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Abstract. We review recent results for high-dimensional sparse linear
regression in the practical case of unknown variance. Different sparsity
settings are covered, including coordinate-sparsity, group-sparsity and
variation-sparsity. The emphasis is put on non-asymptotic analyses and
feasible procedures. In addition, a small numerical study compares the
practical performance of three schemes for tuning the Lasso estima-
tor and some references are collected for some more general models,
including multivariate regression and nonparametric regression.
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1. INTRODUCTION

In the present paper, we mainly focus on the linear regression model

Y = Xβ0 + ε , (1)

where Y is a n-dimensional response vector, X is a fixed n × p design matrix,
and the vector ε is made of n i.i.d Gaussian random variables with N (0, σ2)
distribution. In the sequel, X(i) stands for the i-th row of X. Our interest is on
the high-dimensional setting, where the dimension p of the unknown parameter
β0 is large, possibly larger than n.

The analysis of the high-dimensional linear regression model has attracted
a lot of attention in the last decade. Nevertheless, there is a longstanding gap
between the theory where the variance σ2 is generally assumed to be known and
the practice where it is often unknown. The present paper is mainly devoted
to review recent results on linear regression in high-dimensional settings with
unknown variance σ2. A few additional results for multivariate regression and
the nonparametric regression model

Yi = f(X(i)) + εi, i = 1, . . . , n , (2)

will also be mentioned.
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1.1 Sparsity assumptions

In a high-dimensional linear regression model, accurate estimation is unfeasible
unless it relies on some special properties of the parameter β0. The most common
assumption on β0 is that it is sparse in some sense. We will consider in this paper
the three following classical sparsity assumptions.

Coordinate-sparsity. Most of the coordinates of β0 are assumed to be zero (or
approximately zero). This is the most common acceptation for sparsity in linear
regression.

Structured-sparsity. The pattern of zero(s) of the coordinates of β0 is assumed
to have an a priori known structure. For instance, in group-sparsity [80], the
covariates are clustered intoM groups and when the coefficient β0,i corresponding
to the covariate Xi (the i-th column of X) is non-zero, then it is likely that all
the coefficients β0,j with variables Xj in the same cluster as Xi are non-zero.

Variation-sparsity. The p− 1-dimensional vector βV
0 of variation of β0 is defined

by βV
0,j = β0,j+1 − β0,j . Sparsity in variation means that most of the components

of βV
0 are equal to zero (or approximately zero). When p = n and X = In,

variation-sparse linear regression corresponds to signal segmentation.

1.2 Statistical objectives

In the linear regression model, there are roughly two kinds of estimation objec-
tives. In the prediction problem, the goal is to estimateXβ0, whereas in the inverse
problem it is to estimate β0. When the vector β0 is sparse, a related objective is
to estimate the support of β0 (model identification problem) which is the set of
the indices j corresponding to the non zero coefficients β0,j . Inverse problems and
prediction problems are not equivalent in general. When the Gram matrix XX∗

is poorly conditioned, the former problems can be much more difficult than the
latter. Since there are only a few results on inverse problems with unknown vari-
ance, we will focus on the prediction problem, the support estimation problem
being shortly discussed in the course of the paper.

In the sequel, Eβ0 [.] stands for the expectation with respect to Y ∼ N (Xβ0, σ
2In)

and ‖.‖2 is the euclidean norm. The prediction objective amounts to build esti-
mators β̂ so that the risk

R[β̂;β0] := Eβ0 [‖X(β̂ − β0)‖22] (3)

is as small as possible.

1.3 Approaches

Most procedures that handle high-dimensional linear models [22, 26, 62, 72,
73, 81, 83, 85] rely on tuning parameters whose optimal value depends on σ. For
example, the results of Bickel et al. [17] suggest to choose the tuning parameter λ
of the Lasso of the order of 2σ

√
2 log(p). As a consequence, all these procedures

cannot be directly applied when σ2 is unknown.
A straightforward approach is to replace σ2 by an estimate of the variance

in the optimal value of the tuning parameter(s). Nevertheless, the variance σ2 is
difficult to estimate in high-dimensional settings, so a plug-in of the variance does
not necessarily yield good results. There are basically two approaches to build on
this amount of work on high-dimensional estimation with known variance.
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1. Ad-hoc estimation. There has been some recent work [16, 68, 71] to modify
procedures like the Lasso in such a way that the tuning parameter does
not depend anymore on σ2 (see Section 4.2). The challenge is to find a
smart modification of the procedure, so that the resulting estimator β̂ is

computationally feasible and has a risk R
[
β̂;β0

]
as small as possible.

2. Estimator selection. Given a collection (β̂λ)λ∈Λ of estimators, the objective
of estimator selection is to pick an index λ̂ such that the risk of β̂

λ̂
is as

small as possible; ideally as small as the risk R[β̂λ∗ ;β0] of the so-called
oracle estimator

β̂λ∗ := argmin
{β̂λ, λ∈Λ}

R
[
β̂λ;β0

]
. (4)

Efficient estimator selection procedures can then be applied to tune the
aforementioned estimation methods [22, 26, 62, 72, 73, 81, 83, 85]. Among
the most famous methods for estimator selection, we mention V -fold cross-
validation (Geisser [32]), AIC (Akaike [1]) and BIC (Schwarz [64]) criteria.

The objective of this survey is to describe state-of-the-art procedures for high-
dimensional linear regression with unknown variance. We will review both auto-
matic tuning methods and ad-hoc methods. There are some procedures that we
will let aside. For example, Baraud [11] provides a versatile estimator selection
scheme, but the procedure is computationally intractable in large dimensions. Lin-
ear or convex aggregation of estimators are also valuable alternatives to estimator
selection when the goal is to perform estimation, but only a few theoretical works
have addressed the aggregation problem when the variance is unknown [35, 33].
For these reasons, we will not review these approaches in the sequel.

1.4 Why care about non-asymptotic analyses ?

AIC [1], BIC [64] and V -fold Cross-Validation [32] are probably the most popu-
lar criteria for estimator selection. The use of these criteria relies on some classical
asymptotic optimality results. These results focus on the setting where the collec-
tion of estimators (β̂λ)λ∈Λ and the dimension p are fixed and consider the limit
behavior of the criteria when the sample size n goes to infinity. For example,
under some suitable conditions, Shibata [67], Li [53] and Shao [66] prove that the
risk of the estimator selected by AIC or V -fold CV (with V = Vn → ∞) is asymp-
totically equivalent to the oracle risk R[β̂λ∗ ;β0]. Similarly, Nishii [59] shows that
the BIC criterion is consistent for model selection.

All these asymptotic results can lead to misleading conclusions in modern
statistical settings where the sample size remains small and the parameter’s di-
mension becomes large. For instance it is proved in [12, Sect.3.3.2] and illustrated
in [12, Sect.6.2] that BIC (and thus AIC) can strongly overfit and should not be
used for p larger than n. Additional examples are provided in Appendix A. A
non-asymptotic analysis takes into account all the characteristics of the selection
problem (sample size n, parameter dimension p, number of models per dimen-
sion, etc). It treats n and p as they are and it avoids to miss important features
hidden in asymptotic limits. For these reasons, we will restrict in this review on
non-asymptotic results.
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1.5 Organization of the paper

In Section 2, we investigate how the ignorance of the variance affects the min-
imax risk bounds. In Section 3, some ”generic” estimators selection schemes are
presented. The coordinate-sparse setting is addressed Section 4 : some theoretical
results are collected and a small numerical experiment compares different Lasso-
based procedures. The group-sparse and variation-sparse settings are reviewed in
Section 5 and 6, and Section 7 is devoted to some more general models such as
multivariate regression or nonparametric regression.

In the sequel, C, C1,. . . refer to numerical constants whose value may vary from
line to line, while ‖β‖0 stands for the number of non zero components of β and
|J | for the cardinality of a set J .

2. THEORETICAL LIMITS

The goal of this section is to address the intrinsic difficulty of a coordinate-
sparse linear regression problem. We will answer the following questions: Which
range of p can we reasonably consider? When the variance is unknown, can we
hope to do as well as when the variance is known?

2.1 Minimax adaptation

A classical way to assess the performance of an estimator β̂ is to measure its
maximal risk over a class B ⊂ R

p. This is the minimax point of view. As we
are interested in coordinate-sparsity for β0, we will consider the sets B[k, p] of
vectors that contain at most k non zero coordinates for some k > 0.

Given an estimator β̂, the maximal prediction risk of β̂ over B[k, p] for a fixed
design X and a variance σ2 is defined by supβ0∈B[k,p]R[β̂;β0] where the risk
function R[., β0] is defined by (3). Taking the infimum of the maximal risk over
all possible estimators β̂, we obtain the minimax risk

R[k,X] = inf
β̂

sup
β0∈B[k,p]

R[β̂;β0] . (5)

Minimax bounds are convenient results to assess the range of problems that are
statistically feasible and the optimality of particular procedures. Below, we say
that an estimator β̂ is “minimax” over B[k, p] if its maximal prediction risk is
close to the minimax risk.

In practice, the number of non-zero coordinates of β0 is unknown. The fact that
an estimator β̂ is minimax over B[k, p] for some specific k > 0 does not imply
that β̂ estimates well vectors β0 that are less sparse. A good estimation procedure
β̂ should not require the knowledge of the sparsity k of β0 and should perform
as well as if this sparsity were known. An estimator β̂ that nearly achieves the
minimax risk over B[k, p] for a range of k is said to be adaptive to the sparsity.
Similarly, an estimator β̂ is adaptive to the variance σ2, if it does not require
the knowledge of σ2 and nearly achieves the minimax risk for all σ2 > 0. When
possible, the main challenge is to build adaptive procedures.

In the following subsections, we review sharp bounds on the minimax prediction
risks for both known and unknown sparsity, known and unknown variance. The
big picture is summed up in Figure 1. Roughly, it says that adaptation is possible
as long as 2k log(p/k) < n. In contrast, the situation becomes more complex for
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the ultra-high-dimensional1 setting where 2k log(p/k) ≥ n. The rest of this section
is devoted to explain this big picture.

k

σ unknown and k unknown

σ known or k known

Ultra-high dimension

2k log(p/k) ≥ n

n

M
in
im

a
x
r
is
k

Figure 1. Minimal prediction risk over B[k, p] as a function of k.

2.2 Minimax risks under known sparsity and known variance

The minimax risk R[k,X] depends on the form of the design X. In order to
grasp this dependency, we define for any k > 0, the largest and the smallest
sparse eigenvalues of order k of X∗X by

Φk,+(X) := sup
β∈B[k,p]\{0p}

‖Xβ‖2n
‖β‖2p

and Φk,−(X) := inf
β∈B[k,p]\{0p}

‖Xβ‖2n
‖β‖2p

.

.

Proposition 2.1. Assume that k and σ are known. There exist positive nu-
merical constants C1, C ′

1, C2, and C ′
2 such that the following holds. For any

(k, n, p) such that k ≤ n/2 and any design X, we have

C1
Φ2k,−(X)

Φ2k,+(X)
k log

(p
k

)
σ2 ≤ R[k,X] ≤ C ′

1

[
k log

(p
k

)
∧ n
]
σ2 , (6)

For any (k, n, p) such that k ≤ n/2, we have

C2

[
k log

(p
k

)
∧ n
]
σ2 ≤ sup

X

R[k,X] ≤ C ′
2

[
k log

(p
k

)
∧ n
]
σ2 . (7)

The minimax lower bound (6) has been first proved in [61, 62, 79] while (7) is
stated in [77]. Let us first comment the bound (7). If the vector β0 has k-non zero
components and if these components are a priori known, then one may build esti-
mators that achieve a risk bound of the order k. In a (non-ultra) high-dimensional

1In some papers, the expression ultra-high-dimensional has been used to characterize prob-
lems such that log(p) = O(nθ) with θ < 1. We argue here that as soon as k log(p)/n goes to
0, the case log(p) = O(nθ) is not intrinsically more difficult than conditions such as p = O(nδ)
with δ > 0.
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setting (2k log(p/k) ≤ n), the minimax risk is of the order k log(p/k)σ2. The log-
arithmic term is the price to pay to cope with the fact that we do not know
the position of the non zero components in β0. The situation is quite different
in an ultra-high-dimensional setting (2k log(p/k) > n). Indeed, the minimax risk
remains of the order of nσ2, which corresponds to the minimax risk of estimation
of the vector Xβ0 without any sparsity assumption (see the blue curve in Figure
1). In other terms, the sparsity index k does not play a role anymore.

