Hθ)εθ,θ0

N (t) ∼ N(0, (In − Hθ)Σθ,θ0

N (In − Hθ)′).

Conditionally to the time values t, ‖̂ηθ0,θ0

N ‖2 is a χ2 with n − N degrees of freedom, so

that E ĥN(θ0; θ0) = 1 and ĥN(θ0; θ0) converges in probability toward 1.
Hence we propose to estimate the parameter θ0 by :

θ̂ = Argminθ|ĥN(θ; θ0) − 1| (13)
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To compute this estimator we need an approximation of the Karhunen-Loève basis. For
this we built a database with the values of the covariance matrix Γθ(t, s) for a suitable
collection of θ on a discretization of[0, 1] and for each fractional process we studied. It
remains to numerically computatie Σ1 which is possible even for about thousand points.
We avoid the term log(det Σ) that appears in the M.L.E. estimation.

As we focus onto the method itself we do not discuss the numerical implementation of
this data basis, but we easily obtain good numerical approximations by simulation, and we
do it only once for all.

Then θ̂ is computed by interpolation of the grid values.

2.1.1. Simulation Study and Numerical Results

2.1.2. Fractional Brownian

We conduct a simulation study to compare the estimates from our method (KL method)
with the M.L.E.. Both procedures were used to give estimates of the Hurst parameter in
fractional processes. This study shows that the KL method performs well.

The simulation study has been organized in two parts

1. A first simulation study to find a good choice of N when n is fixed and the same for n
for N fixed (it is reasonable order).

2. A simulation study with good choices of n and N in order to find the estimation of the
Hurst parameter for the fractional processes.

For the Fractional Brownian motion we set

• n = 300,

• N = 5; 10; 30; 50; 100; 150; 200, and

• θ0 = 0.1 and θ0 = 0.7.

The first values of θ0 is close to 0 and is not easy to estimate. The second one illustrate an
easier case. We tried many values of N , but we knew that only small values (5 to 10) would
be of practical use.

The value n = 300 is in the range of easy computation of the M.L.E..
For each combination of previous values we generate 50 random samples of the fractional

process. Then we calculate the value of ĥ(θ; θ0) on a grid of values of θ from 0.05 to 0.95 by

step of 0.01. Finally we interpolate the results obtained to compute θ̂0 for which ĥ(θ; θ0) = 1.

We use a parabolic interpolation because of the behavior of ĥ.
Table 1 shows that the KL method gives good results for any value of N . This is

confirmed observing the box-plot representation for each case (see Figure ??). However, it
is important to highlight that for the greatest values of N more variability in the estimations
is observed.Thus, using small values of N produce best results for estimating θ0. Here it is
worth pointing out that the theoretical assumption needed for N (N ≫ 1) can be relaxed
in numerical calculations. This make our KL method easily tractable in any case. In the
second part of the simulation study we analyze of the behavior of θ̂ with nwhen N is fixed.

In the light of the previous simulation study we consider the following settings.
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N Mean STD

5 0,1018 0,0078
10 0,1018 0,0075
30 0,1018 0,0074
50 0,1021 0,0071
100 0,1023 0,0083
150 0,1027 0,0094
200 0,1038 0,0115

N Mean STD

5 0,7004 0,0060
10 0,7004 0,0060
30 0,7003 0,0061
50 0,7001 0,0061
100 0,7002 0,0075
150 0,7010 0,0083
200 0,7025 0,0091

Table 1: Mean and standard deviation for the estimation of θ0 for each value of N by using 50 random
observations of the FBm with the true parameter and n = 300. (Left: θ0 = 0.1. Right: θ0 = 0.7).

• N = 5,

• n = 10; 50; 100; 150; 200; 300, and

• θ0 = 0.1 and θ0 = 0.7.

For each combination of the previous values we generate 50 random samples of the
fractional process. Then we calculate the value of ĥ(θ; θ0) as described previously.

n Mean STD

10 0,1236 0,0377
50 0,0828 0,0451
100 0,1025 0,0167
150 0,1006 0,0119
200 0,0977 0,0094
300 0,0997 0,0071

n Mean STD

10 0,7200 0,0349
50 0,6848 0,1007
100 0,7029 0,0122
150 0,7005 0,0082
200 0,6992 0,0075
300 0,6991 0,0064

Table 2: Mean and standard deviation for the estimation of θ0 for each value of n by using 50 random
observations of the FBm with the true parameter and N = 5. (Left: θ0 = 0.1. Right: θ0 = 0.7).