Dependency of R[k,X] on the design X. It follows from (6) that supXR[k,X]
is nearly achieved by designs X satisfying Φ2k,−(X)/Φ2k,+(X) ≈ 1, when the set-
ting is not ultra-high dimensional. For some designs such that Φ2k,−(X)/Φ2k,+(X)
is small, the minimax prediction risk R[k,X] is possibly faster (see [77] for a dis-
cussion). In a ultra-high dimensional, the form of the minimax risk (nσ2) is re-
lated to the fact that no designs can satisfy Φ2k,−(X)/Φ2k,+(X) ≈ 1 (see e.g. [10]).
The lower bound R[k,X] ≥ C [k log(p/k) ∧ n]σ2 in (7) is for instance achieved
by realizations of a standard Gaussian design, that is designs X whose compo-
nents follow independent standard normal distributions. See [77] for more details.

2.3 Adaptation to the sparsity and to the variance

Adaptation to the sparsity when the variance is known. When σ2 is
known, there exist both model selection and aggregation procedures that achieve
this [k log(p/k) ∧ n]σ2 risk simultaneously for all k and for all designs X. Such
procedures derive from the work of Birgé and Massart [18] and Leung and Bar-
ron [52]. However, these methods are intractable for large p except for specific
forms of the design. We refer to Appendix B.1 for more details.

Simultaneous adaptation to the sparsity and the variance. We first re-
strict to the non-ultra high-dimensional setting, where the number of non-zero
components k is unknown but satisfies 2k log(p/k) < n. In this setting, some pro-
cedures based on penalized log-likelihood [12] are simultaneous adaptive to the
unknown sparsity and to the unknown variance and this for all designs X. Again
such procedures are intractable for large p. See Appendix B.2 for more details. If
we want to cover all k (including ultra-high dimensional settings), the situation
is different as shown in the next proposition (from [77]).

Proposition 2.2 (Simultaneous adaptation is impossible). There exist pos-
itive constants C, C ′, C1, C2, C3, C

′
1, C

′
2, and C ′

3, such that the following holds.
Consider any p ≥ n ≥ C and k ≤ p1/3 ∧ n/2 such that k log(p/k) ≥ C ′n. There
exist designs X of size n× p such that for any estimator β̂, we have either

sup
σ2>0

R[β̂; 0p]

σ2
> C1n , or

sup
β0∈B[k,p] , σ2>0

R[β̂;β0]

σ2
> C2k log

(p
k

)
exp

[
C3

k

n
log
(p
k

)]
.

Conversely, there exist two estimators β̂(n) and β̂BGH (defined in Appendix B.2)
that respectively satisfy



REGRESSION WITH UNKNOWN VARIANCE 7

sup
X

sup
β0∈Rp, σ2>0

R[β̂(n);β0]

σ2
≤ C ′

1n ,

sup
X

sup
β0∈B[k,p] , σ2>0

R[β̂BGH ;β0]

σ2
≤ C ′

2k log
(p
k

)
exp

[
C ′
3

k

n
log
(p
k

)]
,

for all 1 ≤ k ≤ [(n− 1) ∧ p]/4.

As a consequence, simultaneous adaptation to the sparsity and to the variance
is impossible in an ultra-high dimensional setting. Indeed, any estimator β̂ that
does not rely on σ2 has to pay at least one of these two prices:

1. The estimator β̂ does not use the sparsity of the true parameter β0 and its
risk for estimating X0p is of the same order as the minimax risk over Rn.

2. For any 1 ≤ k ≤ p1/3, the risk of β̂ fulfills

sup
σ>0

sup
β0∈B[k,p]

R[β̂;β0]

σ2
≥ C1k log (p) exp

[
C2

k

n
log (p)

]
.

It follows that the maximal risk of β̂ is blowing up in an ultra-high-dimensional
setting (red curve in Figure 1), while the minimax risk is stuck to n (blue
curve in Figure 1). The designs that satisfy the minimax lower bounds of
Proposition 2.2 include realizations of a standard Gaussian design.

In an ultra-high dimensional setting, the prediction problem becomes extremely
difficult under unknown variance because the variance estimation itself is incon-
sistent as shown in the next proposition (from [77]).

Proposition 2.3. There exist positive constants C, C1, and C2 such that
the following holds. Assume that p ≥ n ≥ C. For any 1 ≤ k ≤ p1/3, there exist
designs X such that

inf
σ̂

sup
σ>0, β0∈B[k,p]

Eβ0

[∣∣∣∣
σ2

σ̂2
− σ̂2

σ2

∣∣∣∣
]
≥ C1

k

n
log
(p
k

)
exp

[
C2

k

n
log
(p
k

)]
.

2.4 What should we expect from a good estimation procedure?

Let us consider an estimator β̂ that does not depend on σ2. Relying on the
previous minimax bounds, we will say that β̂ achieves an optimal risk bound
(with respect to the sparsity) if

R[β̂;β0] ≤ C1‖β0‖0 log(p)σ2 , (8)

for any σ > 0 and any vector β0 ∈ R
p such that 1 ≤ ‖β0‖0 log(p) ≤ C2n. Such risk

bounds prove that the estimator is approximately (up to a possible log(‖β0‖0)
additional term) minimax adaptive to the unknown variance and the unknown
sparsity. The condition ‖β0‖0 log(p) ≤ C2n ensures that the setting is not ultra-
high-dimensional. As stated above, some procedures achieve (8) for all designs X
but they are intractable for large p (see Appendix B). One purpose of this review
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is to present fast procedures that achieve this kind of bounds under possible
restrictive assumptions on the design matrix X.

For some procedures, (8) can be improved into a bound of the form

R[β̂;β0] ≤ C1 inf
β 6=0

{
‖X(β − β0)‖22 + ‖β‖0 log(p)σ2

}
, (9)

with C1 close to one. Again, the dimension ‖β0‖0 is restricted to be smaller than
Cn/ log(p) to ensure that the setting is not ultra-high dimensional. This kind of
bound makes a clear trade-off between a bias and a variance term. For instance,
when β0 contains many components that are nearly equal to zero, the bound (9)
can be much smaller than (8).

2.5 Other statistical problems in an ultra-high-dimensional setting

We have seen that adaptation becomes impossible for the prediction problem
in a ultra-high dimensional setting. For other statistical problems, including the
prediction problem with random design, the inverse problem (estimation of β0),
the variable selection problem (estimation of the support of β0), the dimension
reduction problem [77, 78, 46], the minimax risks are blowing up in a ultra-high
dimensional setting. This kind of phase transition has been observed in a wide
range of random geometry problems [29], suggesting some universality in this
limitation. In practice, the sparsity index k is not known, but given (n, p) we can
compute k∗ := max{k : 2k log(p/k) ≥ n}. One may interpret that the problem
is still reasonably difficult as long as k ≤ k∗. This gives a simple rule of thumb
to know what we can hope from a given regression problem. For example, setting
p = 5000 and n = 50 leads to k∗ = 3, implying that the prediction problem
becomes extremely difficult when there are more than 4 relevant covariates (see
the simulations in [77]).

3. SOME GENERIC SELECTION SCHEMES

Among the selection schemes not requiring the knowledge of the variance σ2,
some are very specific to a particular algorithm, while some others are more
generic. We describe in this section three versatile selection principles and refer
to the examples for the more specific schemes.

3.1 Cross-Validation procedures

The cross-validation schemes are nearly universal in the sense that they can be
implemented in most statistical frameworks and for most estimation procedures.
The principle of the cross-validation schemes is to split the data into a training set
and a validation set : the estimators are built on the training set and the validation
set is used for estimating their prediction risk. This training / validation splitting
is eventually repeated several times. The most popular cross-validation schemes
are :

• Hold-out [57, 27] which is based on a single split of the data for training
and validation.

• V -fold CV [32]. The data is split into V subsamples. Each subsample is suc-
cessively removed for validation, the remaining data being used for training.

• Leave-one-out [69] which corresponds to n-fold CV.
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• Leave-q-out (also called delete-q-CV ) [65] where every possible subset of
cardinality q of the data is removed for validation, the remaining data being
used for training.

We refer to Arlot and Célisse [6] for a review of the cross-validation schemes and
their theoretical properties.

3.2 Penalized empirical loss

Penalized empirical loss criteria form another class of versatile selection schemes,
yet less universal than CV procedures. The principle is to select among a family
(β̂λ)λ∈Λ of estimators by minimizing a criterion of the generic form

Crit(λ) = LX(Y, β̂λ) + pen(λ), (10)

where LX(Y, β̂λ) is a measure of the distance between Y and Xβ̂λ, and pen is a
function from Λ to R

+. The penalty function sometimes depends on data.

Penalized log-likelihood. The most famous criteria of the form (10) are AIC

and BIC. They have been designed to select among estimators β̂λ obtained by
maximizing the likelihood of (β, σ) with the constraint that β lies on a linear
space Sλ (called model). In the Gaussian case, these estimators are given by
Xβ̂λ = ΠSλ

Y , where ΠSλ
denotes the orthogonal projector onto the model Sλ.

For AIC and BIC, the function LX corresponds to twice the negative log-likelihood
LX(Y, β̂λ) = n log(‖Y − Xβ̂λ‖22) and the penalties are pen(λ) = 2 dim(Sλ) and
pen(λ) = dim(Sλ) log(n) respectively. We recall that these two criteria can per-
form very poorly in a high-dimensional setting.

In the same setting, Baraud et al. [12] propose alternative penalties built
from a non-asymptotic perspective. The resulting criterion can handle the high-
dimensional setting where p is possibly larger than n and the risk of the selection
procedure is controlled by a bound of the form (9), see Theorem 2 in [12].

Plug-in criteria.Many other penalized-empirical-loss criteria have been developed
in the last decades. Several selection criteria [14, 18] have been designed from a
non-asymptotic point of view to handle the case where the variance is known.
These criteria usually involve the residual least-square LX(Y, β̂λ) = ‖Y −Xβ̂λ‖22
and a penalty pen(λ) depending on the variance σ2. A common practice is then
to plug in the penalty an estimate σ̂2 of the variance in place of the variance. For
linear regression, when the design matrix X has a rank less than n, a classical
choice for σ̂2 is

σ̂2 =
‖Y −ΠXY ‖22
n− rank(X)

,

with ΠX the orthogonal projector onto the range of X. This estimator σ̂2 has the
nice feature to be independent of ΠXY on which usually rely the estimators β̂λ.
Nevertheless, the variance of σ̂2 is of order σ4/ (n− rank(X)) which is small only
when the sample size n is quite large in front of the rank of X. This situation is
unfortunately not likely to happen in a high-dimensional setting where p can be
larger than n.

3.3 Approximation versus complexity penalization : LinSelect

The criterion proposed by Baraud et al. [12] can handle high-dimensional set-
tings but it suffers from two rigidities. First, it can only handle fixed collections
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of models (Sλ)λ∈Λ. In some situations, the size of Λ is huge (e.g. for complete
variable selection) and the estimation procedure can then be computationally
intractable. In this case, we may want to work with a subcollection of models
(Sλ)λ∈Λ̂, where Λ̂ ⊂ Λ may depend on data. For example, for complete variable

selection, the subset Λ̂ could be generated by efficient algorithms like LARS [30].
The second rigidity of the procedure of Baraud et al. [12] is that it can only handle
constrained-maximum-likelihood estimators. This procedure then does not help
for selecting among arbitrary estimators such as the Lasso or Elastic-Net.