The numerical results in Tables 2 and Figure ?? allows to thinkthat our estimator
converges, and that the speed of convergence is of the correct magnitude.

Therefore we conclude that a choice of N between 5 and 10 is appropriate. if we a priori
suspect small value of θ0 N = 10 would be enough since the eigenvalues of the covariance
operator decrease slowly, a contrario when θ0 is large the eigen values decreases faster and
N = 5 would be better

According to the previous conclusions we perform a last simulation study to compare
the performances of the KL method and the M.L.E..

The study provides quantitative results for different values of the parameter. For the
simulation scheme we set θ0 ∈ {0.1, 0.3, 0.7, 0.9}, n = 200, N = 10 for the first two values
of θ0 and N = 5 for the other two.

For the M.L.E. we maximize the:

ĥmle(θ; θ0) = − ln(det(Dθ0
n Γθ(t))) − (Xθ0

t
)′Γθ(t)Xθ0

t
,
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where Γθ(t) = (Γθ(ti, tj))1≤i,j≤n, Dθ0
n is the function who assure that det(Dθ0

n Γθ(t)) > 0
in the numerical implementation. The matrix Γθ(t) is definite positive for any t hence
det(Γθ(t)) > 0. But due to the small values of the eigenvalues associated to Γθ(t) we faced
numerical difficulties. We easily avoided this numerical problem.

For both methods we improved the numerical precision by a quadratic interpolation in
each case. The results can be seen in Table 3.

Mean STD Mean STD

0.1 0,1004 0,0100 0,0993 0,0119
0.3 0,3009 0,0085 0,2998 0,0078
0.7 0,7008 0,0082 0,7007 0,0081
0.9 0,9004 0,0051 0,9007 0,0081

Table 3: Mean and standard deviation for the estimation of several θ0.

The results of table 3 clearly prove that the two methods are are numerically equivalent.
Of curse the M.L.E. estimator is the by the Cramer Rao bound, but the KL method provides
an almost as precise estimator as the M.L.E. This partial conclusion for the Fractional Brow-
nian motion has been confirmed by the study of fractionnal ornstein-ulhlhenbeck(F.O.U.)
of the third kind.
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2.1.3. Fractional Ornstein-Uhlenbeck. First Kind

For this case has not interest in perform a simulation study. As we state before we need
to construct a FBm using the FOU of the first kind and conduct the KL method to the
obtained FBm. In that sense we use the inverse of

Xθ0,1
tn ≈ e−

eθtn

(
Xθ0,1

t0 + σ

n∑

j=1

e−
eθtj∆W θ0

tn

)
,

hence if Xθ0,1
ti is observed we get

W θ0
tn ≈ W θ0

tn−1
+ Xθ0,1

tn − e−
eθ∆nXθ0,1

tn−1
.

Obviously for the simulation study we construct first the FBm to obtain the FOU of first
kind. Therefore the reversal formula is used. It is an obvious consequence that we will
obtain the same FBm that was generated. Hence is not necessary to conduct a simulation
study because in this case the general setting for the FBm applies.

3. Annex A : proof of theorem 2.1

We suppose θ 6= θ0.
We begin by taking "approximations" of the matrices Σθ

N , Σθ,θ0

N . Let N⋆ we define the
following matrices in order to approximate Σθ,θ0

N , Σθ
N :

ΨN⋆ =
(
ϕθ

j(ti)
)

1≤i≤n
N+1≤j≤N⋆

AN⋆ =
(
Aθ,θ0

i,j

)
N+1≤i≤N⋆

N+1≤j≤N⋆

ΛN⋆ =
(
λθ

ij

)
N+1≤i≤N⋆

N+1≤j≤N⋆
,

where λθ
ij = λθ

i if i = j and zero otherwise. Therefore we have the following approximations:

Σθ
N,N⋆ = ΨN⋆ΛN⋆Ψ′

N⋆ and Σθ,θ0

N,N⋆ = ΨN⋆AN⋆Ψ′
N⋆ .

Since tr(AB) = tr(BA) for any matrices A, B such as AB and BA are square matrices it
follows that

tr(Σθ,θ0

N,N⋆(Σθ
N,N⋆)−1) = tr(ΨN⋆AN⋆Ψ′

N⋆(ΨN⋆ΛN⋆Ψ′
N⋆)−1)

= tr(AN⋆Λ−1
N⋆)

Assuming N⋆ ≥ n + N and large enough, rank(Ψ′
N⋆) = n (a.s. if t is random) and the

matrix
Λ

1/2
N⋆ Ψ′

N⋆(ΨN⋆ΛN⋆Ψ′
N⋆)−1ΨN⋆Λ

1/2
N⋆

is the matrix of the orthogonal projection on the column of Λ
1/2
N⋆ Ψ′

N⋆ . Hence the matrix

AN⋆Ψ′
N⋆(ΨN⋆ΛN⋆Ψ′

N⋆)−1ΨN⋆ is conjugate with Λ
−1/2
N⋆ AN⋆Λ

−1/2
N⋆ . We have obtained:

tr(Σθ,θ0

N,N⋆(Σθ
N,N⋆)−1) = tr(AN⋆Λ−1

N⋆) =
N⋆∑

i≥N+1

Aθ,θ0

i,i

λθ
i

.
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3.0.4. Fractional Brownian motion (fBm)

In this case we will use the results of Bronski (?). This article provides expansion of the
eigenvalues appearing in the Karhunen-Loève decomposition of the fBm, more precisely

λθ
n =

vθ

n2θ+1
+ o

(
n−

(2θ+2)(4θ+3)
4θ+5

+δ
)

∀ δ > 0, n ≫ 1,

where

vθ =
sin(πθ)Γ(2θ + 1)

π2θ+1
,

and Γ is the usual Gamma function.
In the proof of the previous result the author define an integral operator A in the

orthonormal basis {
√

2 sin (n + 1
2
)πx}∞n=0, which is the Karhunen-Loève basis of the Wiener

process. The Am,n element for θ = θ0 writes:

Am,n =

∫ 1

0

∫ 1

0

(u2θ0 + v2θ0 − |u − v|2θ0) sin(m∗u) sin(n∗v)dudv,

where n∗ = (n + 1/2)π and likewise m∗.
Bronski shows that A can be written as A = D + O, where D is a diagonal piece and

O an off-diagonal piece (the expressions for both are in ?). In our case is easy to see that

A
1/2,θ0

i,j = Ai,j.

We have to study the quotient Aθ,θ0

i,i /λθ
i , hence we focus on the diagonal entries of A.

Therefore it follows

A1/2,θ0
n,n =

sin(πθ0)Γ(2θ0 + 1)

n∗2θ0+1
+ O(n−2(θ0+1)),

thus
A

1/2,θ0
n,n

λ
1/2
n

= sin(πθ0)Γ(2θ0 + 1)n2θ0−1 + O(
(n + 1/2)2

n2(θ0+1)
).

Now it is straightforward that

lim
n→+∞

1

n

n+N∑

i≥N+1

A
1/2,θ0

i,i

λ
1/2
i

=

{
+∞ if θ0 > 1/2

0 if θ0 < 1/2

With this result we just get the result in the case θ = 1/2, but the general follow the
same way. In Bronski (?) is established an asymptotic expansion of the eigenvalues and
eigenfunctions of the FBm

λθ
n ∼ vθ

n2θ+1
n ≫ 1,

(14)

ϕθ
n(x) ∼

√
2 sin(n∗x) n ≫ 1

11



Hence setting

Ãm,n =

∫ 1

0

∫ 1

0

(u2θ0 + v2θ0 − |u − v|2θ0)ϕθ
n(u)ϕθ

n(v)dudv,

and using (14) we obtain

Aθ,θ0
n,n = Ãn,n ∼ An,n =

sin(πθ0)Γ(2θ0 + 1)

n∗2θ0+1
+ O(n−2(θ0+1)).