These two rigidities have been addressed recently by Baraud et al. [13]. They
propose a selection procedure, LinSelect, which can handle both data-dependent
collections of models and arbitrary estimators β̂λ. The procedure is based on a
collection S of linear spaces which gives a collection of possible ”approximative”
supports for the estimators (Xβ̂λ)λ∈Λ. A measure of complexity on S is provided
by a weight function ∆ : S → R

+ . We refer to Sections 4.1 and 5 for examples of
collection S and weight ∆ in the context of coordinate-sparse and group-sparse
regression. We present below a simplified version of the LinSelect procedure. For
a suitable, possibly data-dependent, subset Ŝ ⊂ S (depending on the statistical
problem), the estimator β̂

λ̂
is selected by minimizing the criterion

Crit(β̂λ) = inf
S∈Ŝ

[
‖Y −ΠSXβ̂λ‖22 +

1

2
‖Xβ̂λ −ΠSXβ̂λ‖22 + pen(S) σ̂2

S

]
, (11)

where ΠS is the orthogonal projector onto S,

σ̂2
S =

‖Y −ΠSY ‖22
n− dim(S)

,

and pen(S) is a penalty depending on ∆. In the cases we will consider here, the
penalty pen(S) is roughly of the order of ∆(S) and therefore it penalizes S ac-
cording to its complexity. We refer to the Appendix C for a precise definition of
this penalty and more details on its characteristics. We emphasize that the Crite-
rion (11) and the family of estimators {β̂λ, λ ∈ Λ} are based on the same data Y
and X. In other words, there is no data-splitting occurring in the LinSelect pro-
cedure. The first term in (11) quantifies the fit of the projected estimator to the
data, the second term evaluates the approximation quality of the space S and the
last term penalizes S according to its complexity. We refer to Proposition C.1
in Appendix C and Theorem 1 in [12] for risk bounds on the selected estima-
tor. Instantiations of the procedure and more specific risks bounds are given in
Sections 4 and 5 in the context of coordinate-sparsity and group-sparsity.

From a computational point of view, the algorithmic complexity of LinSelect

is at most proportional to |Λ| × |Ŝ| and in many cases there is no need to scan
the whole set Ŝ for each λ ∈ Λ to minimize (11). In the examples of Sections 4
and 5, the whole procedure is computationally less intensive than V -fold CV,
see Table 3. Finally, we mention that for the constrained least-square estimators
Xβ̂λ = ΠSλ

Y , the LinSelect procedure with Ŝ = {Sλ : λ ∈ Λ} simply coincides
with the procedure of Baraud et al. [12].

4. COORDINATE-SPARSITY

In this section, we focus on the high-dimensional linear regression model Y =
Xβ0 + ε where the vector β0 itself is assumed to be sparse. This setting has
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attracted a lot of attention in the last decade, and many estimation procedures
have been developed. Most of them require the choice of tuning parameters which
depend on the unknown variance σ2. This is for instance the case for the Lasso [72,
24], Dantzig Selector [22], Elastic Net [85], MC+ [81], aggregation techniques [21,
26], etc.

We first discuss how the generic schemes introduced in the previous section can
be instantiated for tuning these procedures and for selecting among them. Then,
we pay a special attention to the calibration of the Lasso. Finally, we discuss the
problem of support estimation and present a small numerical study.

4.1 Automatic tuning methods

Cross-validation. Arguably, V -fold Cross-Validation is the most popular tech-
nique for tuning the above-mentioned procedures. To our knowledge, there are
no other theoretical results for V -fold CV in large dimensional settings.

In practice, V -fold CV seems to give rather good results. The problem of choos-
ing the best V has not yet been solved [6, Section 10], but it is often reported
that a good choice for V is between 5 and 10. Indeed, the statistical performance
does not increase for larger values of V , and averaging over 10 splits remains
computationally feasible [41, Section 7.10].

LinSelect. The procedure LinSelect can be used for selecting among a collection
(β̂λ)λ∈Λ of sparse regressors as follows. For J ⊂ {1, . . . , p}, we define XJ as the
matrix [Xij ]i=1,...,n, j∈J obtained by only keeping the columns of X with index in
J . We recall that the collection S gives some possible ”approximative” supports
for the estimators (Xβ̂λ)λ∈Λ. For sparse linear regression, a possible collection S

and measure of complexity ∆ are

S =
{
S = range(XJ ), J ⊂ {1, . . . , p} , 1 ≤ |J | ≤ n/(3 log p)

}

and ∆(S) = log

(
p

dim(S)

)
+ log(dim(S)).

Let us introduce the spaces Ŝλ = range
(
X

supp(β̂λ)

)
and the subcollection of S

Ŝ =
{
Ŝλ, λ ∈ Λ̂

}
, where Λ̂ =

{
λ ∈ Λ : Ŝλ ∈ S

}
.

The following proposition gives a risk bound when selecting λ̂ with LinSelect with
the above choice of Ŝ and ∆.

Proposition 4.1. There exists a numerical constant C > 1 such that for any
minimizer λ̂ of the Criterion (11), we have

R
[
β̂
λ̂
;β0

]

≤ C E

[
inf
λ∈Λ

{
‖Xβ̂λ −Xβ0‖22 + inf

S∈Ŝ

{
‖Xβ̂λ −ΠSXβ̂λ‖22 + dim(S) log(p)σ2

}}]

≤ C E

[
inf
λ∈Λ̂

{
‖Xβ̂λ −Xβ0‖22 + ‖β̂λ‖0 log(p)σ2

}]
. (12)
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Proposition 4.1 is a simple corollary of Proposition C.1 in Appendix C. The
first bound involves three terms: the loss of the estimator β̂λ, an approximation
loss, and a variance term. Hence, LinSelect chooses an estimator β̂λ that achieves
a trade-off between the loss of β̂λ and the closeness of Xβ̂λ to some small di-
mensional subspace S. The bound (12) cannot be formulated in the form (9)
due to the random nature of the set Λ̂. Nevertheless, a bound similar to (8) can
be deduced from (12) when the estimators β̂λ are least-squares estimators, see
Corollary 4 in [13]. Furthermore, we note that increasing the size of Λ leads to
a better risk bound for β̂

λ̂
. It is then advisable to consider a family of candidate

estimators {β̂λ, λ ∈ Λ} as large as possible. The Proposition 4.1 is valid for
any family of estimators {β̂λ, λ ∈ Λ}, for the specific family of Lasso estimators
{β̂L

λ , λ > 0} we provide a refined bound in Proposition 4.3, Section 4.3.

4.2 Lasso-type estimation under unknown variance

The Lasso is certainly one of the most popular methods for variable selection
in a high-dimensional setting. Given λ > 0, the Lasso estimator β̂L

λ is defined by

β̂L
λ := argminβ∈Rp ‖Y−Xβ‖22+λ‖β‖1. A sensible choice of λmust be homogeneous

with the square-root of the variance σ2. As explained above, when the variance σ2

is unknown, one may apply V -fold CV or LinSelect to select λ. Some alternative
approaches have also been developed for tuning the Lasso. Their common idea
is to modify the ℓ1 criterion so that the tuning parameter becomes pivotal with
respect to σ2. This means that the method remains valid for any σ > 0 and
that the choice of the tuning parameter does not depend on σ. For the sake
of simplicity, we assume throughout this subsection and the next one that the
columns of X are normalized to one.

ℓ1-penalized log-likelihood. In low-dimensional regression, it is classical to con-
sider a penalized log-likelihood criterion instead of a penalized least-square crite-
rion to handle the unknown variance. Following this principle, Städler et al. [68]
propose to minimize the ℓ1-penalized log-likelihood criterion

β̂LL
λ , σ̂LL

λ := argmin
β∈Rp,σ′>0

[
n log(σ′) +

‖Y −Xβ‖22
2σ′2 + λ

‖β‖1
σ′

]
. (13)

By reparametrizing (β, σ), Städler et al. [68] obtain a convex criterion that can
be efficiently minimized. Interestingly, the penalty level λ is pivotal with respect
to σ. Under suitable conditions on the design matrix X, Sun and Zhang [70] show
that the choice λ = c

√
2 log p, with c > 1 yields optimal risk bounds in the sense

of (8).

Square-root Lasso and scaled Lasso. Sun and Zhang [71], following an idea of
Antoniadis [3], propose to minimize a penalized Huber’s loss [44, page 179]

β̂SR
λ , σ̂SR

λ := argmin
β∈Rp,σ′>0

[
nσ′

2
+

‖Y −Xβ‖22
2σ′ + λ‖β‖1

]
. (14)

This convex criterion can be minimized with roughly the same computational
complexity as a Lars-Lasso path [30]. Interestingly, their procedure (called the
scaled Lasso in [71]) is equivalent to the square-root Lasso estimator previously
introduced by Belloni et al. [16]. The square-root Lasso of Belloni et al. is obtained
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by replacing the residual sum of squares in the Lasso criterion by its square-root

β̂SR
λ = argmin

β∈Rp

[√
‖Y −Xβ‖22 +

λ√
n
‖β‖1

]
. (15)

The equivalence between the two definitions follows from the minimization of the
criterion in (14) with respect to σ′. In (14) and (15), the penalty level λ is again
pivotal with respect to σ. Sun and Zhang [71] state sharp oracle inequalities for
the estimator β̂SR

λ with λ = c
√
2 log(p), with c > 1 (see Proposition 4.2 below).

Their empirical results suggest that the criterion (15) provides slightly better
results than the ℓ1-penalized log-likelihood. In the sequel, we shall refer to β̂SR

λ

as the square-root Lasso estimator.

Bayesian Lasso. The Bayesian paradigm allows to put prior distributions on the
variance σ2 and the tuning parameter λ, as in the Bayesian Lasso [60]. Bayesian
procedures straightforwardly handle the case of unknown variance, but no fre-
quentist analysis of these procedures are so far available.

4.3 Risk bounds for square-root Lasso and Lasso-LinSelect

Let us state a bound on the prediction error for the square-root Lasso (also
called scaled Lasso). For the sake of conciseness, we only present a simplified
version of Theorem 1 in [71]. Consider some number ξ > 0 and some subset
T ⊂ {1, . . . , p}. The compatibility constant κ[ξ, T ] is defined by

κ[ξ, T ] = min
u∈C(ξ,T )

{
|T |1/2‖Xu‖2

‖uT ‖1

}
, where C(ξ, T ) = {u : ‖uT c‖1 < ξ‖uT ‖1}.

Proposition 4.2. There exist positive numerical constants C1, C2, and C3

such that the following holds. Let us consider the square-root Lasso with the tuning
parameter λ = 2

√
2 log(p). If we assume that

1. p ≥ C1

2. ‖β0‖0 ≤ C2 κ
2[4, supp(β0)]

n
log(p) ,

then, with high probability,

‖X(β̂SR − β0)‖22 ≤ inf
β 6=0

{
‖X(β0 − β)‖22 + C3

‖β‖0 log(p)
κ2[4, supp(β)]

σ2

}
.

This bound is comparable to the general objective (9) stated in Section 2.4.
Interestingly, the constant before the bias term ‖X(β0 − β)‖22 equals one. If
‖β0‖0 = k, the square-root Lasso achieves the minimax loss k log(p)σ2 as long
as k log(p)/n is small and κ[4, supp(β0)] is away from zero. This last condi-
tion ensures that the design X is not too far from orthogonality on the cone
C(4, supp(β0)). State of the art results for the classical Lasso with known vari-
ance [17, 48, 74] all involve this condition.

We next state a risk bound for the Lasso-LinSelect procedure. For J ⊂ {1, . . . , p},
we define φJ as the largest eigenvalue of XT

JXJ . The following proposition in-
volves the restricted eigenvalue φ∗ = max {φJ : Card(J ) ≤ n/(3 log p)} .
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Proposition 4.3. There exist positive numerical constants C, C1, C2, and
C3 such that the following holds. Take Λ = R

+ and assume that

‖β0‖0 ≤ C
κ2[5, supp(β0)]

φ∗
× n

log(p)
.

Then, with probability at least 1 − C1p
−C2, the Lasso estimator β̂L

λ̂
selected ac-

cording to the LinSelect procedure described in Section 4.1 fulfills

∥∥∥X(β0 − β̂L
λ̂
)
∥∥∥
2

2
≤ C3 inf

β 6=0

{
‖X(β0 − β)‖22 +

φ∗‖β‖0 log(p)
κ2[5, supp(β)]

σ2

}
. (16)

The bound (16) is similar to the bound stated above for the square-root Lasso,
the most notable differences being the constant larger than 1 in front of the
bias term and the quantity φ∗ in front of the variance term. We refer to the
Appendix E for a proof of Proposition 4.3.

4.4 Support estimation and inverse problem

Until now, we only discussed estimation methods that perform well in pre-
diction. Little is known when the objective is to infer β0 or its support under
unknown variance.

Inverse problem. The square-root Lasso [71, 16] is proved to achieve near optimal
risk bound for the inverse problems under suitable assumptions on the design X.

Support estimation. Up to our knowledge, there are no non-asymptotic results on
support estimation for the aforementioned procedures in the unknown variance
setting. Nevertheless, some related results and heuristics have been developed
for the cross-validation scheme. If the tuning parameter λ is chosen to minimize
the prediction error (that is take λ = λ∗ as defined in (4)), the Lasso is not
consistent for support estimation (see [51, 56] for results in a random design
setting). One idea to overcome this problem, is to choose the parameter λ that
minimizes the risk of the so-called Gauss-Lasso estimator β̂GL

λ which is the least

square estimator over the support of the Lasso estimator β̂L
λ

β̂GL
λ := argmin

β∈Rp:supp(β)⊂supp(β̂L
λ
)

‖Y −Xβ‖22 . (17)

When the objective is support estimation, some numerical simulations [62] sug-
gest that it may be more advisable not to apply the selection schemes based
on prediction risk (such as V -fold CV or LinSelect) to the Lasso estimators but
rather to the Gauss-Lasso estimators. Similar remarks also apply for the Dantzig
Selector [22].

4.5 Numerical Experiments

We present two numerical experiments to illustrate the behavior of some of the
above mentioned procedures for high-dimensional sparse linear regression. The
first one concerns the problem of tuning the parameter λ of the Lasso algorithm
for estimating Xβ0. The procedures will be compared on the basis of the pre-
diction risk. The second one concerns the problem of support estimation with
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Lasso-type estimators. We will focus on the false discovery rates (FDR) and the
proportion of true discoveries (Power).

Simulation design. The simulation design is the same as the one described in
Sections 6.1, and 8.2 of [13], except that we restrict to the case n = p = 100.
Therefore, 165 examples are simulated. They are inspired by examples found
in [72, 85, 84, 42] and cover a large variety of situations. The simulation were
carried out with R (www.r-project.org), using the library elasticnet.

Experiment 1 : tuning the Lasso for prediction.

In the first experiment, we compare 10-fold CV [32], LinSelect [13] and the square-
root Lasso [16, 71] (also called scaled Lasso) for tuning the Lasso. Concerning the
square-root Lasso, we set λ = 2

√
2 log(p) (as suggested in [71]) and we compute

the estimator using the algorithm described in Sun and Zhang [71].
For each tuning procedure ℓ ∈ {10-fold CV, LinSelect, square-root Lasso}, we

focus on the prediction risk R
[
β̂L
λ̂ℓ

;β0

]
of the selected Lasso estimator β̂L

λ̂ℓ

.

For each simulated example e = 1, . . . , 165, we estimate on the basis of 400
runs

• the risk of the oracle (4) : Re = R
[
β̂λ∗ ;β0

]
,

• the risk when selecting λ with procedure ℓ : Rℓ,e = R
[
β̂λ̂ℓ

;β0

]
.

The comparison between the procedures is based on the comparison of the
means, standard deviations and quantiles of the risk ratios Rℓ,e/Re computed
over all the simulated examples e = 1, . . . , 165. The results are displayed in Ta-
ble 1.

quantiles
procedure mean std-err 0% 50% 75% 90% 95%

Lasso 10-fold CV 1.13 0.08 1.03 1.11 1.15 1.19 1.24
Lasso LinSelect 1.19 0.48 0.97 1.03 1.06 1.19 2.52

Square-root Lasso 5.15 6.74 1.32 2.61 3.37 11.2 17
Table 1

For each procedure ℓ, mean, standard-error and quantiles of the ratios
{Rℓ,e/Re, e = 1, . . . , 165}.

For 10-fold CV and LinSelect, the risk ratios are close to one. For 90% of the
examples, the risk of the Lasso-LinSelect is smaller than the risk of the Lasso-CV,
but there are a few examples where the risk of the Lasso-LinSelect is significantly
larger than the risk of the Lasso-CV. For the square-root Lasso procedure, the
risk ratios are clearly larger than for the two others. An inspection of the results
reveals that the square-root Lasso selects estimators with supports of small size.
This feature can be interpreted as follows. Due to the bias of the Lasso-estimator,
the residual variance tends to over-estimate the variance, leading the square-root
Lasso to select a Lasso estimator β̂L

λ with large λ. Consequently the risk is high.

Experiment 2 : variable selection with Gauss-Lasso and square-root Lasso.

We consider now the problem of support estimation, sometimes referred as the
problem of variable selection. We implement three procedures. The Gauss-Lasso
procedure tuned by either 10-fold CV or LinSelect and the square-root Lasso. The
support of β0 is estimated by the support of the selected estimator.
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For each simulated example, the FDR and the Power are estimated on the
basis of 400 runs. The results are given on Table 2.

False Discovery rate
quantiles

procedure mean std-err 0% 25% 50% 75% 90%

Gauss-Lasso 10-fold CV 0.28 0.26 0 0.08 0.22 0.35 0.74
Gauss-Lasso LinSelect 0.12 0.25 0 0.002 0.02 0.13 0.33

Square-root Lasso 0.13 0.26 0 0.009 0.023 0.07 0.32

Power
quantiles

procedure mean std-err 0% 25% 50% 75% 90%

Gauss-Lasso 10-fold CV 0.67 0.18 0.4 0.52 0.65 0.71 1
Gauss-Lasso LinSelect 0.56 0.33 0.002 0.23 0.56 0.93 1

Square-root Lasso 0.59 0.28 0.013 0.41 0.57 0.80 1
Table 2

For each procedure ℓ, mean, standard-error and quantiles of FDR and Power values.

It appears that the Gauss-Lasso CV procedure gives greater values of the FDR
than the two others. The Gauss-Lasso LinSelect and the square-root Lasso behave
similarly for the FDR, but the values of the power are more variable for the
LinSelect procedure.

Computation time.

Let us conclude this numerical section with the comparison of the computation
times between the methods. For all methods the computation time depends on the
maximum number of steps in the lasso algorithm and for the LinSelect method,
it depends on the cardinality of S or equivalently on the maximum number of
non-zero components of β̂. The results are shown at Table 3. The square-root
Lasso is the less time consuming method, closely followed by the Lasso LinSelect

method. The V -fold CV carried out with the function cv.enet of the R package
elasticnet, pays the price of several calls to the lasso algorithm.

n p max.steps kmax Lasso 10-fold CV Lasso LinSelect Square-root Lasso

100 100 100 21 4 s 0.21 s 0.18 s

100 500 100 16 4.8 s 0.43 s 0.4 s

500 500 500 80 300 s 11 s 6.3 s
Table 3

For each procedure computation time for different values of n and p. The maximum number of
steps in the lasso algorithm, is taken as max.steps = min {n, p}. For the LinSelect procedure,

the maximum number of non-zero components of β̂, denoted kmax is taken as
kmax = min {p, n/ log(p)}.

5. GROUP-SPARSITY

In the previous section, we have made no prior assumptions on the form of β0.
In some applications, there are some known structures between the covariates. As
an example, we treat the now classical case of group sparsity. The covariates are
assumed to be clustered into M groups and when the coefficient β0,i correspond-
ing to the covariate Xi is non-zero then it is likely that all the coefficients β0,j
with variables Xj in the same group as Xi are non-zero. We refer to the intro-
duction of [8] for practical examples of this so-called group-sparsity assumption.
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Let G1, . . . , GM form a given partition of {1, . . . , p}. For λ = (λ1, . . . , λM ), the
group-Lasso estimator β̂λ is defined as the minimizer of the convex optimization
criterion

‖Y −Xβ‖22 +
M∑

k=1

λk‖βGk‖2 , (18)

where βGk = (βj)j∈Gk
. The Criterion (18) promotes solutions where all the coor-

dinates of βGk are either zero or non-zero, leading to group selection [80]. Under
some assumptions on X, Huang and Zhang [43] or Lounici et al. [54] provide a
suitable choice of λ = (λ1, . . . , λM ) that leads to near optimal prediction bounds.
As expected, this choice of λ = (λ1, . . . , λM ) is proportional to σ.

As for the Lasso, V -fold CV is widely used in practice to tune the penalty
parameter λ = (λ1, . . . , λM ). To our knowledge, there is not yet any extension
of the procedures described in Section 4.2 to the group Lasso. An alternative to
cross-validation is to use LinSelect.

Tuning the group-Lasso with LinSelect. For any K ⊂ {1, . . . ,M}, we define the
submatrix X(K) of X by only keeping the columns of X with index in

⋃
k∈K Gk.

We also write XGk
for the submatrix of X built from the columns with index in

Gk. The collection S and the function ∆ are given by

S =

{
range(X(K)) : 1 ≤ |K| ≤ n/(3 log(M)) and

∑

k∈K
|Gk| ≤ n/2− 1

}

and ∆
(
range(X(K))

)
= log

[
|K|
(|K|
M

)]
. For a given Λ ⊂ R

M
+ , similarly to Sec-

tion 4.1, we define K̂λ =
{
k : ‖β̂Gk

λ ‖2 6= 0
}

and

Ŝ =
{
range(X

(K̂λ)
), λ ∈ Λ̂

}
, with Λ̂ =

{
λ ∈ Λ, range(X

(K̂λ)
) ∈ S

}
.

Proposition C.1 in Appendix C ensures that we have for some constant C > 1

R
[
β̂
λ̂
;β0

]
≤ C E

[
inf
λ∈Λ̂

{
‖Xβ̂λ −Xβ0‖22 +

(
‖β̂λ‖0 ∨ |K̂λ| log(M)

)
σ2
}]

.

In the following, we provide a more explicit bound. For simplicity, we restrict
to the specific case where each group Gk has the same cardinality T . For K ⊂
{1, . . . ,M}, we define φ(K) as the largest eigenvalue of XT

(K)X(K) and we set

φ∗ = max

{
φ(K) : 1 ≤ |K| ≤ n− 2

2T ∨ 3 log(M)

}
. (19)

We assume that all the columns of X are normalized to 1 and following Lounici
et al. [54], we introduce for 1 ≤ s ≤ M

κG[ξ, s] = min
1≤|K|≤s

min
u∈Γ(ξ,K)

‖Xu‖2
‖u(K)‖2

(20)

where Γ(ξ,K) is the cone of vectors u ∈ R
M \ {0} such that

∑
k∈Kc λk‖uGk‖2 ≤

ξ
∑

k∈K λk‖uGk‖2. In the sequel, K0 stands for the set of groups containing non-
zero components of β0.
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Proposition 5.1. There exist positive numerical constants C, C1, C2, and
C3 such that the following holds. Assume that Λ contains

⋃
λ∈R+

{(λ, . . . , λ)},
that T ≤ (n− 2)/4 and that

1 ≤ |K0| ≤ C
κ2G[3, |K0|]

φ∗
× n− 2

log(M) ∨ T
.