That leads us to

Aθ,θ0
n,n

λθ
n

∼ sin(πθ0)Γ(2θ0 + 1)v−1
θ

n2θ+1

n∗2θ0+1
+ O(

n2θ+1

n2(θ0+1)
).

Therefore

lim
n→+∞

1

n

n+N∑

i≥N+1

Aθ,θ0

i,i

λθ
i

=

{
+∞ if θ0 > θ

0 if θ0 < θ
. (15)

This ends the proof for the fBm.

3.0.5. Fractional Ornstein-Uhlenbeck (First Kind)

Let Xθ,1
t be the Fractional Ornstein-Uhlenbeck (fOU) of first kind (see (??)). It is the

solution of the Stochastic Differential Equation driven by a fractional Brownian motion

dXH,1
t = −αXθ,1

t dt + σdW θ
s (16)

Here we assume that α and σ are known.
There is no closed form for the covariance function or its eigenvalues, but one can relate

them to the corresponding values for the fBm.
Let us denote Γθ,B, (ϕθ,B

j (t))j≥1 and (λθ,B
j )j≥1 the covariance function, KL eigenfunctions

and eigenvalues respectively for the fBm. The process Xθ,1
t can be expanded on (ϕθ,B

j (t))j≥1,
which is an orthonormal basis of L2([0, 1]). Then

Xθ0,1(t) =
∑

i≥1

ρθ,θ0

i ϕθ,B
i (t), (17)

where

ρθ,θ0

i =

∫ 1

0

Xθ0,1(t)ϕθ,B
i (t)dt,

therefore the expression for Aθ,θ0

ij in (9) still takes the form

Aθ,θ0

i,j =

∫ 1

0

∫ 1

0

Γθ0(u, v)ϕθ,B
i (u)ϕθ,B

j (v)dudv, (18)
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where Γθ0 is the covariance function of the fOU. We have:

Σθ,θ0

N =



∑

i≥N+1
j≥N+1

Aθ,θ0

i,j ϕθ,B
i (tk)ϕ

θ,B
j (tl)




1≤k≤n
1≤l≤n

. (19)

As in (??) we have:

hN(θ; θ0) = lim
n→+∞

1

n

n+N∑

i≥N+1

Aθ,θ0

i,i

λθ
i

.

The inequality for the covariance function of the fOU in(??) yields:

c′θ Aθ,θ0,B
i,i ≤ Aθ,θ0

i,i ≤ C ′
θ Aθ,θ0,B

i,i

d′
θλ

θ,B
i ≤ λθ

i ≤ D′
θλ

θ,B
i

where the constants c′θ, C
′
θ, d

′
θ, D

′
θ are positive. Hence

c′′θh
B
N(θ; θ0) ≤ hN(θ; θ0) ≤ C ′′

θ hB
N(θ; θ0),

and finally

lim
n→+∞

1

n

n+N∑

i≥N+1

Aθ,θ0

i,i

λθ
i

=

{
+∞ if θ0 > θ

0 if θ0 < θ
, (20)

Again we note the spatial scale invariance of our estimator. Yet there still remain another
unknown parameter α.

3.0.6. Somme comments about the fractional Ornstein-Uhlenbeck (Second and third Kind)

The process Xθ,2, fOU of the second kind, satisfies:

Xθ,2
t = e−θtW θ

at,θ
,

where at,θ = θσ2eθt/θ/θ, thus we propose a different approach. We use the previous equation
to revert the fractional Process of second kind into a fractional Brownian motion. This
method can also be used for the fOU of first kind. For both cases we can construct a
FBm W θ(t) with Hurst parameter θ ∈ (0, 1) in t = (t1, · · · , tn) and t = (eθt1/H , · · · , eθtn/H)
respectively. Theorem ?? applies with the correct modifications for the fOU of second kind.
This assertion state that a correct estimation of the Hurst parameter on a fBm leads us to
a correct estimation for the associated fOU.

For the FOU of third kind Xθ,3(t) we know the exact expression of the covariance func-
tion. Hence the same procedure can be used. However,due to Rosenblatt, we only have
asymptotic for the eigenvalues:

λθ,3
n ∼ n−(1+2θ),

we refer the reader to ? and ? for details. Therefore we are not in position to give a proof
of our theorem for this process.
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