Then, with probability larger than 1− C1M
−C2, we have

‖Xβ̂
λ̂
−Xβ0‖22 ≤ C3

φ∗
κ2G[3, |K0|]

|K0| (T ∨ log(M)) .

This proposition provides a bound comparable to the bounds of Lounici et
al. [54], without requiring the knowledge of the variance. Its proof can be found
in Appendix E.

6. VARIATION-SPARSITY

We focus in this section on the variation-sparse regression. We recall that the
vector βV ∈ R

p−1 of the variations of β has for coordinates βV
j = βj+1 − βj and

that the variation-sparse setting corresponds to the setting where the vector of
variations βV

0 is coordinate-sparse. In the following, we restrict to the case where
n = p and X is the identity matrix. In this case, the problem of variation-sparse
regression coincides with the problem of segmentation of the mean of the vector
Y = β0 + ε.

For any subset I ⊂ {1, . . . , n− 1}, we define SI =
{
β ∈ R

n : supp(βV ) ⊂ I
}

and β̂I = ΠSI
Y . For any integer q ∈ {0, . . . , n− 1}, we define also the ”best”

subset of size q by
Îq = argmin

|I|=q
‖Y − β̂I‖22.

Though the number of subsets I ⊂ {1, . . . , n− 1} of cardinality q is of order
nq+1, this minimization can be performed using dynamic programming with a
complexity of order n2 [39]. To select Î = Îq̂ with q̂ in {0, . . . , n− 1}, any of the
generic selection schemes of Section 3 can be applied. Below, we instantiate these
schemes and present some alternatives.

6.1 Penalized empirical loss

When the variance σ2 is known, penalized log-likelihood model selection amounts
to select a subset Î which minimizes a criterion of the form ‖Y−β̂I‖22+pen(Card(I)).
This is equivalent to select Î = Îq̂ with q̂ minimizing

Crit(q) = ‖Y − β̂Îq‖
2
2 + pen(q). (21)

Following the work of Birgé and Massart [18], Lebarbier [50] considers the
penalty

pen(q) = (q + 1) (c1 log(n/(q + 1)) + c2) σ
2

and determines the constants c1 = 2, c2 = 5 by extensive numerical experiments
(see also Comte and Rozenholc [25] for a similar approach in a more general
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setting). With this choice of the penalty, the procedure satisfies a bound of the
form

R
[
β̂Î , β0

]
≤ C inf

I⊂{1,...,n−1}

{
‖β̂I − β0‖22 + (1 + |I|) log(n/(1 + |I|))σ2

}
. (22)

When σ2 is unknown, several approaches have been proposed.

Plug-in estimator. The idea is to replace σ2 in pen(q) by an estimator of the

variance such as σ̂2 =
∑n/2

i=1(Y2i−Y2i−1)
2/n, or one of the estimators proposed by

Hall and al. [40]. No theoretical results are proved in a non-asymptotic framework.

Estimating the variance by the residual least-squares. Baraud et al. [12] Section
5.4.2 propose to select q by minimizing a penalized log-likelihood criterion. This
criterion can be written in the form Crit(q) = ‖Y − β̂Îq‖

2
2(1 + Kpen(q)), with

K > 1 and the penalty pen(q) solving

E
[
(U − pen(q)V )+

]
=

1

(q + 1)
(
n−1
q

) ,

where (.)+ = max(., 0), and U , V are two independent χ2 variables with respec-
tively q + 2 and n − q − 2 degrees of freedom. The resulting estimator β̂Î , with

Î = Îq̂, satisfies a non asymptotic risk bound similar to (22) for all K > 1. The
choice K = 1.1 is suggested for the practice.

Slope heuristic. Lebarbier [50] implements the slope heuristic introduced by Birgé
and Massart [19] for handling the unknown variance σ2. The method consists
in calibrating the penalty directly, without estimating σ̂2. It is based on the
following principle. First, there exists a so-called minimal penalty penmin(q) such
that choosing pen(q) = Kpenmin(q) in (21) with K < 1 can lead to a strong
overfit, whereas for K > 1 the bound (22) is met. Second, it can be shown
that there exists a dimension jump around the minimal penalty, allowing to
estimate penmin(q) from the data. The slope heuristic then proposes to select
q by minimizing the criterion Crit(q) = ‖Y − β̂Îq‖

2
2 + 2 p̂enmin(q). Arlot and

Massart [7] provide a non asymptotic risk bound for this procedure. Their results
are proved in a general regression model with heteroscedatic and non Gaussian
errors, but with a constraint on the number of models per dimension which is not
met for the family of models (SI)I⊂{1,...,n−1}. Nevertheless, the authors indicate
how to generalize their results for the problem of signal segmentation.

Finally, for practical issues, different procedures for estimating the minimal
penalty are compared and implemented in Baudry et al. [15].

6.2 CV procedure

In a recent paper, Arlot and Célisse [5] consider the problem of signal segmen-
tation using cross-validation. Their results apply in the heteroscedastic case. They
consider several CV-methods, the leave-one-out, leave-p-out and V -fold CV for es-
timating the quadratic loss. They propose two cross-validation schemes. The first

one, denoted Procedure 5, aims to estimate directly E

[
‖β0 − β

Îq
‖22
]
, while the

second one, denoted Procedure 6, relies on two steps where the cross-validation is
used first for choosing the best partition of dimension q, then the best dimension
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q. They show that the leave-p-out CV method can be implemented with a com-
plexity of order n2, and they give a control of the expected CV risk. The use of
CV leads to some restrictions on the subsets I that compete for estimating β0.
This problem is discussed in [5], Section 3 of the supplemental material.

6.3 Alternative for very high-dimensional settings

When n is very large, the dynamic programming optimization can become com-
putationally too intensive. An attractive alternative is based on the fused Lasso
proposed by Tibshirani et al. [73]. The estimator β̂TV

λ is defined by minimizing
the convex criterion

‖Y − β‖22 + λ

n−1∑

j=1

|βj+1 − βj |,

where the total-variation norm
∑

j |βj+1 − βj | promotes solutions which are

variation-sparse. The family (β̂TV
λ )λ≥0 can be computed very efficiently with the

LARS-algorithm, see Vert and Bleakley [75]. A sensible choice of the parameter
λ must be proportional to σ. When the variance σ2 is unknown, the parameter
λ can be selected either by V -fold CV or by LinSelect (see Section 5.1 in [13] for
details).

7. EXTENSIONS

7.1 Gaussian design and graphical models

Assume that the design X is now random and that the n rows X(i) are in-
dependent observations of a Gaussian vector with mean 0p and unknown co-
variance matrix Σ. This setting is mainly motivated by applications in com-
pressed sensing [28] and in Gaussian graphical modeling. Indeed, Meinshausen
and Bühlmann [56] have proved that it is possible to estimate the graph of a
Gaussian graphical model by studying linear regression with Gaussian design
and unknown variance. If we work conditionally on the observed X design, then
all the results and methodologies described in this survey still apply. Nevertheless,
these prediction results do not really take into account the fact that the design is
random. In this setting, it is more natural to consider the integrated prediction
risk E

[
‖Σ1/2(β̂ − β0)‖22

]
rather than the risk (3). Some procedures [34, 76] have

been proved to achieve optimal risk bounds with respect to this risk but they
are computationally intractable in a high-dimensional setting. In the context of
Gaussian graphical modeling, the procedure GGMselect [38] is designed to select
among any collection of graph estimators and it is proved to achieve near optimal
risk bounds in terms of the integrated prediction risk.

7.2 Non Gaussian noise

A few results do not require that the noise ε follows a Gaussian distribution.
The Lasso-type procedures such as the square-root Lasso [71, 16] do not require
the normality of the noise and extend to other distributions. In practice, it seems
that cross-validation procedures still work well for other distributions of the noise.

7.3 Multivariate regression

Multivariate regression deals with T simultaneous linear regression models yk =
Xβk + εk, k = 1, . . . , T . Stacking the yk’s in a n × T matrix Y , we obtain the
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model Y = XB0 + E, where B0 is a p × T matrix with columns given by βk
and E is a n× T matrix with i.i.d. entries. The classical structural assumptions
on B0 are either that most rows of B0 are identically zero, or the rank of B0 is
small. The first case is a simple case of group sparsity and can be handled by
the group-lasso as in Section 5. The second case, first considered by Anderson [2]
and Izenman [45], is much more non-linear. Writing ‖.‖F for the Frobenius (or
Hilbert-Schmidt) norm, the problem of selecting among the estimators

B̂r = argmin
B:rank(B)≤r

‖Y −XB‖2F , r ∈ {1, . . . ,min(T, rank(X))}

has been investigated recently from a non-asymptotic point of view by Bunea et
al. [20] and Giraud [36]. The prediction risk of B̂r is of order of

E

[
‖XB̂r −XB0‖2F

]
≍
∑

k≥r

s2k(XB0) + r (n+ rank(X))σ2,

where sk(M) denotes the k-th largest singular value of the matrix M . Therefore,
a sensible choice of r depends on σ2. The first selection criterion introduced
by Bunea et al. [20] requires the knowledge of the variance σ2. To handle the
case of unknown variance, Bunea et al. [20] propose to plug an estimate of the
variance in their selection criterion (which works when rank(X) < n), whereas
Giraud [36] introduces a penalized log-likelihood criterion independent of the
variance. Both papers provide oracle risk bounds for the resulting estimators
showing rate-minimax adaptation.

Several recent papers [9, 58, 63, 20, 48] have investigated another strategy for
the low-rank setting. For a positive λ, the matrix B0 is estimated by

B̂λ ∈ argmin
B∈Rp×T

{
‖Y −XB‖2F + λ

∑

k

sk(B)
}
.

Translating the work on trace regression of Koltchinskii et al. [48] into the set-
ting of multivariate regression provides (under some conditions on X) an oracle
bound on the risk of B̂λ∗ with λ∗ = 3s1(X)

(√
T +

√
rank(X)

)
σ. We also refer

to Giraud [37] for a slight variation of this result requiring no condition on the
design X. Again, the value of λ∗ is proportional to σ. To handle the case of un-
known variance, Klopp [47] adapts the concept of the square-root Lasso [16] to
this setting and provides an oracle risk bound for the resulting procedure.

7.4 Nonparametric regression

In the nonparametric regression model (2), classical estimation procedures in-
clude local-polynomial estimators, kernel estimators, basis-projection estimators,
k-nearest neighbors etc. All these procedures depend on one (or several) tuning
parameter(s), whose optimal value(s) scales with the variance σ2. V -fold CV is
widely used in practice for choosing these parameters, but little is known on its
theoretical performance.

The class of linear estimators (including spline smoothing, Nadaraya estima-
tors, k-nearest neighbors, low-pass filters, kernel ridge regression, etc) has at-
tracted some attention in the last years. Some papers have investigated the tuning
of some specific family of estimators. For example, Cao and Golubev [23] provides
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a tuning procedure for spline smoothing and Zhang [82] analyses in depth kernel
ridge regression. Recently, two papers have focused on the tuning of arbitrary
linear estimators when the variance σ2 is unknown. Arlot and Bach [4] generalize
the slope heuristic to symmetric linear estimators with spectrum in [0, 1] and
prove an oracle bound for the resulting estimator. Baraud et al. [13] Section 4
shows that LinSelect can be used for selecting among a (almost) completely ar-
bitrary collection of linear estimators (possibly non-symmetric and/or singular).
Corollary 2 in [13] provides an oracle bound for the selected estimator under the
mild assumption that some effective dimension of the linear estimators is not
larger than a fraction of n.
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APPENDIX A: A NOTE ON BIC TYPE CRITERIA

The BIC criterion has been initially introduced [64] to select an estimator
among a collection of constrained maximum likelihood estimators. Nevertheless,
modified versions of this criterion are often used for tuning more general esti-
mation procedures. The purpose of this appendix is to illustrate why we advise
against this approach in a high-dimensional setting.
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Definition A.1. A Modified BIC criterion. Suppose we are given a col-
lection (β̂λ)λ∈Λ of estimators depending on a tuning parameter λ ∈ Λ. For any
λ ∈ Λ, we consider σ̂2

λ = ‖Y −Xβ̂λ‖22/n, and define the modified BIC

λ̂ ∈ argmin
λ∈Λ̂

{
−2Ln(β̂λ, σ̂λ) + log(n)‖β̂λ‖0

}
, (A.1)

where Ln is the log-likelihood and Λ̂ =
{
λ ∈ Λ : ‖β̂λ‖0 ≤ n/2

}
.

Sometimes, the log(n) term is replaced by log(p). Replacing Λ by Λ̂ allows to
avoid trivial estimators. First, we would like to emphasize that there is no theo-
retical warranty that the selected estimator does not overfit in a high-dimensional
setting. In practice, using this criterion often leads to overfitting. Let us illustrate
this with a simple experiment.

Setting. We consider the model

Yi = β0,i + εi, i = 1, . . . , n , (A.2)

with ε ∼ N (0, σ2In) so that p = n and X = In. Here, we fix n = 10000, σ = 1
and β0 = 0n.

Methods. We apply the modified BIC criterion to tune the Lasso [72], SCAD [31]
and the hard thresholding estimator. The hard thresholding estimator β̂HT

λ is

defined for any λ > 0 by [β̂HT
λ ]i = Yi1|Yi|≥λ. Given λ > 0 and a > 2, the

SCAD estimator β̂SCAD
λ,a is defined as the minimizer of the penalized criterion

‖Y −Xβ‖22 +
∑n

i=1 pλ(|βi|) , where for x > 0,

p′λ(x) = λ1x≤λ + (aλ− x)+1x>λ/(a− 1) .

For the sake of simplicity we fix a = 3. We note β̂L;BIC, β̂SCAD;BIC
a , and β̂HT ;BIC

for the Lasso, hard thresholding, and SCAD estimators selected by the modified
BIC criterion.

Results. We have realized N = 200 experiments. For each of these experiments,
the estimator β̂L;BIC, β̂SCAD,BIC

a and β̂HT ;BIC are computed. The mean number of
non-zero components and the estimated risk R[β̂∗;BIC; 0n] are reported in Table 1.

LASSO SCAD Hard Thres.

R̂[β̂∗;BIC; 0p] 4.6×10−2 1.6×101 3.0×102

Mean of ‖β̂∗;BIC‖0 0.025 86.9 28.2

Table 1: Estimated risk and Estimated number of non zero components for β̂L;BIC,
β̂SCAD;BIC, and β̂HT ;BIC.

Obviously, the SCAD and hard Thresholding methods select too many irrel-
evant variables when they are tuned with BIC. Moreover, their risks are quite
high. Intuitively, this is due to the fact that the log(n) (or log(p)) term in the
BIC penalty is too small in this high-dimensional setting (n = p).
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For the Lasso estimator, a very specific phenomenon occurs due to the soft
thresholding effect. In the discussion of [30], Loubes and Massart advocate that
soft thresholding estimators penalized by Mallows’ Cp [55] penalties should yield
good results, while hard thresholding estimators penalized by Mallows’ Cp are
known to highly overfit. This strange behavior is due to the bias of the soft
thresholding estimator. Nevertheless, Loubes and Massart’ arguments have been
developed for an orthogonal design. In fact, there is no non-asymptotic justi-
fication that the Lasso tuned by BIC or AIC performs well for general designs
X.

Conclusion. The use of the modified BIC criterion to tune estimation procedures
in a high-dimensional setting is not supported by theoretical results. It is proved
to overfit in the case of thresholding estimators [12, Sect. 3.2.2]. Empirically, BIC
seems to overfit except for the Lasso. We advise the practitioner to avoid BIC

(and AIC) when p is at least of the same order as n. For instance, LinSelect is
supported by non-asymptotic arguments and by empirical results [13] in contrast
to BIC.

APPENDIX B: MINIMAX ADAPTIVE PROCEDURES

In this section, we detail procedures that are minimax adaptive to the sparsity
k simultaneously for all designs X in the sense of (7). In most settings, these
procedures are not of practical interest as they are intractable for large p. We
present them as theoretical benchmarks to assess the quality of fast procedures.

Given a subspace S of Rn, we define β̂⊥
S as a least-squares estimator of β0 such

that Xβ is included in S:

β̂⊥
S ∈ argmin

β∈Rp, Xβ∈S
‖Y −Xβ‖22 .

We consider the collections of subspaces:

S1 =
{
S = range(XJ ), J ⊂ {1, . . . , p} \ {∅}, 2|J |[1 + log(p/|J |)] ≤ n

}

⋃
range(X{1,...p}) ,

S2 =
{
S = range(XJ ), J ⊂ {1, . . . , p} \ {∅}, |J | ≤ (n− 1)/4

}
.

Finally, we note k∗ := max{k : 2k[1+log(p/k)] ≤ n}. To simplify the presentation,
we assume throughout this section that n ≤ p and that Rank(X) > k∗.

B.1 Known variance

A penalization strategy. The model selection paradigm aims at selecting an
estimator β̂

Ŝ
with the smallest possible risk. One strategy to tackle the selection

problem amounts to minimizing a least-squares criterion penalized by the ”com-
plexity” of the collection of models under consideration. We select ŜBM as one
minimizer over S ∈ S1 of the following criterion

‖Y −ΠSY ‖22 +
{

4 dim(S)
[
4 + log

(
p

dim(S)

)]
σ2 if dim(S) ≤ k∗

2nσ2 if dim(S) = Rank(X) ,

We write β̃BM := β̂⊥
ŜBM

. More general forms of penalties are discussed in [18].
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An aggregation strategy. In contrast to model selection, model aggregation
aims at mixing a collection of estimators. Following, Leung and Barron [52], we
mix the least-squares estimators β̂S in the following way

β̃LB :=
∑

S∈S1
ωS β̂

⊥
S ,

where the weights ωS sum to one and for any S ∈ S1, ωS is proportional to

exp

[
−‖Y −ΠSY ‖22 + 2σ2 dim(S)

4σ2

]
×
{ [

k∗
(
dim(S)

p

)]−1
if dim(S) ≤ k∗

1 if dim(S) = Rank(X).

We refer to [52] for more general forms of the aggregation procedures.

Risk bounds. In the next proposition, we state that β̃BM and β̃LB are minimax
adaptive to the sparsity for all designs X in the sense of (7).

Proposition B.1. There exist numerical constants C1 and C2 such that the
following holds. For any design X, any k ∈ {1, . . . , n} and any vector β0 such
that ‖β0‖0 = k, we have

R
[
β̃BM ;β0

]
≤ C1

[
k
(
1 + log

(p
k

))
∧ n
]
σ2 ,

R
[
β̃LB;β0

]
≤ C2

[
k
(
1 + log

(p
k

))
∧ n
]
σ2 .

These two risk bounds derive straightforwardly from the aforementioned work [18,
52].

B.2 Unknown variance

For any set S ∈ S2, we set the following measure of complexity ∆(S)

∆(S) = log

(
p

dim(S)

)
+ log(dim(S)) ,

and we take the same penalty term pen(S) as for LinSelect (see Appendix C.1).
Baraud et al. [12] consider the model selection estimators β̃BGH := β̂⊥

ŜBGH
with

ŜBGH := argmin
S∈S2

‖Y −ΠSY ‖22
[
1 +

pen(S)

n− dim(S)

]
.

The first risk bound only covers the (non-ultra) high-dimensional setting.

Proposition B.2. There exists some numerical constant C such that the
following holds. For any design X and any vector β0, we have

R
[
β̃BGH ;β0

]
≤ C inf

β ∈ Rp

‖β‖0 ≤ n
2 log(p)

{
‖X (β − β0) ‖22 + ‖β‖0

[
1 + log

(
p

‖β‖0

)]
σ2

}
.

Proposition B.2 is a straightforward consequence of Corollary 1 in [12]. It shows
that simultaneous adaptation to the variance and the sparsity is possible if we
restrict ourselves to a non-ultra high-dimensional setting. The next proposition
complements the risk upper bound of Proposition 2.2. Consider β̃(n) as a least-
squares estimator of β0 over Rn.
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Proposition B.3. There exist numerical constants C, C1, and C2 such that
the following holds. For any design X, any σ > 0, and any vector β0 ∈ R

p, we
have

R
[
β̃(n);β0

]
≤ Cnσ2.

For any design X, any σ > 0, any k ∈ {1, . . . , (n− 1)/4} and any vector β0 ∈ R
p

such that ‖β0‖0 = k, we have

R
[
β̃BGH ;β0

]
≤ C1k log

(p
k

)
exp

[
C2

k

n
log
(p
k

)]
σ2.

The first bound is straightforward while the second bound derives from [12].

APPENDIX C: COMPLEMENTS ON LINSELECT

C.1 More details on the selection procedure

The penalty pen(S) involved in the LinSelect criterion (11) is defined by pen(S) =
1.1 pen∆(S) where pen∆(S) is the unique solution of

E

[(
U − pen∆(S)

n− dim(S)
V

)

+

]
= e−∆(S)

where U and V are two independent chi-square random variables with dim(S)+1
and n− dim(S)− 1 degrees of freedom respectively. It is also the solution in x of

e−∆(S) =

(D + 1)P

(
FD+3,N−1 ≥ x

N − 1

N(D + 3)

)
− x

N − 1

N
P

(
FD+1,N+1 ≥ x

N + 1

N(D + 1)

)

where D = dim(S), N = n− dim(S) and Fd,r is a Fisher random variable with d
and r degrees of freedom.

Proposition 4 in [12] ensures the following upper-bound on pen∆(S). For any
0 < κ < 1, there exists a constant Cκ > 1 such that for any S ∈ S fulfilling
1 ≤ dim(S) ∨∆(S) ≤ κn we have

pen∆(S) ≤ Cκ

(
dim(S) ∨∆(S)

)
.

Conversely, Lemma D.3 in Appendix D ensures that pen∆(S) ≥ 2∆(S)+dim(S)−
C for some constant C ≥ 0.

C.2 A general risk bound for LinSelect

We set
Σ = σ2

∑

S∈S
e−∆(S). (C.1)

The following proposition gives a risk bound when selecting λ̂ by minimizing (11).
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Proposition C.1. Assume that 1 ≤ dim(S) ≤ n/2− 1 and ∆(S) ≤ 2n/3 for
all S ∈ S. Then, there exists a constant C > 1 such that for any minimizer λ̂ of
the Criterion (11), we have

C−1R
[
β̂
λ̂
;β0

]

≤ E

[
inf
λ∈Λ

{
‖Xβ̂λ −Xβ0‖22 + inf

S∈Ŝ

{
‖Xβ̂λ −ΠSXβ̂λ‖22 + [∆(S) ∨ dim(S)]σ2

}}]
+Σ.

Furthermore, with probability larger than 1−e−C0n−C1
∑

S∈S e
−C2[∆(S)∧n]e−∆(S),

we have for some C > 1

C−1
∥∥∥Xβ0 −Xβ̂

λ̂

∥∥∥
2

2

≤ inf
λ∈Λ

{
‖Xβ̂λ −Xβ0‖22 + inf

S∈Ŝ

{
‖Xβ̂λ −ΠSXβ̂λ‖22 + [∆(S) ∨ dim(S)]σ2

}}
.

The first part of Proposition C.1 is a slight variation of Theorem 1 in [13]. We
refer to the Appendix D.1 for a sketch of the proof of this result. The second part
is proved in Appendix D.2.

APPENDIX D: PROOF OF PROPOSITION C.1

D.1 Proof of the first part of Proposition C.1

In this section C denotes a constant whose value may vary from line to line.
We also use in this section the notations ‖.‖ for ‖.‖2, f0 = Xβ0 and f̂λ = Xβ̂λ.
Finally, for any S ∈ S, we write S for the linear space generated by S and f0. Let
(λ̂, S∗) be any minimizer over Λ× Ŝ of

Crit(λ, S) =
∥∥∥Y −ΠS f̂λ

∥∥∥
2
+

1

2

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ pen(S)σ̂2

S .

From Crit(λ̂, S∗) ≤ Crit(λ, S) and simple algebra, we get for any K > 1, λ ∈ Λ̂
and S ∈ Ŝ

∥∥∥f0 −ΠS∗
f̂
λ̂

∥∥∥
2
+

1

2

∥∥∥f̂λ̂ −ΠS∗
f̂
λ̂

∥∥∥
2

≤
∥∥∥f0 −ΠS f̂λ

∥∥∥
2
+

1

2

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2pen(S)σ̂2

S

+ 2〈ε,ΠS∗
f̂
λ̂
− f0〉 − pen(S∗)σ̂

2
S∗

+ 2〈ε, f0 −ΠS f̂λ〉 − pen(S)σ̂2
S .

≤
∥∥∥f0 −ΠS f̂λ

∥∥∥
2
+

1

2

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2pen(S)σ̂2

S

+ K−1
∥∥∥f0 −ΠS∗

f̂
λ̂

∥∥∥
2
+K

∥∥ΠS̄∗
ε
∥∥2 − pen(S∗)σ̂

2
S∗

+ K−1
∥∥∥f0 −ΠS f̂λ

∥∥∥
2
+K ‖ΠS̄ε‖2 − pen(S)σ̂2

S ,

the second inequality following from 2〈f, g〉 ≤ K−1 ‖f‖2 + K ‖g‖2. Introducing
the notation

Σ̃ = 2
∑

S∈S

(
K
∥∥ΠSε

∥∥2 − pen(S)

n− dim(S)

∥∥Y −ΠSY
∥∥2
)

+

,
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we can reformulate the above bound as

(
2 +

1

1−K−1

)−1 ∥∥∥f0 − f̂
λ̂

∥∥∥
2

≤ (1−K−1)
∥∥∥f0 −ΠS∗

f̂
λ̂

∥∥∥
2
+

1

2

∥∥∥f̂λ̂ −ΠS∗
f̂
λ̂

∥∥∥
2

≤ (1 +K−1)
∥∥∥f0 −ΠS f̂λ

∥∥∥
2
+

1

2

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2pen(S)σ̂2

S + Σ̃.

(D.1)

For any S ∈ Ŝ we have dim(S) ≤ n/2−1 and ∆(S) ≤ 2n/3. Therefore, according
to Proposition 4 in [12] we have pen(S) ≤ C[dim(S) ∨∆(S)] and then

pen(S)σ̂2
S =

pen(S)

n− dim(S)
‖Y −ΠSY ‖2 ≤ pen(S)

n− dim(S)
‖Y −ΠS f̂λ‖2

≤ 3
pen(S)

n− dim(S)

(
‖ε‖2 + ‖f0 − f̂λ‖2 + ‖f̂λ −ΠS f̂λ‖2

)

≤ C
(
[dim(S) ∨∆(S)]σ2 +

(
‖ε‖2 − 2nσ2

)
+
+ ‖f0 − f̂λ‖2 + ‖f̂λ −ΠS f̂λ‖2

)
,

where C is a positive constant. Combining this bound with (D.1) and

(1 +K−1)
∥∥∥f0 −ΠS f̂λ

∥∥∥
2
+

1

2

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
≤ 4

∥∥∥f0 − f̂λ

∥∥∥
2
+ 5

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2

we finally obtain that for any λ ∈ Λ and S ∈ Ŝ

C−1
∥∥∥f0 − f̂

λ̂

∥∥∥
2
≤ ‖f0−f̂λ‖2+‖f̂λ−ΠS f̂λ‖2+[dim(S)∨∆(S)]σ2+Σ̃+

(
‖ε‖2 − 2nσ2

)
+

(D.2)
for some positive constant C depending on K only. Finally, choosing K = 1.1,
we deduce the upper bound

E

[
Σ̃ +

(
‖ε‖2 − 2nσ2

)
+

]
≤ 2Σ + 3σ2, (with Σ defined in (C.1))

from the definition of pen∆(S) and the fact that
∥∥Y −ΠSY

∥∥2 is independent of∥∥ΠSε
∥∥2 and is stochastically larger than

∥∥ε−ΠSε
∥∥2. The bound (C.2) follows.

D.2 Proof of the second part of Proposition C.1

We use the same notation as in Section D.1. By (D.2), we have

C−1
∥∥∥f0 − f̂

λ̂

∥∥∥
2
≤ inf

λ∈Λ

{
‖f0 − f̂λ‖2 + inf

S∈Ŝ

{
‖f̂λ −ΠS f̂λ‖2 + [dim(S) ∨∆(S)]σ2

}}

+Σ̃ +
(
‖ε‖2 − 2nσ2

)
+

for some positive constant C depending on K only. Setting K = 1.02, we shall
prove that with overwhelming probability (‖ǫ‖2 − 2nσ2)+ and

Σ̃ := 2
∑

S∈S

(
1.02‖ΠSǫ‖2 −

pen(S)

n− dim(S)
‖Y −ΠS(Y )‖2

)

+
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are non positive. Applying a classical deviation inequality for χ2 random variables
(Lemma 1 in [49]), we derive that P

[
‖ǫ‖2 ≥ 2nσ2

]
≤ e−n/16. Let us turn to Σ̃. The

random variable (n− dim(S)− 1)‖ΠSǫ‖2/‖Y −ΠS(Y )‖2 is stochastically smaller
than a variable FS such that FS/(dim(S) + 1) follows a Fisher distribution with
dim(S) + 1 and n− dim(S)− 1 degrees of freedom. As a consequence, we have

P

[
Σ̃ > 0

]
≤
∑

S∈S
P

[
FS ≥ 1.1

1.02

n− dim(S)− 1

n− dim(S)
pen∆(S)

]
. (D.3)

In order to upper bound the right hand-side of (D.3), we control the penalty
terms pen∆(S). We have

E

[(
U − n− dim(S)

n− dim(S)− 1
pen∆(S)W

)

+

]
= e−∆(S) ,

where U and (n− dim(S)− 1)W are two independent χ2 random variables with
respectively dim(S) + 1 and n− dim(S)− 1 degrees of freedom. We prove in the
next sections the three following technical lemmas.

Lemma D.1. Let F = U/W and 0 < α < 1. We have

P

(
F ≥ 1

1− α

n− dim(S)− 1

n− dim(S)
pen∆(S)

)
≤ e−∆(S)

α(dim(S) + 1)
.

Lemma D.2. Assume that dim(S) ≤ n/2 − 1. For any u > 1 and for any
x ≥ 0, we have

P (F ≥ ux) ≤ exp

[
−u− 1

12u
{(x− dim(S)− 1) ∧ n}

]
P (F ≥ x) .

Lemma D.3. For all S ∈ S, we have

n− dim(S)− 1

n− dim(S)
pen∆(S) ≥ 2∆(S) + dim(S)− C ,

where C is a positive constant.

We can now complete the proof of Proposition C.1. Applying Lemma D.1 with
1/(1− α) = 1.1/1.05 and Lemma D.2 with u = 1.05/1.02 and

xS =
1.1

1.05
× n− dim(S)− 1

n− dim(S)
pen∆(S) ,

we derive from (D.3) the following upper bound.

P

[
Σ̃ > 0

]
≤

∑

S∈S
exp [−C2 ({xS − dim(S)− 1} ∧ n)]P [FS ≥ xS ]

≤
∑

S∈S
C1 exp [−C2 ({xS − dim(S)− 1} ∧ n)] e−∆(S)

≤
∑

S∈S
C1 exp [−C2 (∆(S) ∧ n)] e−∆(S).

The proof of the second part of Proposition C.1 is complete.
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D.3 Proof of the technical Lemmas D.1, D.2 and D.3

D.3.1 Proof of Lemma D.1
Since U is independent of W and x → (1 − y/x)+ is increasing for all y > 0 we
have

e−∆(S) = E

[
U

(
1− n− dim(S)− 1

n− dim(S)
pen∆(S)W/U

)

+

]

≥ E[U ]E

[(
1− n− dim(S)− 1

n− dim(S)
pen∆(S)/F

)

+

]

≥ (dim(S) + 1)× αP

(
1− n− dim(S)− 1

n− dim(S)
pen∆(S)/F ≥ α

)
.

D.3.2 Proof of Lemma D.2
Note that the bound is trivial if x ≤ dim(S) + 1. In the sequel, we assume that
x ≥ dim(S)+1. We set d1 = dim(S)+1, d2 = n−dim(S)−1 and write B(., .) for
the Beta function. Since d1F follows a Fisher distribution with (d1, d2) degrees
of freedom, we have

P (F ≥ ux) =

∫ +∞

ux

td1/2d
d2/2
2

(t+ d2)(d1+d2)/2tB(d1/2, d2/2)
dt

=

∫ +∞

x

(ut)d1/2d
d2/2
2

(ut+ d2)(d1+d2)/2tB(d1/2, d2/2)
dt

≤ ud1/2
∫ +∞

x

[
t+ d2
ut+ d2

](d1+d2)/2 td1/2d
d2/2
2

(t+ d2)(d1+d2)/2tB(d1/2, d2/2)
dt

≤ ud1/2
[
x+ d2
ux+ d2

](d1+d2)/2

P (F ≥ x)

≤
{
ud1/2

[
d1 + d2
ud1 + d2

](d1+d2)/2
}{[

(x+ d2)(ud1 + d2)

(ux+ d2)(d1 + d2)

](d1+d2)/2
}

× P (F ≥ x) .

In order to conclude, we shall prove that the first term between brackets is smaller
than one and we shall control the second term. The derivative of the function

g : u 7→ log

[
ud1/2

[
d1 + d2
ud1 + d2

](d1+d2)/2
]

is g′(u) =
d1
2

[
1

u
− d1 + d2

ud1 + d2

]
,

which is non positive for any u ≥ 1. Since g(1) = 0, we conclude that the first
term is smaller than one. Let us turn to the logarithm of the second term:

−d1 + d2
2

log

[
ux+ d2
x+ d2

d1 + d2
ud1 + d2

]
= −d1 + d2

2
log

[
1 +

d2(u− 1)(x− d1)

(x+ d2)(ud1 + d2)

]

≤ −d1 + d2
2

d2(u− 1)(x− d1)

(x+ d2)(ud1 + d2) + d2(u− 1)(x− d1)

≤ −(u− 1)

2u
(x− d1)

[
x

d2
+ 1 +

x− d1
d2 + d1

]−1

≤ −(u− 1)

4u

[
x− d1

2
∧ n

3

]
,
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where the last line is proved by considering separately x ≤ d1+d2 and x > d1+d2
and by using d1 ≤ d2 ≤ n/2.

D.3.3 Proof of Lemma D.3
We recall that the penalty pen∆(S) is defined by

E

[(
U − pen∆(S)

n− dim(S)
V

)

+

]
= e−∆(S)

where x+ denotes the positive part of x ∈ R and U, V are two independent χ2

random variables with respectively dim(S) + 1 and n − dim(S) − 1 degrees of
freedom. Let us lower bound this expectation applying Jensen’s inequality.

E

[(
U − pen∆(S)

n− dim(S)
V

)

+

]
≥ E

[(
U − n− dim(S)− 1

n− dim(S)
pen∆(S)

)

+

]

≥ E

[
1

{
U >

n− dim(S)− 1

n− dim(S)
pen∆(S) + 1

}]
,

where 1{A} stands for the indicator function of the event A. Hence, we get

pen∆(S) ≥
n− dim(S)

n− dim(S)− 1

[
χ̄−1
dim(S)+1

[
e−∆(S)

]
− 1
]
, (D.4)

where χ̄−1
dim(S)+1(α) is a 1− α quantile of a χ2 random variable with dim(S) + 1

degrees of freedom.

Let us note k = dim(S) + 1. For any positive number x, we have

P [U ≥ x+ k] =

∫ +∞

x+k

tk/2−1e−t/2

2k/2Γ(k/2)
dt = e−(x+k)/2

∫ +∞

0

(t+ x+ k)k/2−1e−t/2

2k/2Γ(k/2)
dt

≥ e−(x+k)/2 kk/2−1

2k/2Γ(k/2)

∫ √
k

0
exp

[
− t

2
+

(
k

2
− 1

)
log

(
1 +

t

k

)]
dt

≥ e−(x+k)/2 kk/2−1

2k/2Γ(k/2)

∫ √
k

0
exp

[
− t

k
−
(
k

2
− 1

)
t2

2k2

]
dt ,

since log(1 + t) ≥ t− t2/2. It follows that

P [U ≥ x+ k] ≥ e−(x+k)/2 kk/2−1

2k/2Γ(k/2)

∫ √
k

0
e−1e−t/(4

√
k)dt ≥ Ce−(x+k)/2 kk/2−1/2

2k/2Γ(k/2)
.

By Stirling’s expansion Γ(k/2) ≤ (k/2)k/2−1/2e−k/2
√
2π so that P [U ≥ x+ k] ≥

Ce−x/2. It follows that

χ̄−1
dim(S)+1

(
e−∆(S)

)
≥ 2∆(S) + dim(S) + 1− C .

APPENDIX E: PROOF OF THE SPECIFIC BOUNDS FOR

LASSO-LINSELECT AND GROUP-LASSO-LINSELECT

E.1 Size of the support of the Lasso and Group-Lasso estimators

ForK ⊂ {1, . . . ,M}, we recall that φ(K) denotes the largest eigenvalue ofX
T
(K)X(K).
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Lemma E.1. Let K̂λ be the subset of groups selected by the group-Lasso esti-

mator β̂λ. Then, on the event Aλ =
⋂M

k=1

{
‖XT

Gk
ε‖2 ≤ λk/4

}
we have

∑

k∈K̂λ

λ2
k ≤ 16φ

(K̂λ)
‖Xβ̂λ −Xβ0‖22 .

In particular, for the Lasso estimator β̂L
λ , we have the upper bound

λ2‖β̂L
λ ‖0 ≤ 16φ

supp(β̂L
λ
)
‖Xβ̂L

λ −Xβ0‖22

on the event Aλ =
{
|XT ε|ℓ∞ ≤ λ/4

}
.

The proof of this lemma is delayed to the Appendix E.4. The above bounds are
similar to those stated in Bickel et al. [17] and Lounici et al. [54], except that it
involves the restricted eigenvalue φ

(K̂λ)
instead of the largest eigenvalue φmax of

XTX. When |K̂λ| is small compared to n the restricted eigenvalue φ
(K̂λ)

can be

much smaller than φmax. Actually, since X
TX has at most n non-zero eigenvalues

and Tr(XTX) = p, we always have φmax ≥ p/n which can be large when p ≫ n.

E.2 Proof of Proposition 4.3

The first step is to provide a sufficient condition for having ‖β̂λ‖0 ≤ n/(3 log(p)).
Recall that the compatibility constant κ[ξ, T ] is defined in Section 4.3.

Lemma E.2. Assume that λ ≥ 8σ
√

log(p) and

1 ≤ ‖β0‖0 ≤
κ2[5, supp(β0)]

96φ∗
× n

log(p)
. (E.1)

Then, on the event A =
{
|XT ε|ℓ∞ ≤ 2σ

√
log(p)

}
we have ‖β̂λ‖0 ≤ n/(3 log(p)).

Proof of Lemma E.2. We write Ĵ for the support of β̂λ. A slight variation
of Theorem 14 in [48] ensures that

‖Xβ̂λ −Xβ0‖22 ≤ inf
β 6=0

{
‖Xβ0 −Xβ‖22 +

λ2

κ2[5, supp(β)]
‖β‖0

}
(E.2)

on the event A. Combining Lemma E.1 with the bound (E.2) we obtain that

Card(Ĵ ) ≤ 16φĴ
‖β0‖0

κ2[5, supp(β0)]
.

Let us set d∗ = n/[3 log(p)]. The upper-bound φĴ ≤ (1+Card(Ĵ )/d∗)φ∗ enforces

Card(Ĵ ) ≤ 16φ∗‖β0‖0
κ2[5, supp(β0)]

[
1 +

Card(Ĵ )

d∗

]
≤
(
d∗ +Card(Ĵ )

)
/2 ,

where the last inequality follows from (E.1).
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We can now complete the proof of Proposition 4.3. We recall that the event

A =
{
|XT ε|ℓ∞ ≤ 2σ

√
log(p)

}
has probability at least 1− 1/p. Let us set

λ0 =
√
16(4 ∨ φ∗) log(p)σ2 ≥ 8σ

√
log(p).

Under the hypothesis (E.1), the combination of Lemma E.2 with Proposition C.1
ensures that with probability larger than 1− C1p

−C2 we have
∥∥∥Xβ0 −Xβ̂

λ̂

∥∥∥
2

2
≤ C

{
‖Xβ0 −Xβ̂λ0‖22 + [‖β̂λ0‖0 ∨ 1] log(p)σ2

}
.

We upper bound the right-hand side by combining Lemma E.1 with (E.2)

∥∥∥Xβ0 −Xβ̂
λ̂

∥∥∥
2

2
≤ C

(
1 +

16φĴ log(p)σ2

λ2
0

)

× inf
β 6=0

{
‖Xβ0 −Xβ‖22 +

λ2
0

κ2[5, supp(β)]
‖β‖0

}

≤ C ′ inf
β 6=0

{
‖Xβ0 −Xβ‖22 +

φ∗ log(p)σ2

κ2[5, supp(β)]
‖β‖0

}
,

where we used in the last inequality that Ĵ (the support of β̂λ0) is of size at most
n/(3 log(p)).

E.3 Proof of Proposition 5.1

The proof of Proposition 5.1 is very similar to that of Proposition 4.3. We only
sketch the main lines. The first step is to provide a sufficient condition for having
|K̂λ| ≤ (n− 2)/(2T ∨ 3 log(M)). Recall that the compatibility constant κG[ξ, s] is
defined in (20) and φ∗ in (19).

Lemma E.3. Assume that

λ2
k = 96φ∗(T ∨ 3 log(M))σ2, for k = 1, . . . ,M (E.3)

and 1 ≤ |K0| ≤ κ2G[3, |K0|]
29φ∗

× n− 2

2T ∨ 3 log(M)
. (E.4)

Then we have |K̂λ| ≤ (n− 2)/(3 log(M) ∨ 2T ), with probability at least 1− 3/M .

Proof of Lemma E.3. We set k∗ = (n − 2)/(3 log(M) ∨ 2T ). Theorem 3.1
in [54] gives

‖Xβ̂λ −Xβ0‖22 ≤
16

κ2G[3, |K0|]
|K0|λ2

1 , (E.5)

with probability larger than 1 − 3/M . Combining this bound with Lemma E.1
and the bound φ

(K̂λ)
≤ [1 + |K̂λ|/k∗]φ∗, we get that with probability larger than

1− 3/M

|K̂λ| ≤ 28

κ2G[3, |K0|]
φ
(K̂λ)

|K0|

≤ 28

κ2G[3, |K0|]

[
1 +

|K̂λ|
k∗

]
φ∗|K0| ≤ (k∗ + |K̂λ|)/2 ,

where the last bound follows from (E.4).
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We complete now the proof of Proposition 5.1. Assume that (E.3) and (E.4) are
satisfied. Combining Lemma E.3 with Proposition C.1 ensures that with proba-
bility larger than 1− C1M

−C2 − 3/M we have

C−1
∥∥∥Xβ0 −Xβ̂

λ̂

∥∥∥
2

2
≤ ‖Xβ̂λ −Xβ0‖22 + (1 ∨ |K̂λ|) (T ∨ log(M))σ2

≤ 2
(
‖Xβ̂λ −Xβ0‖22 ∨

[
(T ∨ log(M))σ2

])
.

Proposition 5.1 then simply follows from (E.5).

E.4 Proof of Lemma E.1

We write β̂ for β̂λ, K̂ for K̂λ and A+ for the Moore-Penrose pseudo-inverse of
A. The optimality condition gives

2XT
(K̂)

(Y −X
(K̂)

β̂
(K̂)

) = λz
(K̂)

(E.6)

where ‖zGk‖2 = 1 for all k ∈ K̂. As a consequence we have

β̂
(K̂)

= (XT
(K̂)

X
(K̂)

)+(XT
(K̂)

Y − λz
(K̂)

/2)

and
Xβ̂ = P

(K̂)
Y − λX

(K̂)
(XT

(K̂)
X

(K̂)
)+z

(K̂)
/2

where P
(K̂)

is the orthogonal projector onto the range of X
(K̂)

. Pythagorean

equality gives

‖Xβ0 −Xβ̂‖22 = ‖Xβ0 − P
(K̂)

Xβ0‖22 + ‖P
(K̂)

ε− λX
(K̂)

(XT
(K̂)

X
(K̂)

)+z
(K̂)

/2‖22
≥ ‖X

(K̂)
(XT

(K̂)
X

(K̂)
)+(XT

(K̂)
ε− λz

(K̂)
/2)‖22.

From (E.6) we know that the vector XT
(K̂)

ε−λz
(K̂)

/2 belongs to the range of XT
(K̂)

and therefore (see Lemma E.4 below)

φ
(K̂)

‖X
(K̂)

(XT
(K̂)

X
(K̂)

)+(XT
(K̂)

ε− λz
(K̂)

/2)‖22 ≥ ‖XT
(K̂)

ε− λz
(K̂)

/2‖22.

Finally, on the event Aλ we have ‖XT
Gk

ε− λkz
Gk/2‖2 ≥ λk/4 for all k ∈ K̂, so

‖XT
(K̂)

ε− λz
(K̂)

/2‖22 ≥
∑

k∈K̂

λ2
k/16.

This allows to conclude.

Lemma E.4. Let A be any n× d real matrix. Then for any x in the range of
AT we have

‖x‖22 ≤ ϕmax(A
TA) ‖A(ATA)+x‖22

where ϕmax(A
TA) denotes the largest eigenvalue of ATA.
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Proof of Lemma E.4. We first note that

‖A(ATA)+x‖22 = xT (ATA)+ATA(ATA)+x = xT (ATA)+x.

Furthermore the range of AT coincides with the range of ATA, which in turn is
the same as the range of (ATA)+. We then have

σrank((ATA)+)((A
TA)+)‖x‖22 ≤ xT (ATA)+x

where σk((A
TA)+) is the k-th largest singular value of (ATA)+. The result follows

from the equality

[
σrank((ATA)+)((A

TA)+)
]−1

= σ1(A
TA) = ϕmax(A

TA).
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